Search Results

Search found 23131 results on 926 pages for 'ms query'.

Page 14/926 | < Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >

  • Improve long mysql query

    - by John Adawan
    I have a php mysql query like this $query = "SELECT * FROM articles FORCE INDEX (articleindex) WHERE category='$thiscat' and did>'$thisdid' and mid!='$thismid' and status='1' and group='$thisgroup' and pid>'$thispid' LIMIT 10"; As optimization, I've indexed all the parameters in articleindex and I use force index to force mysql to use the index, supposedly for faster processing. But it seems that this query is still quite slow and it's causing a jam and maxing out the max mysql connection limit. Let's discuss how we can improve on such long query.

    Read the article

  • running same query in different databases

    - by user316833
    I wrote a query that I want to run in several access databases. I have 1000+ access databases with the same tables (same names, same fields). So far, I have been manually copying this query from a txt file to the sql view in the access query design screen for each database and then run it. I did not need to change the query language - everything is the same for the 1000 databases. Is there a way to automate this?

    Read the article

  • Grails query not using GORM

    - by Tihom
    What is the best way to query for something without using GORM in grails? I have query that doesn't seem to fit in the GORM model, the query has a subquery and a computed field. I posted on stackoverflow already with no response so I decided to take a different approach. I want to query for something not using GORM within a grails application. Is there an easy way to get the connection and go through the result set?

    Read the article

  • A Query to remove relationships that do not belong [closed]

    - by Segfault
    In a SQL Server 2008 R2 database, given this schema: AgentsAccounts _______________ AgentID int UNIQUE AccountID FinalAgents ___________ AgentID I need to create a query that does this: For each AgentID 'final' in FinalAgents remove all of the OTHER AgentID's from AgentsAccounts that have the same AccountID as 'final'. So if the tables have these rows before the query: AgentsAccounts AgentID AccountID 1 A 2 A 3 B 4 B FinalAgents 1 3 then after the query the AgentsAccounts table will look like this: AgentsAccounts AgentID AccountID 1 A 3 B What T-SQL query will delete the correct rows without using a curosr?

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • EJB-QL query never returning unless another query is run

    - by KevMo
    I have a strange strange problem. When executing the following EJB-QL query, my ENTIRE application will stop responding to requests, as the query never finishes executing. Query q = em.createQuery("SELECT o from RoomReservation as o WHERE o.deleted = FALSE AND o.room.id IN (Select r.id from Room as r where r.deleted = FALSE AND r.type.name = 'CLASSROOM')"); However, if I execute this query before I execute the other query, it runs without issue. Query dumbQuery = em.createQuery("SELECT o from Room as o WHERE o.deleted = FALSE"); Any idea what in the world is going on?

    Read the article

  • ms-access: DB engine cannot find input table or query

    - by every_answer_gets_a_point
    here's the query: SELECT * FROM (SELECT [Occurrence Number], [Occurrence Date], [1 0 Preanalytical (Before Testing)], [Cup Type], NULL as [2 0 Analytical (Testing Phase)], [2 0 Area], NULL as [3 0 Postanalytical ( After Testing)],NULL as [4 0 Other], [Practice Code], [Specimen ID #] FROM [Lab Occurrence Form] WHERE NOT ([1 0 Preanalytical (Before Testing)] IS NULL) UNION SELECT [Occurrence Number], [Occurrence Date],NULL, [Cup Type],[2 0 Analytical (Testing Phase)], [2 0 Area], NULL,NULL, [Practice Code], [Specimen ID #] FROM [Lab Occurrence Form] WHERE NOT ([2 0 Analytical (Testing Phase)] IS NULL) UNION SELECT [Occurrence Number], [Occurrence Date],NULL, [Cup Type],NULL, [2 0 Area], [3 0 Postanalytical ( After Testing)],NULL, [Practice Code], [Specimen ID #] FROM [Lab Occurrence Form] WHERE NOT ([3 0 Postanalytical ( After Testing)] IS NULL) UNION SELECT [Occurrence Number], [Occurrence Date],NULL, [Cup Type],NULL, [2 0 Area], NULL, [4 0 Other] FROM [Lab Occurrence Form], [Practice Code], [Specimen ID #] WHERE NOT ([4 0 Other] IS NULL) ) AS mySubQuery ORDER BY mySubQuery.[Occurrence Number]; for some reason it doesnt like [Practice Code]. it's definitely a column in the table so i dont understand the problem. the error is the microsoft office access database engine cannot find the input table or query 'Practice Code'........

    Read the article

  • MS Access caching of reports / query results

    - by FrustratedWithFormsDesigner
    Is it possible to cache a query or report the first time it is run? It seems that opening a report will re-query the datasource. For certain queries, the data source does not change frequently enough that I'd be worried about a cache being out of date (users are notified when the database changes), and it would be much easier for the users to be able to open the report instantly rather than having to wait several minutes every time they want to see the data (though I realize if they close the file the caches will be lost - that's OK). Data comes from an ODBC connection to Oracle, using Access 2003.

    Read the article

  • MS SQL Query Question

    - by Lp1
    Running MS SQL 2008, and I am definitely a new SQL user. I have a table that has 4 columns: EmpNum, User, Action, Updatetime A user logs into, and out of a system, it is registered in the database. For example, if user1 logs into the system, then out 5 minutes later, a simple query (select * from update) would look like: EmpNum User Action Updatetime 1 User1 I 2010-01-01 23:00:00:000 1 User1 O 2010-01-01 23:05:00:000 I'm trying to query the Empnum, User, Action, I(in time), O(out time), and the total time. Any help or a point in the right direction, and I would be eternally grateful. :)

    Read the article

  • Why does "commit" appear in the mysql slow query log?

    - by Tom
    In our MySQL slow query logs I often see lines that just say "COMMIT". What causes a commit to take time? Another way to ask this question is: "How can I reproduce getting a slow commit; statement with some test queries?" From my investigation so far I have found that if there is a slow query within a transaction, then it is the slow query that gets output into the slow log, not the commit itself. Testing In mysql command line client: mysql begin; Query OK, 0 rows affected (0.00 sec) mysql UPDATE members SET myfield=benchmark(9999999, md5('This is to slow down the update')) WHERE id = 21560; Query OK, 0 rows affected (2.32 sec) Rows matched: 1 Changed: 0 Warnings: 0 At this point (before the commit) the UPDATE is already in the slow log. mysql commit; Query OK, 0 rows affected (0.01 sec) The commit happens fast, it never appeared in the slow log. I also tried a UPDATE which changes a large amount of data but again it was the UPDATE that was slow not the COMMIT. However, I can reproduce a slow ROLLBACK that takes 46s and gets output to the slow log: mysql begin; Query OK, 0 rows affected (0.00 sec) mysql UPDATE members SET myfield=CONCAT(myfield,'TEST'); Query OK, 481446 rows affected (53.31 sec) Rows matched: 481446 Changed: 481446 Warnings: 0 mysql rollback; Query OK, 0 rows affected (46.09 sec) I understand why rollback has a lot of work to do and therefore takes some time. But I'm still struggling to understand the COMMIT situation - i.e. why it might take a while.

    Read the article

  • remove autoexec macro from MS Access 2007

    - by sasha
    I have created an autoexec macro in MS Access 2007 and cannot find it! I know its there because it runs, but I cannot find it to delete or modify. I can see other macros that I have created just not the autoexec one. Can someone please point me in the right direction to find where it is located .... cheers :)

    Read the article

  • How to connect to MS Access 2007, from Java on a mac

    - by aabrook
    I'm looking for a way to connect to a MS Access 2007 database from Java. I don't believe the ODBC way is available to me as I'm writing on a mac and will be pushing this product to Linux. The HXTT drivers also do not work with 2007. Is there a way, a tutorial, an example, etc that accomplishes this? Setting the connection as a JNDI Datasource is preferable but not required

    Read the article

  • Bang Notation and Dot Notation in VBA and MS-Access

    - by Nitrodist
    While perusing an application that I'm documenting, I've run across some examples of bang notation in accessing object properties/methods, etc. and in other places they use dot notation for what seems like the same purpose. Is there a difference or preference to using one or the other? Some simple googling only reveals limited information on the subject with some people actually using it in opposite cases. Perhaps there is a coding standards section from MS somewhere that indicates the method of madness?

    Read the article

  • Populate a value in MS Excel

    - by acadia
    Hello, I have a Excel spreadsheet and I have 3 columns. column A, column B, Column C. In column B if there is a value 1 then in Column C it should populate as True and if in column B value is 0 then in C it should be False. How do I do this in MS Excel

    Read the article

  • MS SQL and Indentity column

    - by andrew007
    Hi, I just noticed that if I have an identity column in a table, when I insert new rows MS SQL 2008 is automatically filling up the sequence if there are discontinuity. I mean, if in my identity column I have 1,2,5,6 if I insert other two rows in the table the system puts automatically 3,7 in the identity column. Do you know how to control this behavior? THANKS

    Read the article

  • Change MS Access to Exclusive on the fly

    - by Nate
    I have a process in an MS Acess database that the users will usually run once daily, but could be more or less. It takes several minutes and requires temporary exclusive access because it deletes and recreates the main table. I have code to check to see if there are other users in the db before the process starts, but is there a way to change the access to "exclusive" at the beginning, and then change it back to open access at the end? Thanks for any help.

    Read the article

  • ms-access: changing the link to a database

    - by every_answer_gets_a_point
    i have an ms-access database front end that connects to an access backend. i have changed the location of the backend and i need to be able to update the link to it. how do i do this? when i open the front end and try to see data, it says "the microsoft office access database engine cannot open or write to the file ......... "

    Read the article

  • Recursive COUNT Query (MS SQL)

    - by Cosmo
    Hello Guys! I've two MS SQL tables: Category, Question. Each Question is assigned to exactly one Category. One Category may have many subcategories. Category Id : bigint (PK) Name : nvarchar(255) AcceptQuestions : bit IdParent : bigint (FK) Question Id : bigint (PK) Title : nvarchar(255) ... IdCategory : bigint (FK) How do I recursively count all Questions for a given Category (including questions in subcategories). I've tried it already based on several tutorials but still can't figure it out :(

    Read the article

< Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >