Search Results

Search found 4417 results on 177 pages for 'low on totem pole'.

Page 139/177 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • What are developer's problems with helpful error messages?

    - by Moo-Juice
    It continue to astounds me that, in this day and age, products that have years of use under their belt, built by teams of professionals, still to this day - fail to provide helpful error messages to the user. In some cases, the addition of just a little piece of extra information could save a user hours of trouble. A program that generates an error, generated it for a reason. It has everything at its disposal to inform the user as much as it can, why something failed. And yet it seems that providing information to aid the user is a low-priority. I think this is a huge failing. One example is from SQL Server. When you try and restore a database that is in use, it quite rightly won't let you. SQL Server knows what processes and applications are accessing it. Why can't it include information about the process(es) that are using the database? I know not everyone passes an Applicatio_Name attribute on their connection string, but even a hint about the machine in question could be helpful. Another candidate, also SQL Server (and mySQL) is the lovely string or binary data would be truncated error message and equivalents. A lot of the time, a simple perusal of the SQL statement that was generated and the table shows which column is the culprit. This isn't always the case, and if the database engine picked up on the error, why can't it save us that time and just tells us which damned column it was? On this example, you could argue that there may be a performance hit to checking it and that this would impede the writer. Fine, I'll buy that. How about, once the database engine knows there is an error, it does a quick comparison after-the-fact, between values that were going to be stored, versus the column lengths. Then display that to the user. ASP.NET's horrid Table Adapters are also guilty. Queries can be executed and one can be given an error message saying that a constraint somewhere is being violated. Thanks for that. Time to compare my data model against the database, because the developers are too lazy to provide even a row number, or example data. (For the record, I'd never use this data-access method by choice, it's just a project I have inherited!). Whenever I throw an exception from my C# or C++ code, I provide everything I have at hand to the user. The decision has been made to throw it, so the more information I can give, the better. Why did my function throw an exception? What was passed in, and what was expected? It takes me just a little longer to put something meaningful in the body of an exception message. Hell, it does nothing but help me whilst I develop, because I know my code throws things that are meaningful. One could argue that complicated exception messages should not be displayed to the user. Whilst I disagree with that, it is an argument that can easily be appeased by having a different level of verbosity depending on your build. Even then, the users of ASP.NET and SQL Server are not your typical users, and would prefer something full of verbosity and yummy information because they can track down their problems faster. Why to developers think it is okay, in this day and age, to provide the bare minimum amount of information when an error occurs? It's 2011 guys, come on.

    Read the article

  • USB software protection dongle for Java with an SDK which is cross-platform “for real”. Does it exist?

    - by Unai Vivi
    What I'd like to ask is if anybody knows about an hardware USB-dongle for software protection which offers a very complete out-of-the-box API support for cross-platform Java deployments. Its SDK should provide a jar (only one, not one different library per OS & bitness) ready to be added to one's project as a library. The jar should contain all the native stuff for the various OSes and bitnesses From the application's point of view, one should continue to write (api calls) once and run everywhere, without having to care where the end-user will run the software The provided jar should itself deal with loading the appropriate native library Does such a thing exist? With what I've tried so far, you have different APIs and compiled libraries for win32, linux32, win64, linux64, etc (or you even have to compile stuff yourself on the target machine), but hey, we're doing Java here, we don't know (and don't care) where the program will run! And we can't expect the end-user to be a software engineer, tweak (and break!) its linux server, link libraries, mess with gcc, litter the filesystem, etc... In general, Java support (in a transparent cross-platform fashion) is quite bad with the dongle SDKs I've evaluated so far (e.g. KeyLok and SecuTech's UniKey). I even purchased (no free evaluation kit available) SecureMetric SDKs&dongles (they should've been "soooo" straighforward to integrate -- according to marketing material :\ ) and they were the worst ever: SecureDongle X has no 64bit support and SecureDongle SD is not cross-platform at all. So, has anyone out there been through this and found the ultimate Java security usb dongle for cross-platform deployments? Note: software is low-volume, high-value; application is off-line (intranet with no internet access), so no online-activation alternatives and the like. -- EDIT Tried out HASP dongles (used to be called "Aladdin"), and added them to the no-no list: here, too, there is no out-of-the-box (out-of-the-jar) support: e.g. end-linux-user has to manually put the .so library (the specific file for the appropriate bitness) in the right place on his filesystem, and export an env. variable accordingly. -- EDIT 2 I really don't understand all the negativity and all the downvoting: is this a taboo topic? Is it so hard to understand that a freelance developer has to put food on the table everyday to feed its family and pay the bills at the end of the month? Please don't talk about "adding value" as a supplier, because that'd be off-topic. Furthermore I'm not in direct contact with end-customers, but there's an intermediate reselling entity: it's this entity I want to prevent selling copies of the software without sharing the revenue. -- EDIT 3 I'd like to emphasize the fact that the question is looking for a technical answer, not one about opinions concerning business models, philosophical lucubrations on the concept of value, resellers' reliability, etc. I cannot change resellers, because this isn't a "general purpose" kind of sw, but a very vertical one and (for some reasons it's not worth explaining here) I must go through them. I just need to prevent the "we sold 2 copies, here's your share [bwahaha we sold 10]" scenario.

    Read the article

  • POP Forums v9 Beta 1 for ASP.NET MVC 3 posted to CodePlex!

    - by Jeff
    As promised, I posted a beta build of my forum app for ASP.NET MVC 3. Get the new goodies here: http://popforums.codeplex.com/releases/view/58228 This is the first beta for the ASP.NET MVC 3 version of POP Forums. It is nearly feature complete, and ready for testing and feedback. For previous release notes, look here, here and here.Check out the live preview: http://preview.popforums.com/ForumsSetup instructions are on the home page of this project. The new hotness in the beta, or what has been done since the last preview: All views converted to use Razor E-mail subscription/notification of new posts New post indicators/mark read buttons Permalinks to posts Jump to newest post (from new post indicators) Recent topics Favorite topics Moderator functions for topics (pin/close/delete, plus move and rename) Search, ported from v8. Not a ton of optimization here, or new unit testing, but the old version worked pretty well User posts (topics the user posted in) Forgot password Vanity items (signatures and avatars) Hide vanity items per user preference Some minor data caching where appropriate A little bit of UI refinement Lots-o-bug fixes Lots-o-unit tests What's next? The plan between now and the next beta is as follows: Continue working through features/tasks, and fix bugs as they're reported Integrate the forum into a real, production site Refine the UI Refactor as much as possible... the code organization is not entirely logical in some places After the second beta, a release candidate will follow, with a real "final" release after that. Subsequent releases should come relatively frequently and without a lot of risk. The trick in building this thing has been that it mostly tossed the previous WebForms version, which was all full of crusties. The time table for this is a little harder to pin down, as day jobs and families will have their effect. Other notes Refactoring will be a priority. As the features of MVC have evolved, so have my desires to use it in a fashion that makes things clear and easy to follow. I don't even know if anyone will ever start mucking around in the code, but on the off chance they do, I'd like what they find to not suck. Other nice-to-haves are builds to target Windows Azure and SQL CE. A nice setup UI would be super too. I think the ASP.NET MVC world has gone long enough without a decent forum.The biggest challenge that I've found is making the forum something that can be dropped in any app. While it does rope its views into an area, areas are mostly just routing details. I haven't thought of a clever way yet to limit dependency injection, for example, to just the forum bits. I mean, everyone should be using Ninject, but how realistic is that? ;)How much time and effort should you spend on POP Forums in its current state? Change is inevitable, but at this point I'm reasonably committed to not changing the database schema. I really think it will stay as-is. All bets are off for the various interfaces throughout the app, but the data should generally resist change. It's not even that different from v8, which was one of the original goals because I didn't want to rewrite SQL or introduce a new ORM or whatever. My point is that if you wanted to build a site around this today, even though it's not entirely functional, I think it's low risk in terms of data loss. I can't vouch for whether or not you know what you're doing.I've been having some chats with people lately about quoting posts, and honestly there has to be something better and straight forward. That continues to be a holy grail of mine, and some day, I hope to find it.Enjoy... it's starting to feel more real every day!

    Read the article

  • What makes them click ?

    - by Piet
    The other day (well, actually some weeks ago while relaxing at the beach in Kos) I read ‘Neuro Web Design - What makes them click?’ by Susan Weinschenk. (http://neurowebbook.com) The book is a fast and easy read (no unnecessary filler) and a good introduction on how your site’s visitors can be steered in the direction you want them to go. The Obvious The book handles some of the more known/proven techniques, like for example that ratings/testimonials of other people can help sell your product or service. Another well known technique it talks about is inducing a sense of scarcity/urgency in the visitor. Only 2 seats left! Buy now and get 33% off! It’s not because these are known techniques that they stop working. Luckily 2/3rd of the book handles less obvious techniques, otherwise it wouldn’t be worth buying. The Not So Obvious A less known influencing technique is reciprocity. And then I’m not talking about swapping links with another website, but the fact that someone is more likely to do something for you after you did something for them first. The book cites some studies (I always love the facts and figures) and gives some actual examples of how to implement this in your site’s design, which is less obvious when you think about it. Want to know more ? Buy the book! Other interesting sources For a more general introduction to the same principles, I’d suggest ‘Yes! 50 Secrets from the Science of Persuasion’. ‘Yes!…’ cites some of the same studies (it seems there’s a rather limited pool of studies covering this subject), but of course doesn’t show how to implement these techniques in your site’s design. I read ‘Yes!…’ last year, making ‘Neuro Web Design’ just a little bit less interesting. !!!Always make sure you’re able to measure your changes. If you haven’t yet, check out the advanced segmentation in Google Analytics (don’t be afraid because it says ‘beta’, it works just fine) and Google Website Optimizer. Worth Buying? Can I recommend it ? Sure, why not. I think it can be useful for anyone who ever had to think about the design or content of a site. You don’t have to be a marketing guy to want a site you’re involved with to be successful. The content/filler ratio is excellent too: you don’t need to wade through dozens of pages to filter out the interesting bits. (unlike ‘The Design of Sites’, which contains too much useless info and because it’s in dead-tree format, you can’t google it) If you like it, you might also check out ‘Yes! 50 Secrets from the Science of Persuasion’. Tip for people living in Europe: check Amazon UK for your book buying needs. Because of the low UK Pound exchange rate, it’s usually considerably cheaper and faster to get a book delivered to your doorstep by Amazon UK compared to having to order it at the local book store or web-shop.

    Read the article

  • Home Energy Management & Automation with Windows Phone 7

    A number of people at Clarity are personally interested in home energy conservation and home automation. We feel that a mobile device is a great fit for bringing this idea to fruition. While this project is merely a concept and not directly associated with Microsofts Hohm web service, it provides a great model for communicating the concept. I wanted to take the idea a step further and combine saving energy in your home with the ability to track water usage and control your home devices. I designed an application that focuses on total home control and not just energy usage. Application Overview By monitoring home consumption in real time and with yearly projections users can pinpoint vampire devices, times of high or low consumption, and wasteful patterns of energy use. Energy usage meters indicate total current consumption as well as individual device consumption. Users can then use the information to take action, make adjustments, and change their consumption behaviors. The app can be used to automate certain systems like lighting, temperature, or alarms. Other features can be turned on an off at the touch of a toggle switch on your phone, away from home. Forget to turn off the TV or shut the garage door? No problem, you can do it from your phone. Through settings you can enable and disable features of the phone that apply to your home making it a completely customized and convenient experience. To be clear, this equates to more security, big environmental impact, and even bigger savings.   Design and User Interface  Since this panorama application is designed for win phone 7 devices, it complies with the UI Design and Interaction Guide for wp7. I developed the frame and page hierarchy from existing examples. The interface takes advantage of the interactive nature of touch screens with slider controls, pivot control views, and toggle switches to turn on and off devices (not shown in mockup). I followed recommendations for text based elements and adapted the tile notifications to display the most recent user activity. For example, the mockup indicates upon launching the app that the last thing you did was program the thermostat. This model is great for quick launching common user actions. One last design feature to point out is the technical reasons for supplying both light and dark themes for the app. Since this application is targeting energy consumption it only makes sense to consider the effect of the apps background color or image on the phones energy use. When displaying darker colors like black the OLED display may use less power, extending battery life. Other Considerations For now I left out options of wind and solar powered energy options because they are not available to everyone. Renewable energy sources and new technologies associated with them are definitely ideas to keep in mind for a next iteration. Another idea to explore for such an application would be to include a savings model similar to mint.com. In addition to general energy-saving recommendations the application could recommend customized ways to save based on your current utility providers and available options in your area. If your television or refrigerator is guilty of sucking a lot of energy then you may see recommendations for energy star products that could save you even more money! Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Using NServiceBus behind a custom web service

    - by Michael Stephenson
    In this post I'd like to talk about an architecture scenario we had recently and how we were able to utilise NServiceBus to help us address this problem. Scenario Cognos is a reporting system used by one of my clients. A while back we developed a web service façade to allow line of business applications to be able to access reports from Cognos to support their various functions. The service was intended to provide access to reports which were quick running reports or pre-generated reports which could be accessed real-time on demand. One of the key aims of the web service was to provide a simple generic interface to allow applications to get any report without needing to worry about the complex .net SDK for Cognos. The web service also supported multi-hop kerberos delegation so that report data could be accesses under the context of the end user. This service was working well for a period of time. The Problem The problem we encountered was that reports were now also required to be available to batch processes. The original design was optimised for low latency so users would enjoy a positive experience, however when the batch processes started to request 250+ concurrent reports over an extended period of time you can begin to imagine the sorts of problems that come into play. The key problems this new scenario caused are: Users may be affected and the latency of on demand reports was significantly slower The Cognos infrastructure was not scaled sufficiently to be able to cope with these long peaks of load From a cost perspective it just isn't feasible to scale the Cognos infrastructure to be able to handle the load when it is only for a couple of hour window each night. We really needed to introduce a second pattern for accessing this service which would support high through-put scenarios. We also had little control over the batch process in terms of being able to throttle its load. We could however make some changes to the way it accessed the reports. The Approach My idea was to introduce a throttling mechanism between the Web Service Façade and Cognos. This would allow the batch processes to push reports requests hard at the web service which we were confident the web service can handle. The web service would then queue these requests and process them behind the scenes and make a call back to the batch application to provide the report once it had been accessed. In terms of technology we had some limitations because we were not able to use WCF or IIS7 where the MSMQ-Activated WCF services could have helped, but we did have MSMQ as an option and I thought NServiceBus could do just the job to help us here. The flow of how this would work was as follows: The batch applications would send a request for a report to the web service The web service uses NServiceBus to send the message to a Queue The NServiceBus Generic Host is running as a windows service with a message handler which subscribes to these messages The message handler gets the message, accesses the report from Cognos The message handler calls back to the original batch application, this is decoupled because the calling application provides a call back url The report gets into the batch application and is processed as normal This approach looks something like the below diagram: The key points are an application wanting to take advantage of the batch driven reports needs to do the following: Implement our call back contract Make a call to the service providing a call back url Provide a correlation ID so it knows how to tie each response back to its request What does NServiceBus offer in this solution So this scenario is not the typical messaging service bus type of solution people implement with NServiceBus, but it did offer the following: Simplified interaction with MSMQ Offered the ability to configure the number of processes working through the queue so we could find a balance between load on Cognos versus the applications end to end processing time NServiceBus offers retries and a way to manage failed messages NServiceBus offers a high availability setup The simple thing is that NServiceBus gave us the platform to build the solution on. We just implemented a message handler which functionally processed a message and we could rely on NServiceBus to do all of the hard work around managing the queues and all of the lower level things that would have took ages to write to any kind of robust level. Conclusion With this approach we were able to deal with a fairly significant performance issue with out too much rework. Hopefully this write up gives people some insight into ideas on how to leverage the excellent NServiceBus framework to help solve integration and high through-put scenarios.

    Read the article

  • Regular Expressions Cookbook Is in The Money—Win a Copy

    - by Jan Goyvaerts
    %COOKBOOKFRAME%You may have heard some people say that most book authors never get any royalties. That’s not true because most authors get an advance royalty that is paid before the book is published. That’s the author’s main incentive for writing the book, at least as far as money is concerned. (If money is your main concern, don’t write books.) What is true is that most authors never see any money beyond the advance royalty. Royalty rates are very low. A 10% royalty of the publisher’s price is considered normal. The publisher’s price is usually 45% of the retail price. So if you pay full price in a bookstore, the author gets 4.5% of your money. If there’s more than one author, they split the royalty. It doesn’t take a math degree to figure out that a book needs to sell quite a few copies for the royalty to add up to a meaningful amount of money. But Steven and I must have done something right. Regular Expressions Cookbook is in the money. My royalty statement for the 3rd quartier of 2009, which is the 2nd quarter that the book was on the market, came with a check. I actually received it last month but didn’t get around to blogging about. The amount of the check is insignificant. The point is that the balance is no longer negative. I’m taking this opportunity to pat myself and my co-author on the back. To celebrate the occassion O’Reilly has offered to sponsor a give-away of five (5) copies of Regular Expressions Cookbook. These are the rules of the game: You must post a comment to this blog article including your actual name and actual email address. Names are published, email addresses are not. Comments are moderated by myself (Jan Goyvaerts). If I consider a comment to be offensive or spam it will not be published and not be eligible for any prize. If you don’t know what to say in the comment, just wish me a happy 100000nd birthday, so I don’t have to feel so bad about entering the 6-bit era. Each person commenting has only one chance to win, regardless of the number of comments posted. O’Reilly will be provided with the names and email addresses of the winners (and those email addresses only) in order to arrange delivery. Each winner can choose to receive a printed copy or ebook (DRM-free PDF). If you choose the printed book, O’Reilly pays for shipping to anywhere in the world but not for any duties or taxes your country may impose on books imported from the USA. If you choose the ebook, you’ll need to create an O’Reilly account that is then granted access to the PDF download. You can make your choice after you’ve won, so it doesn’t influence your chance of winning. Contest ends 28 February 2010, GMT+7 (Thai time). Chosen by five calls to Random(78)+1 in Delphi 2010, the winners are: 48: Xiaozu 45: David Chisholm 19: Miquel Burns 33: Aaron Rice 17: David Laing Thanks to everybody who participated. The winners have been notified by email on how to collect their prize.

    Read the article

  • SQL SERVER – DMV – sys.dm_os_wait_stats Explanation – Wait Type – Day 3 of 28

    - by pinaldave
    The key Dynamic Management View (DMV) that helps us to understand wait stats is sys.dm_os_wait_stats; this DMV gives us all the information that we need to know regarding wait stats. However, the interpretation is left to us. This is a challenge as understanding wait stats can often be quite tricky. Anyway, we will cover few wait stats in one of the future articles. Today we will go over the basic understanding of the DMV. The Official Book OnLine Reference for DMV is over here: sys.dm_os_wait_stats. I suggest you all to refer this for all the accuracy. Following is a statement from the online book: “Specific types of wait times during query execution can indicate bottlenecks or stall points within the query. Similarly, high wait times, or wait counts server wide can indicate bottlenecks or hot spots in interaction query interactions within the server instance.” This is the statement which has inspired me to write this series. Let us first run the following statement from DMV. SELECT * FROM sys.dm_os_wait_stats ORDER BY wait_time_ms DESC GO Above statement will show us few of the columns. Here it is quick explanation of each of the column. wait_type – this is the name of the wait type. There can be three different kinds of wait types – resource, queue and external. waiting_tasks_count – this incremental counter is a good indication of frequent the wait is happening. If this number is very high, it is good indication for us to investigate that particular wait type. It is quite possible that the wait time is considerably low, but the frequency of the wait is much high. wait_time_ms – this is total wait accumulated for any type of wait. This is the total wait time and includes singal_wait_time_ms. max_wait_time_ms – this indicates the maximum wait type ever occurred for that particular wait type. Using this, one can estimate the intensity of the wait type in past. Again, it is not necessary that this max wait time will occur every time; so do not over invest yourself here. signal_wait_time_ms – this is the wait time when thread is marked as runnable and it gets to the running state. If the runnable queue is very long, you will find that this wait time becomes high. Additionally, please note that this DMV does not show current wait type or wait stats. This is cumulative view of the all the wait stats since server (instance) restarted or wait stats have been cleared. In future blog post, we will also cover two more DMVs which can be helpful to identify wait-related issues. ?sys.dm_os_waiting_tasks sys.dm_exec_requests Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Keepin’ It Simple with StorageTek SL150

    - by Kristin Rose
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Are your customers archive and data protection environments getting out of hand?  Are they looking for a little simplicity in their lives? How about some scalability? Or are they looking for a way to save on capital and operational expenses? If you answered yes to any of these, then  Oracle's new StorageTek SL150 Modular Tape Library is the product for you. It beats the competition in terms of simplicity, scalability and savings, and provides some seriously wallet friendly revenue opportunities for you. If the long-term service annuities on the SL150 aren’t convincing enough, then the resale margins, rebates and follow-on revenue from modular upgrades will be!  The SL150 simplifies StorageTek’s tape portfolio by replacing three products with one scalable solution that  provides an entry point for repeat business within accounts. The SL150 expands your potential storage customer base to smaller companies with low cost, simple upgrades and streamlined management that help alleviate key customer pain points. With the SL150, your customers will be able to simplify growth of their archive and data protection environments with small entry configurations and 10x growth, something that would require multiple box swaps across up to three product categories with competitive products. With the SL150, Oracle can help you provide greater customer satisfaction with  Simplicity, Scalability and Savings! We know you’re probably wondering how you can get started and sell this new and magnificent product… Well, look no further because the only thing you need to do is complete the SL150 Guided Learning Paths (GLPs). For some extra insight, watch the video below on the new StorageTek SL150 modular tape library, and don’t forget to ‘tweet’ this post, and share it on Facebook to spread the good news! Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Wishing you Simplicity, Scalability and Savings, The OPN Communications Team

    Read the article

  • Changing the action of a hyperlink in a Silverlight RichTextArea

    - by Marc Schluper
    The title of this post could also have been "Move over Hyperlink, here comes Actionlink" or "Creating interactive text in Silverlight." But alas, there can be only one. Hyperlinks are very useful. However, they are also limited because their action is fixed: browse to a URL. This may have been adequate at the start of the Internet, but nowadays, in web applications, the one thing we do not want to happen is a complete change of context. In applications we typically like a hyperlink selection to initiate an action that updates a part of the screen. For instance, if my application has a map displayed with some text next to it, the map would react to a selection of a hyperlink in the text, e.g. by zooming in on a location and displaying additional locational information in a popup. In this way, the text becomes interactive text. It is quite common that one company creates and maintains websites for many client companies. To keep maintenance cost low, it is important that the content of these websites can be updated by the client companies themselves, without the need to involve a software engineer. To accommodate this scenario, we want the author of the interactive text to configure all hyperlinks (without writing any code). In a Silverlight RichTextArea, the default action of a Hyperlink is the same as a traditional hyperlink, but it can be changed: if the Command property has a value then upon a click event this command is called with the value of the CommandParameter as parameter. How can we let the author of the text specify a command for each hyperlink in the text, and how can we let an application react properly to a hyperlink selection event? We are talking about any command here. Obviously, the application would recognize only a specific set of commands, with well defined parameters, but the approach we take here is generic in the sense that it pertains to the RichTextArea and any command. So what do we require? We wish that: As a text author, I can configure the action of a hyperlink in a (rich) text without writing code; As a text author, I can persist the action of a hyperlink with the text; As a reader of persisted text, I can click a hyperlink and the configured action will happen; As an application developer, I can configure a control to use my application specific commands. In an excellent introduction to the RichTextArea, John Papa shows (among other things) how to persist a text created using this control. To meet our requirements, we can create a subclass of RichTextArea that uses John's code and allows plugging in two command specific components: one to prompt for a command definition, and one to execute the command. Since both of these plugins are application specific, our RichTextArea subclass should not assume anything about them except their interface. public interface IDefineCommand { void Prompt(string content, // the link content Action<string, object> callback); // the method called to convey the link definition } public interface IPerformCommand : ICommand {} The IDefineCommand plugin receives the content of the link (the text visible to the reader) and displays some kind of control that allows the author to define the link. When that's done, this (possibly changed) content string is conveyed back to the RichTextArea, together with an object that defines the command to execute when the link is clicked by the reader of the published text. The IPerformCommand plugin simply implements System.Windows.Input.ICommand. Let's use MEF to load the proper plugins. In the example solution there is a project that contains rudimentary implementations of these. The IDefineCommand plugin simply prompts for a command string (cf. a command line or query string), and the IPerformCommand plugin displays a MessageBox showing this command string. An actual application using this extended RichTextArea would have its own set of commands, each having their own parameters, and hence would provide more user friendly application specific plugins. Nonetheless, in any case a command can be persisted as a string and hence the two interfaces defined above suffice. For a Visual Studio 2010 solution, see my article on The Code Project.

    Read the article

  • Restricting Input in HTML Textboxes to Numeric Values

    - by Rick Strahl
    Ok, here’s a fairly basic one – how to force a textbox to accept only numeric input. Somebody asked me this today on a support call so I did a few quick lookups online and found the solutions listed rather unsatisfying. The main problem with most of the examples I could dig up was that they only include numeric values, but that provides a rather lame user experience. You need to still allow basic operational keys for a textbox – navigation keys, backspace and delete, tab/shift tab and the Enter key - to work or else the textbox will feel very different than a standard text box. Yes there are plug-ins that allow masked input easily enough but most are fixed width which is difficult to do with plain number input. So I took a few minutes to write a small reusable plug-in that handles this scenario. Imagine you have a couple of textboxes on a form like this: <div class="containercontent"> <div class="label">Enter a number:</div> <input type="text" name="txtNumber1" id="txtNumber1" value="" class="numberinput" /> <div class="label">Enter a number:</div> <input type="text" name="txtNumber2" id="txtNumber2" value="" class="numberinput" /> </div> and you want to restrict input to numbers. Here’s a small .forceNumeric() jQuery plug-in that does what I like to see in this case: [Updated thanks to Elijah Manor for a couple of small tweaks for additional keys to check for] <script type="text/javascript"> $(document).ready(function () { $(".numberinput").forceNumeric(); }); // forceNumeric() plug-in implementation jQuery.fn.forceNumeric = function () { return this.each(function () { $(this).keydown(function (e) { var key = e.which || e.keyCode; if (!e.shiftKey && !e.altKey && !e.ctrlKey && // numbers key >= 48 && key <= 57 || // Numeric keypad key >= 96 && key <= 105 || // comma, period and minus key == 190 || key == 188 || key == 109 || // Backspace and Tab and Enter key == 8 || key == 9 || key == 13 || // Home and End key == 35 || key == 36 || // left and right arrows key == 37 || key == 39 || // Del and Ins key == 46 || key == 45) return true; return false; }); }); } </script> With the plug-in in place in your page or an external .js file you can now simply use a selector to apply it: $(".numberinput").forceNumeric(); The plug-in basically goes through each selected element and hooks up a keydown() event handler. When a key is pressed the handler is fired and the keyCode of the event object is sent. Recall that jQuery normalizes the JavaScript Event object between browsers. The code basically white-lists a few key codes and rejects all others. It returns true to indicate the keypress is to go through or false to eat the keystroke and not process it which effectively removes it. Simple and low tech, and it works without too much change of typical text box behavior.© Rick Strahl, West Wind Technologies, 2005-2011Posted in JavaScript  jQuery  HTML  

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him. Originally published on blogs.oracle.com/javaone.

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him.

    Read the article

  • Migrating SQL Server Databases – The DBA’s Checklist (Part 3)

    - by Sadequl Hussain
    Continuing from Part 2 of the Database Migration Checklist series: Step 10: Full-text catalogs and full-text indexing This is one area of SQL Server where people do not seem to take notice unless something goes wrong. Full-text functionality is a specialised area in database application development and is not usually implemented in your everyday OLTP systems. Nevertheless, if you are migrating a database that uses full-text indexing on one or more tables, you need to be aware a few points. First of all, SQL Server 2005 now allows full-text catalog files to be restored or attached along with the rest of the database. However, after migration, if you are unable to look at the properties of any full-text catalogs, you are probably better off dropping and recreating it. You may also get the following error messages along the way: Msg 9954, Level 16, State 2, Line 1 The Full-Text Service (msftesql) is disabled. The system administrator must enable this service. This basically means full text service is not running (disabled or stopped) in the destination instance. You will need to start it from the Configuration Manager. Similarly, if you get the following message, you will also need to drop and recreate the catalog and populate it. Msg 7624, Level 16, State 1, Line 1 Full-text catalog ‘catalog_name‘ is in an unusable state. Drop and re-create this full-text catalog. A full population of full-text indexes can be a time and resource intensive operation. Obviously you will want to schedule it for low usage hours if the database is restored in an existing production server. Also, bear in mind that any scheduled job that existed in the source server for populating the full text catalog (e.g. nightly process for incremental update) will need to be re-created in the destination. Step 11: Database collation considerations Another sticky area to consider during a migration is the collation setting. Ideally you would want to restore or attach the database in a SQL Server instance with the same collation. Although not used commonly, SQL Server allows you to change a database’s collation by using the ALTER DATABASE command: ALTER DATABASE database_name COLLATE collation_name You should not be using this command for no reason as it can get really dangerous.  When you change the database collation, it does not change the collation of the existing user table columns.  However the columns of every new table, every new UDT and subsequently created variables or parameters in code will use the new setting. The collation of every char, nchar, varchar, nvarchar, text or ntext field of the system tables will also be changed. Stored procedure and function parameters will be changed to the new collation and finally, every character-based system data type and user defined data types will also be affected. And the change may not be successful either if there are dependent objects involved. You may get one or multiple messages like the following: Cannot ALTER ‘object_name‘ because it is being referenced by object ‘dependent_object_name‘. That is why it is important to test and check for collation related issues. Collation also affects queries that use comparisons of character-based data.  If errors arise due to two sides of a comparison being in different collation orders, the COLLATE keyword can be used to cast one side to the same collation as the other. Continues…

    Read the article

  • Travelling MVP #4: DevReach 2012

    - by DigiMortal
    Our next stop after Varna was Sofia where DevReach happens. DevReach is one of my favorite conferences in Europe because of sensible prices and strong speakers line-up. Also they have VIP-party after conference and this is good event to meet people you don’t see every day, have some discussion with speakers and find new friends. Our trip from Varna to Sofia took about 6.5 hours on bus. As I was tired from last evening it wasn’t problem for me as I slept half the trip. After smoking pause in Velike Tarnovo I watched movies from bus TV. We had supper later in city center Happy’s – place with good meat dishes and nice service. And next day it begun…. :) DevReach 2012 DevReach is held usually in Arena Mladost. It’s near airport and Telerik office. The event is organized by local MVP Martin Kulov together with Telerik. Two days of sessions with strong speakers is good reason enough for me to go to visit some event. Some topics covered by sessions: Windows 8 development web development SharePoint Windows Azure Windows Phone architecture Visual Studio Practically everybody can find some interesting session in every time slot. As the Arena is not huge it is very easy to go from one sessions to another if selected session for time slot is not what you expected. On the second floor of Arena there are many places where you can eat. There are simple chunk-food places like Burger King and also some restaurants. If you are hungry you will find something for your taste for sure. Also you can buy beer if it is too hot outside :) Weather was very good for October – practically Estonian summer – 25C and over. Sessions I visited Here is the list of sessions I visited at DevReach 2012: DevReach 2012 Opening & Welcome Messsage with Martin Kulov and Stephen Forte Principled N-Tier Solution Design with Steve Smith Data Patterns for the Cloud with Brian Randell .NET Garbage Collection Performance Tips with Sasha Goldshtein Building Secured, Scalable, Low-latency Web Applications with the Windows Azure Platform with Ido Flatow It’s a Knockout! MVVM Style Web Applications with Charles Nurse Web Application Architecture – Lessons Learned from Adobe Brackets with Brian Rinaldi Demystifying Visual Studio 2012 Performance Tools with Martin Kulov SPvNext – A Look At All the Exciting And New Features In SharePoint with Sahil Malik Portable Libraries – Why You Should Care with Lino Tadros I missed some sessions because of some death march projects that are going and that I have to coordinate but it was not big loss as I had time to walk around in session venue neighborhood and see Sofia Business Park. Next year again! I will be there again next year and hopefully more guys from Estonia will join me. I think it’s good idea to take short vacation for DevReach time and do things like we did this time – Bucharest, Varna, Sofia. It’s only good idea to plan some more free time so we are not very much in hurry and also we have no work stuff to do on the trip. This far this trip has been one of best trips I have organized and I will go and meet all those guys in this region again! :)

    Read the article

  • Bancassurers Seek IT Solutions to Support Distribution Model

    - by [email protected]
    Oracle Insurance's director of marketing for EMEA, John Sinclair, attended the third annual Bancassurance Forum in Vienna last month. He reports that the outlook for bancassurance in EMEA remains positive, despite changing market conditions that have led a number of bancassurers to re-examine their business models. Vienna is at the crossroads between mature Western European markets, where bancassurance is now an established best practice, and more recently tapped Eastern European markets that offer the greatest growth potential. Attendance at the Bancassurance Forum was good, with 87 bancassurance attendees, most in very senior positions in the industry. The conference provided the chance for a lively discussion among bancassurers looking to keep abreast of the latest trends in one of Europe's most successful distribution models for insurance. Even under normal business conditions, there is a great demand for best practice sharing within the industry as there is no standard formula for success.  Each company has to chart its own course and choose the strategies for sales, products development and the structure of ownership that make sense for their business, and as soon as they get it right bancassurers need to adapt the mix to keep up with ever changing regulations, completion and economic conditions.  To optimize the overall relationship between banking and insurance for mutual benefit, a balance needs to be struck between potentially conflicting interests. The banking side of the house is looking for greater wallet share from its customers and the ability to increase profitability by bundling insurance products with higher margins - especially in light of the recent economic crisis, where margins for traditional banking products are low and completion high. The insurance side of the house seeks access to new customers through a complementary distribution channel that is efficient and cost effective. To make the relationship work, it is important that both sides of the same house forge strategic and long term relationships - irrespective of whether the underlying business model is supported by a distribution agreement, cross-ownership or other forms of capital structure. However, this third annual conference was not held under normal business conditions. The conference took place in challenging, yet interesting times. ING's forced spinoff of its insurance operations under pressure by the EU Commission and the troubling losses suffered by Allianz as a result of the Dresdner bank sale were fresh in everyone's mind. One year after markets crashed, there is now enough hindsight to better understand the implications for bancassurance and best practices that are emerging to deal with them. The loan-driven business that has been crucial to bancassurance up till now evaporated during the crisis, leaving bancassurers grappling with how to change their overall strategy from a loan-driven to a more diversified model.  Attendees came to the conference to learn what strategies were working - not only to cope with the market shift, but to take advantage of it as markets pick up. Over the course of 14 customer case studies and numerous analyst presentations, topical issues ranging from getting the business model right to the impact on capital structuring of Solvency II were debated openly. Many speakers alluded to the need to specifically design insurance products with the banking distribution channel in mind, which brings with it specific requirements such as a high degree of standardization to achieve efficiency and reduce training costs. Moreover, products must be engineered to suit end consumers who consider banks a one-stop shop. The importance of IT to the successful implementation of bancassurance strategies was a theme that surfaced regularly throughout the conference.  The cross-selling opportunity - that will ultimately determine the success or failure of any bancassurance model - can only be fully realized through a flexible IT architecture that enables banking and insurance processes to be integrated and presented to front-line staff through a common interface. However, the reality is that most bancassurers have legacy IT systems, which constrain the businesses' ability to implement new strategies to maintaining competitiveness in turbulent times. My colleague Glenn Lottering, who chaired the conference, believes that the primary opportunities for bancassurers to extract value from their IT infrastructure investments lie in distribution management, risk management with the advent of Solvency II, and achieving operational excellence. "Oracle is ideally suited to meet the needs of bancassurance," Glenn noted, "supplying market-leading software for both banking and insurance. Oracle provides adaptive systems that let customers easily integrate hybrid business processes from both worlds while leveraging existing IT infrastructure." Overall, the consensus at the conference was that the outlook for bancassurance in EMEA remains positive, despite changing market conditions that have led a number of bancassurers to re-examine their business models. John Sinclair is marketing director for Oracle Insurance in EMEA. He has more than 20 years of experience in insurance and financial services.    

    Read the article

  • Know Your Audience, And/Or Your Customer

    - by steve.diamond
    Yesterday I gave an internal presentation to about 20 Oracle employees on "messaging," not messaging technology, but embarking on the process of building messages. One of the elements I covered was the importance of really knowing and understanding your audience. As a humorous reference I included two side-by-side photos of Oakland A's fans and Oakland Raiders fans. The Oakland A's fans looked like happy-go-lucky drunk types. The Oakland Raiders fans looked like angry extras from a low budget horror flick. I then asked my presentation attendees what these two groups had in common. Here's what I heard. --They're human (at least I THINK they're human). --They're from Oakland. --They're sports fans. After that, it was anyone's guess. A few days earlier we were putting the finishing touches on a sales presentation for one of our product lines. We had included an upfront "lead in" addressing how the economy is improving, yet that doesn't mean sales executives will have any more resources to add to their teams, invest in technology, etc. This "lead in" included miscellaneous news article headlines and statistics validating the slowly improving economy. When we subjected this presentation to internal review two days ago, this upfront section in particular was scrutinized. "Is the economy really getting better? I (exclamation point) don't think it's really getting better. Haven't you seen the headlines coming out of Greece and Europe?" Then the question TO ME became, "Who will actually be in the audience that sees and hears this presentation? Will s/he be someone like me? Or will s/he be someone like the critic who didn't like our lead-in?" We took the safe route and removed that lead in. After all, why start a "pitch" with a component that is arguably subjective? What if many of our audience members are individuals at organizations still facing a strong headwind? For reasons I won't go into here, it was the right decision to make. The moral of the story: Make sure you really know your audience. Harness the wisdom of the information your organization's CRM systems collect to get that fully informed "customer view." Conduct formal research. Conduct INFORMAL research. Ask lots of questions. Study industries and scenarios that have nothing to do with yours to see "how they do it." Stop strangers in coffee shops and on the street...seriously. Last week I caught up with an old friend from high school who recently retired from a 25 year career with the USMC. He said, "I can learn something from every single person I come into contact with." What a great way of approaching the world. Then, think about and write down what YOU like and dislike as a customer. But also remember that when it comes to your company's products, you are most likely NOT the customer, so don't go overboard in superimposing your own world view. Approaching the study of customers this way adds rhyme, reason and CONTEXT to lengthy blog posts like this one. Know your audience.

    Read the article

  • Clone a Hard Drive Using an Ubuntu Live CD

    - by Trevor Bekolay
    Whether you’re setting up multiple computers or doing a full backup, cloning hard drives is a common maintenance task. Don’t bother burning a new boot CD or paying for new software – you can do it easily with your Ubuntu Live CD. Not only can you do this with your Ubuntu Live CD, you can do it right out of the box – no additional software needed! The program we’ll use is called dd, and it’s included with pretty much all Linux distributions. dd is a utility used to do low-level copying – rather than working with files, it works directly on the raw data on a storage device. Note: dd gets a bad rap, because like many other Linux utilities, if misused it can be very destructive. If you’re not sure what you’re doing, you can easily wipe out an entire hard drive, in an unrecoverable way. Of course, the flip side of that is that dd is extremely powerful, and can do very complex tasks with little user effort. If you’re careful, and follow these instructions closely, you can clone your hard drive with one command. We’re going to take a small hard drive that we’ve been using and copy it to a new hard drive, which hasn’t been formatted yet. To make sure that we’re working with the right drives, we’ll open up a terminal (Applications > Accessories > Terminal) and enter in the following command sudo fdisk –l We have two small drives, /dev/sda, which has two partitions, and /dev/sdc, which is completely unformatted. We want to copy the data from /dev/sda to /dev/sdc. Note: while you can copy a smaller drive to a larger one, you can’t copy a larger drive to a smaller one with the method described below. Now the fun part: using dd. The invocation we’ll use is: sudo dd if=/dev/sda of=/dev/sdc In this case, we’re telling dd that the input file (“if”) is /dev/sda, and the output file (“of”) is /dev/sdc. If your drives are quite large, this can take some time, but in our case it took just less than a minute. If we do sudo fdisk –l again, we can see that, despite not formatting /dev/sdc at all, it now has the same partitions as /dev/sda.  Additionally, if we mount all of the partitions, we can see that all of the data on /dev/sdc is now the same as on /dev/sda. Note: you may have to restart your computer to be able to mount the newly cloned drive. And that’s it…If you exercise caution and make sure that you’re using the right drives as the input file and output file, dd isn’t anything to be scared of. Unlike other utilities, dd copies absolutely everything from one drive to another – that means that you can even recover files deleted from the original drive in the clone! Similar Articles Productive Geek Tips Reset Your Ubuntu Password Easily from the Live CDHow to Browse Without a Trace with an Ubuntu Live CDRecover Deleted Files on an NTFS Hard Drive from a Ubuntu Live CDCreate a Bootable Ubuntu 9.10 USB Flash DriveWipe, Delete, and Securely Destroy Your Hard Drive’s Data the Easy Way TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Windows Media Player Glass Icons (icons we like) How to Forecast Weather, without Gadgets Outlook Tools, one stop tweaking for any Outlook version Zoofs, find the most popular tweeted YouTube videos Video preview of new Windows Live Essentials 21 Cursor Packs for XP, Vista & 7

    Read the article

  • Oracle Data Integration 12c: Simplified, Future-Ready, High-Performance Solutions

    - by Thanos Terentes Printzios
    In today’s data-driven business environment, organizations need to cost-effectively manage the ever-growing streams of information originating both inside and outside the firewall and address emerging deployment styles like cloud, big data analytics, and real-time replication. Oracle Data Integration delivers pervasive and continuous access to timely and trusted data across heterogeneous systems. Oracle is enhancing its data integration offering announcing the general availability of 12c release for the key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c, delivering Simplified and High-Performance Solutions for Cloud, Big Data Analytics, and Real-Time Replication. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions : Supporting Current and Emerging Initiatives Extreme Performance : Even higher performance than ever before Fast Time-to-Value : Higher IT Productivity and Simplified Solutions  With the new capabilities in Oracle Data Integrator 12c, customers can benefit from: Superior developer productivity, ease of use, and rapid time-to-market with the new flow-based mapping model, reusable mappings, and step-by-step debugger. Increased performance when executing data integration processes due to improved parallelism. Improved productivity and monitoring via tighter integration with Oracle GoldenGate 12c and Oracle Enterprise Manager 12c. Improved interoperability with Oracle Warehouse Builder which enables faster and easier migration to Oracle Data Integrator’s strategic data integration offering. Faster implementation of business analytics through Oracle Data Integrator pre-integrated with Oracle BI Applications’ latest release. Oracle Data Integrator also integrates simply and easily with Oracle Business Analytics tools, including OBI-EE and Oracle Hyperion. Support for loading and transforming big and fast data, enabled by integration with big data technologies: Hadoop, Hive, HDFS, and Oracle Big Data Appliance. Only Oracle GoldenGate provides the best-of-breed real-time replication of data in heterogeneous data environments. With the new capabilities in Oracle GoldenGate 12c, customers can benefit from: Simplified setup and management of Oracle GoldenGate 12c when using multiple database delivery processes via a new Coordinated Delivery feature for non-Oracle databases. Expanded heterogeneity through added support for the latest versions of major databases such as Sybase ASE v 15.7, MySQL NDB Clusters 7.2, and MySQL 5.6., as well as integration with Oracle Coherence. Enhanced high availability and data protection via integration with Oracle Data Guard and Fast-Start Failover integration. Enhanced security for credentials and encryption keys using Oracle Wallet. Real-time replication for databases hosted on public cloud environments supported by third-party clouds. Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c and other Oracle technologies, such as Oracle Database 12c and Oracle Applications, provides a number of benefits for organizations: Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training. Integration with Oracle Database 12c provides a strong foundation for seamless private cloud deployments. Delivers real-time data for reporting, zero downtime migration, and improved performance and availability for Oracle Applications, such as Oracle E-Business Suite and ATG Web Commerce . Oracle’s data integration offering is optimized for Oracle Engineered Systems and is an integral part of Oracle’s fast data, real-time analytics strategy on Oracle Exadata Database Machine and Oracle Exalytics In-Memory Machine. Oracle Data Integrator 12c and Oracle GoldenGate 12c differentiate the new offering on data integration with these many new features. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. Find out much more about the new release in the video webcast "Introducing 12c for Oracle Data Integration", where customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Resource Kits Meet Oracle Data Integration 12c  Discover what's new with Oracle Goldengate 12c  Oracle EMEA DIS (Data Integration Solutions) Partner Community is available for all your questions, while additional partner focused webcasts will be made available through our blog here, so stay connected. For any questions please contact us at partner.imc-AT-beehiveonline.oracle-DOT-com Stay Connected Oracle Newsletters

    Read the article

  • Tips to Make Your Website Cell Phone Friendly

    - by Aditi
    Working on a new website design? or Redesigning your website? There is a lot more to consider now a days not just user experience, clean code, CSS etc. one of the important attribute one must not miss, which is making them mobile friendly! With the growing use of handhelds & unlimited data plans, people browse on their cellphones! and All come in different sizes! it is tough to make a website that would look great not just on a high resolution widescreen monitor/LCD, but also should look equally impressive on the low resolutions of cellphones. We are today going to discuss about such factors that can help you make a website Cellphone Friendly. Fluid Width Layouts As we start discussing about this, Most people speak of the Fluid Width Layouts as vital step in moving your website to be mobile friendly. Fluid width allows the width of your website stretch or shrink depending on the browser size. However, having a layout which flows with the width of the screen’s resolution is certainly convenient, more often than not the website was originally laid out for a desktop in mind. Compressing a fluid layout to 320 pixels can do some serious damage to layout, Thus some people strongly believe it is far better to have a mobile style sheet and lay out the content specifically for that screen and have more control on the display. The best thing to do is to detect the type of platform that is connected to your website and disabling or changing some tools and effects to make it look better if not perfect. Keep Your Web Pages Short length One must avoid long pages on their website, a lot of scroll makes it very non user friendly for people, especially on mobile devices this is a huge draw back because of the longer load time it takes to download the webpage. Everyone likes crisp & concise content such pages are easier to load & browse. This makes your website accessible across all platforms. Also try to keep shorter urls, if they have to type..save them from that much work especially if someone is using a cellphone with no QWERTY keyboard it can be tough. Usable Navigation & Search Unlike Desktops, your website’s Navigation won’t super work on a cellphone. Keep in mind the user experience for cellphone users as you design your Navigation. Try to keep your content centered as they do have difficulty in reading the webpage. I always look upto Google and their pages as available on mobile as a great example. Keeping a functional & very visible search bar helps mobile users navigate by searching. Understanding Clean Website Code : Evolved for Mobile Clean code is important when you consider the diversity out there for handheld devices. Some cell phones may only understand WAP. More capable phones may understand WAP2, which allows rendering websites with XHTML and CSS. Most mobiles won’t display tables, floats, frames, JavaScript, and dynamic menus. Most cellphone will not support cookies. Devices at the high end of the mobile market such as BlackBerry, Palm, or the upcoming iPhone are highly capable and support nearly as much as a standard computer..but masses still do not have such phones. You can use specific emulators to test your website on mobile devices. Make sure your color combinations provide good contrast between foreground and background colors, particularly for devices with fewer color options.

    Read the article

  • BizTalk 2009 - BizTalk Benchmark Wizard: Running a Test

    - by StuartBrierley
    The BizTalk Benchmark Wizard is a ultility that can be used to gain some validation of a BizTalk installation, giving a level of guidance on whether it is performing as might be expected.  It should be used after BizTalk Server has been installed and before any solutions are deployed to the environment.  This will ensure that you are getting consistent and clean results from the BizTalk Benchmark Wizard. The BizTalk Benchmark Wizard applies load to the BizTalk Server environment under a choice of specific scenarios. During these scenarios performance counter information is collected and assessed against statistics that are appropriate to the BizTalk Server environment. For details on installing the Benchmark Wizard see my previous post. The BizTalk Benchmarking Wizard provides two simple test scenarios, one for messaging and one for Orchestrations, which can be used to test your BizTalk implementation. Messaging Loadgen generates a new XML message and sends it over NetTCP A WCF-NetTCP Receive Location receives a the xml document from Loadgen. The PassThruReceive pipeline performs no processing and the message is published by the EPM to the MessageBox. The WCF One-Way Send Port, which is the only subscriber to the message, retrieves the message from the MessageBox The PassThruTransmit pipeline provides no additional processing The message is delivered to the back end WCF service by the WCF NetTCP adapter Orchestrations Loadgen generates a new XML message and sends it over NetTCP A WCF-NetTCP Receive Location receives a the xml document from Loadgen. The XMLReceive pipeline performs no processing and the message is published by the EPM to the MessageBox. The message is delivered to a simple Orchestration which consists of a receive location and a send port The WCF One-Way Send Port, which is the only subscriber to the Orchestration message, retrieves the message from the MessageBox The PassThruTransmit pipeline provides no additional processing The message is delivered to the back end WCF service by the WCF NetTCP adapter Below is a quick outline of how to run the BizTalk Benchmark Wizard on a single server, although it should be noted that this is not ideal as this server is then both generating and processing the load.  In order to separate this load out you should run the "Indigo" service on a seperate server. To start the BizTalk Benchmark Wizard click Start > All Programs > BizTalk Benchmark Wizard > BizTalk Benchmark Wizard. On this screen click next, you will then get the following pop up window. Check the server and database names and check the "check prerequsites" check-box before pressing ok.  The wizard will then check that the appropriate test scenarios are installed. You should then choose the test scenario that wish to run (messaging or orchestration) and the architecture that most closely matches your environment. You will then be asked to confirm the host server for each of the host instances. Next you will be presented with the prepare screen.  You will need to start the indigo service before pressing the Test Indigo Service Button. If you are running the indigo service on a separate server you can enter the server name here.  To start the indigo service click Start > All Programs > BizTalk Benchmark Wizard > Start Indigo Service.   While the test is running you will be presented with two speed dial type displays - one for the received messages per second and one for the processed messages per second. The green dial shows the current rate and the red dial shows the overall average rate.  Optionally you can view the CPU usage of the various servers involved in processing the tests. For my development environment I expected low results and this is what I got.  Although looking at the online high scores table and comparing to the quad core system listed, the results are perhaps not really that bad. At some time I may look at what improvements I can make to this score, but if you are interested in that now take a look at Benchmark your BizTalk Server (Part 3).

    Read the article

  • P90X or How I Stopped Worrying and Love Exercise

    - by Matt Christian
    Last Wednesday, after many UPS delivery failures, I received P90X in the mail.  P90X is a series of DVD's and a nutrition guide you use to shed pounds and gain muscle.  Odds are you've seen the infomercial on TV at some point if you watch a little tube now and again.  I started last Thursday and am still standing to tell this tale. At it's core, P90X is a 12 DVD set of exercise videos.  Each video is comprised of a different workout routine that typically last around an hour (some up to 1 1/2 hours).  Every day you are supposed to do one of the workouts which are different every day (sometimes you may repeat a shorter 6 min workout dedicated to abs twice a week).  There are different 'programs' focused on different areas, for weight loss you do the Lean Program, standard weight loss and muscle gain do the Regular Program, and for those hardcore health-nuts, the Insane Program (which consists of 2 - 1 hour long exercises per day).  Each Program has a different set of workouts per week which you repeat for 3 weeks, followed by a 'Relaxation Week' which is essentially a slightly different order.  After the month of workouts is over, you've finished 1 phase out of 3.  P90X takes 90 days, split into 3 Phases (1 phase per month).  Every phase has a different workout order which is also focused on different areas (Weight Loss, Muscle Gain, etc...)  With the DVD's you also get a small glossy book of about 100 pages detailing the different workouts and the different programs as well as a sample workout to see if you're even ready to start P90X. The second part of P90X, which can also be considered the 'core' (actually the other half of the core) is the nutrition guide that is included.  The Nutrition Guide is a book similar to the one that defines the exercises (about 100 glossy pages) though it details foods you should eat, the amounts, and a number of healthy (and tasty!) recipes.  The guide is split up into 3 phases as well, promoting high protein and low carb/dairy at during Phase 1, and levelling off through to Phase 3 where you have a relatively balanced amount of every food group. So after 1 week where am I?  I've stuck quite close to the nutrition guide (there isn't 'diet food' in here people, it's ACTUALLY food) and done my exercise every day.  I think a lot of the first week is getting into the whole idea and learning the moves performed on the DVD.  Have I lost weight?  No.  Do I feel some definition already starting to poke out?  Absolutely (no pun intended). Tony Horton (the 51-year old hulk that runs the whole thing) is very fun to listen and work along with and the 'diet' really isn't too hard to follow unless all you eat is carbs.  I've tried the gym thing and could not get motivated enough to continue going.  P90X is the first time I've ached from a workout, BEFORE starting my next workout.  For anyone interested, Google 'P90X' or 'BeachBody' to find out more information about this awesome program!

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Code is not the best way to draw

    - by Bertrand Le Roy
    It should be quite obvious: drawing requires constant visual feedback. Why is it then that we still draw with code in so many situations? Of course it’s because the low-level APIs always come first, and design tools are built after and on top of those. Existing design tools also don’t typically include complex UI elements such as buttons. When we launched our Touch Display module for Netduino Go!, we naturally built APIs that made it easy to draw on the screen from code, but very soon, we felt the limitations and tedium of drawing in code. In particular, any modification requires a modification of the code, followed by compilation and deployment. When trying to set-up buttons at pixel precision, the process is not optimal. On the other hand, code is irreplaceable as a way to automate repetitive tasks. While tools like Illustrator have ways to repeat graphical elements, they do so in a way that is a little alien and counter-intuitive to my developer mind. From these reflections, I knew that I wanted a design tool that would be structurally code-centric but that would still enable immediate feedback and mouse adjustments. While thinking about the best way to achieve this goal, I saw this fantastic video by Bret Victor: The key to the magic in all these demos is permanent execution of the code being edited. Whenever a parameter is being modified, everything is re-executed immediately so that the impact of the modification is instantaneously visible. If you do this all the time, the code and the result of its execution fuse in the mind of the user into dual representations of a single object. All mental barriers disappear. It’s like magic. The tool I built, Nutshell, is just another implementation of this principle. It manipulates a list of graphical operations on the screen. Each operation has a nice editor, and translates into a bit of code. Any modification to the parameters of the operation will modify the bit of generated code and trigger a re-execution of the whole program. This happens so fast that it feels like the drawing reacts instantaneously to all changes. The order of the operations is also the order in which the code gets executed. So if you want to bring objects to the front, move them down in the list, and up if you want to move them to the back: But where it gets really fun is when you start applying code constructs such as loops to the design tool. The elements that you put inside of a loop can use the loop counter in expressions, enabling crazy scenarios while retaining the real-time edition features. When you’re done building, you can just deploy the code to the device and see it run in its native environment: This works thanks to two code generators. The first code generator is building JavaScript that is executed in the browser to build the canvas view in the web page hosting the tool. The second code generator is building the C# code that will run on the Netduino Go! microcontroller and that will drive the display module. The possibilities are fascinating, even if you don’t care about driving small touch screens from microcontrollers: it is now possible, within a reasonable budget, to build specialized design tools for very vertical applications. Direct feedback is a powerful ally in many domains. Code generation driven by visual designers has become more approachable than ever thanks to extraordinary JavaScript libraries and to the powerful development platform that modern browsers provide. I encourage you to tinker with Nutshell and let it open your eyes to new possibilities that you may not have considered before. It’s open source. And of course, my company, Nwazet, can help you develop your own custom browser-based direct feedback design tools. This is real visual programming…

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >