Search Results

Search found 30085 results on 1204 pages for 'read only'.

Page 140/1204 | < Previous Page | 136 137 138 139 140 141 142 143 144 145 146 147  | Next Page >

  • Reading input files in FORTRAN

    - by lollygagger
    Purpose: Create a program that takes two separate files, opens and reads them, assigns their contents to arrays, do some math with those arrays, create a new array with product numbers, print to a new file. Simple enough right? My input files have comment characters at the beginning. One trouble is, they are '#' which are comment characters for most plotting programs, but not FORTRAN. What is a simple way to tell the computer not to look at these characters? Since I have no previous FORTRAN experience, I am plowing through this with two test files. Here is what I have so far: PROGRAM gain IMPLICIT NONE REAL, DIMENSION (1:4, 1:8) :: X, Y, Z OPEN(1, FILE='test.out', & STATUS='OLD', ACTION='READ') ! opens the first file READ(1,*), X OPEN(2, FILE='test2.out', & STATUS='OLD', ACTION='READ') ! opens the second file READ(2,*), Y PRINT*, X, Y Z = X*Y ! PRINT*, Z OPEN(3, FILE='test3.out', STATUS='NEW', ACTION='WRITE') !creates a new file WRITE(3,*), Z CLOSE(1) CLOSE(2) CLOSE(3) END PROGRAM PS. Please do not overwhelm me with a bunch of code monkey gobblety gook. I am a total programming novice. I do not understand all the lingo, that is why I came here instead of searching for help in existing websites. Thanks.

    Read the article

  • How can I write a function template for all types with a particular type trait?

    - by TC
    Consider the following example: struct Scanner { template <typename T> T get(); }; template <> string Scanner::get() { return string("string"); } template <> int Scanner::get() { return 10; } int main() { Scanner scanner; string s = scanner.get<string>(); int i = scanner.get<int>(); } The Scanner class is used to extract tokens from some source. The above code works fine, but fails when I try to get other integral types like a char or an unsigned int. The code to read these types is exactly the same as the code to read an int. I could just duplicate the code for all other integral types I'd like to read, but I'd rather define one function template for all integral types. I've tried the following: struct Scanner { template <typename T> typename enable_if<boost::is_integral<T>, T>::type get(); }; Which works like a charm, but I am unsure how to get Scanner::get<string>() to function again. So, how can I write code so that I can do scanner.get<string>() and scanner.get<any integral type>() and have a single definition to read all integral types? Update: bonus question: What if I want to accept more than one range of classes based on some traits? For example: how should I approach this problem if I want to have three get functions that accept (i) integral types (ii) floating point types (iii) strings, respectively.

    Read the article

  • Fill lower matrix with vector by row, not column

    - by mhermans
    I am trying to read in a variance-covariance matrix written out by LISREL in the following format in a plain text, whitespace separated file: 0.23675E+01 0.86752E+00 0.28675E+01 -0.36190E+00 -0.36190E+00 0.25381E+01 -0.32571E+00 -0.32571E+00 0.84425E+00 0.25598E+01 -0.37680E+00 -0.37680E+00 0.53136E+00 0.47822E+00 0.21120E+01 -0.37680E+00 -0.37680E+00 0.53136E+00 0.47822E+00 0.91200E+00 0.21120E+01 This is actually a lower diagonal matrix (including diagonal): 0.23675E+01 0.86752E+00 0.28675E+01 -0.36190E+00 -0.36190E+00 0.25381E+01 -0.32571E+00 -0.32571E+00 0.84425E+00 0.25598E+01 -0.37680E+00 -0.37680E+00 0.53136E+00 0.47822E+00 0.21120E+01 -0.37680E+00 -0.37680E+00 0.53136E+00 0.47822E+00 0.91200E+00 0.21120E+01 I can read in the values correctly with scan() or read.table(fill=T). I am however not able to correctly store the read-in vector in a matrix. The following code S <- diag(6) S[lower.tri(S,diag=T)] <- d fills the lower matrix by column, while it should fill it by row. Using matrix() does allow for the option byrow=TRUE, but this will fill in the whole matrix, not just the lower half (with diagonal). Is it possible to have both: only fill the lower matrix (with diagonal) and do it by row? (separate issue I'm having: LISREL uses 'D+01' while R only recognises 'E+01' for scientific notation. Can you change this in R to accept also 'D'?)

    Read the article

  • Question about how AppFabric's cache feature can be used.

    - by Kevin Buchan
    Question about how AppFabric's cache feature can be used. I apologize for asking a question that I should be able to answer from the documentation, but I have read and read and searched and cannot answer this question, which leads me to believe that I have a fundamentally flawed understanding of what AppFabric's caching capabilities are intended for. I work for a geographically disperse company. We have a particular application that was originally written as a client/server application. It’s so massive and business critical that we want to baby step converting it to a better architected solution. One of the ideas we had was to convert the app to read its data using WCF calls to a co-located web server that would cache communication with the database in the United States. The nature of the application is such that everyone will tend to be viewing the same 2000 records or so with only occasional updates and those updates will be made by a limited set of users. I was hoping that AppFabric’s cache mechanism would allow me to set up one global cache and when a user in Asia, for example, requested data that was not in the cache or was stale that the web server would read from the database in the USA, provide the data to the user, then update the cache which would propagate that data to the other web servers so that they would know not to go back to the database themselves. Can AppFabric work this way or should I just have the servers retrieve their own data from the database?

    Read the article

  • reading keyboard input without "consuming" it in x86 assembly

    - by Bob
    Ok so here the deal: I have an assignment regarding DOS and interrupts: I need to write a sort of key-logger function that can be called from C code. what it means is a c program would call an assembly function called startlog that would indicate to start logging the keys pressed until a function called endlog is called. the logging should work like this: write the ascii value of any key pressed without disturbing the C code between startlog and endlog, meaning that if the C code also needs to read the input (let's say by scanf, it would work ok). I managed to write the logger by changing the interrupt vector 9th entry (interrupt for keyboard press) to a function I wrote that writes the values to a file, and it works fine. however the C code does not get the input. Basically what i did is read the key pressed using int 21h, however after reading the ascii value it is "consumed" so I need a way to either simulate the key press again or read the value without "consuming" it so next time a key is read it reads the same key. (I described the code in english because it is long and clumsy assembly code)

    Read the article

  • How to increase my "advanced" knowledge of PHP further? (quickly)

    - by Kerry
    I have been working with PHP for years and gotten a very good grasp of the language, created many advanced and not-so-advanced systems that are working very well. The problem I'm running into is that I only learn when I find a need for something that I haven't learned before. This causes me to look up solutions and other code that handles the problem, and so I will learn about a new function or structure that I hadn't seen before. It is in this way that I have learned many of my better techniques (such as studying classes put out by Amazon, Google or other major companies). The main problem with this is the concept of not being able to learn something if you don't know it exists. For instance, it took me several months of programming to learn about the empty() function, and I simply would check the string length using strlen() to check for empty values. I'm now getting into building bigger and bigger systems, and I've started to read blogs like highscalability.com and been researching MySQL replication and server data for scaling. I know that structure of your code is very important to make full systems work. After reading a recent blog about reddit's structure, it made me question if there is some standard or "accepted systems" out there. I have looked into frameworks (I've used Kohana, which I regretted, but decided that PHP frameworks were not for me) and I prefer my own library of functions rather than having a framework. My current structure is a mix between WordPress, Kohana and my own knowledge. The ways I can see as being potentially beneficial are: Read blogs Read tutorials Work with someone else Read a book What would be the best way(s) to "get to the next level" the level of being a very good system developer?

    Read the article

  • Sending Images over Sockets in C

    - by Takkun
    I'm trying to send an image file through a TCP socket in C, but the image isn't being reassembled correctly on the server side. I was wondering if anyone can point out the mistake? I know that the server is receiving the correct file size and it constructs a file of that size, but it isn't an image file. Client //Get Picture Size printf("Getting Picture Size\n"); FILE *picture; picture = fopen(argv[1], "r"); int size; fseek(picture, 0, SEEK_END); size = ftell(picture); //Send Picture Size printf("Sending Picture Size\n"); write(sock, &size, sizeof(size)); //Send Picture as Byte Array printf("Sending Picture as Byte Array\n"); char send_buffer[size]; while(!feof(picture)) { fread(send_buffer, 1, sizeof(send_buffer), picture); write(sock, send_buffer, sizeof(send_buffer)); bzero(send_buffer, sizeof(send_buffer)); } Server //Read Picture Size printf("Reading Picture Size\n"); int size; read(new_sock, &size, sizeof(1)); //Read Picture Byte Array printf("Reading Picture Byte Array\n"); char p_array[size]; read(new_sock, p_array, size); //Convert it Back into Picture printf("Converting Byte Array to Picture\n"); FILE *image; image = fopen("c1.png", "w"); fwrite(p_array, 1, sizeof(p_array), image); fclose(image);

    Read the article

  • Value is zero after filter SQL in C#

    - by Chuki2
    I`m new in C#.. I have write function to filter department. And this function will return idDepartment. New problem is, department keep value "System.Windows.Forms.Label, Text : ADMIN ", that`s why i got zero. So how can i take "ADMIN" only and keep to department? Update : public partial class frmEditStaff : Form { private string connString; private string userId, department; //Department parameter coming from here private string conString = "Datasource"; public frmEditStaff(string strUserID, string strPosition) { InitializeComponent(); //Pass value from frmListStaff to userID text box tbStaffId.Text = strUserID.ToString(); userId = strUserID.ToString(); department = strPosition.ToString(); } This code below is working, don`t have any problem. public int lookUpDepart() { int idDepart=0; using (SqlConnection openCon = new SqlConnection(conString)) { string lookUpDepartmenId = "SELECT idDepartment FROM tbl_department WHERE department = '" + department + "';"; openCon.Open(); using (SqlCommand querylookUpDepartmenId = new SqlCommand(lookUpDepartmenId, openCon)) { SqlDataReader read = querylookUpDepartmenId.ExecuteReader(); while (read.Read()) { idDepart = int.Parse(read[0].ToString()); break; } } openCon.Close(); return idDepart; } } Thanks for help. Happy nice day!

    Read the article

  • task_current redundant field

    - by user341940
    Hi, I'm writing a kernel module that reads from a /proc file. When someone writes into the /proc file the reader will read it, but if it reads again while there is no "new" write, it should be blocked. In order to remember if we already read, i need to keep a map of the latest buffer that process read. To avoid that, I was told that there might be some redundant field inside the current- (task_struct struct) that i can use to my benefits in order to save some states on the current process. How can I find such fields ? and how can i avoid them being overwritten ? I read somewhere that i can use the offset field inside the struct in order to save my information there and i need to block lseek operations so that field will stay untouched. How can I do so ? and where is that offset field, i can't find it inside the task_Struct. Thanks and I need to save for each process some information in order to map it against other information. I can write a ma

    Read the article

  • Trouble understanding the semantics of volatile in Java

    - by HungryTux
    I've been reading up about the use of volatile variables in Java. I understand that they ensure instant visibility of their latest updates to all the threads running in the system on different cores/processors. However no atomicity of the operations that caused these updates is ensured. I see the following literature being used frequently A write to a volatile field happens-before every read of that same field . This is where I am a little confused. Here's a snippet of code which should help me better explain my query. volatile int x = 0; volatile int y = 0; Thread-0: | Thread-1: | if (x==1) { | if (y==1) { return false; | return false; } else { | } else { y=1; | x=1; return true; | return true; } | } Since x & y are both volatile, we have the following happens-before edges between the write of y in Thread-0 and read of y in Thread-1 between the write of x in Thread-1 and read of x in Thread-0 Does this imply that, at any point of time, only one of the threads can be in its 'else' block(since a write would happen before the read)? It may well be possible that Thread-0 starts, loads x, finds it value as 0 and right before it is about to write y in the else-block, there's a context switch to Thread-1 which loads y finds it value as 0 and thus enters the else-block too. Does volatile guard against such context switches (seems very unlikely)?

    Read the article

  • Best Methods for Dynamically Creating New Objects

    - by frankV
    I'm looking for a method to dynamically create new class objects during runtime of a program. So far what I've read leads me to believe it's not easy and normally reserved for more advanced program requirements. What I've tried so far is this: // create a vector of type class vector<class_name> vect; // and use push_back (method 1) vect.push_back(*new Object); //or use for loop and [] operator (method 2) vect[i] = *new Object; neither of these throw errors from the compiler, but I'm using ifstream to read data from a file and dynamically create the objects... the file read is taking in some weird data and occasionally reading a memory address, and it's obvious to me it's due to my use/misuse of the code snippet above. The file read code is as follows: // in main ifstream fileIn fileIn.open( fileName.c_str() ); // passes to a separate function along w/ vector loadObjects (fileIn, vect); void loadObjects (ifstream& is, vector<class_name>& Object) { int data1, data2, data3; int count = 0; string line; if( is.good() ){ for (int i = 0; i < 4; i++) { is >> data1 >> data2 >> data3; if (data1 == 0) { vect.push_back(*new Object(data2, data3) ) } } } }

    Read the article

  • C# in Depth, Third Edition by Jon Skeet, Manning Publications Co. Book Review

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2013/10/24/c-in-depth-third-edition-by-jon-skeet-manning-publications.aspx I started reading this ebook on September 28, 2013, the same day it was sent my way by Manning Publications Co. for review while it still being fresh off the press. So 1st thing – thanks to Manning for this opportunity and a free copy of this must have on every C# developer’s desk book! Several hours ago I finished reading this book (well, except a for a large portion of its quite lengthy appendix). I jumped writing this review right away while still being full of emotions and impressions from reading it thoroughly and running code examples. Before I go any further I would like say that I used to program on various platforms using various languages starting with the Mainframe and ending on Windows, and I gradually shifted toward dealing with databases more than anything, however it happened with me to program in C# 1 a lot when it was first released and then some C# 2 with a big leap in between to C# 5. So my perception and experience reading this book may differ from yours. Also what I want to tell is somewhat funny that back then, knowing some Java and seeing C# 1 released, initially made me drawing a parallel that it is a copycat language, how wrong was I… Interestingly, Jon programs in Java full time, but how little it was mentioned in the book! So more on the book: Be informed, this is not a typical “Recipes”, “Cookbook” or any set of ready solutions, it is rather targeting mature, advanced developers who do not only know how to use a number of features, but are willing to understand how the language is operating “under the hood”. I must state immediately, at the same time I am glad the author did not go into the murky depths of the MSIL, so this is a very welcome decision on covering a modern language as C# for me, thank you Jon! Frankly, not all was that rosy regarding the tone and structure of the book, especially the the first half or so filled me with several negative and positive emotions overpowering each other. To expand more on that, some statements in the book appeared to be bias to me, or filled with pre-justice, it started to look like it had some PR-sole in it, but thankfully this was all gone toward the end of the 1st third of the book. Specifically, the mention on the C# language popularity, Java is the #1 language as per https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language (many other sources put C at the top which I highly doubt), also many interesting functional languages as Clojure and Groovy appeared and gained huge traction which run on top of Java/JVM whereas C# does not enjoy such a situation. If we want to discuss the popularity in general and say how fast a developer can find a new job that pays well it would be indeed the very Java, C++ or PHP, never C#. Or that phrase on language preference as a personal issue? We choose where to work or we are chosen because of a technology used at a given software shop, not vice versa. The book though it technically very accurate with valid code, concise examples, but I wish the author would give more concrete, real-life examples on where each feature should be used, not how. Another point to realize before you get the book is that it is almost a live book which started to be written when even C# 3 wasn’t around so a lot of ground is covered (nearly half of the book) on the pre-C# 3 feature releases so if you already have a solid background in the previous releases and do not plan to upgrade, perhaps half of the book can be skipped, otherwise this book is surely highly recommended. Alas, for me it was a hard read, most of it. It was not boring (well, only may be two times), it was just hard to grasp some concepts, but do not get me wrong, it did made me pause, on several occasions, and made me read and re-read a page or two. At times I even wondered if I have any IQ at all (LOL). Be prepared to read A LOT on generics, not that they are widely used in the field (I happen to work as a consultant and went thru a lot of code at many places) I can tell my impression is the developers today in best case program using examples found at OpenStack.com. Also unlike the Java world where having the most recent version is nearly mandated by the OSS most companies on the Microsoft platform almost never tempted to upgrade the .Net version very soon and very often. As a side note, I was glad to see code recently that included a nullable variable (myvariable? notation) and this made me smile, besides, I recommended that person this book to expand her knowledge. The good things about this book is that Jon maintains an active forum, prepared code snippets and even a small program (Snippy) that is happy to run the sample code saving you from writing any plumbing code. A tad now on the C# language itself – it sure enjoyed a wonderful road toward perfection and a very high adoption, especially for ASP development. But to me all the recent features that made this statically typed language more dynamic look strange. Don’t we have F#? Which supposed to be the dynamic language? Why do we need to have a hybrid language? Now the developers live their lives in dualism of the static and dynamic variables! And LINQ to SQL, it is covered in depth, but wasn’t it supposed to be dropped? Also it seems that very little is being added, and at a slower pace, e.g. Roslyn will come in late 2014 perhaps, and will be probably the only main feature. Again, it is quite hard to read this book as various chapters, C# versions mentioned every so often only if I only could remember what was covered exactly where! So the fact it has so many jumps/links back and forth I recommend the ebook format to make the navigations easier to perform and I do recommend using software that allows bookmarking, also make sure you have access to plenty of coffee and pizza (hey, you probably know this joke – who a programmer is) ! In terms of closing, if you stuck at C# 1 or 2 level, it is time to embrace the power of C# 5! Finally, to compliment Manning, this book unlike from any other publisher so far, was the only one as well readable (put it formatted) on my tablet as in Adobe Reader on a laptop.

    Read the article

  • Psychonauts crashes right after entering load save door

    - by user67974
    Psychonauts crashes right after entering the 'Load Save' door. Here is the terminal output: Shader assembly time: 0.88 seconds Found OpenAL device: 'Simple Directmedia Layer' Found OpenAL device: 'ALSA Software' Found OpenAL device: 'OSS Software' Found OpenAL device: 'PulseAudio Software' Opened OpenAL Device: '(null)' ERROR: CAudioDrv::CAudioDrv->alGenSources reports AL_INVALID_VALUE error. PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonfx.isb' to 'WorkResource/Sounds/commonfx.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonvoice.isb' to 'WorkResource/Sounds/commonvoice.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonmusic.isb' to 'WorkResource/Sounds/commonmusic.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonmentalfx.isb' to 'WorkResource/Sounds/commonmentalfx.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonmenfxmem.isb' to 'WorkResource/Sounds/commonmenfxmem.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonfxmem.isb' to 'WorkResource/Sounds/commonfxmem.isb' GameApp::StartUp InitSoundFiles() completed in 0.15 seconds GameApp::StartUp Load some common textures completed in 0.00 seconds WARN: ENGINE: Lua garbage collection starting FreeUnusedBlocksInBuckets released 0 Kb GameApp::StartUp InitEntities() completed in 0.02 seconds PSYCHONAUTS UNIX FILENAME: corrected 'WorkResource/SavedGames/savegameprefs.ini' to 'WorkResource/SAVEDGAMES/savegameprefs.ini' PSYCHONAUTS UNIX FILENAME: corrected 'WorkResource/SavedGames/savegameprefs.ini' to 'WorkResource/SAVEDGAMES/savegameprefs.ini' GameApp::StartUp m_pSaveLoadInterface->Startup() completed in 0.00 seconds GameApp::StartUp m_UserInterface.Setup() completed in 0.00 seconds STUBBED: multisample at EDisplayOptionsWidget (/home/icculus/projects/psychonauts/Source/game/luatest/Game/UIPCDisplayOptions.cpp:97) STUBBED: VK_* at CheckVirtualKey (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:1443) Game: Engine Running hook startup Game: Engine -> SetupGlobalObjects Game: Engine -> SetupLevelMenu Game: Engine -> InitMath GameApp::StartUp InitLua2() completed in 0.00 seconds GameApp::StartUp SetupLevelMenu() completed in 0.00 seconds STUBBED: do we even use this? at InitSocket (/home/icculus/projects/psychonauts/Source/game/luatest/Game/Gameplaylogger.cpp:210) GameApp::StartUp Post-Install total completed in 0.20 seconds Start Up completed in 1.57 seconds UnixMain: StartUp successful.. Working directory: /opt/psychonauts STUBBED: dispatch SDL events at PCMainHandleAnyWindowsMessages (/home/icculus/projects/psychonauts/Source/game/luatest/UnixMain.cpp:56) STUBBED: write me at GetJoystickInput (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:428) STUBBED: write me at GetJoystickActionValue (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:613) PSYCHONAUTS UNIX FILENAME: corrected 'workresource/cutScenes/prerendered/dflogo.bik' to 'WorkResource/cutscenes/prerendered/DFLogo.bik' Prerender subtitle file: workresource\cutScenes\prerendered\dflogo.dfs not found PSYCHONAUTS UNIX FILENAME: corrected 'workresource/cutScenes/prerendered/dflogo.bik' to 'WorkResource/cutscenes/prerendered/DFLogo.bik' STUBBED: fixed function pipeline? at setColorOp (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2097) STUBBED: fixed function pipeline? at setColorArg1 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2106) STUBBED: fixed function pipeline? at setColorArg2 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2115) STUBBED: fixed function pipeline? at setAlphaOp (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2124) STUBBED: fixed function pipeline? at setAlphaArg1 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2133) STUBBED: fixed function pipeline? at setAlphaArg2 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2142) STUBBED: fixed function pipeline? at setProjected (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2223) LOC WARN: Could not open Localization file 'Localization/English/_StringTable.lub' STUBBED: memory status at UpdateMemoryTracking (/home/icculus/projects/psychonauts/Source/game/luatest/Game/GameApp.cpp:4884) WARN: Couldn't resize array to 128; out-of-bounds elements are still in use: Vertex Pool, 188 Loading new level 'STMU' STUBBED: Need multithreaded GL at DisplayLoadingScreen (/home/icculus/projects/psychonauts/Source/game/luatest/Game/LoadingScreen.cpp:83) ========================= Memory post unload level ========================= ========================= LOC WARN: Could not open Localization file 'Localization/English/ST_StringTable.lub' DaveD: Info: Texture pack file contains 137 textures Doing a texture readback for locking! Game: Engine Saved[GLOBAL]: InstaHintFord_HostileRecord = [table] Game: Engine Saved[GLOBAL]: InstaHintFord_HostileOrder = [table] WARN: Redundant packfile read: anims\thought_bubble\bubblefirestarting.jan WARN: Redundant packfile read: anims\thought_bubble\bubbleintothemind.jan WARN: Redundant packfile read: anims\thought_bubble\bubbleinvisibility.jan WARN: Redundant packfile read: anims\thought_bubble\bubblepopperfill.jan WARN: Redundant packfile read: anims\thought_bubble\bubbletelekinesis.jan Initializing level script (if there is one) PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/stfx.isb' to 'WorkResource/Sounds/stfx.isb' Game: Engine Reloading goals: Game: Engine Saved[GLOBAL]: NextEncouragement = '/GLZF014TO/ 10' Game: Engine Saved[GLOBAL]: bUsedSalts = 0 Game: Engine Saved[GLOBAL]: bSTEntered = 1 Game: Engine Saved[GLOBAL]: memoriesST = 1 Game: Engine Saved[GLOBAL]: PsiBallColor = 'red' Game: Engine Saved[ST]: lastSubLevel = 'STMU' Game: Engine LOADING LEVEL st.STMU Game: Engine Saved[CA]: CALevelState = 1 Game: Engine Cutscene progression: CS Script moving from state nil to state nil, resultant state nil. Time: 0.124746672809124. * Stack Trace 1: (null) (line -1, file '(none)) () 2: SpawnScript (line -1, file 'C) (global) 3: onBeginLevel (line -1, file '(none)) (field) 4: (null) (line -1, file '(none)) () WARN: Cannot call GetDirectoryListing when running from the DVD Game: Engine Raz spawning at DartStart startpoint VM : LevelScript could not find script 'doorrimlight1' * Stack Trace 1: (null) (line -1, file '(none)) () WARN: (none(-1) SetEntityAlpha LevelScript: NULL script object passed Game: Engine Saved[GLOBAL]: bLoadedFromMainMenu = 1 Game: Engine Saved[GLOBAL]: NextEncouragement = '/GLZF014TO/ 10' Game: Engine Saved[GLOBAL]: NeedRankIncrement = 0 STUBBED: Need multithreaded GL at HideLoadingScreen (/home/icculus/projects/psychonauts/Source/game/luatest/Game/LoadingScreen.cpp:110) WARN: ENGINE: Lua garbage collection starting FreeUnusedBlocksInBuckets released 0 Kb Game: Engine Saved[GLOBAL]: SplineFigmentTVSizex = 4.51434326171875 Game: Engine Saved[GLOBAL]: SplineFigmentTVSizey = 46.38104248046875 Game: Engine Saved[GLOBAL]: SplineFigmentTVSizez = 47.08810424804688 WARN: (none(-1) SetNewAction LevelScript: no string passed ====================== Asset load progression ====================== Initial: 2.518 MB Vertex, 8.688 MB Texture Level : 3.719 MB Vertex, 22.535 MB Texture Scripts: 3.747 MB Vertex, 22.848 MB Texture ====================== ====================== Memory post level load ====================== ====================== WARN: ENGINE: Lua garbage collection starting FreeUnusedBlocksInBuckets released 0 Kb DaveD: Level loaded in 0.14 seconds Anim: anims\objects\tk_arrow_idle.jan: loaded (1 frames latency) Anim: anims\dartnew\helmet\darthelmetdn.jan: loaded (1 frames latency) Anim: anims\thought_bubble\shieldloop.jan: loaded (1 frames latency) Anim: anims\dartnew\standready.jan: loaded (1 frames latency) Anim: anims\dartnew\walkmove.jan: loaded (1 frames latency) Anim: anims\janitor\hint_end.jan: loaded (1 frames latency) Anim: anims\thought_bubble\ballstatic.jan: loaded (1 frames latency) Anim: anims\dartnew\actionfall.jan: loaded (1 frames latency) Anim: anims\dartnew\standstill.jan: loaded (1 frames latency) Anim: anims\dartnew\pack\packbounce_lf_rt.jan: loaded (1 frames latency) Anim: anims\dartnew\pack\packbounce_up_dn.jan: loaded (1 frames latency) Anim: anims\dartnew\helmet\darthelmetdefpose.jan: loaded (1 frames latency) 1: 1 (number) 1: 1 (number) STUBBED: This is probably wrong at GetDt (/home/icculus/projects/psychonauts/Source/CommonLibs/DFUtil/Profiler.cpp:181) STUBBED: set specular highlights at setSpecularEnable (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Renderer.cpp:2035) Anim: anims\dartnew\trnrtcycle.jan: loaded (1 frames latency) Anim: anims\dartnew\run.jan: loaded (1 frames latency) Anim: anims\dartnew\walk.jan: loaded (1 frames latency) Anim: anims\thought_bubble\bubbledoublejump.jan: loaded (1 frames latency) Anim: anims\dartnew\longjump.jan: loaded (1 frames latency) Anim: anims\menubrain\door1crack.jan: loaded (1 frames latency) Anim: anims\menubrain\door1crackedidle.jan: loaded (1 frames latency) Anim: anims\menubrain\door1closedidle.jan: loaded (1 frames latency) Anim: anims\dartnew\180.jan: loaded (1 frames latency) Anim: anims\menubrain\door3crack.jan: loaded (1 frames latency) Anim: anims\menubrain\door3crackedidle.jan: loaded (1 frames latency) Anim: anims\menubrain\door3closedidle.jan: loaded (1 frames latency) Anim: anims\dartnew\railslide45angle.jan: loaded (1 frames latency) Anim: anims\dartnew\railslideflat.jan: loaded (1 frames latency) Anim: anims\dartnew\trnlfcycle.jan: loaded (1 frames latency) WARN: (none(-1) SetNewAction LevelScript: no string passed Anim: anims\dartnew\mainmenu_jump.jan: loaded (1 frames latency) Anim: anims\menubrain\door1open.jan: loaded (1 frames latency) ERROR: Assert in /home/icculus/projects/psychonauts/Source/game/luatest/../../CommonLibs/Include/../DFGraphics/Color.h, line 96 v.x >= 0.0f && v.x <= 1.0f && v.y >= 0.0f && v.y <= 1.0f && v.z >= 0.0f && v.z <= 1.0f && v.w >= 0.0f && v.w <= 1.0f Encountered Error: Psychonauts has encountered an error /home/icculus/projects/psychonauts/Source/game/luatest/../../CommonLibs/Include/../DFGraphics/Color.h, line 96 v.x >= 0.0f && v.x <= 1.0f && v.y >= 0.0f && v.y <= 1.0f && v.z >= 0.0f && v.z <= 1.0f && v.w >= 0.0f && v.w <= 1.0f Please contact technical support at http://www.doublefine.com. I am currently using Bumblebee for hybrid graphics, if that helps in any way.

    Read the article

  • how to use serial port in UDK using windows DLL and DLLBind directive?

    - by Shayan Abbas
    I want to use serial port in UDK, For that purpose i use a windows DLL and DLLBind directive. I have a thread in windows DLL for serial port data recieve event. My problem is: this thread doesn't work properly. Please Help me. below is my code SerialPortDLL Code: // SerialPortDLL.cpp : Defines the exported functions for the DLL application. // #include "stdafx.h" #include "Cport.h" extern "C" { // This is an example of an exported variable //SERIALPORTDLL_API int nSerialPortDLL=0; // This is an example of an exported function. //SERIALPORTDLL_API int fnSerialPortDLL(void) //{ // return 42; //} CPort *sp; __declspec(dllexport) void Open(wchar_t* portName) { sp = new CPort(portName); //MessageBox(0,L"ha ha!!!",L"ha ha",0); //MessageBox(0,portName,L"ha ha",0); } __declspec(dllexport) void Close() { sp->Close(); MessageBox(0,L"ha ha!!!",L"ha ha",0); } __declspec(dllexport) wchar_t *GetData() { return sp->GetData(); } __declspec(dllexport) unsigned int GetDSR() { return sp->getDSR(); } __declspec(dllexport) unsigned int GetCTS() { return sp->getCTS(); } __declspec(dllexport) unsigned int GetRing() { return sp->getRing(); } } CPort class code: #include "stdafx.h" #include "CPort.h" #include "Serial.h" CSerial serial; HANDLE HandleOfThread; LONG lLastError = ERROR_SUCCESS; bool fContinue = true; HANDLE hevtOverlapped; HANDLE hevtStop; OVERLAPPED ov = {0}; //char szBuffer[101] = ""; wchar_t *szBuffer = L""; wchar_t *data = L""; DWORD WINAPI ThreadHandler( LPVOID lpParam ) { // Keep reading data, until an EOF (CTRL-Z) has been received do { MessageBox(0,L"ga ga!!!",L"ga ga",0); //Sleep(10); // Wait for an event lLastError = serial.WaitEvent(&ov); if (lLastError != ERROR_SUCCESS) { //LOG( " Unable to wait for a COM-port event" ); } // Setup array of handles in which we are interested HANDLE ahWait[2]; ahWait[0] = hevtOverlapped; ahWait[1] = hevtStop; // Wait until something happens switch (::WaitForMultipleObjects(sizeof(ahWait)/sizeof(*ahWait),ahWait,FALSE,INFINITE)) { case WAIT_OBJECT_0: { // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { //LOG( " ### BREAK received ###" ); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { //LOG( " ### Clear to send %s ###", serial.GetCTS() ? "on":"off" ); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { //LOG( " ### Data set ready %s ###", serial.GetDSR() ? "on":"off" ); } // Handle error event if (eEvent & CSerial::EEventError) { switch (serial.GetError()) { case CSerial::EErrorBreak: /*LOG( " Break condition" );*/ break; case CSerial::EErrorFrame: /*LOG( " Framing error" );*/ break; case CSerial::EErrorIOE: /*LOG( " IO device error" );*/ break; case CSerial::EErrorMode: /*LOG( " Unsupported mode" );*/ break; case CSerial::EErrorOverrun: /*LOG( " Buffer overrun" );*/ break; case CSerial::EErrorRxOver: /*LOG( " Input buffer overflow" );*/ break; case CSerial::EErrorParity: /*LOG( " Input parity error" );*/ break; case CSerial::EErrorTxFull: /*LOG( " Output buffer full" );*/ break; default: /*LOG( " Unknown" );*/ break; } } // Handle ring event if (eEvent & CSerial::EEventRing) { //LOG( " ### RING ###" ); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { //LOG( " ### RLSD/CD %s ###", serial.GetRLSD() ? "on" : "off" ); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; do { // Read data from the COM-port lLastError = serial.Read(szBuffer,33,&dwBytesRead); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to read from COM-port" ); } if( dwBytesRead == 33 && szBuffer[0]=='$' ) { // Finalize the data, so it is a valid string szBuffer[dwBytesRead] = '\0'; ////LOG( "\n%s\n", szBuffer ); data = szBuffer; } } while (dwBytesRead > 0); } } break; case WAIT_OBJECT_0+1: { // Set the continue bit to false, so we'll exit fContinue = false; } break; default: { // Something went wrong //LOG( "Error while calling WaitForMultipleObjects" ); } break; } } while (fContinue); MessageBox(0,L"kka kk!!!",L"kka ga",0); return 0; } CPort::CPort(wchar_t *portName) { // Attempt to open the serial port (COM2) //lLastError = serial.Open(_T(portName),0,0,true); lLastError = serial.Open(portName,0,0,true); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to open COM-port" ); } // Setup the serial port (115200,8N1, which is the default setting) lLastError = serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port setting" ); } // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port event mask" ); } // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port read timeout" ); } // Create a handle for the overlapped operations hevtOverlapped = ::CreateEvent(0,TRUE,FALSE,0);; if (hevtOverlapped == 0) { //LOG( "Unable to create manual-reset event for overlapped I/O" ); } // Setup the overlapped structure ov.hEvent = hevtOverlapped; // Open the "STOP" handle hevtStop = ::CreateEvent(0,TRUE,FALSE,_T("Overlapped_Stop_Event")); if (hevtStop == 0) { //LOG( "Unable to create manual-reset event for stop event" ); } HandleOfThread = CreateThread( NULL, 0, ThreadHandler, 0, 0, NULL); } CPort::~CPort() { //fContinue = false; //CloseHandle( HandleOfThread ); //serial.Close(); } void CPort::Close() { fContinue = false; CloseHandle( HandleOfThread ); serial.Close(); } wchar_t *CPort::GetData() { return data; } bool CPort::getCTS() { return serial.GetCTS(); } bool CPort::getDSR() { return serial.GetDSR(); } bool CPort::getRing() { return serial.GetRing(); } Unreal Script Code: class MyPlayerController extends GamePlayerController DLLBind(SerialPortDLL); dllimport final function Open(string portName); dllimport final function Close(); dllimport final function string GetData();

    Read the article

  • SQL Server Table Polling by Multiple Subscribers

    - by Daniel Hester
    Background Designing Stored Procedures that are safe for multiple subscribers (to call simultaneously) can be challenging.  For example let’s say that you want multiple worker processes to poll a shared work queue that’s encapsulated as a SQL Table. This is a common scenario and through experience you’ll find that you want to use Table Hints to prevent unwanted locking when performing simultaneous queries on the same table. There are three table hints to consider: NOLOCK, READPAST and UPDLOCK. Both NOLOCK and READPAST table hints allow you to SELECT from a table without placing a LOCK on that table. However, SELECTs with the READPAST hint will ignore any records that are locked due to being updated/inserted (or otherwise “dirty”), whereas a SELECT with NOLOCK ignores all locks including dirty reads. For the initial update of the flag (that marks the record as available for subscription) I don’t use the NOLOCK Table Hint because I want to be sensitive to the “active” records in the table and I want to exclude them.  I use an Update Lock (UPDLOCK) in conjunction with a WHERE clause that uses a sub-select with a READPAST Table Hint in order to explicitly lock the records I’m updating (UPDLOCK) but not place a lock on the table when selecting the records that I’m going to update (READPAST). UPDATES should be allowed to lock the rows affected because we’re probably changing a flag on a record so that it is not included in a SELECT from another subscriber. On the UPDATE statement we should explicitly use the UPDLOCK to guard against lock escalation. A SELECT to check for the next record(s) to process can result in a shared read lock being held by more than one subscriber polling the shared work queue (SQL table). It is expected that more than one worker process (or server) might try to process the same new record(s) at the same time. When each process then tries to obtain the update lock, none of them can because another process has a shared read lock in place. Thus without the UPDLOCK hint the result would be a lock escalation deadlock; however with the UPDLOCK hint this condition is mitigated against. Note that using the READPAST table hint requires that you also set the ISOLATION LEVEL of the transaction to be READ COMMITTED (rather than the default of SERIALIZABLE). Guidance In the Stored Procedure that returns records to the multiple subscribers: Perform the UPDATE first. Change the flag that makes the record available to subscribers.  Additionally, you may want to update a LastUpdated datetime field in order to be able to check for records that “got stuck” in an intermediate state or for other auditing purposes. In the UPDATE statement use the (UPDLOCK) Table Hint on the UPDATE statement to prevent lock escalation. In the UPDATE statement also use a WHERE Clause that uses a sub-select with a (READPAST) Table Hint to select the records that you’re going to update. In the UPDATE statement use the OUTPUT clause in conjunction with a Temporary Table to isolate the record(s) that you’ve just updated and intend to return to the subscriber. This is the fastest way to update the record(s) and to get the records’ identifiers within the same operation. Finally do a set-based SELECT on the main Table (using the Temporary Table to identify the records in the set) with either a READPAST or NOLOCK table hint.  Use NOLOCK if there are other processes (besides the multiple subscribers) that might be changing the data that you want to return to the multiple subscribers; or use READPAST if you're sure there are no other processes (besides the multiple subscribers) that might be updating column data in the table for other purposes (e.g. changes to a person’s last name).  NOLOCK is generally the better fit in this part of the scenario. See the following as an example: CREATE PROCEDURE [dbo].[usp_NewCustomersSelect] AS BEGIN -- OVERRIDE THE DEFAULT ISOLATION LEVEL SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- SET NOCOUNT ON SET NOCOUNT ON -- DECLARE TEMP TABLE -- Note that this example uses CustomerId as an identifier; -- you could just use the Identity column Id if that’s all you need. DECLARE @CustomersTempTable TABLE ( CustomerId NVARCHAR(255) ) -- PERFORM UPDATE FIRST -- [Customers] is the name of the table -- [Id] is the Identity Column on the table -- [CustomerId] is the business document key used to identify the -- record globally, i.e. in other systems or across SQL tables -- [Status] is INT or BIT field (if the status is a binary state) -- [LastUpdated] is a datetime field used to record the time of the -- last update UPDATE [Customers] WITH (UPDLOCK) SET [Status] = 1, [LastUpdated] = GETDATE() OUTPUT [INSERTED].[CustomerId] INTO @CustomersTempTable WHERE ([Id] = (SELECT TOP 100 [Id] FROM [Customers] WITH (READPAST) WHERE ([Status] = 0) ORDER BY [Id] ASC)) -- PERFORM SELECT FROM ENTITY TABLE SELECT [C].[CustomerId], [C].[FirstName], [C].[LastName], [C].[Address1], [C].[Address2], [C].[City], [C].[State], [C].[Zip], [C].[ShippingMethod], [C].[Id] FROM [Customers] AS [C] WITH (NOLOCK), @CustomersTempTable AS [TEMP] WHERE ([C].[CustomerId] = [TEMP].[CustomerId]) END In a system that has been designed to have multiple status values for records that need to be processed in the Work Queue it is necessary to have a “Watch Dog” process by which “stale” records in intermediate states (such as “In Progress”) are detected, i.e. a [Status] of 0 = New or Unprocessed; a [Status] of 1 = In Progress; a [Status] of 2 = Processed; etc.. Thus, if you have a business rule that states that the application should only process new records if all of the old records have been processed successfully (or marked as an error), then it will be necessary to build a monitoring process to detect stalled or stale records in the Work Queue, hence the use of the LastUpdated column in the example above. The Status field along with the LastUpdated field can be used as the criteria to detect stalled / stale records. It is possible to put this watchdog logic into the stored procedure above, but I would recommend making it a separate monitoring function. In writing the stored procedure that checks for stale records I would recommend using the same kind of lock semantics as suggested above. The example below looks for records that have been in the “In Progress” state ([Status] = 1) for greater than 60 seconds: CREATE PROCEDURE [dbo].[usp_NewCustomersWatchDog] AS BEGIN -- TO OVERRIDE THE DEFAULT ISOLATION LEVEL SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- SET NOCOUNT ON SET NOCOUNT ON DECLARE @MaxWait int; SET @MaxWait = 60 IF EXISTS (SELECT 1 FROM [dbo].[Customers] WITH (READPAST) WHERE ([Status] = 1) AND (DATEDIFF(s, [LastUpdated], GETDATE()) > @MaxWait)) BEGIN SELECT 1 AS [IsWatchDogError] END ELSE BEGIN SELECT 0 AS [IsWatchDogError] END END Downloads The zip file below contains two SQL scripts: one to create a sample database with the above stored procedures and one to populate the sample database with 10,000 sample records.  I am very grateful to Red-Gate software for their excellent SQL Data Generator tool which enabled me to create these sample records in no time at all. References http://msdn.microsoft.com/en-us/library/ms187373.aspx http://www.techrepublic.com/article/using-nolock-and-readpast-table-hints-in-sql-server/6185492 http://geekswithblogs.net/gwiele/archive/2004/11/25/15974.aspx http://grounding.co.za/blogs/romiko/archive/2009/03/09/biztalk-sql-receive-location-deadlocks-dirty-reads-and-isolation-levels.aspx

    Read the article

  • SOA Suite Integration: Part 3: Loading files

    - by Anthony Shorten
    One of the most common scenarios in SOA Integration is the loading of a file into the product from an external source. In Oracle SOA Suite there is a File Adapter that can process many file types into your BPEL process. For this example I will use the File Adapter to load a file of user and emails to update the user object within the Oracle Utilities Application Framework. Remember you can repeat this process with other objects and other file types. Again I am illustrating the ease of integration. The first thing is to create an empty BPEL process that will hold our flow. In Oracle JDeveloper this can be achieved by specifying the Define Service Later template (as other templates have predefined inputs and outputs and in this case we want to specify those). So I will create simpleFileLoad process to house our process. You will start with an empty canvas so you need to first specify the load part of the process using the File Adapter. Select the File Adapter from the Component Palette under BPEL Services and drag and drop it to the left side Partner Links (left is input). You name the Service. In this case I chose LoadFile. Press Next. We will define the interface as part of the wizard so select Define from operation and schema (specified later). Press Next. We are going to choose Read File to denote that we will read the file and specify the default Operation Name as Read. Press Next. The next step is to tell the Adapter the location of the files, how to process them and what to do with them after they have been processed. I am using hardcoded locations in this example but you can have logical locations as well. Press Next. I am now going to tell the adapter how to recognize the files I want to load. In my case I am using CSV files and more importantly I am tell the adapter to run the process for each record in the file it encounters. Press Next. Now, I tell the adapter how often I want to poll for the files. I have taken the defaults. Press Next. At this stage I have no explanation of the format of the input. So I am going to invoke the Native Format Wizard which will guide me through the process of creating the file input format. Clicking the purple cog icon will start the wizard. After an introduction screen (not shown), you specify the format of the input file. The File Adapter supports multiple format types. For this example, I will use Delimited as I am going to load a CSV file. Press Next. The best way for the wizard to work is with a sample. I have a sample file and the wizard will ask how much of the file to use as a template. I will use the defaults. Note: If you are using a language that has other languages other than US-ASCII, it is at this point you specify the character set to use.  Press Next. The sample contains multiple instances of a single record type. The wizard supports complex types as well. We will use the appropriate setting for our file. Press Next. You have to specify the file element and the record element. This will be used by the input wizard to translate the CSV data into an XML structure (this will make sense later). I am using LoadUsers as my file delimiter (root element) and User Record as my record root element. Press Next. As the file is CSV the delimiter is "," so I will also specify that the End Of Line (EOL) indicator indicates the end of a record. Press Next. Up until this point your have not given the columns their names. In my case my sample includes the column names in the first record. This is not always the case but you can specify the names and formats of columns in this dialog (not shown). Press Next. The wizard now generates the schema for the input file. You can specify a name for the schema. I have used userupdate.xsd. We want to verify the schema so press Test. You can test the schema by specifying an input sample. and pressing the green play button. You will see the delimiters you specified earlier for the file and the records. Press Ok to continue. A confirmation screen will be displayed showing you the location of the schema in your project. Press Finish to return to the File Adapter configuration. You will now see the schema and elements prepopulated from the wizard. Press Next. The File Adapter configuration is now complete. Press Finish. Now you need to receive the input from the LoadFile component so we need to place a Receive node in the BPEL process by drag and dropping the Receive component from the Component Palette under BPEL Constructs onto the BPEL process. We link the receive process with the LoadFile component by dragging the left most connect node of the Receive node to the LoadFile component. Once the link is established you need to name the Receive node appropriately and as in the post of the last part of this series you need to generate input variables for the BPEL process to hold the input records in. You need to now add the product Web Service. The process is the same as described in the post of the last part of this series. You drop the Web Service BPEL Service onto the right side of the process and fill in the details of the WSDL URL . You also have to add an Invoke node to call the service and generate the input and outputs variables for the call in the Invoke node. Now, to get the inputs from File to the service. You have to use a Transform (you can use an Assign action but a Transform action is more flexible). You drag and drop the Transform component from the Component Palette under Oracle Extensions and place it between the Receive and Invoke nodes. We name the Transform Node, Mapper File and associate the source of the mapping the schema from the Receive node and the output will be the input variable from the Invoke node. We now build the transform. We first map the user and email attributes by drag and drop the elements from the left to the right. The reason we needed to use the transform is that we will be telling the AS-User service that we want to issue an update action. Remember when we registered the service we actually used Read as the default. If we do not otherwise inform the service to use the Update action it will use the Read action instead (which is not desired). To specify the update action you need to click on the transactionType node on the right and select Set Text to set the action. You need to specify the transactionType of UPD (for update). The mapping is now complete. The final BPEL process is ready for deployment. You then deploy the BPEL process to the server and to test the service by simply dropping a file, in the same pattern/name as you specified, in the directory you specified in the File Adapter. You will see each record as a separate instance entry in the Fusion Middleware Control console. You can now load files into the product. You can repeat this process for each type of file to process. While this was a simple example it illustrates the method of loading data can be achieved using SOA Suite in conjunction with our products.

    Read the article

  • Implementing a robust async stream reader

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output, but that is a detail and does not play an important role. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Implementing a robust async stream reader for a console

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. Edit: There are comments below correctly stating that since the data is coming from a stream, there is absolutely nothing that the receiver can infer about the structure of the data unless it is fully prepared to parse it. What I am trying to do here is leverage the "flush the output" "structure" that the owner of the console imparts while writing on it. I am prepared to assume (better: allow my caller to have the option to assume) that the OS will pass me the data written between two flushes of the stream in exactly one piece. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Strange problem with Random Access Filing in C++

    - by sam
    This is a simple random access filing program . The problem arises where i want to write data randomly. If I write any where in the file the previous records are set to 0. the last 1 which is being entered currently holds the correct value all others =0. This is the code #include <iostream> #include<fstream> #include<string> using namespace std; class name { int id; int pass; public: void writeBlank(); void writedata(); void readdata(); void readall(); int getid() { return id; } int getpass() { return pass; } void setid(int i) { id=i; } void setpass(int p) { pass=p; } }; void name::writeBlank() { name person; person.setid(0); person.setpass(0); int i; ofstream out("pass.txt",ios::binary); if ( !out ) { cout << "File could not be opened." << endl; } for(i=0;i<10;i++) //make 10 records { cout<<"Put pointer is at: "<<out.tellp()<<endl; cout<<"Blank record "<<i<<" is: "<<person.getid()<<" "<<person.getpass()<<" and size: "<<sizeof(person)<<endl; cout<<"Put pointer is at: "<<out.tellp()<<endl; out.write(reinterpret_cast< const char * >(&person),sizeof(name)); } } void name::writedata() { ofstream out("pass.txt",ios::binary|ios::out); name n1; int iD,p; cout<<"ID?"; cin>>iD; n1.setid(iD); cout<<"Enter password"; cin>>p; n1.setpass(p); if (!out ) { cout << "File could not be opened." << endl; } out.seekp((n1.getid()-1)*sizeof(name),ios::beg); //pointer moves to desired location where we have to store password according to its ID(index) cout<<"File pointer is at: "<<out.tellp()<<endl; out.write(reinterpret_cast<const char*> (&n1), sizeof(name)); //write on that pointed location } void name::readall() { name n1; ifstream in("pass.txt",ios::binary); if ( !in ) { cout << "File could not be opened." << endl; } in.read( reinterpret_cast<char *>(&n1), sizeof(name) ); while ( !in.eof() ) { // display record cout<<endl<<"password at this index is:"<<n1.getpass()<<endl; cout<<"File pointer is at: "<<in.tellg()<<endl; // read next from file in.read( reinterpret_cast< char * >(&n1), sizeof(name)); } // end while } void name::readdata() { ifstream in("pass.txt",ios::binary); if ( !in ) { cout << "File could not be opened." << endl; } in.seekg((getid()-1)*sizeof(name)); //pointer moves to desired location where we have to read password according to its ID(index) cout<<"File pointer is at: "<<in.tellg()<<endl; in.read((char* )this,sizeof(name)); //reads from that pointed location cout<<endl<<"password at this index is:"<<getpass()<<endl; } int main() { name n1; cout<<"Enter 0 to write blank records"<<endl; cout<<"Enter 1 for new account"<<endl; cout<<"Enter 2 to login"<<endl; cout<<"Enter 3 to read all"<<endl; cout<<"Enter 9 to exit"<<endl; int option; cin>>option; while(option==0 || option==1 || option==2 || option==3) { if (option == 0) n1.writeBlank(); if(option==1) { /*int iD,p; cout<<"ID?"; cin>>iD; n1.setid(iD); cout<<"Enter password"; cin>>p; n1.setpass(p);*/ n1.writedata(); } int ind; if(option==2) { cout<<"Index?"; cin>>ind; n1.setid(ind); n1.readdata(); } if(option == 3) n1.readall(); cout<<"Enter 0 to write blank records"<<endl; cout<<"Enter 1 for new account"<<endl; cout<<"Enter 2 to login"<<endl; cout<<"Enter 3 to read all"<<endl; cout<<"Enter 9 to exit"<<endl; cin>>option; } } I Cant understand Y the previous records turn 0.

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

  • When I shutdown the computer, it restarts

    - by Prabu
    I am unable to shutdown. Whenever I try to shutdown, it reboots. I am running Ubuntu 12.10. I have run the boot-repair and this is the result: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos1)/boot/grub. sda1: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda2: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 2,048 1,936,809,983 1,936,807,936 83 Linux /dev/sda2 1,936,812,030 1,953,523,711 16,711,682 5 Extended /dev/sda5 1,936,812,032 1,953,523,711 16,711,680 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 229a5484-7659-4ce1-98ce-2f05f61a1ffa ext4 /dev/sda5 6c6dca25-ab67-4de4-8602-26fdb6154781 swap /dev/sr0 iso9660 Ubuntu 12.10 amd64 ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sr0 /cdrom iso9660 (ro,noatime) =========================== sda1/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff initrd /boot/initrd.img-3.5.0-19-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { menuentry 'Ubuntu, with Linux 3.5.0-19-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-19-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-recovery-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda1/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda1 during installation UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa / ext4 errors=remount-ro 0 1 # swap was on /dev/sda5 during installation UUID=6c6dca25-ab67-4de4-8602-26fdb6154781 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda1: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 200.155235291 = 214.915047424 boot/grub/grub.cfg 1 40.280788422 = 43.251167232 boot/initrd.img-3.5.0-17-generic 1 2.468288422 = 2.650304512 boot/initrd.img-3.5.0-19-generic 1 200.149234772 = 214.908604416 boot/vmlinuz-3.5.0-17-generic 1 1.990135193 = 2.136891392 boot/vmlinuz-3.5.0-19-generic 1 2.468288422 = 2.650304512 initrd.img 1 1.990135193 = 2.136891392 vmlinuz 1 1.990135193 = 2.136891392 vmlinuz.old 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe File descriptor 8 (/proc/6297/mounts) leaked on lvscan invocation. Parent PID 13390: bash No volume groups found ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-17__01h53 =================== boot-repair version : 3.197~ppa1~quantal boot-sav version : 3.197~ppa1~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.197~ppa1~quantal boot-repair is executed in live-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- maybe-ubiquity =================== os-prober: /dev/sda1:Ubuntu 12.10 (12.10):Ubuntu:linux =================== blkid: /dev/loop0: TYPE="squashfs" /dev/sr0: LABEL="Ubuntu 12.10 amd64" TYPE="iso9660" /dev/sda1: UUID="229a5484-7659-4ce1-98ce-2f05f61a1ffa" TYPE="ext4" /dev/sda5: UUID="6c6dca25-ab67-4de4-8602-26fdb6154781" TYPE="swap" 1 disks with OS, 1 OS : 1 Linux, 0 MacOS, 0 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== sda1/etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash acpi=force" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== sda1/etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 14:59 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 17:36 00_header -rwxr-xr-x 1 root root 5488 Oct 4 09:30 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 17:36 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 17:36 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 14:10 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 17:36 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 17:36 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 17:36 40_custom -rwxr-xr-x 1 root root 216 Oct 14 17:36 41_custom -rw-r--r-- 1 root root 483 Oct 14 17:36 README =================== UEFI/Legacy mode: This live-session is not in EFI-mode. SecureBoot maybe enabled. =================== PARTITIONS & DISKS: sda1 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, /mnt/boot-sav/sda1. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA ST1000DM003-1CH1 (scsi) Disk /dev/sda: 1000GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 992GB 992GB primary ext4 boot 2 992GB 1000GB 8556MB extended 5 992GB 1000GB 8556MB logical linux-swap(v1) Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! =================== parted -lm: BYT; /dev/sda:1000GB:scsi:512:4096:msdos:ATA ST1000DM003-1CH1; 1:1049kB:992GB:992GB:ext4::boot; 2:992GB:1000GB:8556MB:::; 5:992GB:1000GB:8556MB:linux-swap(v1)::; Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! =================== mount: /cow on / type overlayfs (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) /dev/sr0 on /cdrom type iso9660 (ro,noatime) /dev/loop0 on /rofs type squashfs (ro,noatime) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) tmpfs on /tmp type tmpfs (rw,nosuid,nodev) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/ubuntu/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=ubuntu) /dev/sda1 on /mnt/boot-sav/sda1 type ext4 (rw) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda5 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fd full fuse fw0 hidraw0 hidraw1 hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda5 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom usb vga_arbiter vhost-net zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /cow overlayfs 3.9G 100M 3.8G 3% / udev devtmpfs 3.9G 12K 3.9G 1% /dev tmpfs tmpfs 1.6G 864K 1.6G 1% /run /dev/sr0 iso9660 763M 763M 0 100% /cdrom /dev/loop0 squashfs 717M 717M 0 100% /rofs tmpfs tmpfs 3.9G 32K 3.9G 1% /tmp none tmpfs 5.0M 4.0K 5.0M 1% /run/lock none tmpfs 3.9G 176K 3.9G 1% /run/shm none tmpfs 100M 52K 100M 1% /run/user /dev/sda1 ext4 910G 26G 838G 3% /mnt/boot-sav/sda1 =================== fdisk -l: Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x000da1e9 Device Boot Start End Blocks Id System /dev/sda1 * 2048 1936809983 968403968 83 Linux /dev/sda2 1936812030 1953523711 8355841 5 Extended Partition 2 does not start on physical sector boundary. /dev/sda5 1936812032 1953523711 8355840 82 Linux swap / Solaris Partition outside the disk detected. =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda1 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s Unhide GRUB boot menu in sda1/etc/default/grub grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda1 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 chroot /mnt/boot-sav/sda1 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-19-generic Found initrd image: /boot/initrd.img-3.5.0-19-generic Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Unhide GRUB boot menu in sda1/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer.

    Read the article

  • Unable to connect to Samba printer

    - by user127236
    I have a headless Ubuntu 12.04 server for files and printers. It shares files via Samba just fine. However, the HP PSC-750xi connected to the server via USB is not accessible from my Ubuntu 12.04 laptop. I can browse for it in the Printing control panel, but any attempt to authenticate my ID to the printer with my user credentials results in the error "This print share is not accessible". I have included the Samba smb.conf file below. Any help appreciated. Thanks... JGB # # Sample configuration file for the Samba suite for Debian GNU/Linux. # # # This is the main Samba configuration file. You should read the # smb.conf(5) manual page in order to understand the options listed # here. Samba has a huge number of configurable options most of which # are not shown in this example # # Some options that are often worth tuning have been included as # commented-out examples in this file. # - When such options are commented with ";", the proposed setting # differs from the default Samba behaviour # - When commented with "#", the proposed setting is the default # behaviour of Samba but the option is considered important # enough to be mentioned here # # NOTE: Whenever you modify this file you should run the command # "testparm" to check that you have not made any basic syntactic # errors. # A well-established practice is to name the original file # "smb.conf.master" and create the "real" config file with # testparm -s smb.conf.master >smb.conf # This minimizes the size of the really used smb.conf file # which, according to the Samba Team, impacts performance # However, use this with caution if your smb.conf file contains nested # "include" statements. See Debian bug #483187 for a case # where using a master file is not a good idea. # #======================= Global Settings ======================= [global] log file = /var/log/samba/log.%m passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n *password\supdated\ssuccessfully* . obey pam restrictions = yes map to guest = bad user encrypt passwords = true passwd program = /usr/bin/passwd %u passdb backend = tdbsam dns proxy = no writeable = yes server string = %h server (Samba, Ubuntu) unix password sync = yes workgroup = WORKGROUP syslog = 0 panic action = /usr/share/samba/panic-action %d usershare allow guests = yes max log size = 1000 pam password change = yes ## Browsing/Identification ### # Change this to the workgroup/NT-domain name your Samba server will part of # server string is the equivalent of the NT Description field # Windows Internet Name Serving Support Section: # WINS Support - Tells the NMBD component of Samba to enable its WINS Server # wins support = no # WINS Server - Tells the NMBD components of Samba to be a WINS Client # Note: Samba can be either a WINS Server, or a WINS Client, but NOT both ; wins server = w.x.y.z # This will prevent nmbd to search for NetBIOS names through DNS. # What naming service and in what order should we use to resolve host names # to IP addresses ; name resolve order = lmhosts host wins bcast #### Networking #### # The specific set of interfaces / networks to bind to # This can be either the interface name or an IP address/netmask; # interface names are normally preferred ; interfaces = 127.0.0.0/8 eth0 # Only bind to the named interfaces and/or networks; you must use the # 'interfaces' option above to use this. # It is recommended that you enable this feature if your Samba machine is # not protected by a firewall or is a firewall itself. However, this # option cannot handle dynamic or non-broadcast interfaces correctly. ; bind interfaces only = yes #### Debugging/Accounting #### # This tells Samba to use a separate log file for each machine # that connects # Cap the size of the individual log files (in KiB). # If you want Samba to only log through syslog then set the following # parameter to 'yes'. # syslog only = no # We want Samba to log a minimum amount of information to syslog. Everything # should go to /var/log/samba/log.{smbd,nmbd} instead. If you want to log # through syslog you should set the following parameter to something higher. # Do something sensible when Samba crashes: mail the admin a backtrace ####### Authentication ####### # "security = user" is always a good idea. This will require a Unix account # in this server for every user accessing the server. See # /usr/share/doc/samba-doc/htmldocs/Samba3-HOWTO/ServerType.html # in the samba-doc package for details. # security = user # You may wish to use password encryption. See the section on # 'encrypt passwords' in the smb.conf(5) manpage before enabling. # If you are using encrypted passwords, Samba will need to know what # password database type you are using. # This boolean parameter controls whether Samba attempts to sync the Unix # password with the SMB password when the encrypted SMB password in the # passdb is changed. # For Unix password sync to work on a Debian GNU/Linux system, the following # parameters must be set (thanks to Ian Kahan <<[email protected]> for # sending the correct chat script for the passwd program in Debian Sarge). # This boolean controls whether PAM will be used for password changes # when requested by an SMB client instead of the program listed in # 'passwd program'. The default is 'no'. # This option controls how unsuccessful authentication attempts are mapped # to anonymous connections ########## Domains ########### # Is this machine able to authenticate users. Both PDC and BDC # must have this setting enabled. If you are the BDC you must # change the 'domain master' setting to no # ; domain logons = yes # # The following setting only takes effect if 'domain logons' is set # It specifies the location of the user's profile directory # from the client point of view) # The following required a [profiles] share to be setup on the # samba server (see below) ; logon path = \\%N\profiles\%U # Another common choice is storing the profile in the user's home directory # (this is Samba's default) # logon path = \\%N\%U\profile # The following setting only takes effect if 'domain logons' is set # It specifies the location of a user's home directory (from the client # point of view) ; logon drive = H: # logon home = \\%N\%U # The following setting only takes effect if 'domain logons' is set # It specifies the script to run during logon. The script must be stored # in the [netlogon] share # NOTE: Must be store in 'DOS' file format convention ; logon script = logon.cmd # This allows Unix users to be created on the domain controller via the SAMR # RPC pipe. The example command creates a user account with a disabled Unix # password; please adapt to your needs ; add user script = /usr/sbin/adduser --quiet --disabled-password --gecos "" %u # This allows machine accounts to be created on the domain controller via the # SAMR RPC pipe. # The following assumes a "machines" group exists on the system ; add machine script = /usr/sbin/useradd -g machines -c "%u machine account" -d /var/lib/samba -s /bin/false %u # This allows Unix groups to be created on the domain controller via the SAMR # RPC pipe. ; add group script = /usr/sbin/addgroup --force-badname %g ########## Printing ########## # If you want to automatically load your printer list rather # than setting them up individually then you'll need this # load printers = yes # lpr(ng) printing. You may wish to override the location of the # printcap file ; printing = bsd ; printcap name = /etc/printcap # CUPS printing. See also the cupsaddsmb(8) manpage in the # cupsys-client package. ; printing = cups ; printcap name = cups ############ Misc ############ # Using the following line enables you to customise your configuration # on a per machine basis. The %m gets replaced with the netbios name # of the machine that is connecting ; include = /home/samba/etc/smb.conf.%m # Most people will find that this option gives better performance. # See smb.conf(5) and /usr/share/doc/samba-doc/htmldocs/Samba3-HOWTO/speed.html # for details # You may want to add the following on a Linux system: # SO_RCVBUF=8192 SO_SNDBUF=8192 # socket options = TCP_NODELAY # The following parameter is useful only if you have the linpopup package # installed. The samba maintainer and the linpopup maintainer are # working to ease installation and configuration of linpopup and samba. ; message command = /bin/sh -c '/usr/bin/linpopup "%f" "%m" %s; rm %s' & # Domain Master specifies Samba to be the Domain Master Browser. If this # machine will be configured as a BDC (a secondary logon server), you # must set this to 'no'; otherwise, the default behavior is recommended. # domain master = auto # Some defaults for winbind (make sure you're not using the ranges # for something else.) ; idmap uid = 10000-20000 ; idmap gid = 10000-20000 ; template shell = /bin/bash # The following was the default behaviour in sarge, # but samba upstream reverted the default because it might induce # performance issues in large organizations. # See Debian bug #368251 for some of the consequences of *not* # having this setting and smb.conf(5) for details. ; winbind enum groups = yes ; winbind enum users = yes # Setup usershare options to enable non-root users to share folders # with the net usershare command. # Maximum number of usershare. 0 (default) means that usershare is disabled. ; usershare max shares = 100 # Allow users who've been granted usershare privileges to create # public shares, not just authenticated ones #======================= Share Definitions ======================= # Un-comment the following (and tweak the other settings below to suit) # to enable the default home directory shares. This will share each # user's home director as \\server\username ;[homes] ; comment = Home Directories ; browseable = no # By default, the home directories are exported read-only. Change the # next parameter to 'no' if you want to be able to write to them. ; read only = yes # File creation mask is set to 0700 for security reasons. If you want to # create files with group=rw permissions, set next parameter to 0775. ; create mask = 0700 # Directory creation mask is set to 0700 for security reasons. If you want to # create dirs. with group=rw permissions, set next parameter to 0775. ; directory mask = 0700 # By default, \\server\username shares can be connected to by anyone # with access to the samba server. Un-comment the following parameter # to make sure that only "username" can connect to \\server\username # The following parameter makes sure that only "username" can connect # # This might need tweaking when using external authentication schemes ; valid users = %S # Un-comment the following and create the netlogon directory for Domain Logons # (you need to configure Samba to act as a domain controller too.) ;[netlogon] ; comment = Network Logon Service ; path = /home/samba/netlogon ; guest ok = yes ; read only = yes # Un-comment the following and create the profiles directory to store # users profiles (see the "logon path" option above) # (you need to configure Samba to act as a domain controller too.) # The path below should be writable by all users so that their # profile directory may be created the first time they log on ;[profiles] ; comment = Users profiles ; path = /home/samba/profiles ; guest ok = no ; browseable = no ; create mask = 0600 ; directory mask = 0700 [printers] comment = All Printers browseable = no path = /var/spool/samba printable = yes guest ok = no read only = yes create mask = 0700 # Windows clients look for this share name as a source of downloadable # printer drivers [print$] comment = Printer Drivers browseable = yes writeable = no path = /var/lib/samba/printers # Uncomment to allow remote administration of Windows print drivers. # You may need to replace 'lpadmin' with the name of the group your # admin users are members of. # Please note that you also need to set appropriate Unix permissions # to the drivers directory for these users to have write rights in it ; write list = root, @lpadmin # A sample share for sharing your CD-ROM with others. ;[cdrom] ; comment = Samba server's CD-ROM ; read only = yes ; locking = no ; path = /cdrom ; guest ok = yes # The next two parameters show how to auto-mount a CD-ROM when the # cdrom share is accesed. For this to work /etc/fstab must contain # an entry like this: # # /dev/scd0 /cdrom iso9660 defaults,noauto,ro,user 0 0 # # The CD-ROM gets unmounted automatically after the connection to the # # If you don't want to use auto-mounting/unmounting make sure the CD # is mounted on /cdrom # ; preexec = /bin/mount /cdrom ; postexec = /bin/umount /cdrom [mediafiles] path = /media/multimedia/

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Automate Reading Lotto Numbers

    - by neiling
    When we buy a large qty of Lotto tickets, is there a way to read all those numbers into a spreadsheet so that they can be checked against the winning numbers thru formulas/macros? I am looking for an OCR application that can read the scanned PDF/JPG file and dump them into a file. (This might apply not only to Lotto, but also to other scanned documents.) As for checking for winning numbers, I know how to do it once I have them in a CSV/XLS file.

    Read the article

  • Setting Up Win2008 R2 Server - IIS_IUSRS Permissions

    - by leen3o
    I am setting up a web server and notice out the box it gives IIS_IUSRS read & execute (and as a result list folder contents) permissions on the wwwroot. I'm trying to make sure its secure as possible, and just wondering if its ok to leave that? On my last server (Win2003) I only gave 'read' permissions to users on the wwwroot and then manually added the write / execute permissions on folders as needed. Just wondering if everyone else leaves the permissions as they are?

    Read the article

< Previous Page | 136 137 138 139 140 141 142 143 144 145 146 147  | Next Page >