Search Results

Search found 30347 results on 1214 pages for 'public speaking'.

Page 141/1214 | < Previous Page | 137 138 139 140 141 142 143 144 145 146 147 148  | Next Page >

  • creating a pre-menu level select screen

    - by Ephiras
    Hi I am working on creating a tower Defence java applet game and have come to a road block about implementing a title screen that i can select the level and difficulty of the rest of the game. my title screen class is called Menu. from this menu class i need to pass in many different variables into my Main class. i have used different classes before and know how to run them and such. but if both classes extend applet and each has its individual graphics method how can i run things from Main even though it was created in Menu. what i essentially want to do is run the Menu class withits action listeners and graphics until a Difficulty button has been selected, run the main class (which 100% works without having to have the Menu class) and pretty much terminate Menu so that i cannot go back to it, do not see its buttons or graphics menus. can i run one applet annd when i choose a button close that one and launch the other one? IF you would like to download the full project you can find it here, i had to comment out all the code that wasn't working my Menu class import java.awt.*; import java.awt.event.*; import java.applet.*; public class Menu extends Applet implements ActionListener{ Button bEasy,bMed,bHard; Main m; public void init(){ bEasy= new Button("Easy"); bEasy.setBounds(140,200,100,50); add(bEasy); bMed = new Button("Medium");bMed.setBounds(280,200,100,50); add(bMed); bHard= new Button("Hard");bHard.setBounds(420,200,100,50); add(bHard); setLayout(null); } public void actionPerformed(ActionEvent e){ Main m = new Main(20,10,3000,mapMed);//break; switch (e.getSource()){ case bEasy: Main m = new Main(6000,20,"levels/levelEasy.png");break;//enimies tower money world case bMed: Main m = new Main(4000,15,"levels/levelMed.png");break; case bHard: Main m = new Main(2000,10,"levels/levelEasy.png");break; default: break; } } public void paint(){ //m.draw(g) } } and here is my main class initialising code. import java.awt.*; import java.awt.event.*; import java.applet.*; import java.io.IOException; public class Main extends Applet implements Runnable, MouseListener, MouseMotionListener, ActionListener{ Button startButton, UpgRange, UpgDamage; //set up the buttons Color roadCol,startCol,finCol,selGrass,selRoad; //set up the colors Enemy e[][]; Tower t[]; Image towerpic,backpic,roadpic,levelPic; private Image i; private Graphics doubleG; //here is the world 0=grass 1=road 2=start 3=end int world[][],eStartX,eStartY; boolean drawMouse,gameEnd; static boolean start=false; static int gridLength=15; static int round=0; int Mx,My,timer=1500; static int sqrSize=31; int towers=0,towerSelected=-10; static int castleHealth=2000; String levelPath; //choose the level Easy Med or Hard int maxEnemy[] = {5,7,12,20,30,15,50,30,40,60};//number of enimies per round int maxTowers=15;//maximum number of towers allowed static int money =2000,damPrice=600,ranPrice=350,towerPrice=700; //money = the intial ammount of money you start of with //damPrice is the price to increase the damage of a tower //ranPrice is the price to increase the range of a tower public void main(int cH,int mT,int mo,int dP,int rP,int tP,String path,int[] mE)//constructor 1 castleHealth=cH; maxTowers=mT; money=mo; damPrice=dP; ranPrice=rP; towerPrice=tP; String levelPath=path; maxEnemy = mE; buildLevel(); } public void main(int cH,int mT,String path)//basic constructor castleHealth=cH; maxTowers=mT; String levelPath=path; maxEnemy = mE; buildLevel(); } public void init(){ setSize(sqrSize*15+200,sqrSize*15);//set the size of the screen roadCol = new Color(255,216,0);//set the colors for the different objects startCol = new Color(0,38,255); finCol = new Color(255,0,0); selRoad = new Color(242,204,155);//selColor is the color of something when your mouse hovers over it selGrass = new Color(0,190,0); roadpic = getImage(getDocumentBase(),"images/road.jpg"); towerpic = getImage(getDocumentBase(),"images/tower.png"); backpic = getImage(getDocumentBase(),"images/grass.jpg"); levelPic = getImage(getDocumentBase(),"images/level.jpg"); e= new Enemy[maxEnemy.length][];//activates all of the enimies for (int r=0;r<e.length;r++) e[r] = new Enemy[maxEnemy[r]]; t= new Tower[maxTowers]; for (int i=0;i<t.length;i++) t[i]= new Tower();//activates all the towers for (int i=0;i<e.length; i++)//sets all of the enimies starting co ordinates for (int j=0;j<e[i].length;j++) e[i][j] = new Enemy(eStartX,eStartY,world); initButtons();//initialise all the buttons addMouseMotionListener(this); addMouseListener(this); }

    Read the article

  • Moving player in direciton camera is facing

    - by Samurai Fox
    I have a 3rd person camera which can rotate around the player. My problem is that wherever camera is facing, players forward is always the same direction. For example when camera is facing the right side of the player, when I press button to move forward, I want player to turn to the left and make that the "new forward". My camera script so far: using UnityEngine; using System.Collections; public class PlayerScript : MonoBehaviour { public float RotateSpeed = 150, MoveSpeed = 50; float DeltaTime; void Update() { DeltaTime = Time.deltaTime; transform.Rotate(0, Input.GetAxis("LeftX") * RotateSpeed * DeltaTime, 0); transform.Translate(0, 0, -Input.GetAxis("LeftY") * MoveSpeed * DeltaTime); } } public class CameraScript : MonoBehaviour { public GameObject Target; public float RotateSpeed = 170, FollowDistance = 20, FollowHeight = 10; float RotateSpeedPerTime, DesiredRotationAngle, DesiredHeight, CurrentRotationAngle, CurrentHeight, Yaw, Pitch; Quaternion CurrentRotation; void LateUpdate() { RotateSpeedPerTime = RotateSpeed * Time.deltaTime; DesiredRotationAngle = Target.transform.eulerAngles.y; DesiredHeight = Target.transform.position.y + FollowHeight; CurrentRotationAngle = transform.eulerAngles.y; CurrentHeight = transform.position.y; CurrentRotationAngle = Mathf.LerpAngle(CurrentRotationAngle, DesiredRotationAngle, 0); CurrentHeight = Mathf.Lerp(CurrentHeight, DesiredHeight, 0); CurrentRotation = Quaternion.Euler(0, CurrentRotationAngle, 0); transform.position = Target.transform.position; transform.position -= CurrentRotation * Vector3.forward * FollowDistance; transform.position = new Vector3(transform.position.x, CurrentHeight, transform.position.z); Yaw = Input.GetAxis("Right Horizontal") * RotateSpeedPerTime; Pitch = Input.GetAxis("Right Vertical") * RotateSpeedPerTime; transform.Translate(new Vector3(Yaw, -Pitch, 0)); transform.position = new Vector3(transform.position.x, transform.position.y, transform.position.z); transform.LookAt(Target.transform); } }

    Read the article

  • (libgdx) Button doesn't work

    - by StercoreCode
    At the game I choose StopScreen. At this screen displays button. But if I click it - it doesn't work. What I expect - when I press button it must restart game. At this stage must display at least a message that the button is pressed. I tried to create new and clear project. Main class implement ApplicationListener. I put the same code in the appropriate methods. And it's works! But if i create this button in my game - it doesn't work. When i play and go to the StopScreen, i saw button. But if i click, or touch, nothing happens. I think that the proplem at the InputListener, although i set the stage as InputProcessor. Gdx.input.setInputProcessor(stage); I also try to addListener for Button as ClickListener. But it gave no results. Or it maybe problem that i implements Screen method - not ApplicationListener or Game. But if StopScreen implement ApplicationListener, at the mainGame I can't to setScreen. Just interests question: why button displays but nothing happens to it? Here is the code of StopScreen if it helps find my mistake: public class StopScreen implements Screen{ private OrthographicCamera camera; private SpriteBatch batch; public Stage stage; //** stage holds the Button **// private BitmapFont font; //** same as that used in Tut 7 **// private TextureAtlas buttonsAtlas; //** image of buttons **// private Skin buttonSkin; //** images are used as skins of the button **// public TextButton button; //** the button - the only actor in program **// public StopScreen(CurrusGame currusGame) { camera = new OrthographicCamera(); camera.setToOrtho(false, 800, 480); batch = new SpriteBatch(); buttonsAtlas = new TextureAtlas("button.pack"); //** button atlas image **// buttonSkin = new Skin(); buttonSkin.addRegions(buttonsAtlas); //** skins for on and off **// font = AssetLoader.font; //** font **// stage = new Stage(); stage.clear(); Gdx.input.setInputProcessor(stage); TextButton.TextButtonStyle style = new TextButton.TextButtonStyle(); style.up = buttonSkin.getDrawable("ButtonOff"); style.down = buttonSkin.getDrawable("ButtonOn"); style.font = font; button = new TextButton("PRESS ME", style); //** Button text and style **// button.setPosition(100, 100); //** Button location **// button.setHeight(100); //** Button Height **// button.setWidth(100); //** Button Width **// button.addListener(new InputListener() { public boolean touchDown(InputEvent event, float x, float y, int pointer, int button) { Gdx.app.log("my app", "Pressed"); return true; } public void touchUp(InputEvent event, float x, float y, int pointer, int button) { Gdx.app.log("my app", "Released"); } }); stage.addActor(button); } @Override public void render(float delta) { Gdx.gl.glClearColor(0, 1, 0, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); stage.act(); batch.setProjectionMatrix(camera.combined); batch.begin(); stage.draw(); batch.end(); }

    Read the article

  • Code contracts and inheritance

    - by DigiMortal
    In my last posting about code contracts I introduced you how to force code contracts to classes through interfaces. In this posting I will go step further and I will show you how code contracts work in the case of inherited classes. As a first thing let’s take a look at my interface and code contracts. [ContractClass(typeof(ProductContracts))] public interface IProduct {     int Id { get; set; }     string Name { get; set; }     decimal Weight { get; set; }     decimal Price { get; set; } }   [ContractClassFor(typeof(IProduct))] internal sealed class ProductContracts : IProduct {     private ProductContracts() { }       int IProduct.Id     {         get         {             return default(int);         }         set         {             Contract.Requires(value > 0);         }     }       string IProduct.Name     {         get         {             return default(string);         }         set         {             Contract.Requires(!string.IsNullOrWhiteSpace(value));             Contract.Requires(value.Length <= 25);         }     }       decimal IProduct.Weight     {         get         {             return default(decimal);         }         set         {             Contract.Requires(value > 3);             Contract.Requires(value < 100);         }     }       decimal IProduct.Price     {         get         {             return default(decimal);         }         set         {             Contract.Requires(value > 0);             Contract.Requires(value < 100);         }     } } And here is the product class that inherits IProduct interface. public class Product : IProduct {     public int Id { get; set; }     public string Name { get; set; }     public virtual decimal Weight { get; set; }     public decimal Price { get; set; } } if we run this code and violate the code contract set to Id we will get ContractException. public class Program {     static void Main(string[] args)     {         var product = new Product();         product.Id = -100;     } }   Now let’s make Product to be abstract class and let’s define new class called Food that adds one more contract to Weight property. public class Food : Product {     public override decimal Weight     {         get         {             return base.Weight;         }         set         {             Contract.Requires(value > 1);             Contract.Requires(value < 10);               base.Weight = value;         }     } } Now we should have the following rules at place for Food: weight must be greater than 1, weight must be greater than 3, weight must be less than 100, weight must be less than 10. Interesting part is what happens when we try to violate the lower and upper limits of Food weight. To see what happens let’s try to violate rules #2 and #4. Just comment one of the last lines out in the following method to test another assignment. public class Program {     static void Main(string[] args)     {         var food = new Food();         food.Weight = 12;         food.Weight = 2;     } } And here are the results as pictures to see where exceptions are thrown. Click on images to see them at original size. Violation of lower limit. Violation of upper limit. As you can see for both violations we get ContractException like expected. Code contracts inheritance is powerful and at same time dangerous feature. Although you can always narrow down the conditions that come from more general classes it is possible to define impossible or conflicting contracts at different points in inheritance hierarchy.

    Read the article

  • Add SQL Azure database to Azure Web Role and persist data with entity framework code first.

    - by MagnusKarlsson
    In my last post I went for a warts n all approach to set up a web role on Azure. In this post I’ll describe how to add an SQL Azure database to the project. This will be described with an as minimal as possible amount of code and screen dumps. All questions are welcome in the comments area. Please don’t email since questions answered in the comments field is made available to other visitors. As an example we will add a comments section to the site we used in the previous post (Länk här). Steps: 1. Create a Comments entity and then use Scaffolding to set up controller and view, and add ConnectionString to web.config. 2. Create SQL Azure database in Management Portal and link the new database 3. Test it online!   1. Right click Models folder, choose add, choose “class…” . Name the Class Comment. 1.1 Replace the Code in the class with the following: using System.Data.Entity; namespace MvcWebRole1.Models { public class Comment {    public int CommentId { get; set; }    public string Name { get; set; }      public string Content { get; set; } } public class CommentsDb : DbContext { public DbSet<Comment> CommentEntries { get; set; } } } Now Entity Framework can create a database and a table named Comment. Build your project to assert there are no build errors.   1.2 Right click Controllers folder, choose add, choose “class…” . Name the Class CommentController and fill out the values as in the example below.     1.3 Click Add. Visual Studio now creates default View for CRUD operations and a Controller adhering to these and opens them. 1.3 Open Web.config and add the following connectionstring in <connectionStrings> node. <add name="CommentsDb” connectionString="data source=(LocalDB)\v11.0;Integrated Security=SSPI;AttachDbFileName=|DataDirectory|\CommentsDb.mdf;Initial Catalog=CommentsDb;MultipleActiveResultSets=True" providerName="System.Data.SqlClient" />   1.4 Save All and press F5 to start the application. 1.5 Go to http://127.0.0.1:81/Comments which will redirect you through CommentsController to the Index View which looks like this:     Click Create new. In the Create-view, add name and content and press Create.   1: // 2: // POST: /Comments/Create 3:  4: [HttpPost] 5: public ActionResult Create(Comment comment) 6: { 7: if (ModelState.IsValid) 8: { 9: db.CommentEntries.Add(comment); 10: db.SaveChanges(); 11: return RedirectToAction("Index"); 12: } 13:  14: return View(comment); 15: } 16:    The default View() is Index so that is the View you will come to. Looking like this: 1: // 2: // GET: /Comments/ 3: 4: public ActionResult Index() 5: { 6: return View(db.CommentEntries.ToList()); 7: } Resulting in the following screen dump(success!):   2. Now, go to the Management portal and Create a new db.   2.1 With the new database created. Click the DB icon in the left most menu. Then click the newly created database. Click DASHBOARD in the top menu. Finally click Connections strings in the right menu to get the connection string we need to add in our web.debug.config file.   2.2 Now, take a copy of the connection String earlier added to the web.config and paste in web.debug.conifg in the connectionstrings node. Replace everything within “ “ in the copied connectionstring with that you got from SQL Azure. You will have something like this:   2.3 Rebuild the application, right click the cloud project and choose “Package…” (if you haven’t set up publishing profile which we will do in our next blog post). Remember to choose the right config file, use debug for staging and release for production so your databases won’t collide. You should see something like this:   2.4 Go to Management Portal and click the Web Services menu, choose your service and click update in the bottom menu.   2.5 Link the newly created database to your application. Click the LINKED RESOURCES in the top menu and then click “Link” in the bottom menu. You should get something like this. 3. Alright then. Under the Dashboard you can find the link to your application. Click it to open it in a browser and then go to ~/Comments to try it out just the way we did locally. Success and end of this story!

    Read the article

  • C# Simple Twitter Update

    - by mroberts
    For what it's worth a simple twitter update. using System; using System.IO; using System.Net; using System.Text; namespace Server.Actions { public class TwitterUpdate { public string Body { get; set; } public string Login { get; set; } public string Password { get; set; } public override void Execute() { try { //encode user name and password string creds = Convert.ToBase64String(Encoding.ASCII.GetBytes(string.Format("{0}:{1}", this.Login, this.Password))); //encode tweet byte[] tweet = Encoding.ASCII.GetBytes("status=" + this.Body); //setup request HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://twitter.com/statuses/update.xml"); request.Method = "POST"; request.ServicePoint.Expect100Continue = false; request.Headers.Add("Authorization", string.Format("Basic {0}", creds)); request.ContentType = "application/x-www-form-urlencoded"; request.ContentLength = tweet.Length; //write to stream Stream reqStream = request.GetRequestStream(); reqStream.Write(tweet, 0, tweet.Length); reqStream.Close(); //check response HttpWebResponse response = (HttpWebResponse)request.GetResponse(); //... } catch (Exception e) { //... } } } }

    Read the article

  • What is the difference between Callback<T> and Java 8's Supplier<T>?

    - by Dan Pantry
    I've been switching over to Java from C# after some recommendations from some over at CodeReview. So, when I was looking into LWJGL, one thing I remembered was that every call to Display must be executed on the same thread that the Display.create() method was invoked on. Remembering this, I whipped up a class that looks a bit like this. public class LwjglDisplayWindow implements DisplayWindow { private final static int TargetFramesPerSecond = 60; private final Scheduler _scheduler; public LwjglDisplayWindow(Scheduler displayScheduler, DisplayMode displayMode) throws LWJGLException { _scheduler = displayScheduler; Display.setDisplayMode(displayMode); Display.create(); } public void dispose() { Display.destroy(); } @Override public int getTargetFramesPerSecond() { return TargetFramesPerSecond; } @Override public Future<Boolean> isClosed() { return _scheduler.schedule(() -> Display.isCloseRequested()); } } While writing this class you'll notice that I created a method called isClosed() that returns a Future<Boolean>. This dispatches a function to my Scheduler interface (which is nothing more than a wrapper around an ScheduledExecutorService. While writing the schedule method on the Scheduler I noticed that I could either use a Supplier<T> argument or a Callable<T> argument to represent the function that is passed in. ScheduledExecutorService didn't contain an override for Supplier<T> but I noticed that the lambda expression () -> Display.isCloseRequested() is actually type compatible with both Callable<bool> and Supplier<bool>. My question is, is there a difference between those two, semantically or otherwise - and if so, what is it, so I can adhere to it?

    Read the article

  • A more elegant way of embedding a SOAP security header in Silverlight 4

    - by Your DisplayName here!
    The current situation with Silverlight is, that there is no support for the WCF federation binding. This means that all security token related interactions have to be done manually. Requesting the token from an STS is not really the bad part, sending it along with outgoing SOAP messages is what’s a little annoying. So far you had to wrap all calls on the channel in an OperationContextScope wrapping an IContextChannel. This “programming model” was a little disruptive (in addition to all the async stuff that you are forced to do). It seems that starting with SL4 there is more support for traditional WCF extensibility points – especially IEndpointBehavior, IClientMessageInspector. I never read somewhere that these are new features in SL4 – but I am pretty sure they did not exist in SL3. With the above mentioned interfaces at my disposal, I thought I have another go at embedding a security header – and yeah – I managed to make the code much prettier (and much less bizarre). Here’s the code for the behavior/inspector: public class IssuedTokenHeaderInspector : IClientMessageInspector {     RequestSecurityTokenResponse _rstr;       public IssuedTokenHeaderInspector(RequestSecurityTokenResponse rstr)     {         _rstr = rstr;     }       public void AfterReceiveReply(ref Message reply, object correlationState)     { }       public object BeforeSendRequest(ref Message request, IClientChannel channel)     {         request.Headers.Add(new IssuedTokenHeader(_rstr));                  return null;     } }   public class IssuedTokenHeaderBehavior : IEndpointBehavior {     RequestSecurityTokenResponse _rstr;       public IssuedTokenHeaderBehavior(RequestSecurityTokenResponse rstr)     {         if (rstr == null)         {             throw new ArgumentNullException();         }           _rstr = rstr;     }       public void ApplyClientBehavior(       ServiceEndpoint endpoint, ClientRuntime clientRuntime)     {         clientRuntime.MessageInspectors.Add(new IssuedTokenHeaderInspector(_rstr));     }       // rest omitted } This allows to set up a proxy with an issued token header and you don’t have to worry anymore with embedding the header manually with every call: var client = GetWSTrustClient();   var rst = new RequestSecurityToken(WSTrust13Constants.KeyTypes.Symmetric) {     AppliesTo = new EndpointAddress("https://rp/") };   client.IssueCompleted += (s, args) => {     _proxy = new StarterServiceContractClient();     _proxy.Endpoint.Behaviors.Add(new IssuedTokenHeaderBehavior(args.Result));   };   client.IssueAsync(rst); Since SL4 also support the IExtension<T> interface, you can also combine this with Nicholas Allen’s AutoHeaderExtension.

    Read the article

  • JGridView (Part 2)

    - by Geertjan
    The second sample in the JGrid download is a picture viewer that needs to be seen to be believed. Here it is, integrated into a NetBeans Platform application (click to enlarge it): When you mouse over the images, they change, showing several different images instantaneously. Here's the explorer view above, mainly making use of code from the sample: public class JGridView extends JScrollPane { @Override public void addNotify() { super.addNotify(); final ExplorerManager em = ExplorerManager.find(this); if (em != null) { final JGrid grid = new JGrid(); Node root = em.getRootContext(); final Node[] nodes = root.getChildren().getNodes(); final PicViewerObject[] pics = new PicViewerObject[nodes.length]; for (int i = 0; i < nodes.length; i++) { Node node = nodes[i]; pics[i] = node.getLookup().lookup(PicViewerObject.class); } grid.getCellRendererManager().setDefaultRenderer(new PicViewerRenderer()); grid.setModel(new DefaultListModel() { @Override public int getSize() { return pics.length; } @Override public Object getElementAt(int i) { return pics[i]; } }); grid.setFixedCellDimension(160); grid.addMouseMotionListener(new MouseAdapter() { int lastIndex = -1; @Override public void mouseMoved(MouseEvent e) { if (lastIndex >= 0) { Object o = grid.getModel().getElementAt(lastIndex); if (o instanceof PicViewerObject) { Rectangle r = grid.getCellBounds(lastIndex); if (r != null && !r.contains(e.getPoint())) { ((PicViewerObject) o).setMarker(false); grid.repaint(r); } } } int index = grid.getCellAt(e.getPoint()); if (index >= 0) { Object o = grid.getModel().getElementAt(index); if (o instanceof PicViewerObject) { Rectangle r = grid.getCellBounds(index); if (r != null) { ((PicViewerObject) o).setFraction(((float) e.getPoint().x - (float) r.x) / (float) r.width); ((PicViewerObject) o).setMarker(true); lastIndex = index; grid.repaint(r); } } } } }); grid.getSelectionModel().addListSelectionListener(new ListSelectionListener() { @Override public void valueChanged(ListSelectionEvent e) { //Somehow compare the selected item //with the list of books and find a matching book: int selectedIndex = grid.getSelectedIndex(); for (int i = 0; i < nodes.length; i++) { int picId = pics[i].getId(); if (selectedIndex == picId) { try { em.setSelectedNodes(new Node[]{nodes[i]}); } catch (PropertyVetoException ex) { Exceptions.printStackTrace(ex); } } } } }); setViewportView(grid); } } } The next step is to create a generic JGridView that will handle any kind of object automatically.

    Read the article

  • Super constructor must be a first statement in Java constructor [closed]

    - by Val
    I know the answer: "we need rules to prevent shooting into your own foot". Ok, I make millions of programming mistakes every day. To be prevented, we need one simple rule: prohibit all JLS and do not use Java. If we explain everything by "not shooting your foot", this is reasonable. But there is not much reason is such reason. When I programmed in Delphy, I always wanted the compiler to check me if I read uninitializable. I have discovered myself that is is stupid to read uncertain variable because it leads unpredictable result and is errorenous obviously. By just looking at the code I could see if there is an error. I wished if compiler could do this job. It is also a reliable signal of programming error if function does not return any value. But I never wanted it do enforce me the super constructor first. Why? You say that constructors just initialize fields. Super fields are derived; extra fields are introduced. From the goal point of view, it does not matter in which order you initialize the variables. I have studied parallel architectures and can say that all the fields can even be assigned in parallel... What? Do you want to use the unitialized fields? Stupid people always want to take away our freedoms and break the JLS rules the God gives to us! Please, policeman, take away that person! Where do I say so? I'm just saying only about initializing/assigning, not using the fields. Java compiler already defends me from the mistake of accessing notinitialized. Some cases sneak but this example shows how this stupid rule does not save us from the read-accessing incompletely initialized in construction: public class BadSuper { String field; public String toString() { return "field = " + field; } public BadSuper(String val) { field = val; // yea, superfirst does not protect from accessing // inconstructed subclass fields. Subclass constr // must be called before super()! System.err.println(this); } } public class BadPost extends BadSuper { Object o; public BadPost(Object o) { super("str"); this. o = o; } public String toString() { // superconstructor will boom here, because o is not initialized! return super.toString() + ", obj = " + o.toString(); } public static void main(String[] args) { new BadSuper("test 1"); new BadPost(new Object()); } } It shows that actually, subfields have to be inilialized before the supreclass! Meantime, java requirement "saves" us from writing specializing the class by specializing what the super constructor argument is, public class MyKryo extends Kryo { class MyClassResolver extends DefaultClassResolver { public Registration register(Registration registration) { System.out.println(MyKryo.this.getDepth()); return super.register(registration); } } MyKryo() { // cannot instantiate MyClassResolver in super super(new MyClassResolver(), new MapReferenceResolver()); } } Try to make it compilable. It is always pain. Especially, when you cannot assign the argument later. Initialization order is not important for initialization in general. I could understand that you should not use super methods before initializing super. But, the requirement for super to be the first statement is different. It only saves you from the code that does useful things simply. I do not see how this adds safety. Actually, safety is degraded because we need to use ugly workarounds. Doing post-initialization, outside the constructors also degrades safety (otherwise, why do we need constructors?) and defeats the java final safety reenforcer. To conclude Reading not initialized is a bug. Initialization order is not important from the computer science point of view. Doing initalization or computations in different order is not a bug. Reenforcing read-access to not initialized is good but compilers fail to detect all such bugs Making super the first does not solve the problem as it "Prevents" shooting into right things but not into the foot It requires to invent workarounds, where, because of complexity of analysis, it is easier to shoot into the foot doing post-initialization outside the constructors degrades safety (otherwise, why do we need constructors?) and that degrade safety by defeating final access modifier When there was java forum alive, java bigots attecked me for these thoughts. Particularly, they dislaked that fields can be initialized in parallel, saying that natural development ensures correctness. When I replied that you could use an advanced engineering to create a human right away, without "developing" any ape first, and it still be an ape, they stopped to listen me. Cos modern technology cannot afford it. Ok, Take something simpler. How do you produce a Renault? Should you construct an Automobile first? No, you start by producing a Renault and, once completed, you'll see that this is an automobile. So, the requirement to produce fields in "natural order" is unnatural. In case of alarmclock or armchair, which are still chair and clock, you may need first develop the base (clock and chair) and then add extra. So, I can have examples where superfields must be initialized first and, oppositely, when they need to be initialized later. The order does not exist in advance. So, the compiler cannot be aware of the proper order. Only programmer/constructor knows is. Compiler should not take more responsibility and enforce the wrong order onto programmer. Saying that I cannot initialize some fields because I did not ininialized the others is like "you cannot initialize the thing because it is not initialized". This is a kind of argument we have. So, to conclude once more, the feature that "protects" me from doing things in simple and right way in order to enforce something that does not add noticeably to the bug elimination at that is a strongly negative thing and it pisses me off, altogether with the all the arguments to support it I've seen so far. It is "a conceptual question about software development" Should there be the requirement to call super() first or not. I do not know. If you do or have an idea, you have place to answer. I think that I have provided enough arguments against this feature. Lets appreciate the ones who benefit form it. Let it just be something more than simple abstract and stupid "write your own language" or "protection" kind of argument. Why do we need it in the language that I am going to develop?

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • Oracle BPM Marketing Update

    - by JuergenKress
    Thanks to Ajay Khanna from the global marketing team for the comprehensive BPM marketing overview: Content and Collateral Whitepaper: What's New in Oracle BPM Suite 11g: Review By Bruce Silver Business Driven Process Management Analyst Report: [Ovum] SWOT Assessment: Oracle BPM Suite 11g Solution Brief: Managing Unpredictability with BPM for Adaptive Case Management Solution brief: BPM in the Public Sector: Increasing Efficiency and Responsiveness Datasheet: Automating Financial Reports Approval with Oracle Process Accelerators Financial Services Loan Origination Business Account Opening Electronic Forms Management Public Sector Incident Reporting Oracle Process Accelerators for Horizontal Solutions Employee Onboarding References: BPM Suite Customers in Action Video: Avea Legal Department runs Better with BPM University of Melbourne Improves Efficiency with Oracle BPM Press: San Joaquin County Leverages Oracle to Deliver Better Services to its 650,000 Residents On-Demand Assets Webcast: New Directions with Business-Driven BPM - New Oracle BPM Suite Extend Your Applications with Oracle Business Process Management Screen Cast: Customer Experience on Your Mind? Think BPM + Social + Mobile Video: Introducing Oracle BPM Suite Assessment Tool : BPM Maturity Self Assessment Blog Series Transforming Public Sector With Process Excellence New Oracle Process Accelerators in Financial Services & Telco Blog: Detect, Analyze, Act Fast with BPM Part I - Manage Processes, the way Octopus does Part II - Perry Mason and the Case of the Unstructured Process Part III - Managing the Unstructured, the Flexible and the Adaptive Resource Kits BPM Resource Kit Financial Services: BPM in Financial Services Public Sector: Transforming Public Sector with Process Excellence SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: BPM,bpm marketing,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • How do you formulate the Domain Model in Domain Driven Design properly (Bounded Contexts, Domains)?

    - by lko
    Say you have a few applications which deal with a few different Core Domains. The examples are made up and it's hard to put a real example with meaningful data together (concisely). In Domain Driven Design (DDD) when you start looking at Bounded Contexts and Domains/Sub Domains, it says that a Bounded Context is a "phase" in a lifecycle. An example of Context here would be within an ecommerce system. Although you could model this as a single system, it would also warrant splitting into separate Contexts. Each of these areas within the application have their own Ubiquitous Language, their own Model, and a way to talk to other Bounded Contexts to obtain the information they need. The Core, Sub, and Generic Domains are the area of expertise and can be numerous in complex applications. Say there is a long process dealing with an Entity for example a Book in a core domain. Now looking at the Bounded Contexts there can be a number of phases in the books life-cycle. Say outline, creation, correction, publish, sale phases. Now imagine a second core domain, perhaps a store domain. The publisher has its own branch of stores to sell books. The store can have a number of Bounded Contexts (life-cycle phases) for example a "Stock" or "Inventory" context. In the first domain there is probably a Book database table with basically just an ID to track the different book Entities in the different life-cycles. Now suppose you have 10+ supporting domains e.g. Users, Catalogs, Inventory, .. (hard to think of relevant examples). For example a DomainModel for the Book Outline phase, the Creation phase, Correction phase, Publish phase, Sale phase. Then for the Store core domain it probably has a number of life-cycle phases. public class BookId : Entity { public long Id { get; set; } } In the creation phase (Bounded Context) the book could be a simple class. public class Book : BookId { public string Title { get; set; } public List<string> Chapters { get; set; } //... } Whereas in the publish phase (Bounded Context) it would have all the text, release date etc. public class Book : BookId { public DateTime ReleaseDate { get; set; } //... } The immediate benefit I can see in separating by "life-cycle phase" is that it's a great way to separate business logic so there aren't mammoth all-encompassing Entities nor Domain Services. A problem I have is figuring out how to concretely define the rules to the physical layout of the Domain Model. A. Does the Domain Model get "modeled" so there are as many bounded contexts (separate projects etc.) as there are life-cycle phases across the core domains in a complex application? Edit: Answer to A. Yes, according to the answer by Alexey Zimarev there should be an entire "Domain" for each bounded context. B. Is the Domain Model typically arranged by Bounded Contexts (or Domains, or both)? Edit: Answer to B. Each Bounded Context should have its own complete "Domain" (Service/Entities/VO's/Repositories) C. Does it mean there can easily be 10's of "segregated" Domain Models and multiple projects can use it (the Entities/Value Objects)? Edit: Answer to C. There is a complete "Domain" for each Bounded Context and the Domain Model (Entity/VO layer/project) isn't "used" by the other Bounded Contexts directly, only via chosen paths (i.e. via Domain Events). The part that I am trying to figure out is how the Domain Model is actually implemented once you start to figure out your Bounded Contexts and Core/Sub Domains, particularly in complex applications. The goal is to establish the definitions which can help to separate Entities between the Bounded Contexts and Domains.

    Read the article

  • Is there ever a reason to do all an object's work in a constructor?

    - by Kane
    Let me preface this by saying this is not my code nor my coworkers' code. Years ago when our company was smaller, we had some projects we needed done that we did not have the capacity for, so they were outsourced. Now, I have nothing against outsourcing or contractors in general, but the codebase they produced is a mass of WTFs. That being said, it does (mostly) work, so I suppose it's in the top 10% of outsourced projects I've seen. As our company has grown, we've tried to take more of our development in house. This particular project landed in my lap so I've been going over it, cleaning it up, adding tests, etc etc. There's one pattern I see repeated a lot and it seems so mindblowingly awful that I wondered if maybe there is a reason and I just don't see it. The pattern is an object with no public methods or members, just a public constructor that does all the work of the object. For example, (the code is in Java, if that matters, but I hope this to be a more general question): public class Foo { private int bar; private String baz; public Foo(File f) { execute(f); } private void execute(File f) { // FTP the file to some hardcoded location, // or parse the file and commit to the database, or whatever } } If you're wondering, this type of code is often called in the following manner: for(File f : someListOfFiles) { new Foo(f); } Now, I was taught long ago that instantiated objects in a loop is generally a bad idea, and that constructors should do a minimum of work. Looking at this code it looks like it would be better to drop the constructor and make execute a public static method. I did ask the contractor why it was done this way, and the response I got was "We can change it if you want". Which was not really helpful. Anyway, is there ever a reason to do something like this, in any programming language, or is this just another submission to the Daily WTF?

    Read the article

  • C# Open Source software that is useful for learning Design Patterns

    - by Fathom Savvy
    In college I took a class in Expert Systems. The language the book taught (CLIPS) was esoteric - Expert Systems: Principles and Programming, Fourth Edition. I remember having a tough time with it. So, after almost failing the class, I needed to create the most awesome Expert System for my final presentation. I chose to create an expert system that would calculate risk analysis for a person's retirement portfolio. In short, the system would provide the services normally performed by one's financial adviser. In other words, based on personality, age, state of the macro economy, and other factors, should one's portfolio be conservative, moderate, or aggressive? In the appendix of the book (or on the CD-ROM), there was this in-depth example program for something unrelated to my presentation. Over my break, I read and re-read every line of that program until I understood it to the letter. Even though it was unrelated, I learned more than I ever could by reading all of the chapters. My presentation turned out to be pretty damn good and I received praises from my professor and classmates. So, the moral of the story is..., by understanding other people's code, you can gain greater insight into a language/paradigm than by reading canonical examples. Still, to this day, I am having trouble with everyday design patterns such as the Factory Pattern. I would like to know if anyone could recommend open source software that would help me understand the Gang of Four design patterns, at the very least. I have read the books, but I'm having trouble writing code for the concepts in the real world. Perhaps, by studying code used in today's real world applications, it might just "click". I realize a piece of software may only implement one kind of design pattern. But, if the pattern is an implementation you think is good for learning, and you know what pattern to look for within the source, I'm hoping you can tell me about it. For example, the System.Linq.Expressions namespace has a good example of the Visitor Pattern. The client calls Expression.Accept(new ExpressionVisitor()), which calls ExpressionVisitor (VisitExtension), which calls back to Expression (VisitChildren), which then calls Expression (Accept) again - wooah, kinda convoluted. The point to note here is that VisitChildren is a virtual method. Both Expression and those classes derived from Expression can implement the VisitChildren method any way they want. This means that one type of Expression can run code that is completely different from another type of derived Expression, even though the ExpressionVisitor class is the same in the Accept method. (As a side note Expression.Accept is also virtual). In the end, the code provides a real world example that you won't get in any book because it's kinda confusing. To summarize, If you know of any open source software that uses a design pattern implementation you were impressed by, please list it here. I'm sure it will help many others besides just me. public class VisitorPatternTest { public void Main() { Expression normalExpr = new Expression(); normalExpr.Accept(new ExpressionVisitor()); Expression binExpr = new BinaryExpression(); binExpr.Accept(new ExpressionVisitor()); } } public class Expression { protected internal virtual Expression Accept(ExpressionVisitor visitor) { return visitor.VisitExtension(this); } protected internal virtual Expression VisitChildren(ExpressionVisitor visitor) { if (!this.CanReduce) { throw Error.MustBeReducible(); } return visitor.Visit(this.ReduceAndCheck()); } public virtual Expression Visit(Expression node) { if (node != null) { return node.Accept(this); } return null; } public Expression ReduceAndCheck() { if (!this.CanReduce) { throw Error.MustBeReducible(); } Expression expression = this.Reduce(); if ((expression == null) || (expression == this)) { throw Error.MustReduceToDifferent(); } if (!TypeUtils.AreReferenceAssignable(this.Type, expression.Type)) { throw Error.ReducedNotCompatible(); } return expression; } } public class BinaryExpression : Expression { protected internal override Expression Accept(ExpressionVisitor visitor) { return visitor.VisitBinary(this); } protected internal override Expression VisitChildren(ExpressionVisitor visitor) { return CreateDummyExpression(); } protected internal Expression CreateDummyExpression() { Expression dummy = new Expression(); return dummy; } } public class ExpressionVisitor { public virtual Expression Visit(Expression node) { if (node != null) { return node.Accept(this); } return null; } protected internal virtual Expression VisitExtension(Expression node) { return node.VisitChildren(this); } protected internal virtual Expression VisitBinary(BinaryExpression node) { return ValidateBinary(node, node.Update(this.Visit(node.Left), this.VisitAndConvert<LambdaExpression>(node.Conversion, "VisitBinary"), this.Visit(node.Right))); } }

    Read the article

  • Vertical Scrolling In Tile Based XNA Platformer

    - by alec100_94
    I'm making a 2D platformer in XNA 4.0. I have created a working tile engine, which works well for my purposes, and Horizontal Scrolling works flawlessly, however I am having great trouble with Vertical scrolling. I Basically want the camera to scroll up (world to scroll down) when the player reaches a certain Y co-ordinate, and I would also like to automatically scroll back down if coming down, and that co-ordinate is passed. My biggest problem is I have no real way of detecting the direction the player is moving in using only the Y Co-ord. Here Is My Code Code For The Camera Class (which appears to be a very different approach to most camera classes I have seen). using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; namespace Marvin { class Camera : TileEngine { public static bool startReached; public static bool endReached; public static void MoveRight(float speed = 2) { //Moves The Position of Each Tile Right foreach (Tile t in tiles) { if(t!=null) { t.position.X -= speed; } } } public static void MoveLeft(float speed = 2) { //Moves The Position of Each Tile Right foreach (Tile t in tiles) { if(t!=null) { t.position.X += speed; } } } public static void MoveUp(float speed = 2) { foreach (Tile t in tiles) { if(t!=null) { t.position.Y += speed; } } } public static void MoveDown(float speed = 2) { foreach (Tile t in tiles) { if(t!=null) { t.position.Y -= speed; } } } public static void Restrain() { if(tiles.Last().position.X<Main.graphics.PreferredBackBufferWidth-tiles.Last().size.X) { MoveLeft(); endReached = true; } else { endReached = false; } if(tiles[1].position.X>0) { MoveRight(); startReached = true;} else { startReached = false; } } } } Here is My Player Code for Left and Right Scrolling/Moving if (Main.currentKeyState.IsKeyDown(Keys.Right)) { Camera.MoveRight(); if(Camera.endReached) { MoveRight(2); } else { if(marvin.GetRectangle().X!=Main.graphics.PreferredBackBufferWidth-(marvin.GetRectangle().X+marvin.GetRectangle().Width)) { MoveRight(2); Camera.MoveLeft(); } } } if(Main.currentKeyState.IsKeyDown(Keys.Left)) { Camera.MoveLeft(); if(Camera.startReached) { MoveLeft(2); } else { if(marvin.GetRectangle().X!=Main.graphics.PreferredBackBufferWidth-(marvin.GetRectangle().X+marvin.GetRectangle().Width)) { MoveLeft(2); Camera.MoveRight(); } } } Camera.Restrain(); if(marvin.GetRectangle().X>Main.graphics.PreferredBackBufferWidth-marvin.GetRectangle().Width) { MoveLeft(2); } if(marvin.GetRectangle().X<0) { MoveRight(2); } And Here Is My Player Jumping/Falling Code which may cause some conflicts with the vertical camera movement. if (!jumping) { if(!TileEngine.TopOfTileCollidingWith(footBounds)) { MoveDown(5); } else { if(marvin.GetRectangle().Y != TileEngine.LastPlatformStoodOnTop()-marvin.GetRectangle().Height) { float difference = (TileEngine.LastPlatformStoodOnTop()-marvin.GetRectangle().Height) - (marvin.GetRectangle().Y); marvin.SetRectangle(marvin.GetRectangle().X,(int)(marvin.GetRectangle().Y+difference)); armR.SetRectangle(armR.GetRectangle().X,(int)(armR.GetRectangle().Y+difference)); armL.SetRectangle(armL.GetRectangle().X,(int)(armL.GetRectangle().Y+difference)); eyeL.SetRectangle(eyeL.GetRectangle().X,(int)(eyeL.GetRectangle().Y+difference)); eyeR.SetRectangle(eyeR.GetRectangle().X,(int)(eyeR.GetRectangle().Y+difference)); } } } if (Main.currentKeyState.IsKeyDown(Keys.Up) && Main.previousKeyState.IsKeyUp(Keys.Up) && TileEngine.TopOfTileCollidingWith(footBounds)) { jumping = true; } if(jumping) { if(TileEngine.LastPlatformStoodOnTop()>0 && (TileEngine.LastPlatformStoodOnTop() - footBounds.Bottom)<120) { MoveUp(5); } else { jumping = false; } } All player code I have tried for vertical movements has failed, or caused weird results (like falling through platforms), and most have been a variation on the method I described above, hence I have not included it. I would really appreciate some help implementing a simple vertical scrolling into this game, Thanks.

    Read the article

  • REST to Objects in C#

    RESTful interfaces for web services are all the rage for many Web 2.0 sites.  If you want to consume these in a very simple fashion, LINQ to XML can do the job pretty easily in C#.  If you go searching for help on this, youll find a lot of incomplete solutions and fairly large toolkits and frameworks (guess how I know this) this quick article is meant to be a no fluff just stuff approach to making this work. POCO Objects Lets assume you have a Model that you want to suck data into from a RESTful web service.  Ideally this is a Plain Old CLR Object, meaning it isnt infected with any persistence or serialization goop.  It might look something like this: public class Entry { public int Id; public int UserId; public DateTime Date; public float Hours; public string Notes; public bool Billable;   public override string ToString() { return String.Format("[{0}] User: {1} Date: {2} Hours: {3} Notes: {4} Billable {5}", Id, UserId, Date, Hours, Notes, Billable); } } Not that this isnt a completely trivial object.  Lets look at the API for the service.  RESTful HTTP Service In this case, its TickSpots API, with the following sample output: <?xml version="1.0" encoding="UTF-8"?> <entries type="array"> <entry> <id type="integer">24</id> <task_id type="integer">14</task_id> <user_id type="integer">3</user_id> <date type="date">2008-03-08</date> <hours type="float">1.00</hours> <notes>Had trouble with tribbles.</notes> <billable>true</billable> # Billable is an attribute inherited from the task <billed>true</billed> # Billed is an attribute to track whether the entry has been invoiced <created_at type="datetime">Tue, 07 Oct 2008 14:46:16 -0400</created_at> <updated_at type="datetime">Tue, 07 Oct 2008 14:46:16 -0400</updated_at> # The following attributes are derived and provided for informational purposes: <user_email>[email protected]</user_email> <task_name>Remove converter assembly</task_name> <sum_hours type="float">2.00</sum_hours> <budget type="float">10.00</budget> <project_name>Realign dilithium crystals</project_name> <client_name>Starfleet Command</client_name> </entry> </entries> Im assuming in this case that I dont necessarily care about all of the data fields the service is returning I just need some of them for my applications purposes.  Thus, you can see there are more elements in the <entry> XML than I have in my Entry class. Get The XML with C# The next step is to get the XML.  The following snippet does the heavy lifting once you pass it the appropriate URL: protected XElement GetResponse(string uri) { var request = WebRequest.Create(uri) as HttpWebRequest; request.UserAgent = ".NET Sample"; request.KeepAlive = false;   request.Timeout = 15 * 1000;   var response = request.GetResponse() as HttpWebResponse;   if (request.HaveResponse == true && response != null) { var reader = new StreamReader(response.GetResponseStream()); return XElement.Parse(reader.ReadToEnd()); } throw new Exception("Error fetching data."); } This is adapted from the Yahoo Developer article on Web Service REST calls.  Once you have the XML, the last step is to get the data back as your POCO. Use LINQ-To-XML to Deserialize POCOs from XML This is done via the following code: public IEnumerable<Entry> List(DateTime startDate, DateTime endDate) { string additionalParameters = String.Format("start_date={0}&end_date={1}", startDate.ToShortDateString(), endDate.ToShortDateString()); string uri = BuildUrl("entries", additionalParameters);   XElement elements = GetResponse(uri);   var entries = from e in elements.Elements() where e.Name.LocalName == "entry" select new Entry { Id = int.Parse(e.Element("id").Value), UserId = int.Parse(e.Element("user_id").Value), Date = DateTime.Parse(e.Element("date").Value), Hours = float.Parse(e.Element("hours").Value), Notes = e.Element("notes").Value, Billable = bool.Parse(e.Element("billable").Value) }; return entries; }   For completeness, heres the BuildUrl method for my TickSpot API wrapper: // Change these to your settings protected const string projectDomain = "DOMAIN.tickspot.com"; private const string authParams = "[email protected]&password=MyTickSpotPassword";   protected string BuildUrl(string apiMethod, string additionalParams) { if (projectDomain.Contains("DOMAIN")) { throw new ApplicationException("You must update your domain in ProjectRepository.cs."); } if (authParams.Contains("MyTickSpotPassword")) { throw new ApplicationException("You must update your email and password in ProjectRepository.cs."); } return string.Format("https://{0}/api/{1}?{2}&{3}", projectDomain, apiMethod, authParams, additionalParams); } Thats it!  Now go forth and consume XML and map it to classes you actually want to work with.  Have fun! Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Why enumerator structs are a really bad idea (redux)

    - by Simon Cooper
    My previous blog post went into some detail as to why calling MoveNext on a BCL generic collection enumerator didn't quite do what you thought it would. This post covers the Reset method. To recap, here's the simple wrapper around a linked list enumerator struct from my previous post (minus the readonly on the enumerator variable): sealed class EnumeratorWrapper : IEnumerator<int> { private LinkedList<int>.Enumerator m_Enumerator; public EnumeratorWrapper(LinkedList<int> linkedList) { m_Enumerator = linkedList.GetEnumerator(); } public int Current { get { return m_Enumerator.Current; } } object System.Collections.IEnumerator.Current { get { return Current; } } public bool MoveNext() { return m_Enumerator.MoveNext(); } public void Reset() { ((System.Collections.IEnumerator)m_Enumerator).Reset(); } public void Dispose() { m_Enumerator.Dispose(); } } If you have a look at the Reset method, you'll notice I'm having to cast to IEnumerator to be able to call Reset on m_Enumerator. This is because the implementation of LinkedList<int>.Enumerator.Reset, and indeed of all the other Reset methods on the BCL generic collection enumerators, is an explicit interface implementation. However, IEnumerator is a reference type. LinkedList<int>.Enumerator is a value type. That means, in order to call the reset method at all, the enumerator has to be boxed. And the IL confirms this: .method public hidebysig newslot virtual final instance void Reset() cil managed { .maxstack 8 L_0000: nop L_0001: ldarg.0 L_0002: ldfld valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator<int32> EnumeratorWrapper::m_Enumerator L_0007: box [System]System.Collections.Generic.LinkedList`1/Enumerator<int32> L_000c: callvirt instance void [mscorlib]System.Collections.IEnumerator::Reset() L_0011: nop L_0012: ret } On line 0007, we're doing a box operation, which copies the enumerator to a reference object on the heap, then on line 000c calling Reset on this boxed object. So m_Enumerator in the wrapper class is not modified by the call the Reset. And this is the only way to call the Reset method on this variable (without using reflection). Therefore, the only way that the collection enumerator struct can be used safely is to store them as a boxed IEnumerator<T>, and not use them as value types at all.

    Read the article

  • Design for object with optional and modifiable attributtes?

    - by Ikuzen
    I've been using the Builder pattern to create objects with a large number of attributes, where most of them are optional. But up until now, I've defined them as final, as recommended by Joshua Block and other authors, and haven't needed to change their values. I am wondering what should I do though if I need a class with a substantial number of optional but non-final (mutable) attributes? My Builder pattern code looks like this: public class Example { //All possible parameters (optional or not) private final int param1; private final int param2; //Builder class public static class Builder { private final int param1; //Required parameters private int param2 = 0; //Optional parameters - initialized to default //Builder constructor public Builder (int param1) { this.param1 = param1; } //Setter-like methods for optional parameters public Builder param2(int value) { param2 = value; return this; } //build() method public Example build() { return new Example(this); } } //Private constructor private Example(Builder builder) { param1 = builder.param1; param2 = builder.param2; } } Can I just remove the final keyword from the declaration to be able to access the attributes externally (through normal setters, for example)? Or is there a creational pattern that allows optional but non-final attributes that would be better suited in this case?

    Read the article

  • Enum types, FlagAttribute & Zero value

    - by nmgomes
    We all know about Enums types and use them every single day. What is not that often used is to decorate the Enum type with the FlagsAttribute. When an Enum type has the FlagsAttribute we can assign multiple values to it and thus combine multiple information into a single enum. The enum values should be a power of two so that a bit set is achieved. Here is a typical Enum type: public enum OperationMode { /// <summary> /// No operation mode /// </summary> None = 0, /// <summary> /// Standard operation mode /// </summary> Standard = 1, /// <summary> /// Accept bubble requests mode /// </summary> Parent = 2 } In such scenario no values combination are possible. In the following scenario a default operation mode exists and combination is used: [Flags] public enum OperationMode { /// <summary> /// Asynchronous operation mode /// </summary> Async = 0, /// <summary> /// Synchronous operation mode /// </summary> Sync = 1, /// <summary> /// Accept bubble requests mode /// </summary> Parent = 2 } Now, it’s possible to do statements like: [DefaultValue(OperationMode.Async)] [TypeConverter(typeof(EnumConverter))] public OperationMode Mode { get; set; } /// <summary> /// Gets a value indicating whether this instance supports request from childrens. /// </summary> public bool IsParent { get { return (this.Mode & OperationMode.Parent) == OperationMode.Parent; } } or switch (this.Mode) { case OperationMode.Sync | OperationMode.Parent: Console.WriteLine("Sync,Parent"); break;[…]  But there is something that you should never forget: Zero is the absorber element for the bitwise AND operation. So, checking for OperationMode.Async (the Zero value) mode just like the OperationMode.Parent mode makes no sense since it will always be true: (this.Mode & 0x0) == 0x0 Instead, inverse logic should be used: OperationMode.Async = !OperationMode.Sync public bool IsAsync { get { return (this.Mode & ContentManagerOperationMode.Sync) != ContentManagerOperationMode.Sync; } } or public bool IsAsync { get { return (int)this.Mode == 0; } } Final Note: Benefits Allow multiple values combination The above samples snippets were taken from an ASP.NET control and enabled the following markup usage: <my:Control runat="server" Mode="Sync,Parent"> Drawback Zero value is the absorber element for the bitwise AND operation Be very carefully when evaluating the Zero value, either evaluate the enum value as an integer or use inverse logic.

    Read the article

  • Better way to load level content in XNA?

    - by user2002495
    Currently I loaded all my assets in XNA in the main Game class. What I want to achieve later is that I only load specific assets for specific levels (the game will consist of many levels). Here is how I load my main assets into the main class: protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); plane = new Player(Content.Load<Texture2D>(@"Player/playerSprite"), 6, 8); plane.animation = "down"; plane.pos = new Vector2(400, 500); plane.fps = 15; Global.currentPos = plane.pos; lvl1 = new Level1(Content.Load<Texture2D>(@"Levels/bgLvl1"), Content.Load<Texture2D>(@"Levels/bgLvl1-other"), new Vector2(0, 0), new Vector2(0, -600)); CommonBullet.LoadContent(Content); CommonEnemyBullet.LoadContent(Content); } protected override void UnloadContent() { } protected override void Update(GameTime gameTime) { if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); plane.Update(gameTime); lvl1.Update(gameTime); foreach (CommonEnemy ce in cel) { if (ce.CollidesWith(plane)) { ce.hasSpawn = false; } foreach (CommonBullet b in plane.commonBulletList) { if (b.CollidesWith(ce)) { ce.hasSpawn = false; } } ce.Update(gameTime); } LoadCommonEnemy(); base.Update(gameTime); } private void LoadCommonEnemy() { int randY = rand.Next(-600, -10); int randX = rand.Next(0, 750); if (cel.Count < 3) { cel.Add(new CommonEnemy(Content.Load<Texture2D>(@"Enemy/Common/commonEnemySprite"), 7, 2, "left", randX, randY)); } for (int i = 0; i < cel.Count; i++) { if (!cel[i].hasSpawn) { cel.RemoveAt(i); i--; } } } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Black); spriteBatch.Begin(); lvl1.Draw(spriteBatch); plane.Draw(spriteBatch); foreach (CommonEnemy ce in cel) { ce.Draw(spriteBatch); } spriteBatch.End(); base.Draw(gameTime); } I wish to load my players, enemies, all in Level1 class. However, when I move my player & enemy code into the Level1 class, the gameTime returns null. Here is my Level1 class: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Media; using Microsoft.Xna.Framework.Input; using SpaceShooter_Beta.Animation.PlayerCollection; using SpaceShooter_Beta.Animation.EnemyCollection.Common; namespace SpaceShooter_Beta.Levels { public class Level1 { public Texture2D bgTexture1, bgTexture2; public Vector2 bgPos1, bgPos2; public float speed = 5f; Player plane; public Level1(Texture2D texture1, Texture2D texture2, Vector2 pos1, Vector2 pos2) { this.bgTexture1 = texture1; this.bgTexture2 = texture2; this.bgPos1 = pos1; this.bgPos2 = pos2; } public void LoadContent(ContentManager cm) { plane = new Player(cm.Load<Texture2D>(@"Player/playerSprite"), 6, 8); plane.animation = "down"; plane.pos = new Vector2(400, 500); plane.fps = 15; Global.currentPos = plane.pos; } public void Draw(SpriteBatch sb) { sb.Draw(bgTexture1, bgPos1, Color.White); sb.Draw(bgTexture2, bgPos2, Color.White); plane.Draw(sb); } public void Update(GameTime gt) { bgPos1.Y += speed; bgPos2.Y += speed; if (bgPos1.Y >= 600) { bgPos1.Y = -600; } if (bgPos2.Y >= 600) { bgPos2.Y = -600; } plane.Update(gt); } } } Of course when I did this, I delete all my player's code in the main Game class. All of that works fine (no errors) except that the game cannot start. The debugger says that plane.Update(gt); in Level 1 class has null GameTime, same thing with the Draw method in the Level class. Please help, I appreciate for the time. [EDIT] I know that using switch in the main class can be a solution. But I prefer a cleaner solution than that, since using switch still means I need to load all the assets through the main class, the code will be A LOT later on for each levels

    Read the article

  • An alternative to multiple inheritance when creating an abstraction layer?

    - by sebf
    In my project I am creating an abstraction layer for some APIs. The purpose of the layer is to make multi-platform easier, and also to simplify the APIs to the feature set that I need while also providing some functionality, the implementation of which will be unique to each platform. At the moment, I have implemented it by defining and abstract class, which has methods which creates objects that implement interfaces. The abstract class and these interfaces define the capabilities of my abstraction layer. The implementation of these in my layer should of course be arbitrary from the POV view of my application, but I have done it, for my first API, by creating chains of subclasses which add more specific functionality as the features of the APIs they expose become less generic. An example would probably demonstrate this better: //The interface as seen by the application interface IGenericResource { byte[] GetSomeData(); } interface ISpecificResourceOne : IGenericResource { int SomePropertyOfResourceOne {get;} } interface ISpecificResourceTwo : IGenericResource { string SomePropertyOfResourceTwo {get;} } public abstract class MyLayer { ISpecificResourceOne CreateResourceOne(); ISpecificResourceTwo CreateResourceTwo(); void UseResourceOne(ISpecificResourceOne one); void UseResourceTwo(ISpecificResourceTwo two); } //The layer as created in my library public class LowLevelResource : IGenericResource { byte[] GetSomeData() {} } public class ResourceOne : LowLevelResource, ISpecificResourceOne { int SomePropertyOfResourceOne {get{}} } public class ResourceTwo : ResourceOne, ISpecificResourceTwo { string SomePropertyOfResourceTwo {get {}} } public partial class Implementation : MyLayer { override UseResourceOne(ISpecificResourceOne one) { DoStuff((ResourceOne)one); } } As can be seen, I am essentially trying to have two inheritance chains on the same object, but of course I can't do this so I simulate the second version with interfaces. The thing is though, I don't like using interfaces for this; it seems wrong, in my mind an interface defines a contract, any class that implements that interface should be able to be used where that interface is used but here that is clearly not the case because the interfaces are being used to allow an object from the layer to masquerade as something else, without the application needing to have access to its definition. What technique would allow me to define a comprehensive, intuitive collection of objects for an abstraction layer, while their implementation remains independent? (Language is C#)

    Read the article

  • Smooth Camera Zoom Factor Change

    - by Siddharth
    I have game play scene in which user can zoom in and out. For which I used smooth camera in the following manner. public static final int CAMERA_WIDTH = 1024; public static final int CAMERA_HEIGHT = 600; public static final float MAXIMUM_VELOCITY_X = 400f; public static final float MAXIMUM_VELOCITY_Y = 400f; public static final float ZOOM_FACTOR_CHANGE = 1f; mSmoothCamera = new SmoothCamera(0, 0, Constants.CAMERA_WIDTH, Constants.CAMERA_HEIGHT, Constants.MAXIMUM_VELOCITY_X, Constants.MAXIMUM_VELOCITY_Y, Constants.ZOOM_FACTOR_CHANGE); mSmoothCamera.setBounds(0f, 0f, Constants.CAMERA_WIDTH, Constants.CAMERA_HEIGHT); But above thing create problem for me. When user perform zoom in and leave game play scene then other scene behaviour not look good. I already set zoom factor to 1 for this purpose. But now it show camera translation in other scene. Because scene switching time it so much small that player can easily saw translation of camera that I don't want to show. After camera reposition, everything works perfect but how to set camera its proper position. For example my loading text move from bottom to top or vice versa based on camera movement. Any more detail you want then I can able to give you.

    Read the article

  • Introducing the Oracle Linux Playground yum repo

    - by wcoekaer
    We just introduced a new yum repository/channel on http://public-yum.oracle.com called the playground channel. What we started doing is the following: When a new stable mainline kernel is released by Linus or GregKH, we internally build RPMs to test it and do some QA work around it to keep track of what's going on with the latest development kernels. It helps us understand how performance moves up or down and if there are issues, we try to help look into them and of course send that stuff back upstream. Many Linux users out there are interested in trying out the latest features but there are some potential barriers to do this. (1) in general, you are looking at an upstream development distribution, which means that everything changes both in userspace(random applications) and kernel. Projects like Fedora are very useful and someone that wants to just see how the entire distribution evolves with all the changes, this is a great way to be current. A drawback here, though, is that if you have applications that are not part of the distribution, there's a lot of manual work involved or they might just not work because the changes are too drastic. The introduction of systemd is a good example. (2) when you look at many of our customers, that are interested in our database products or applications, the starting point of having a supported/certified userspace/distribution, like Oracle Linux, is a much easier way to get your feet wet in seeing what new/future Linux kernel enhancements could do. This is where the playground channel comes into play. When you install Oracle Linux 6 (which anyone can download and use from http://edelivery.oracle.com/linux), grab the latest public yum repository file http://public-yum.oracle.com/public-yum-ol6.repo, put it in /etc/yum.repos.d and enable the playground repo : [ol6_playground_latest] name=Latest mainline stable kernel for Oracle Linux 6 ($basearch) - Unsupported baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/playground/latest/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 Now, all you need to do : type yum update and you will be downloading the latest stable kernel which will install cleanly on Oracle Linux 6. Thus you end up with a stable Linux distribution where you can install all your software, and then download the latest stable kernel (at time of writing this is 3.6.7) without having to recompile a kernel, without having to jump through hoops. There is of course a big, very important disclaimer this is NOT for PRODUCTION use. We want to try and help make it easy for people that are interested, from a user perspective, where the Linux kernel is going and make it easy to install and use it and play around with new features. Without having to learn how to compile a kernel and without necessarily having to install a complete new distribution with all the changes top to bottom. So we don't or won't introduce any new userspace changes, this project really is around making it easy to try out the latest upstream Linux kernels in a very easy way on an environment that's stable and you can keep current, since all the latest errata for Oracle Linux 6 are published on the public yum repo as well. So one repository location for all your current changes and the upstream kernels. We hope that this will get more users to try out the latest kernel and report their findings. We are always interested in understanding stability and performance characteristics. As new features are going into the mainline kernel, that could potentially be interesting or useful for various products, we will try to point them out on our blogs and give an example on how something can be used so you can try it out for yourselves. Anyway, I hope people will find this useful and that it will help increase interested in upstream development beyond reading lkml by some of the more non-kernel-developer types.

    Read the article

  • Why can't I compare two Texture2D's?

    - by Fiona
    I am trying to use an accessor, as it seems to me that that is the only way to accomplish what I want to do. Here is my code: Game1.cs public class GroundTexture { private Texture2D dirt; public Texture2D Dirt { get { return dirt; } set { dirt = value; } } } public class Main : Game { public static Texture2D texture = tile.Texture; GroundTexture groundTexture = new GroundTexture(); public static Texture2D dirt; protected override void LoadContent() { Tile tile = (Tile)currentLevel.GetTile(20, 20); dirt = Content.Load<Texture2D>("Dirt"); groundTexture.Dirt = dirt; Texture2D texture = tile.Texture; } protected override void Update(GameTime gameTime) { if (texture == groundTexture.Dirt) { player.TileCollision(groundBounds); } base.Update(gameTime); } } I removed irrelevant information from the LoadContent and Update functions. On the following line: if (texture == groundTexture.Dirt) I am getting the error Operator '==' cannot be applied to operands of type 'Microsoft.Xna.Framework.Graphics.Texture2D' and 'Game1.GroundTexture' Am I using the accessor correctly? And why do I get this error? "Dirt" is Texture2D, so they should be comparable. This using a few functions from a program called Realm Factory, which is a tile editor. The numbers "20, 20" are just a sample of the level I made below: tile.Texture returns the sprite, which here is the content item Dirt.png Thank you very much! (I posted this on the main Stackoverflow site, but after several days didn't get a response. Since it has to do mainly with Texture2D, I figured I'd ask here.)

    Read the article

< Previous Page | 137 138 139 140 141 142 143 144 145 146 147 148  | Next Page >