Search Results

Search found 2380 results on 96 pages for 'strongly typed'.

Page 14/96 | < Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >

  • Can I capture input text with the P?roblem Steps Recorder on Windows 7?

    - by WindyCityEagle
    I have recently been introduced to the Problem Steps Recorder on Windows 7. It's great. Trouble is, it does not recorder keyboard input. When I look at the output of a recording all I see it User keyboard input in "Untitled - Notepad" [... Backspace Backspace Backspace Backspace Backspace ...] So I know the user typed SOMETHING and then deleted five characters. Is there a way to get the PSR to record what was inputted? Or is that a security issue? This isn't a big deal for notepad, but for custom apps it would be nice to know exactly what a user typed into a text box.

    Read the article

  • LLBLGen Pro v3.0 with Entity Framework v4.0 (12m video)

    - by FransBouma
    Today I recorded a video in which I illustrate some of the database-first functionality available in LLBLGen Pro v3.0. LLBLGen Pro v3.0 also supports model-first functionality, which I hope to illustrate in an upcoming video. LLBLGen Pro v3.0 is currently in beta and is scheduled to RTM some time in May 2010. It supports the following frameworks out of the box, with more scheduled to follow in the coming year: LLBLGen Pro RTL (our own o/r mapper framework), Linq to Sql, NHibernate and Entity Framework (v1 and v4). The video I linked to below illustrates the creation of an entity model for Entity Framework v4, by reverse engineering the SQL Server 2008 example database 'AdventureWorks'. The following topics (among others) are included in the video: Abbreviation support (example: convert 'Qty' into 'Quantity' during name construction) Flexible, framework specific settings Attribute definitions for various elements (so no requirement for buddy-classes or messing with generated code or templates) Retrieval of relational model data from a database Reverse engineering of tables into entities, automatically placed in groups Auto-creation of inheritance hierarchies Refactoring of entity fields into Value Type Definitions (DDD) Mapping a Typed view onto a stored procedure resultset Creation of a Typed list (definition of a query with a projection) on a set of related entities Validation and correction of found inconsistencies and errors Generating code using one of the pre-defined presets Illustration of the code in vs.net 2010 It also gives a good overview of what it takes with LLBLGen Pro v3.0 to start from a new project, point it to a database, get an entity model, perform tweaks and validation and generate code which is ready to run. I am no video recording expert so there's no audio and some mouse movements might be a little too quickly. If that's the case, please pause the video. It's rather big (52MB). Click here to open the HTML page with the video (Flash). Opens in a new window. LLBLGen Pro v3.0 is currently in beta (available for v2.x customers) and scheduled to be released somewhere in May 2010.

    Read the article

  • ASP.NET MVC Postbacks and HtmlHelper Controls ignoring Model Changes

    - by Rick Strahl
    So here's a binding behavior in ASP.NET MVC that I didn't really get until today: HtmlHelpers controls (like .TextBoxFor() etc.) don't bind to model values on Postback, but rather get their value directly out of the POST buffer from ModelState. Effectively it looks like you can't change the display value of a control via model value updates on a Postback operation. To demonstrate here's an example. I have a small section in a document where I display an editable email address: This is what the form displays on a GET operation and as expected I get the email value displayed in both the textbox and plain value display below, which reflects the value in the mode. I added a plain text value to demonstrate the model value compared to what's rendered in the textbox. The relevant markup is the email address which needs to be manipulated via the model in the Controller code. Here's the Razor markup: <div class="fieldcontainer"> <label> Email: &nbsp; <small>(username and <a href="http://gravatar.com">Gravatar</a> image)</small> </label> <div> @Html.TextBoxFor( mod=> mod.User.Email, new {type="email",@class="inputfield"}) @Model.User.Email </div> </div>   So, I have this form and the user can change their email address. On postback the Post controller code then asks the business layer whether the change is allowed. If it's not I want to reset the email address back to the old value which exists in the database and was previously store. The obvious thing to do would be to modify the model. Here's the Controller logic block that deals with that:// did user change email? if (!string.IsNullOrEmpty(oldEmail) && user.Email != oldEmail) { if (userBus.DoesEmailExist(user.Email)) { userBus.ValidationErrors.Add("New email address exists already. Please…"); user.Email = oldEmail; } else // allow email change but require verification by forcing a login user.IsVerified = false; }… model.user = user; return View(model); The logic is straight forward - if the new email address is not valid because it already exists I don't want to display the new email address the user entered, but rather the old one. To do this I change the value on the model which effectively does this:model.user.Email = oldEmail; return View(model); So when I press the Save button after entering in my new email address ([email protected]) here's what comes back in the rendered view: Notice that the textbox value and the raw displayed model value are different. The TextBox displays the POST value, the raw value displays the actual model value which are different. This means that MVC renders the textbox value from the POST data rather than from the view data when an Http POST is active. Now I don't know about you but this is not the behavior I expected - initially. This behavior effectively means that I cannot modify the contents of the textbox from the Controller code if using HtmlHelpers for binding. Updating the model for display purposes in a POST has in effect - no effect. (Apr. 25, 2012 - edited the post heavily based on comments and more experimentation) What should the behavior be? After getting quite a few comments on this post I quickly realized that the behavior I described above is actually the behavior you'd want in 99% of the binding scenarios. You do want to get the POST values back into your input controls at all times, so that the data displayed on a form for the user matches what they typed. So if an error occurs, the error doesn't mysteriously disappear getting replaced either with a default value or some value that you changed on the model on your own. Makes sense. Still it is a little non-obvious because the way you create the UI elements with MVC, it certainly looks like your are binding to the model value:@Html.TextBoxFor( mod=> mod.User.Email, new {type="email",@class="inputfield",required="required" }) and so unless one understands a little bit about how the model binder works this is easy to trip up. At least it was for me. Even though I'm telling the control which model value to bind to, that model value is only used initially on GET operations. After that ModelState/POST values provide the display value. Workarounds The default behavior should be fine for 99% of binding scenarios. But if you do need fix up values based on your model rather than the default POST values, there are a number of ways that you can work around this. Initially when I ran into this, I couldn't figure out how to set the value using code and so the simplest solution to me was simply to not use the MVC Html Helper for the specific control and explicitly bind the model via HTML markup and @Razor expression: <input type="text" name="User.Email" id="User_Email" value="@Model.User.Email" /> And this produces the right result. This is easy enough to create, but feels a little out of place when using the @Html helpers for everything else. As you can see by the difference in the name and id values, you also are forced to remember the naming conventions that MVC imposes in order for ModelBinding to work properly which is a pain to remember and set manually (name is the same as the property with . syntax, id replaces dots with underlines). Use the ModelState Some of my original confusion came because I didn't understand how the model binder works. The model binder basically maintains ModelState on a postback, which holds a value and binding errors for each of the Post back value submitted on the page that can be mapped to the model. In other words there's one ModelState entry for each bound property of the model. Each ModelState entry contains a value property that holds AttemptedValue and RawValue properties. The AttemptedValue is essentially the POST value retrieved from the form. The RawValue is the value that the model holds. When MVC binds controls like @Html.TextBoxFor() or @Html.TextBox(), it always binds values on a GET operation. On a POST operation however, it'll always used the AttemptedValue to display the control. MVC binds using the ModelState on a POST operation, not the model's value. So, if you want the behavior that I was expecting originally you can actually get it by clearing the ModelState in the controller code:ModelState.Clear(); This clears out all the captured ModelState values, and effectively binds to the model. Note this will produce very similar results - in fact if there are no binding errors you see exactly the same behavior as if binding from ModelState, because the model has been updated from the ModelState already and binding to the updated values most likely produces the same values you would get with POST back values. The big difference though is that any values that couldn't bind - like say putting a string into a numeric field - will now not display back the value the user typed, but the default field value or whatever you changed the model value to. This is the behavior I was actually expecting previously. But - clearing out all values might be a bit heavy handed. You might want to fix up one or two values in a model but rarely would you want the entire model to update from the model. So, you can also clear out individual values on an as needed basis:if (userBus.DoesEmailExist(user.Email)) { userBus.ValidationErrors.Add("New email address exists already. Please…"); user.Email = oldEmail; ModelState.Remove("User.Email"); } This allows you to remove a single value from the ModelState and effectively allows you to replace that value for display from the model. Why? While researching this I came across a post from Microsoft's Brad Wilson who describes the default binding behavior best in a forum post: The reason we use the posted value for editors rather than the model value is that the model may not be able to contain the value that the user typed. Imagine in your "int" editor the user had typed "dog". You want to display an error message which says "dog is not valid", and leave "dog" in the editor field. However, your model is an int: there's no way it can store "dog". So we keep the old value. If you don't want the old values in the editor, clear out the Model State. That's where the old value is stored and pulled from the HTML helpers. There you have it. It's not the most intuitive behavior, but in hindsight this behavior does make some sense even if at first glance it looks like you should be able to update values from the model. The solution of clearing ModelState works and is a reasonable one but you have to know about some of the innards of ModelState and how it actually works to figure that out.© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Ubuntu 12.04 LTS Wireless Asus USB-N53 (rt3572sta) driver installation issue

    - by Jake Thompson
    My purchase of the Asus USB-N53 just came in today and I spent several hours Googling and researching drivers for this device. When I first plugged the device in it connected fine to my open system, WEP, DHCP configured access point. I opened Google Chrome and a few pages loaded, everything seemed fine. 30 seconds later... Boom! It disconnected and showed attempts to reconnect and asked for the WEP key and just showed a state of infinite connection time until it asked me for the password again. I'm using amd64 (64 bit Ubuntu desktop 12.04 LTS) The official driver can be found here although I had no luck with it. lsusb: Bus 003 Device 002: ID 0b05:179d ASUSTek Computer, Inc. uname -a Linux Jake 3.2.0-31-generic #50-Ubuntu SMP Fri Sep 7 16:16:45 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux ----------------------------------------------------------------------------------Solved: I must of done something wrong when I originally installed the latest drivers from the chipset manufacturers website. I tried reinstalling and did modprobe rt3572sta and waited maybe 10 minutes??? and I connected then I rebooted and everything seems to be working so far. What I did do before hand is unplug the device and typed into the terminal (once for every source I attempted to install): cd '<directory of the driver source>' make uninstall make clean Then I went into the 2.5.0.0 directory and installed that with make make install Then I typed modprobe rt3572sta This was all in superuser. For those who don't know: sudo su

    Read the article

  • Visual Studio Shortcut: Surround With

    - by Jeff Widmer
    I learned a new Visual Studio keyboard shortcut today that is really awesome; the “Surround With” shortcut.  You can trigger the Surround With context menu by pressing the Ctrl-K, Ctrl-S key combination when on a line of code. Ctrl-K, Ctrl-S means to hold down the Control key and then press K and then while still holding down the Control key press S. Here is where this comes in handy: You type a line of code and then realize you need to put it within an if statement block. So you type “if” and hit tab twice to insert the if statement code snippet.  Then you highlight the previous line of code that you typed, and then either drag and drop it into the if-then block or cut and paste it.  That is not too bad but it is a lot of extra key clicks and mouse moves. Now try the same with the Surround With keyboard shortcut.  Just highlight that line of code that you just typed and press Ctrl-K, Ctrl-S and choose the if statement code snippet, hit tab, and POW!... you are done!  No more code moving/indenting required. Here is what the Surround With context menu looks like: Just up or down arrow inside the drop down list to the code snippet that you want to surround your currently selected text with.  Did I mention this is AWESOME! Now it is so simple to surround lines of code with an if-then block or a try-catch-finally block... things that usually took several key clicks and maybe one or two mouse moves. And this works in both Visual Studio 2008 and Visual Studio 2010 which means it has been around for a long time and I never knew about it.   Technorati Tags: Visual Studio Keyboard Shortcut

    Read the article

  • Bash History not containing all history and blank after reboot, how to resolve?

    - by TryTryAgain
    I've recently upgraded from 13.04 to 13.10 and realized my terminal bash history is not surviving reboots. cat ~/.bash_history gave me a permissions denied error. I, possibly unnecessarily or wrongly, issued a chmod 777 ~/.bash_history to see if that would help...and although I could then cat and read some contents it contained not much of anything as far as history. I also tried sudo rm ~/.bash_history after reading bash history not being preserved Strangely, after doing that, I typed a few test commands, ls, ls -lah ... and upon pressing the up arrow to go back through history it contained those two commands as well as the odd history from some far off time in the past but very few results and not the hundreds of commands I typed earlier in the day. Is there a new place bash history is stored? How can removing ~/.bash_history not get rid of the commands that are somehow lingering? I am not certain, but I believe my root bash history is acting normal. My user bash history is what's causing me trouble. Any help and guidance in tracking down and solving this problem is appreciated.

    Read the article

  • Difference between two kinds of Bing URL Referers

    - by joshuahedlund
    Most of the referral URLS that I get from Bing have the following syntax: http://www.bing.com/search?q=keywords+keywords&[some other variables] However I just noticed that maybe 10-20% of them are coming in like this: http://www.bing.com/url?source=search&[some other variables]&url=http%3A%2F%2Fwww.example.com/user-landing-page-on-my-site&yrktarget=_top&q=keywords+keywords&[some other variables] The first syntax gives me the keywords the user typed in, but the second actually gives me the keywords the user typed in and their landing page on my site. I was originally unaware of this second kind altogether because I have a customized referral report that filters out URLs containing my domain. But now that I noticed them I want to know why they occur to see if I can get more to occur this way because the second syntax contains more valuable information. If I go to one of the first URLs, it gives me a typical Bing query page. The second URLs seem to just redirect me to the Bing home page. I'm not sure if it has to do with the kind of search being performed (I also get a few http://www.bing.com/shopping/search?q= referers) or some other metric. Does anyone know what causes some referral URLs from Bing to have the /search?q syntax and others to have the /url?source syntax? P.S. I have verified that I am getting both kinds of URLs from non-advertising clicks. P.P.S. I am not talking about data in Google Analytics or similar software but the raw $_SERVER['HTTP_REFERER'] value coming from the client's original request.

    Read the article

  • How to achieve a loosely coupled REST API but with a defined and well understood contract?

    - by BestPractices
    I am new to REST and am struggling to understand how one would properly design a REST system to both allow for loose coupling but at the same time allow a consumer of a REST API to understand the API. If, in my client code, I issue a GET request for a resource and get back XML, how do I know what to do with that xml? e.g. if it contains <fname>John</fname><lname>Smith</lname> how do I know that these refer to the concept of "first name", "last name"? Is it up to the person writing the REST API to define in documentation some place what each of the XML fields mean? What if producer of the API wants to change the implementation to be <firstname> instead of <fname>? How do they do this and notify their consumers that this change occurred? Or do the consumers just encounter the error and then look at the payload and figure out on their own that it changed? I've read in REST in Practice that using a WADL tool to create a client implementation based on the WADL (and hide the fact that you're doing a distributed call) is an "anti-pattern". But I was planning to do this-- at least then I would have a statically typed API call that, if it changed, I would know at compile time and not at run time. Why is this a bad thing to generate client code based on a WADL? And how do I know what to do with the links that returned in the response of a POST to a REST API? What defines this contract and gives true meaning to what each link will do? Please help! I dont understand how to go from statically-typed or even SOAP/RPC to REST!

    Read the article

  • Loose typing not applied to objects

    - by TecBrat
    I have very little experience working with classes and object. I work in a loosely typed language, PHP. I was working with a SimpleXML object and ran into a problem where I was trying to do math with an element of that object like $results->ProductDetail->{'Net'.$i}; If I echoed that value, I'd get 0.53 but when I tried to do math with it, it was converted to 0 Is there a reason that a loosely typed language would not recognize that as a float and handle it as such? Why would "echo" handle it as a string but the math fail to convert it? Example: $xml='<?xml version="1.0" encoding="UTF-8" ?>'; $xml.='<Test> <Item> <Price>0.53</Price> </Item> </Test>'; $result=simplexml_load_string($xml); var_dump($result->Item->Price); echo '<br>'; echo $result->Item->Price; echo '<br>'; echo 1+$result->Item->Price; echo '<br>'; echo 1+(float)$result->Item->Price; Output: object(SimpleXMLElement)#4 (1) { [0]=> string(4) "0.53" } 0.53 1 1.53

    Read the article

  • Fastest way to convert datatable to generic list

    - by Joel Coehoorn
    I have a data tier select method that returns a datatable. It's called from a business tier method that should then return a strongly typed generic List. What I want to do is very similar (but not the same as) this question: http://stackoverflow.com/questions/208532/how-do-you-convert-a-datatable-into-a-generic-list What's different is that I want the list to contain strongly-typed objects rather than datarows (also, I don't have linq avaiable here yet). I'm concerned about performance. The business tier method will in turn be called from the presentation tier, and the results will be iterated for display to the user. It seems very wasteful to add an extra iteration at the business tier, only do it again right away for the presentation, so I want this to be as quick as possible. This is a common task, so I'm really looking for a good pattern that can be repeated over and over.

    Read the article

  • ASP.NET MVC 2 Post AJAX from from JavaScript

    - by ANDyW
    Hi, I got control with strongly typed View, with Ajax.BeginForm(). Now I would like to change submit method from <input type="submit" id="testClick" value="Submit" /> To some javascript method DoSubmit(). What I tried is : Invoke click on that submit button Invoke submit on form ('form1').submit(), document.forms['form1'].submit() jQuery forms with ('form1').AjaxSubmit(); Create jQuery AJAX $.ajax({ type: "POST", url: $("#form1").attr("action"), data: $("#form1").serialize(), success: function() { alert("epic win!!!1!1!") }, error: function(XMLHttpRequest, textStatus, errorThrown) { alert("epic fail!") } }); All those method created normal request (not AJAX), or they didn't work. So anyone know how I can do AJAX submit "Form", from JavaScript and strongly typed mechanism (public AcrionResult MyFormAction(FormModel model); ) will work?

    Read the article

  • Trying to pass Model down to partial, how do I do this?

    - by mrblah
    My action creates a strongly typed viewdata, which is passed to my view. In the view, I pass the Model to the render partial method. public ActionResult Index() { ViewDataForIndex vd = new ViewDataForIndex(); vd.Users = Users.GetAll(); return View(vd); } public class ViewDataForIndex: ViewData { public IList<User> Users {get;set;} } now in the view: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<ViewDataForIndex>" %> <% Html.RenderPartial("~/controls/blah.ascx", ViewData.Model); %> and in blah.ascx: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> how do I access my model now? if I wanted to create a strongly typed class for my ViewUserControl, how would I do that? inherit from?

    Read the article

  • Static Typing and Writing a Simple Matrix Library

    - by duckworthd
    Aye it's been done a million times before, but damnit I want to do it again. I'm writing a simple Matrix Library for C++ with the intention of doing it right. I've come across something that's fairly obvious in mathematics, but not so obvious to a strongly typed system -- the fact that a 1x1 matrix is just a number. To avoid this, I started walking down the hairy path of matrices as a composition of vectors, but also stumbled upon the fact that two vectors multiplied together could either be a number or a dyad, depending on the orientation of the two. My question is, what is the right way to deal with this situation in a strongly typed language like C++ or Java?

    Read the article

  • Multiple Connection Types for one Designer Generated TableAdapter

    - by Tim
    I have a Windows Forms application with a DataSet (.xsd) that is currently set to connect to a Sql Ce database. Compact Edition is being used so the users can use this application in the field without an internet connection, and then sync their data at day's end. I have been given a new project to create a supplemental web interface for displaying some of the same reports as the Windows Forms application so certain users can obtain reports without installing the Windows app. What I've done so far is create a new Web Project and added it to my current Solution. I have split both the reports (.rdlc) and DataSets out of the Windows Forms project into their own projects so they can be accessed by both the Windows and Web applications. So far, this is working fine. Here's my dilemma: As I said before, the DataSets are currently set up to connect to a local Sql Ce database file. This is correct for the Windows app, but for the Web application I would like to use these same TableAdapters and queries to connect to the Sql Server 2005 database. I have found that the designer generated, strongly-typed TableAdapter classes have a ConnectionModifier property that allows you to make the TableAdapter's Connection public. This exposes the Connection property and allows me to set it, however it is strongly-typed as a SqlCeConnection, whereas I would like to set it to a SqlConnection for my Web project. I'm assuming the DataSet Designer strongly-types the Connection, Command, and DataAdapter objects based on the Provider of the ConnectionString as indicated in the app.config file. Is there any way I can use some generic provider so that the DataSet Designer will use object types that can connect to both a Sql Ce database file AND the actual Sql Server 2005 database? I know that SqlCeConnection and SqlConnection both inherit from DbConnection, which implements IDbConnection. Relatively, the same goes for SqlCeCommand/SqlCommand:DbCommand:IDbCommand. It would be nice if I could just figure out a way for the designer to use the Interface types rather than the strong types, but I'm hesitant that that is possible. I hope my problem and question are clear. Any help is much appreciated. Let me know if there's anything I can clarify.

    Read the article

  • How do I catch generic fault exceptions in Fitnesse?

    - by Dan Ryan
    Previously within my Fitnesse fixture I was specifying an expected WCF exception using: exception[FaultException] Since then I have converted the WCF service to return a strongly typed FaultContract. I am now getting the following failure message: exception[FaultException`1: "A file with the name DMS Documents/testFileWord.doc already exists. It was last modified by SHAREPOINT\system on 09 Mar 2010 15:36:14 -0000."] This is not unexpected but how do I check for strongly typed fault exceptions? Please note I cannot include the fault message as part of the check as it contains a date which changes (I check this separately).

    Read the article

  • How do I get a linq to sql group by query into the asp.net mvc view?

    - by Brad Wetli
    Sorry for the newbie question, but I have the following query that groups parking spaces by their garage, but I can't figure out how to iterate the data in the view. I guess I should strongly type the view but am a newbie and having lots of problems figuring this out. Any help would be appreciated. Public Function FindAllSpaces() Implements ISpaceRepository.FindAllSpaces Dim query = _ From s In db.spaces _ Order By s.name Ascending _ Group By s.garageid Into spaces = Group _ Order By garageid Ascending Return query End Function The controller is taking the query object as is and putting it into the viewdata.model and as stated the view is not currently strongly typed as I haven't been able to figure out how to do this. I have run the query successfully in linqpad.

    Read the article

  • ReportViewer with DataSets

    - by bearrito
    I have a question about the following architecture. I am importing my business objects into my client using WCF. Due to the complexity of the business objects ( nested hierarchies ) I want to flatten out my business objects into a dataset/datatable. There are many more tutorials and how-to on successfully using datatables in a report than with a business object so I am pretty attached to this idea. My question is what sort of DataSet should I use? Strongly typed or not? If strongly typed how do I import my business objects into the Datatables?

    Read the article

  • Weakly connected balanced digraph

    - by user1074557
    How can I prove that if a balanced digraph is weakly connected, then it is also strongly connected? (balanced digraph means that for every node, it's indegree and outdegree is the same and weakly connected means the non-directed version of this graph is connected). What I can think of so far is: if the graph is balanced, it means it is a union of directed cycles. So if I remove any cycle, it will stay balanced. Also each vertex in the cycle has one edge coming into it and one edge leading out of it.. Then I guess I need to use some contradiction or induction to prove that the graph is strongly connected.. That's where I confused.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Open World Day 1 Continued

    - by Antony Reynolds
    A Day in the Life of an Oracle OpenWorld Attendee Part II A couple of things I forgot to mention about yesterdays OpenWorld. First I attended a presentation on SOA Suite and Virtualization which explained how Oracle Virtual Assembly Builder (OVAB) can be used to accelerate the deployment of an Enterprise Deployment Guide (EDG) compliant SOA Suite infrastructure.  OVAB provides the ability to introspect a deployed software component such as WebLogic Server, SOA Suite or other components and extract the configuration and package it up for rapid deployment into an Oracle Virtual Machine.  OVAB allows multiple machines to be configured and connections made between the machines and outside resources such as databases.  That by itself is pretty cool and has been available for a while in OVAB.  What is new is that Oracle has done this for an EDG compliant installations and made it available as an OVAB assembly for customers to use, significantly accelerating the deployment of an EDG deployment.  A real help for customers standing up EDG environments, particularly in test, dev and QA environments. The other thing I forgot to mention was the most memorable demo I saw at OpenWorld.  This was done by my co-author Matt Wright who was showcasing the products of his company Rubicon Red.  They showed a really cool application called OneSpot which puts all the information about a single users business processes in one spot!  Apparently a customer suggested the name.  It allows business flows to be defined that map onto events.  As events occur the status of the business flow is updated to reflect the change.  The interface is strongly reminiscent of social media sites and provides a graphical view of business flows.  So how does this differ from BPEL and BPM process flows?  The OneSpot process flow is more like a BAM process flow, it is based on events arriving from multiple sources, and is focused on the clients view of the process, not the actual business process.  This is important because it allows an end user to get a view of where his current business flow is and what actions, if any, are required of him.  This by itself is great, but better still is that OneSpot has a real time updating view of events that have occurred (BAM style no need to refresh the browser).  This means that as new events occur the end user can see them and jump to the business flow or take other appropriate actions.  Under the covers OneSpot makes use of Oracle Human Workflow to provide a forms interface, but this is not the HWF GUI you know!  The HWF GUI screens are much prettier and have more of a social media feel about them due to their use of images and pulling in relevant related information.  If you are at OOW I strongly recommend you visit Matt or John at the Rubicon Red stand and ask, no demand a demo of OneSpot!

    Read the article

  • APPLY LATE BINDING IN .NET 4.0 AND DIFFERENTIATE IT WITH VAR KEYWORD

    Latebinding is a common term among VB6.0 programmers. C# was always strongly typed. But in 3.x version they introducded var keyword which suporting dynamic binding. But not late binding. After 4.0 relese they came up with dynamic keyword. This fully supporting late binding. Below explaining the difference between var and dynamics. Also a simple example saying where we can use dynamics in C#

    Read the article

  • The HTG Guide to Hiding Your Data in a TrueCrypt Hidden Volume

    - by Jason Fitzpatrick
    Last week we showed you how to set up a simple, but strongly encrypted, TrueCrypt volume to help you protect your sensitive data. This week we’re digging in deeper and showing you how to hide your encrypted data within your encrypted data. The HTG Guide to Hiding Your Data in a TrueCrypt Hidden Volume Make Your Own Windows 8 Start Button with Zero Memory Usage Reader Request: How To Repair Blurry Photos

    Read the article

  • New Slides - and a discussion about Dictionary Statistics

    - by Mike Dietrich
    First of all we have just upoaded a new version of the Upgrade and Migration Workshop slides with some added information. So please feel free to download them from here.The slides have one new interesting information which lead to a discussion I've had in the past days with a very large customer regarding their upgrades - and internally on the mailing list targeting an EBS database upgrade from Oracle 10.2 to Oracle 11.2. Why are we creating dictionary statistics during upgrade? I'd believe this forced dictionary statistics creation got introduced with the desupport of the Rule Based Optimizer in Oracle 10g. The goal: as RBO is not supported anymore we have to make sure that the data dictionary has fresh and non-stale statistics. Actually that would have led in Oracle 9i to strange behaviour in some databases - so in Oracle 9i this was strongly disrecommended. The upgrade scripts got hardcoded to create these stats. But during tests we had the following findings: It's important to create dictionary statistics the night before the upgrade. Not two weeks before, not 60 minutes before your downtime begins. But very close to the upgrade. From Oracle 10g onwards you'd just say: $ execute DBMS_STATS.GATHER_DICTIONARY_STATS; This is important to make sure you have fresh dictionary statistics during upgrade for performance reasons. Tests have shown that running an upgrade without valid dictionary statistics might slow down the whole upgrade by factors of 2x-3x. And it would be also a great idea post upgrade to create again fresh dictionary statistics when you've did suppress the stats creation during the upgrade process. Suppress? Yes, you could set this underscore parameter in the init.ora: _optim_dict_stats_at_db_cr_upg=FALSE to suppress the forced dictionary statistics collection during an upgrade. We believe strongly that (a) people using the default statistics creation process which will create dictionary statistics by default and (b) create fresh stats before upgrade on the dictionary. Therefore we find it save once you have followed our advice to use the underscore during upgrade. And we've taken out that forced statistics collection during upgrade in the next release of the database. Please note: If you are using the DBUA for the upgrade it will remove underscore parameters for the upgrade run to improve performance - which is generally a good idea. So you'll have to start the DBUA with that call: $ dbua -initParam "_optim_dict_stats_at_cb_cr_upg"=FALSE -Mike

    Read the article

  • Four New Videos on ASP.NET MVC 2

    Microsoft?s Jon Galloway has recorded 4 new ?quick hit? videos to help you get up to speed on new features in ASP.NET MVC 2. Learn about HTML Encoding, Strongly Typed Helpers, Model Validation, and Template Customization in these newest videos.

    Read the article

< Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >