Search Results

Search found 16127 results on 646 pages for 'physical model'.

Page 140/646 | < Previous Page | 136 137 138 139 140 141 142 143 144 145 146 147  | Next Page >

  • is it valid that a state machine can have more than one possible state for some transition?

    - by shankbond
    I have a requirement for a workflow which I am trying to model as a state machine, I see that there is more than one outcome of a given transition(or activity). Is it valid for a state machine to have more than one possible states, but only one state will be true at a given time? Note: This is my first attempt to model a state machine. Eg. might be: s1-t1-s2 s1-t1-s3 s1-t1-s4 where s1, s2, s3, s4 are states and t1 is transition/activity. A fictitious real world example might be: For a human, there can be two states: hungry, not hungry A basket can have only one item from: apple, orange. So, to model it we will have: hungry-pick from basket-apple found hungry-pick from basket-orange found apple found-eat-not hungry orange found-take juice out of it and then drink- not hungry

    Read the article

  • Sun Solaris - Find out number of processors and cores

    - by Adrian
    Our SPARC server is running Sun Solaris 10; I would like to find out the actual number of processors and the number of cores for each processor. The output of psrinfo and prtdiag is ambiguous: $psrinfo -v Status of virtual processor 0 as of: dd/mm/yyyy hh:mm:ss on-line since dd/mm/yyyy hh:mm:ss. The sparcv9 processor operates at 1592 MHz, and has a sparcv9 floating point processor. Status of virtual processor 1 as of: dd/mm/yyyy hh:mm:ss on-line since dd/mm/yyyy hh:mm:ss. The sparcv9 processor operates at 1592 MHz, and has a sparcv9 floating point processor. Status of virtual processor 2 as of: dd/mm/yyyy hh:mm:ss on-line since dd/mm/yyyy hh:mm:ss. The sparcv9 processor operates at 1592 MHz, and has a sparcv9 floating point processor. Status of virtual processor 3 as of: dd/mm/yyyy hh:mm:ss on-line since dd/mm/yyyy hh:mm:ss. The sparcv9 processor operates at 1592 MHz, and has a sparcv9 floating point processor. _ $prtdiag -v System Configuration: Sun Microsystems sun4u Sun Fire V445 System clock frequency: 199 MHZ Memory size: 32GB ==================================== CPUs ==================================== E$ CPU CPU CPU Freq Size Implementation Mask Status Location --- -------- ---------- --------------------- ----- ------ -------- 0 1592 MHz 1MB SUNW,UltraSPARC-IIIi 3.4 on-line MB/C0/P0 1 1592 MHz 1MB SUNW,UltraSPARC-IIIi 3.4 on-line MB/C1/P0 2 1592 MHz 1MB SUNW,UltraSPARC-IIIi 3.4 on-line MB/C2/P0 3 1592 MHz 1MB SUNW,UltraSPARC-IIIi 3.4 on-line MB/C3/P0 _ $more /etc/release Solaris 10 8/07 s10s_u4wos_12b SPARC Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. Use is subject to license terms. Assembled 16 August 2007 Patch Cluster - EIS 29/01/08(v3.1.5) What other methods can I use? EDITED: It looks like we have a 4 processor system with one core each: $psrinfo -p 4 _ $psrinfo -pv The physical processor has 1 virtual processor (0) UltraSPARC-IIIi (portid 0 impl 0x16 ver 0x34 clock 1592 MHz) The physical processor has 1 virtual processor (1) UltraSPARC-IIIi (portid 1 impl 0x16 ver 0x34 clock 1592 MHz) The physical processor has 1 virtual processor (2) UltraSPARC-IIIi (portid 2 impl 0x16 ver 0x34 clock 1592 MHz) The physical processor has 1 virtual processor (3) UltraSPARC-IIIi (portid 3 impl 0x16 ver 0x34 clock 1592 MHz)

    Read the article

  • Tips on setting up a virtual lab for self-learning networking topics

    - by Harry
    I'm trying to self-learn the following topics on Linux (preferably Fedora): Network programming (using sockets API), especially across proxies and firewalls Proxies (of various kinds like transparent, http, socks...), Firewalls (iptables) and 'basic' Linux security SNAT, DNAT Network admininstration power tools: nc, socat (with all its options), ssh, openssl, etc etc. Now, I know that, ideally, it would be best if I had 'enough' number of physical nodes and physical network equipment (routers, switches, etc) for this self-learning exercise. But, obviously, don't have the budget or the physical space, nor want to be wasteful -- especially, when things could perhaps be simulated/emulated in a Linux environment. I have got one personal workstation, which is a single-homed Fedora desktop with 4GB memory, 200+ GB disk, and a 4-core CPU. I may be able to get 3 to 4 additional low-end Fedora workstations. But all of these -- including mine -- will always remain strictly behind our corporate firewall :-( Now, I know I could use VirtualBox-based virtual nodes, but don't know if there are any better alternatives disk- and memory- footprint-wise. Would you be able to give me some tips or suggestions on how to get started setting up this little budget- and space-constrained 'virtual lab' of mine? For example, how would I create virtual routers? Has someone attempted this sort of thing before: namely, creating a virtual network lab behind a corporate firewall for learning/development/testing purposes? I hope my question is not vague or too open-ended. Basically, right now, I don't know how to best leverage the Linux environment and the various 'goodies' it comes with, and buying physical devices only when it is absolutely necessary.

    Read the article

  • Redundant Microsoft server solution for small company

    - by MadBoy
    I'm planning to change one server Microsoft SBS 2003 with SharePoint, Exchange and SQL database into something that will provide me with some redundancy and won't be single point of failure. I was thinking to buy 2x exactly the same physical servers and put 2 virtualized servers on HyperV or VMWare on each. Then i would put SharePoint, Exchange and SQL on that 1 physical server (shared onto 2x VM's). I would like 2nd physical server to be exact duplicate of the first one so that when 1st server goes down (for reboot or hw failure), 2nd takes care of everything so that users don't even see anything changed (in terms all their emails, sharepoint stuff is available). My questions are: Will I have to pay for licenses for both servers even thou only one instance of SharePoint, Exchange, SQL will be used at same time? What are proposed solutions to do that? Any additional hardware I would need, any complicated software configuration to be expected to configure such redundancy so that when one physical server goes down 2nd one is taking care of rest? What problems should I expect? This solution is for 60 people. Later on it may or may expand.

    Read the article

  • Why does cpuinfo report that my frequency is slower?

    - by Avery Chan
    My machine is running off of a AMD Sempron(tm) X2 190 Processor. According the marketing copy, it should be running at around 2.5 Ghz. Why is the cpu speed being reported as something lower? Spec description (in Chinese) $ cat /proc/cpuinfo processor : 0 vendor_id : AuthenticAMD cpu family : 16 model : 6 model name : AMD Sempron(tm) X2 190 Processor stepping : 3 microcode : 0x10000c8 cpu MHz : 800.000 cache size : 512 KB physical id : 0 siblings : 2 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 5 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3dnowext 3dnow constant_tsc rep_good nopl nonstop_tsc extd_apicid pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save bogomips : 5022.89 TLB size : 1024 4K pages clflush size : 64 cache_alignment : 64 address sizes : 48 bits physical, 48 bits virtual power management: ts ttp tm stc 100mhzsteps hwpstate processor : 1 vendor_id : AuthenticAMD cpu family : 16 model : 6 model name : AMD Sempron(tm) X2 190 Processor stepping : 3 microcode : 0x10000c8 cpu MHz : 800.000 cache size : 512 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 5 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3dnowext 3dnow constant_tsc rep_good nopl nonstop_tsc extd_apicid pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save bogomips : 5022.82 TLB size : 1024 4K pages clflush size : 64 cache_alignment : 64 address sizes : 48 bits physical, 48 bits virtual power management: ts ttp tm stc 100mhzsteps hwpstate

    Read the article

  • What does "cpuid level" means ? Asking just for curiosity

    - by ogzylz
    For example, I put just 2 core info of a 16 core machine. What does "cpuid level : 6" line means? If u can provide info about lines "bogomips : 5992.10" and "clflush size : 64" I will be appreciated ------------- processor : 0 vendor_id : GenuineIntel cpu family : 15 model : 6 model name : Intel(R) Xeon(TM) CPU 3.00GHz stepping : 8 cpu MHz : 2992.689 cache size : 4096 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 fpu : yes fpu_exception : yes cpuid level : 6 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm syscall nx lm constant_tsc pni monitor ds_cpl vmx cid cx16 xtpr lahf_lm bogomips : 5992.10 clflush size : 64 cache_alignment : 128 address sizes : 40 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 15 model : 6 model name : Intel(R) Xeon(TM) CPU 3.00GHz stepping : 8 cpu MHz : 2992.689 cache size : 4096 KB physical id : 1 siblings : 4 core id : 0 cpu cores : 2 fpu : yes fpu_exception : yes cpuid level : 6 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm syscall nx lm constant_tsc pni monitor ds_cpl vmx cid cx16 xtpr lahf_lm bogomips : 5985.23 clflush size : 64 cache_alignment : 128 address sizes : 40 bits physical, 48 bits virtual power management:

    Read the article

  • linux hardware raid 10 / lvm / virtual machine partition alignment and filesystem optimization

    - by Jason Ward
    I've been reading everything I can find about partition alignment and filesystem optimization (ext4 and xfs) but still don't know enough to be confident in setting up my current configuration. My remaining confusion comes from the LVM layer and if I should use raid parameters on the filesystem in guest os'es. My main questions are: When I use 'pvcreate --dataalignment' do I use the stripe-width as calculated for a filesystem on RAID (128kB for ext4 in my situation), the Stripe size of the RAID set (256kB), something else altogether, or do I not need this? When I create ext2/3/4 or xfs filesystems in guests on the Logical Volumes, should I add the settings for the underlying RAID (e.g. mkfs.ext4 -b 4096 -E stride=64,stripe-width=128)? Does anyone see any glaring errors in my set up below? I'm running some benchmarks now but haven't done enough to start comparing results. I have four drives in RAID 10 on a 3ware 9750-4i controller (more details on the settings below) giving me a 6.0TB device at /dev/sda. Here is my partition table: Model: LSI 9750-4i DISK (scsi) Disk /dev/sda: 5722024MiB Sector size (logical/physical): 512B/512B Partition Table: gpt Number Start End Size File system Name Flags 1 1.00MiB 257MiB 256MiB ext4 BOOTPART boot 2 257MiB 4353MiB 4096MiB linux-swap(v1) 3 4353MiB 266497MiB 262144MiB ext4 4 266497MiB 4460801MiB 4194304MiB Partition 1 is to be the /boot partition for my xen host. Partition 2 is swap. Partition 3 is to be the root (/) for my xen host. Partition 4 is to be (the only) physical volume to be used by LVM (for those who are counting, I left about 1.2TB unallocated for now) For my Xen guests, I usually create a Logical Volume of the needed size and present it to the guests for them to partition as needed. I know there are other ways of handling that but this method works best for my situation. Here's the hardware of interest on my CentOS 6.3 Xen Host: 4x Seagate Barracuda 3TB ST3000DM001 Drives (sector size: 512 logical/4096 physical) 3ware 9750-4i w/BBU (sector size reported: 512 logical/512 physical) All four drives make up a RAID 10 array. Stripe: 256kB Write Cache enabled Read Cache: intelligent StoreSave: Balance Thanks!

    Read the article

  • Finding a shared HDD attached to the network from my F-13 machine

    - by Ramy
    Sorry for the slew of n00bie questions, but here is one more. I recently partitioned my 1.5TB harddrive according to this question I then bought this to attach the harddrive to my network. The problem is, how do I navigate to the hard drive to move files over the network to the HDD. should this be moved to serverfault? update: the disk isn't even showing up when i call "fdisk -l" (as root). How can I mount it if I can't even find it? [root@Moonface ~]# /sbin/fdisk -l Disk /dev/sda: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00018598 Device Boot Start End Blocks Id System /dev/sda1 * 1 64 512000 83 Linux Partition 1 does not end on cylinder boundary. /dev/sda2 64 19458 155777024 8e Linux LVM Disk /dev/dm-0: 53.7 GB, 53687091200 bytes 255 heads, 63 sectors/track, 6527 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/dm-0 doesn't contain a valid partition table Disk /dev/dm-1: 4764 MB, 4764729344 bytes 255 heads, 63 sectors/track, 579 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/dm-1 doesn't contain a valid partition table Disk /dev/dm-2: 101.0 GB, 101032394752 bytes 255 heads, 63 sectors/track, 12283 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/dm-2 doesn't contain a valid partition table

    Read the article

  • IIS 7.5 Warning : Cannot verify access to the path

    - by Mostafa
    I'm newbie in IIS 7.5 , Before this I used to run ASP.NET Website under IIS 5 , That was too easy . I'm trying to run a very simple asp.net website ( just created a new website from VS 2010 targeted in .net 3.5) in IIS 7.5.7600 on windows 7 Ultimate 64 bit . While adding application , during Test Setting i receive one warning that says : The server is configured to use pass-through authentication with a built-in account to access the specified physical path. However, IIS Manager cannot verify whether the built-in account has access. Make sure that the application pool identity has Read access to the physical path. If this server is joined to a domain, and the application pool identity is NetworkService or LocalSystem, verify that \$ has Read access to the physical path. Then test these settings again But I don't know how to make sure application pool identity has read access to the physical path ? I'm wondering if there is any step by step article or some thing that show me the walk-though for running a simple asp.net website on IIS 7.5? I appreciate any help .

    Read the article

  • Windows 7 boots to black screen with blinking cursor

    - by murgatroid99
    I have an Alienware M17x that dual boots into Ubuntu 11.04 and Windows 7 Home Premium. Currently, the computer starts at the GRUB loader and will boot into Ubuntu, but if I try to boot into Windows, I immediately get a black screen with a blinking cursor in the upper left corner. The output of fdisk -l is Device Boot Start End Blocks Id System /dev/dm-0p1 1 5 40131 de Dell Utility Partition 1 does not start on physical sector boundary. /dev/dm-0p2 6 1918 15360000 7 HPFS/NTFS Partition 2 does not start on physical sector boundary. /dev/dm-0p3 * 1918 64772 504878877+ 7 HPFS/NTFS Partition 3 does not start on physical sector boundary. /dev/dm-0p4 64772 77827 104858625 5 Extended Partition 4 does not start on physical sector boundary. /dev/dm-0p5 64772 67204 19531008 83 Linux /dev/dm-0p6 67204 74498 58593536 83 Linux /dev/dm-0p7 74498 77577 24731648 83 Linux /dev/dm-0p8 77578 77827 2000128 82 Linux swap / Solaris I have used the Windows rescue CD, and run the automatic error fixer until it finds no errors. I have run chkdsk /R on both the main Windows 7 (/dev/dm-0p3) partition and the recovery partition (/dev/dm-0p2). I set the main Windows 7 partition to be active. I also tried running in the recovery console the commands bootrec /fixmbr bootrec /fixboot bootrec /rebuildbcd None of these helped and the last set of commands deletes grub, which I then have to reinstall from Ubuntu. I think the last thing I did in windows before this started was install the newest ATI driver for my video card. This would suggest using system restore, and I actually had a restore point earlier (after the problem started), but after whatever I did that restore point does not appear in the list on the recovery disk any more, so I cannot do a system restore. Is there anything else I can try to make Windows boot properly again? Edit: Running the suggested commands bootsect /nt60 c: bcdboot c:\windows /s c: was also ineffective.

    Read the article

  • Transferring an SQL Processor License to a virtual hosted environment

    - by Andrew Shepherd
    My company is currently hosting a service in-house, and we want to move to an externally hosted environment. We would then be using a virtual server. I understand that this might be spread across multiple machines, but from my perspective as a customer, this layer is abstracted away - I shouldn't know or care about the hardware that the OS is hosted on. We have a licensed edition of SQL Server 2008. This is one Processor license. Will it be a violation of the licensing agreement to use this in a virtual environment. From the reference guide here it says When licensed Per Processor With Workgroup, Web, and Standard editions, for each server to which you have assigned the required number of per processor licenses, you may run, at any one time, any number of instances of the server software in physical and virtual operating system environments on the licensed server. However, the total number of physical and virtual processors used by those operating system environments cannot exceed the number of software licenses assigned to that server For enterprise edition there is an added option: if all physical processors in a machine have been licensed, then you may run unlimited instances of SQL server 2008 in one physical and an unlimited number of virtual operating environments on that same machine. I'm having trouble getting my head around this. Would I theoretically have to get a license for every processor in this virtual environment (which is effectively impossible because I have no way of knowing how many processors there actually are)? Or can I just say that it's hosted on one "virtual" server, so that's OK?

    Read the article

  • SQL Server performance on VSphere 4.0

    - by Charles
    We are having a performance issue that we cannot explain with our VMWare environment and I am hoping someone here may be able to help. We have a web application that uses a databases backend. We have an SQL 2005 Cluster setup on Windows 2003 R2 between a physical node and a virtual node. Both physical servers are identical 2950's with 2x Xeaon x5460 Quad Core CPUs and 64GB of memory, 16GB allocated to the OS. We are utilizing an iSCSI San for all cluster disks. The problem is this, when utilizing the application under a repeated stress testing that adds CPUs to the cluster nodes, the Physical node scales from 1 pCPU to 8 pCPUs, meaning we see continued performance increases. When testing the node running Vsphere, we have the expected 12% performance hit for being virtual but we still scale from 1 vCPU to 4 vCPUs like the physical but beyond this performance drops off, by the time we get to 8 vCPUs we are seeing performance numbers worse than at 4 vCPUs. Again, both nodes are configured identically in terms of hardware, Guest OS, SQL Configurations etc and there is no traffic other than the testing on the system. There are no other VMs on the virtual server so there should be no competition for resources. We have contacted VMWare for help but they have not really been any suggesting things like setting SQL Processor Affinity which, while being helpful would have the same net effect on each box and should not change our results in the least. We have looked at all of VMWare's SQL Tuning guides with regards to VSphere with no benefit, please help!

    Read the article

  • Ubuntu 10.04 network manager issues

    - by Shark
    I was using the default network manager to connect to my wi-fi network, but if the connection is dropped or router restarted the network manager wont reconnect automatically after i guess a couple of tries and just gives a pop-up to connect manually . To avoid this annoyance I installed WICD but though it does try to reconnect to the network after a drop in connection it is unable to resolve the ip address and i am left with an even bigger annoyance . 1. Is there a way to counter either of these issues ? 2. Something like a background process that will check network status periodically and then try to connect to a favored network ? Edit- out put of lshw -C network *-network description: Wireless interface product: Broadcom Corporation vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:12:00.0 logical name: eth1 version: 01 serial: c0:cb:38:18:9b:7f width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=5.60.48.36 ip=192.168.11.2 latency=0 multicast=yes wireless=IEEE 802.11 resources: irq:17 memory:fbc00000-fbc03fff *-network description: Ethernet interface product: RTL8101E/RTL8102E PCI Express Fast Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:13:00.0 logical name: eth0 version: 02 serial: f0:4d:a2:94:2d:74 size: 10MB/s capacity: 100MB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:29 ioport:e000(size=256) memory:d0b10000-d0b10fff(prefetchable) memory:d0b00000-d0b0ffff(prefetchable) memory:fb200000-fb21ffff(prefetchable)

    Read the article

  • Assigning IPs to OpenVZ containers

    - by Vojtech
    I have recently bought myself a physical server and I am trying to create containers which would have their IPs. The physical machine has both IPv4 and IPv6 addresses. I have accessible another IPv4 and some other IPv6 addresses which I would like to assign to the container. I managed to assign the addresses as follows: # vzctl set 101 --ipadd 144.76.195.252 --save I can ping to the machine from the physical machine, but not from the outside world. This also applies to the IPv6 I assigned as well. This is ifconfig of the physical machine: eth0 Link encap:Ethernet HWaddr d4:3d:7e:ec:e0:04 inet addr:144.76.195.232 Bcast:144.76.195.255 Mask:255.255.255.224 inet6 addr: 2a01:4f8:200:71e7::2/64 Scope:Global inet6 addr: fe80::d63d:7eff:feec:e004/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:217895 errors:0 dropped:0 overruns:0 frame:0 TX packets:16779 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:322481419 (307.5 MiB) TX bytes:1672628 (1.5 MiB) venet0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet6 addr: fe80::1/128 Scope:Link UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 RX packets:12 errors:0 dropped:0 overruns:0 frame:0 TX packets:12 errors:0 dropped:3 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1108 (1.0 KiB) TX bytes:1108 (1.0 KiB) This is ifconfig of the OpenVZ container: # ifconfig venet0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:127.0.0.2 P-t-P:127.0.0.2 Bcast:0.0.0.0 Mask:255.255.255.255 inet6 addr: 2a01:4f8:200:71e7::3/64 Scope:Global UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 RX packets:12 errors:0 dropped:0 overruns:0 frame:0 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1108 (1.0 KiB) TX bytes:1108 (1.0 KiB) venet0:0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:144.76.195.252 P-t-P:144.76.195.252 Bcast:144.76.195.252 Mask:255.255.255.255 UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 What do I need to do to have the container accessible from the outside world? What could I have forgotten? Thanks.

    Read the article

  • disk partition centos

    - by FlourishDNA
    I am setting up server for hosting two WordPress which has size of around 70GB. I have already installed CentOS as OS and I would like to partition the Disk. Is there any tool which can help me or can someone guide me though the process as I am not expert is SSH commands. Here are some output that might help. OS: CentOS release 6.3 fdisk -l Disk /dev/xvdb: 214.7 GB, 214748364800 bytes 255 heads, 63 sectors/track, 26108 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000b91e0 Device Boot Start End Blocks Id System Disk /dev/xvda: 21.5 GB, 21474836480 bytes 255 heads, 63 sectors/track, 2610 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000e542c Device Boot Start End Blocks Id System /dev/xvda1 * 1 64 512000 83 Linux Partition 1 does not end on cylinder boundary. /dev/xvda2 64 2611 20458496 8e Linux LVM Disk /dev/mapper/vg_flourish-lv_root: 16.7 GB, 16718495744 bytes 255 heads, 63 sectors/track, 2032 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/vg_flourish-lv_swap: 4227 MB, 4227858432 bytes 255 heads, 63 sectors/track, 514 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 df Filesystem 1K-blocks Used Available Use% Mounted on /dev/mapper/vg_flourish-lv_root 16070076 758184 14495560 5% / tmpfs 958500 0 958500 0% /dev/shm /dev/xvda1 495844 31926 438318 7% /boot df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_flourish-lv_root 16G 741M 14G 5% / tmpfs 937M 0 937M 0% /dev/shm /dev/xvda1 485M 32M 429M 7% /boot Thanks

    Read the article

  • Can a VM perform better when only two cores instead of four cores are presented to it?

    - by arcain
    We had a VMWare VM at work with two cores allocated to it that ran a pretty heinous process in IIS. Under load the process was maxing out the CPU usage on both cores, so we asked our system engineers to present the other two cores of the physical processor to the VM. The engineer immediately said that this would not improve performance at all, but would make the VM perform worse. That statement didn't make much sense to me, and I'm wondering how what the engineer said could be true. Are there actually cases where four cores presented to a VM would cause worse performance than two cores on the same physical hardware? Let's assume an ideal situation where there's only one VM on the host server, so nothing is being shared with other OS instances. I believe the physical server had a single quad core processor, and was most likely hosting multiple VMs. I don't really know what version of ESX was running on the host, nor do I know with certainty what the physical processor config was, but from within the VM I had access to, I saw two 3.33 GHz AMD processors. In the end, I never got to test the engineer's assertion out because (while we were trying to get the VM upgraded) we were able to optimize the process and reduce it's CPU consumption, and 2) we ended up migrating to a different VM on another ESX server which had four cores presented to it.

    Read the article

  • SQL Server 2005 Disk Configuration: Single RAID 1+0 or multiple RAID 1+0s?

    - by mfredrickson
    Assuming that the workload for the SQL Server is just a normal OLTP database, and that there are a total of 20 disks available, which configuration would make more sense? A single RAID 1+0, containing all 20 disks. This physical volume would contain both the data files and the transaction log files, but two logical drives would be created from this RAID: one for the data files and one for the log files. Or... Two RAID 1+0s, each containing 10 disks. One physical volume would contain the data files, and the other would contain the log files. The reason for this question is due to a disagreement between me (SQL Developer) and a co-worker (DBA). For every configuration that I've done, or seen others do, the data files and transaction log files were separated at the physical level, and were placed on separate RAIDs. However, my co-workers argument is that by placing all the disks into a single RAID 1+0, then any IO that is done by the server is potentially shared between all 20 disks, instead of just 10 disks in my suggested configuration. Conceptually, his argument makes sense to me. Also, I've found some information from Microsoft that seems to supports his position. http://technet.microsoft.com/en-us/library/cc966414.aspx In the section titled "3. RAID10 Configuration", showing a configuration in which all 20 disks are allocated to a single RAID 1+0, it states: In this scenario, the I/O parallelism can be used to its fullest by all partitions. Therefore, distribution of I/O workload is among 20 physical spindles instead of four at the partition level. But... every other configuration I've seen suggests physically separating the data and log files onto separate RAIDs. Everything I've found here on Server Fault suggests the same. I understand that a log files will be write heavy, and that data files will be a combination of reads and writes, but does this require that the files be placed onto separate RAIDs instead of a single RAID?

    Read the article

  • When using software RAID and LVM on Linux, which IO scheduler and readahead settings are honored?

    - by andrew311
    In the case of multiple layers (physical drives - md - dm - lvm), how do the schedulers, readahead settings, and other disk settings interact? Imagine you have several disks (/dev/sda - /dev/sdd) all part of a software RAID device (/dev/md0) created with mdadm. Each device (including physical disks and /dev/md0) has its own setting for IO scheduler (changed like so) and readahead (changed using blockdev). When you throw in things like dm (crypto) and LVM you add even more layers with their own settings. For example, if the physical device has a read ahead of 128 blocks and the RAID has a readahead of 64 blocks, which is honored when I do a read from /dev/md0? Does the md driver attempt a 64 block read which the physical device driver then translates to a read of 128 blocks? Or does the RAID readahead "pass-through" to the underlying device, resulting in a 64 block read? The same kind of question holds for schedulers? Do I have to worry about multiple layers of IO schedulers and how they interact, or does the /dev/md0 effectively override underlying schedulers? In my attempts to answer this question, I've dug up some interesting data on schedulers and tools which might help figure this out: Linux Disk Scheduler Benchmarking from Google blktrace - generate traces of the i/o traffic on block devices Relevant Linux kernel mailing list thread

    Read the article

  • Can't connect to wi-fi hotspot in Ubuntu 11.10

    - by ht3t
    I'm new to Ubuntu. I'm having a wireless network problem in Ubuntu 11.10. I made a hotspot using Connectify from a computer which is running Windows 7. I can access it in Windows 7 but not in Ubuntu 11.10. Every time I access it,I get a message "disconnected". I'm using msi fx 400 notebook with Intel Centrino wireless -N 1000 wireless card. Ubuntu version is 11.10 with KDE desktop. $ sudo lshw -c network [sudo] password for ht3t: *-network description: Wireless interface product: Centrino Wireless-N 1000 vendor: Intel Corporation physical id: 0 bus info: pci@0000:06:00.0 logical name: wlan0 version: 00 serial: 00:26:c7:56:b8:f0 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlagn driverversion=3.0.0-12-generic firmware=39.31.5.1 build 35138 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:44 memory:e7400000-e7401fff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:07:00.0 logical name: eth0 version: 06 serial: 40:61:86:b6:b1:a2 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw IP=192.168.21.107 latency=0 link=yes multicast=yes port=MII speed=100Mbit/s resources: irq:41 ioport:9000(size=256) memory:e6004000-e6004fff memory:e6000000-e6003fff I can't do anything without internet connection. How can I fix this?

    Read the article

  • What are the ways to build a failover cluster?

    - by light
    I have a task where I need to build a failover cluster in two cases: first with servers on Red Hat Enterprise 5.1 and second with SUSE Linux Enterprise 11 SP1. Both cases have SAN. I know there are many ways to build failover cluster, but I can’t find out more, so I need next: The ways to build it? I know only virtualization. Any good book or resource to broad my mind? I’ll be glad to hear any suggestion. Thanks! EDIT #1: failover of servers with bussiness application on it. EDIT #2: will be great to hear summary about solutions with SLES servers? EDIT #3: So if I understand correctly, in my cases the main ways are to use internal solutions or virtualization. So now I have additional questions: Does manufacturer of blades provide some solution? For example HP or IBM. (Without virtualization) Do I need additional server to control "heartbeat" between main and redundant servers? (Virtualization) For example I have several physical servers with VMs. Do I need additional server to control availability of VMs and to move VMs to another physical server in the case their physical server failure? Sorry for my poor English. EDIT #4: Failover of VM or OS on physical server. In both cases will be used SAN , it's not specified, but I think with file system image on it. I started to think that my question is stupid and I need to remake it.

    Read the article

  • Implementing a Custom Coherence PartitionAssignmentStrategy

    - by jpurdy
    A recent A-Team engagement required the development of a custom PartitionAssignmentStrategy (PAS). By way of background, a PAS is an implementation of a Java interface that controls how a Coherence partitioned cache service assigns partitions (primary and backup copies) across the available set of storage-enabled members. While seemingly straightforward, this is actually a very difficult problem to solve. Traditionally, Coherence used a distributed algorithm spread across the cache servers (and as of Coherence 3.7, this is still the default implementation). With the introduction of the PAS interface, the model of operation was changed so that the logic would run solely in the cache service senior member. Obviously, this makes the development of a custom PAS vastly less complex, and in practice does not introduce a significant single point of failure/bottleneck. Note that Coherence ships with a default PAS implementation but it is not used by default. Further, custom PAS implementations are uncommon (this engagement was the first custom implementation that we know of). The particular implementation mentioned above also faced challenges related to managing multiple backup copies but that won't be discussed here. There were a few challenges that arose during design and implementation: Naive algorithms had an unreasonable upper bound of computational cost. There was significant complexity associated with configurations where the member count varied significantly between physical machines. Most of the complexity of a PAS is related to rebalancing, not initial assignment (which is usually fairly simple). A custom PAS may need to solve several problems simultaneously, such as: Ensuring that each member has a similar number of primary and backup partitions (e.g. each member has the same number of primary and backup partitions) Ensuring that each member carries similar responsibility (e.g. the most heavily loaded member has no more than one partition more than the least loaded). Ensuring that each partition is on the same member as a corresponding local resource (e.g. for applications that use partitioning across message queues, to ensure that each partition is collocated with its corresponding message queue). Ensuring that a given member holds no more than a given number of partitions (e.g. no member has more than 10 partitions) Ensuring that backups are placed far enough away from the primaries (e.g. on a different physical machine or a different blade enclosure) Achieving the above goals while ensuring that partition movement is minimized. These objectives can be even more complicated when the topology of the cluster is irregular. For example, if multiple cluster members may exist on each physical machine, then clearly the possibility exists that at certain points (e.g. following a member failure), the number of members on each machine may vary, in certain cases significantly so. Consider the case where there are three physical machines, with 3, 3 and 9 members each (respectively). This introduces complexity since the backups for the 9 members on the the largest machine must be spread across the other 6 members (to ensure placement on different physical machines), preventing an even distribution. For any given problem like this, there are usually reasonable compromises available, but the key point is that objectives may conflict under extreme (but not at all unlikely) circumstances. The most obvious general purpose partition assignment algorithm (possibly the only general purpose one) is to define a scoring function for a given mapping of partitions to members, and then apply that function to each possible permutation, selecting the most optimal permutation. This would result in N! (factorial) evaluations of the scoring function. This is clearly impractical for all but the smallest values of N (e.g. a partition count in the single digits). It's difficult to prove that more efficient general purpose algorithms don't exist, but the key take away from this is that algorithms will tend to either have exorbitant worst case performance or may fail to find optimal solutions (or both) -- it is very important to be able to show that worst case performance is acceptable. This quickly leads to the conclusion that the problem must be further constrained, perhaps by limiting functionality or by using domain-specific optimizations. Unfortunately, it can be very difficult to design these more focused algorithms. In the specific case mentioned, we constrained the solution space to very small clusters (in terms of machine count) with small partition counts and supported exactly two backup copies, and accepted the fact that partition movement could potentially be significant (preferring to solve that issue through brute force). We then used the out-of-the-box PAS implementation as a fallback, delegating to it for configurations that were not supported by our algorithm. Our experience was that the PAS interface is quite usable, but there are intrinsic challenges to designing PAS implementations that should be very carefully evaluated before committing to that approach.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + <wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and youll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally. the magic. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and WSDL flattening.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    - by Glav
    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc…) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + &lt;wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and you’ll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally…. the magic…. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right…..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and “WSDL flattening”.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.

    Read the article

  • OWB 11gR2 &ndash; OLAP and Simba

    - by David Allan
    Oracle Warehouse Builder was the first ETL product to provide a single integrated and complete environment for managing enterprise data warehouse solutions that also incorporate multi-dimensional schemas. The OWB 11gR2 release provides Oracle OLAP 11g deployment for multi-dimensional models (in addition to support for prior releases of OLAP). This means users can easily utilize Simba's MDX Provider for Oracle OLAP (see here for details and cost) which allows you to use the powerful and popular ad hoc query and analysis capabilities of Microsoft Excel PivotTables® and PivotCharts® with your Oracle OLAP business intelligence data. The extensions to the dimensional modeling capabilities have been built on established relational concepts, with the option to seamlessly move from a relational deployment model to a multi-dimensional model at the click of a button. This now means that ETL designers can logically model a complete data warehouse solution using one single tool and control the physical implementation of a logical model at deployment time. As a result data warehouse projects that need to provide a multi-dimensional model as part of the overall solution can be designed and implemented faster and more efficiently. Wizards for dimensions and cubes let you quickly build dimensional models and realize either relationally or as an Oracle database OLAP implementation, both 10g and 11g formats are supported based on a configuration option. The wizard provides a good first cut definition and the objects can be further refined in the editor. Both wizards let you choose the implementation, to deploy to OLAP in the database select MOLAP: multidimensional storage. You will then be asked what levels and attributes are to be defined, by default the wizard creates a level bases hierarchy, parent child hierarchies can be defined in the editor. Once the dimension or cube has been designed there are special mapping operators that make it easy to load data into the objects, below we load a constant value for the total level and the other levels from a source table.   Again when the cube is defined using the wizard we can edit the cube and define a number of analytic calculations by using the 'generate calculated measures' option on the measures panel. This lets you very easily add a lot of rich analytic measures to your cube. For example one of the measures is the percentage difference from a year ago which we can see in detail below. You can also add your own custom calculations to leverage the capabilities of the Oracle OLAP option, either by selecting existing template types such as moving averages to defining true custom expressions. The 11g OLAP option now supports percentage based summarization (the amount of data to precompute and store), this is available from the option 'cost based aggregation' in the cube's configuration. Ensure all measure-dimensions level based aggregation is switched off (on the cube-dimension panel) - previously level based aggregation was the only option. The 11g generated code now uses the new unified API as you see below, to generate the code, OWB needs a valid connection to a real schema, this was not needed before 11gR2 and is a new requirement since the OLAP API which OWB uses is not an offline one. Once all of the objects are deployed and the maps executed then we get to the fun stuff! How can we analyze the data? One option which is powerful and at many users' fingertips is using Microsoft Excel PivotTables® and PivotCharts®, which can be used with your Oracle OLAP business intelligence data by utilizing Simba's MDX Provider for Oracle OLAP (see Simba site for details of cost). I'll leave the exotic reporting illustrations to the experts (see Bud's demonstration here), but with Simba's MDX Provider for Oracle OLAP its very simple to easily access the analytics stored in the database (all built and loaded via the OWB 11gR2 release) and get the regular features of Excel at your fingertips such as using the conditional formatting features for example. That's a very quick run through of the OWB 11gR2 with respect to Oracle 11g OLAP integration and the reporting using Simba's MDX Provider for Oracle OLAP. Not a deep-dive in any way but a quick overview to illustrate the design capabilities and integrations possible.

    Read the article

  • A Closer Look at the HiddenInput Attribute in MVC 2

    - by Steve Michelotti
    MVC 2 includes an attribute for model metadata called the HiddenInput attribute. The typical usage of the attribute looks like this (line #3 below): 1: public class PersonViewModel 2: { 3: [HiddenInput(DisplayValue = false)] 4: public int? Id { get; set; } 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: } So if you displayed your PersonViewModel with Html.EditorForModel() or Html.EditorFor(m => m.Id), the framework would detect the [HiddenInput] attribute metadata and produce HTML like this: 1: <input id="Id" name="Id" type="hidden" value="21" /> This is pretty straight forward and allows an elegant way to keep the technical key for your model (e.g., a Primary Key from the database) in the HTML so that everything will be wired up correctly when the form is posted to the server and of course not displaying this value visually to the end user. However, when I was giving a recent presentation, a member of the audience asked me (quite reasonably), “When would you ever set DisplayValue equal to true when using a HiddenInput?” To which I responded, “Well, it’s an edge case. There are sometimes when…er…um…people might want to…um…display this value to the user.” It was quickly apparent to me (and I’m sure everyone else in the room) what a terrible answer this was. I realized I needed to have a much better answer here. First off, let’s look at what is produced if we change our view model to use “true” (which is equivalent to use specifying [HiddenInput] since “true” is the default) on line #3: 1: public class PersonViewModel 2: { 3: [HiddenInput(DisplayValue = true)] 4: public int? Id { get; set; } 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: } Will produce the following HTML if rendered from Htm.EditorForModel() in your view: 1: <div class="editor-label"> 2: <label for="Id">Id</label> 3: </div> 4: <div class="editor-field"> 5: 21<input id="Id" name="Id" type="hidden" value="21" /> 6: <span class="field-validation-valid" id="Id_validationMessage"></span> 7: </div> The key is line #5. We get the text of “21” (which happened to be my DB Id in this instance) and also a hidden input element (again with “21”). So the question is, why would one want to use this? The best answer I’ve found is contained in this MVC 2 whitepaper: When a view lets users edit the ID of an object and it is necessary to display the value as well as to provide a hidden input element that contains the old ID so that it can be passed back to the controller. Well, that actually makes sense. Yes, it seems like something that would happen *rarely* but, for those instances, it would enable them easily. It’s effectively equivalent to doing this in your view: 1: <%: Html.LabelFor(m => m.Id) %> 2: <%: Model.Id %> 3: <%: Html.HiddenFor(m => m.Id) %> But it’s allowing you to specify it in metadata on your view model (and thereby take advantage of templated helpers like Html.EditorForModel() and Html.EditorFor()) rather than having to explicitly specifying everything in your view.

    Read the article

< Previous Page | 136 137 138 139 140 141 142 143 144 145 146 147  | Next Page >