Search Results

Search found 18220 results on 729 pages for 'generic programming'.

Page 144/729 | < Previous Page | 140 141 142 143 144 145 146 147 148 149 150 151  | Next Page >

  • Are there any purely functional Schemes or Lisps?

    - by nickname
    Over the past few months, I've put a lot of effort into learning (or attempting to learn) several functional programming languages. I really like math, so they have been very natural for me to use. Simply to be more specific, I have tried Common Lisp, Scheme, Haskell, OCaml, and (a little bit of) Erlang. I did not like the syntax of OCaml and do not have enough Erlang knowledge to make a judgment on it yet. Because of its consistent and beautiful (non-)syntax, I really like Scheme. However, I really do appreciate the stateless nature of purely functional programming languages such as Haskell. Haskell looks very interesting, but the amount of inconsistent and non-extendable syntax really bothered me. In the interest of preventing a Lisp vs Haskell flame war, just pretend that I can't use Haskell for some other reason. Therefore, my question is: Are there any purely functional Schemes (or Lisps in general)?

    Read the article

  • Where does C# and the .NET Framework fail?

    - by Nate Bross
    In my non-programming life, I always attempt to use the approprite tool for the job, and I feel that I do the same in my programming life, but I find that I am choosing C# and .NET for almost everything. I'm finding it hard to come up with (realistic business) needs that cannot be met by .NET and C#. Obviously embedded systems might require something less bloated than the .NET Micro Framework, but I'm really looking for line of business type situations where .NET is not the best tool. I'm primarly a C# and .NET guy since its what I'm the most comfertable in, but I know a fair amount of C++, php, VB, powershell, batch files, and Java, as well as being versed in the web technologes (javascript, html/css). But I'm open minded about it my skill set and I'm looking for cases where C# and .NET are not the right tool for the job. The bottom line here, is that I feel that I'm choosing C# and .NET simply because I am very comfertable with it, so I'm looking for cases where you have chosen something other than .NET, even though you are primarly a .NET developer.

    Read the article

  • What is more interesting or powerful: Curry/Mercury/Lambda-Prolog/your suggestion.

    - by Bubba88
    Hi! I would like to ask you about what formal system could be more interesting to implement from scratch/reverse engineer. I've looked through some existing and rather open (open in the sense of free/open-source) projects of logical/declarative programming systems. I've decided to make up something similar in my free time, or at least to catch the general idea of implementation. It would be great if some of these systems would provide most of the expressive power and conciseness of modern academic investigations in logic and it's relation with computational models. What would you recommend to study at least at the conceptual level? For example, Lambda-Prolog is interesting particularly because it allows for higher order relations, but AFAIK (I might really be mistaken :)) is based on intuitionist logic and therefore lack the excluded-middle principle; that's generally a disatvantage for me.. I would also welcome any suggestions about modern logical programming systems which are less popular but more expressive/powerful. I guess, this question will need refactoring, but thank you in advance! :)

    Read the article

  • Where/When do C# and the .NET Framework fail to be the right tool?

    - by Nate Bross
    In my non-programming life, I always attempt to use the appropriate tool for the job, and I feel that I do the same in my programming life, but I find that I am choosing C# and .NET for almost everything. I'm finding it hard to come up with (realistic business) needs that cannot be met by .NET and C#. Obviously embedded systems might require something less bloated than the .NET Micro Framework, but I'm really looking for line of business type situations where .NET is not the best tool. I'm primarly a C# and .NET guy since its what I'm the most comfertable in, but I know a fair amount of C++, php, VB, PowerShell, batch files, and Java, as well as being versed in the web technologes (JavaScript, HTML, and CSS). But I'm open minded about it my skill set and I'm looking for cases where C# and .NET are not the right tool for the job. I choose .NET and C# because I'm comfortable with it, but I'm looking for cases where it isn't appropriate.

    Read the article

  • Is there any valid reason radians are used as the inputs to trig function in many modern languages?

    - by johnmortal
    Is there any pressing reason trig functions should use radian inputs in modern programming languages? As far as I know radians are typically ugly to deal with except in three cases: (1) You want to compute an arc length and you know the angle of the arc and (2) You need to do symbolic calculus with trig functions (3) certain infinite series expansion look prettier if the input is in radians. None of these scenarios seem like a worthy justification for every programming language I am familiar with using radian inputs for Sin, Cos, Tangent, etc... The third one sounds good because it might mean one gets faster computations using radians (very slightly faster- the cost of one additional floating point multiplication ) , but I am dubious even of that because most commonly the developer had to take an extra step to put the angle in radians in the first place. The other two are ridiculous justifications for all the added obscurity.

    Read the article

  • Where/When does C# and the .NET Framework fail to be the right tool?

    - by Nate Bross
    In my non-programming life, I always attempt to use the approprite tool for the job, and I feel that I do the same in my programming life, but I find that I am choosing C# and .NET for almost everything. I'm finding it hard to come up with (realistic business) needs that cannot be met by .NET and C#. Obviously embedded systems might require something less bloated than the .NET Micro Framework, but I'm really looking for line of business type situations where .NET is not the best tool. I'm primarly a C# and .NET guy since its what I'm the most comfertable in, but I know a fair amount of C++, php, VB, powershell, batch files, and Java, as well as being versed in the web technologes (javascript, html/css). But I'm open minded about it my skill set and I'm looking for cases where C# and .NET are not the right tool for the job. The bottom line here, is that I feel that I'm choosing C# and .NET simply because I am very comfertable with it, so I'm looking for cases where you have chosen something other than .NET, even though you are primarly a .NET developer.

    Read the article

  • What are the flavor-of-the-month technologies that have now become obscure?

    - by Andreas Grech
    For this question, I am looking for programming languages, technologies and standards that where considered as a flavour-of-the-month in their prominent time but have since been forgotten in today's programming world. Also, with what have they been replaced? I am relatively new to the software development industry compared to most of the people here (with just only 5 years of experience), and from this question I am looking to learn about some of the now-obscure technologies that have been around during your time. Just for clarification, what I mean by flavour-of-the-month is technologies that had been extensively in their time but today have become obscure and forgotten; maybe replaced by other better ones

    Read the article

  • iphone singleton object synchronization

    - by user127091
    I'm working on an iphone app but this is probably a general question. I have a singleton Model class and there would be scenarios where multiple NSOperations (threads) would exist and work with the singleton object. If they all call the same method in this object, do i need to have some locking mechanism? Or can this method be executed only one at a time? I do not have a computer science background but my guess is that all threads would have their CALL to the same address (this method). Also can you please suggest a good beginner programming book that discusses general programming concepts. I don't have the brains for Knuth kinda books.

    Read the article

  • Count the number of ways in which a number 'A' can be broken into a sum of 'B' numbers such that all numbers are co-prime to 'C'

    - by rajneesh2k10
    I came across the solution of a problem which involve dynamic-programming approach, solved using a three dimensional matrix. Link to actual problem is: http://community.topcoder.com/stat?c=problem_statement&pm=12189&rd=15177 Solution to this problem is here under MuddyRoad2: http://apps.topcoder.com/wiki/display/tc/SRM+555 In the last paragraph of explanation, author describes a dynamic programming approach to count the number of ways in which a number 'A' can be broken into a sum of 'B' numbers (not necessarily different), such that every number is co-prime to 3 and the order in which these numbers appear does matter. I am not able to grasp that approach. Can anyone help me understand how DP is acting here. I can't understand what is a state here and how it is derived from the previous state.

    Read the article

  • What is the most efficient functional version of the following imperative code?

    - by justin.r.s.
    I'm learning Scala and I want to know the best way of expressing this imperative pattern using Scala's functional programming capabilities. def f(l: List[Int]): Boolean = { for (e <- l) { if (test(e)) return true } } return false } The best I can come up with is along the lines of: l map { e => test(e) } contains true But this is less efficient since it calls test() on each element, whereas the imperative version stops on the first element that satisfies test(). Is there a more idiomatic functional programming technique I can use to the same effect? The imperative version seems awkward in Scala.

    Read the article

  • What did they program this toy with?

    - by Trix
    A rather strange question: I'm often asking myself with what programming languages things were created. I recently found this toy mini computer I played with when I was 13 or so at home. (Note: It is not one of those toy "notebooks", it's really small and came as an extra with a magazine) "Features": Hadware: LCD with a small field of pixels where the games were going on, besides that some stats such as score, highscore etc. Sounds and horrible music when started A really small "keyboard" with a wire Software: At least 14 or so games, from Snake over Tetris and Breakdown to some abomination of a car racing game A calculator Game selecting menu An alarm clock Inside there is a really small circuit board, I don't want to open the thing up now, though. Can you imagine if the games and "Operating System" of this thing where actually programmed using a language? If yes, what language could it be? If not with a programming language, how else was it created?

    Read the article

  • What is it like working as a computer programmer

    - by Luke101
    I have a day job as an IT system administrator, but I do a lot of c# asp.net programming on my spare time. I have always wondered what its like to be a real software developer. I have taken a look at big CMS systems like umbraco and Dotnetnuke and said to myself that these developers must have decades of programming experience. Just the design of these products are overwhelming let alone the actual code. I just would like your comments on what it is like being a programmer.

    Read the article

  • How Do Sockets Work in C?

    - by kaybenleroll
    I am a bit confused about socket programming in C. You create a socket, bind it to an interface and an IP address and get it to listen. I found a couple of web resources on that, and understood it fine. In particular, I found an article Network programming under Unix systems to be very informative. What confuses me is the timing of data arriving on the socket. How can you tell when packets arrive, and how big the packet is, do you have to do all the heavy lifting yourself? My basic assumption here is that packets can be of variable length, so once binary data starts appearing down the socket, how do you begin to construct packets from that?

    Read the article

  • Which language should I learn to create a sudoku game?

    - by Brandan
    I'd like to learn a new programming language, something besides all the scripting languages I've used for the past many years (Ruby, JavaScript, Perl, PHP, bash). I figured it might be interesting to make a sudoku game since there are plenty of documented algorithms and it only requires fairly simple data structures. It might start out as either a generator or a solver of puzzles, not necessarily both and not necessarily with a GUI. My goal is primarily to learn some new programming concepts beyond MVC and UI design, secondarily for this thing to be pretty fast. Is there a language that particularly shines for these sorts of constraint satisfaction problems? Is it suited to a functional language like Haskell or a highly concurrent language like Erlang (say for solving puzzles much larger than 9 x 9)? Or is this question mostly meaningless?

    Read the article

  • How to optimize dynamic programming?

    - by Chan
    Problem A number is called lucky if the sum of its digits, as well as the sum of the squares of its digits is a prime number. How many numbers between A and B are lucky? Input: The first line contains the number of test cases T. Each of the next T lines contains two integers, A and B. Output: Output T lines, one for each case containing the required answer for the corresponding case. Constraints: 1 <= T <= 10000 1 <= A <= B <= 10^18 Sample Input: 2 1 20 120 130 Sample Output: 4 1 Explanation: For the first case, the lucky numbers are 11, 12, 14, 16. For the second case, the only lucky number is 120. The problem is quite simple if we use brute force, however the running time is so critical that my program failed most test cases. My current idea is to use dynamic programming by storing the previous sum in a temporary array, so for example: sum_digits(10) = 1 -> sum_digits(11) = sum_digits(10) + 1 The same idea is applied for sum square but with counter equals to odd numbers. Unfortunately, it still failed 9 of 10 test cases which makes me think there must be a better way to solve it. Any idea would be greatly appreciated. #include <iostream> #include <vector> #include <string> #include <algorithm> #include <unordered_map> #include <unordered_set> #include <cmath> #include <cassert> #include <bitset> using namespace std; bool prime_table[1540] = { 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned num_digits(long long i) { return i > 0 ? (long) log10 ((double) i) + 1 : 1; } void get_sum_and_sum_square_digits(long long n, int& sum, int& sum_square) { sum = 0; sum_square = 0; int digit; while (n) { digit = n % 10; sum += digit; sum_square += digit * digit; n /= 10; } } void init_digits(long long n, long long previous_sum[], const int size = 18) { int current_no_digits = num_digits(n); int digit; for (int i = 0; i < current_no_digits; ++i) { digit = n % 10; previous_sum[i] = digit; n /= 10; } for (int i = current_no_digits; i <= size; ++i) { previous_sum[i] = 0; } } void display_previous(long long previous[]) { for (int i = 0; i < 18; ++i) { cout << previous[i] << ","; } } int count_lucky_number(long long A, long long B) { long long n = A; long long end = B; int sum = 0; int sum_square = 0; int lucky_counter = 0; get_sum_and_sum_square_digits(n, sum, sum_square); long long sum_counter = sum; long long sum_square_counter = sum_square; if (prime_table[sum_counter] && prime_table[sum_square_counter]) { lucky_counter++; } long long previous_sum[19] = {1}; init_digits(n, previous_sum); while (n < end) { n++; if (n % 100000000000000000 == 0) { previous_sum[17]++; sum_counter = previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[16] = 0; previous_sum[15] = 0; previous_sum[14] = 0; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000000000000 == 0) { previous_sum[16]++; sum_counter = previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[15] = 0; previous_sum[14] = 0; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000000000000 == 0) { previous_sum[15]++; sum_counter = previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[14] = 0; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000000000000 == 0) { previous_sum[14]++; sum_counter = previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000000000 == 0) { previous_sum[13]++; sum_counter = previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000000000 == 0) { previous_sum[12]++; sum_counter = previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000000000 == 0) { previous_sum[11]++; sum_counter = previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000000 == 0) { previous_sum[10]++; sum_counter = previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000000 == 0) { previous_sum[9]++; sum_counter = previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000000 == 0) { previous_sum[8]++; sum_counter = previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000 == 0) { previous_sum[7]++; sum_counter = previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000 == 0) { previous_sum[6]++; sum_counter = previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000 == 0) { previous_sum[5]++; sum_counter = previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000 == 0) { previous_sum[4]++; sum_counter = previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000 == 0) { previous_sum[3]++; sum_counter = previous_sum[3] + previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[3] * previous_sum[3] + previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100 == 0) { previous_sum[2]++; sum_counter = previous_sum[2] + previous_sum[3] + previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[2] * previous_sum[2] + previous_sum[3] * previous_sum[3] + previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10 == 0) { previous_sum[1]++; sum_counter = previous_sum[1] + previous_sum[2] + previous_sum[3] + previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[1] * previous_sum[1] + previous_sum[2] * previous_sum[2] + previous_sum[3] * previous_sum[3] + previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[0] = 0; } else { sum_counter++; sum_square_counter += ((n - 1) % 10) * 2 + 1; } // get_sum_and_sum_square_digits(n, sum, sum_square); // assert(sum == sum_counter && sum_square == sum_square_counter); if (prime_table[sum_counter] && prime_table[sum_square_counter]) { lucky_counter++; } } return lucky_counter; } void inout_lucky_numbers() { int n; cin >> n; long long a; long long b; while (n--) { cin >> a >> b; cout << count_lucky_number(a, b) << endl; } } int main() { inout_lucky_numbers(); return 0; }

    Read the article

  • 12.04 upgrade broke grub? (not wubi related)

    - by kaare
    I just updated from 11.10 to 12.04, with no major problems (it took a while to get past a request to restart ssh, mysql and some other services, but I did no fiddling by myself, everything was done by the installer). However, after restarting, grub can't do anything. Picking the new linux installation (first entry), I just get error: no such partition error: no such partition error: no such partition and picking the recovery-version just gives 5 lines instead of 3. I have windows 7 installed on a different drive, and can run it by booting from that drive instead. Picking it from the grub menu gives the same error as above (can't remember how many lines, though). I'll be honest and say that I don't remember if win 7 could be booted from grub before the update, though. In short, nothing on the grub menu works. any solutions? The grub menu changed appearance - before it was on a purple background, small letters, now it's white-on-black, big letters, looking very basic. The original installation was from a usb-drive, and I hadn't heard about wubi until I started googling this problem, so I doubt there's any connection. I really hope there are some grub-savvy people out there :) EDIT: ok. so, I made a bootable usb, and am running from that right now. when I ran the bootinfoscript, it warned me that "gawk" could not be found, using "busybox awk" instead. This may lead to unreliable results. just so you know. The contents of RESULTS.txt are: Boot Info Script 0.61 [1 April 2012] ============================= Boot Info Summary: =============================== => Windows is installed in the MBR of /dev/sda. => Grub2 (v1.99) is installed in the MBR of /dev/sdb and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos3)/boot/grub on this drive. => Syslinux MBR (4.04 and higher) is installed in the MBR of /dev/sdc. sda1: __________________________________________ File system: vfat Boot sector type: Dell Utility: FAT16 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: /DELLBIO.BIN /DELLRMK.BIN /COMMAND.COM sda2: __________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda4: __________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________ File system: vfat Boot sector type: Windows 7: FAT32 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows XP Boot files: /boot.ini /bootmgr /ntldr /NTDETECT.COM sdb1: __________________________________________ File system: ntfs Boot sector type: Windows XP: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sdb2: __________________________________________ File system: swap Boot sector type: - Boot sector info: sdb3: __________________________________________ File system: ext4 Boot sector type: Grub2 (v1.99) Boot sector info: Grub2 (v1.99) is installed in the boot sector of sdb3 and looks at sector 375893584 of the same hard drive for core.img. core.img is at this location and looks for (,msdos3)/boot/grub on this drive. Operating System: Ubuntu 12.04 LTS Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sdb4: __________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Boot files: sdc1: __________________________________________ File system: ntfs Boot sector type: SYSLINUX 4.06 4.06-pre1 Boot sector info: Syslinux looks at sector 4649656 of /dev/sdc1 for its second stage. SYSLINUX is installed in the directory. The integrity check of the ADV area failed. No errors found in the Boot Parameter Block. Operating System: Boot files: /boot/grub/grub.cfg /syslinux/syslinux.cfg /ldlinux.sys ============================ Drive/Partition Info: ============================= Drive: sda _______________________________________ Disk /dev/sda: 250.1 GB, 250059350016 bytes 255 heads, 63 sectors/track, 30401 cylinders, total 488397168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 63 240,974 240,912 de Dell Utility /dev/sda2 241,664 21,213,183 20,971,520 7 NTFS / exFAT / HPFS /dev/sda3 * 21,213,184 483,151,863 461,938,680 7 NTFS / exFAT / HPFS /dev/sda4 483,151,872 488,394,751 5,242,880 f W95 Extended (LBA) /dev/sda5 483,153,920 488,394,751 5,240,832 dd Dell Media Direct Drive: sdb _______________________________________ Disk /dev/sdb: 250.1 GB, 250059350016 bytes 255 heads, 63 sectors/track, 30401 cylinders, total 488397168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sdb1 63 345,886,749 345,886,687 7 NTFS / exFAT / HPFS /dev/sdb2 345,888,768 361,510,911 15,622,144 82 Linux swap / Solaris /dev/sdb3 * 361,510,912 390,807,786 29,296,875 83 Linux /dev/sdb4 390,809,600 488,394,751 97,585,152 83 Linux Drive: sdc _______________________________________ Disk /dev/sdc: 8015 MB, 8015282176 bytes 255 heads, 63 sectors/track, 974 cylinders, total 15654848 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sdc1 * 2,048 15,652,863 15,650,816 7 NTFS / exFAT / HPFS "blkid" output: ____________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 07D8-0411 vfat DellUtility /dev/sda2 E2765BBC765B9061 ntfs RECOVERY /dev/sda3 98DC5E54DC5E2D2E ntfs OS /dev/sda5 7061-9DF5 vfat MEDIADIRECT /dev/sdb1 01CBBB4C3374C3B0 ntfs Data1 /dev/sdb2 1ca45f3f-f888-43d1-8137-02699597189a swap /dev/sdb3 6bc1b599-ad4b-403c-a155-a5bc81211f5e ext4 /dev/sdb4 58e2b257-8608-4b11-b20b-dc162bb80b62 ext4 /dev/sdc1 0C02B64402B63316 ntfs PENDRIVE ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sdb4 /media/58e2b257-8608-4b11-b20b-dc162bb80b62 ext4 (rw,nosuid,nodev,uhelper=udisks) /dev/sdc1 /cdrom fuseblk (rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096) ================================ sda5/boot.ini: ================================ [boot loader] timeout=0 default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Embedded" /fastdetect /KERNEL=NTOSBOOT.EXE /maxmem=1024 =========================== sdb3/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="$1" if [ "$1" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ ${recordfail} != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "$linux_gfx_mode" != "text" ]; then load_video; fi menuentry 'Ubuntu, with Linux 3.2.0-24-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e linux /boot/vmlinuz-3.2.0-24-generic root=UUID=6bc1b599-ad4b-403c-a155-a5bc81211f5e ro quiet splash $vt_handoff initrd /boot/initrd.img-3.2.0-24-generic } menuentry 'Ubuntu, with Linux 3.2.0-24-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod gzio insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e echo 'Loading Linux 3.2.0-24-generic ...' linux /boot/vmlinuz-3.2.0-24-generic root=UUID=6bc1b599-ad4b-403c-a155-a5bc81211f5e ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.2.0-24-generic } submenu "Previous Linux versions" { menuentry 'Ubuntu, with Linux 3.0.0-19-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e linux /boot/vmlinuz-3.0.0-19-generic root=UUID=6bc1b599-ad4b-403c-a155-a5bc81211f5e ro quiet splash $vt_handoff initrd /boot/initrd.img-3.0.0-19-generic } menuentry 'Ubuntu, with Linux 3.0.0-19-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod gzio insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e echo 'Loading Linux 3.0.0-19-generic ...' linux /boot/vmlinuz-3.0.0-19-generic root=UUID=6bc1b599-ad4b-403c-a155-a5bc81211f5e ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.0.0-19-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(hd1,msdos3)' search --no-floppy --fs-uuid --set=root 6bc1b599-ad4b-403c-a155-a5bc81211f5e linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sda3)" --class windows --class os { insmod part_msdos insmod ntfs set root='(hd0,msdos3)' search --no-floppy --fs-uuid --set=root 98DC5E54DC5E2D2E chainloader +1 } menuentry "Microsoft Windows XP Embedded (on /dev/sda5)" --class windows --class os { insmod part_msdos insmod fat set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root 7061-9DF5 drivemap -s (hd0) ${root} chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### =============================== sdb3/etc/fstab: ================================ # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sdb3 during installation UUID=6bc1b599-ad4b-403c-a155-a5bc81211f5e / ext4 errors=remount-ro 0 1 # /home was on /dev/sdb4 during installation UUID=58e2b257-8608-4b11-b20b-dc162bb80b62 /home ext4 defaults,user_xattr 0 2 # swap was on /dev/sdb2 during installation UUID=1ca45f3f-f888-43d1-8137-02699597189a none swap sw 0 0 =================== sdb3: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) = boot/grub/core.img 1 = boot/grub/grub.cfg 1 = boot/initrd.img-3.0.0-19-generic 2 = boot/initrd.img-3.2.0-24-generic 2 = boot/vmlinuz-3.0.0-19-generic 2 = boot/vmlinuz-3.2.0-24-generic 1 = vmlinuz 1 = vmlinuz.old 2 =========================== sdc1/boot/grub/grub.cfg: =========================== if loadfont /boot/grub/font.pf2 ; then set gfxmode=auto insmod efi_gop insmod efi_uga insmod gfxterm terminal_output gfxterm fi set menu_color_normal=white/black set menu_color_highlight=black/light-gray menuentry "Try Ubuntu without installing" { set gfxpayload=keep linux /casper/vmlinuz file=/cdrom/preseed/ubuntu.seed boot=casper quiet splash -- initrd /casper/initrd.lz } menuentry "Install Ubuntu" { set gfxpayload=keep linux /casper/vmlinuz file=/cdrom/preseed/ubuntu.seed boot=casper only-ubiquity quiet splash -- initrd /casper/initrd.lz } menuentry "Check disc for defects" { set gfxpayload=keep linux /casper/vmlinuz boot=casper integrity-check quiet splash -- initrd /casper/initrd.lz } ========================= sdc1/syslinux/syslinux.cfg: ========================== # D-I config version 2.0 include menu.cfg default vesamenu.c32 prompt 0 timeout 50 # If you would like to use the new menu and be presented with the option to install or run from USB at startup, remove # from the following line. This line was commented out (by request of many) to allow the old menu to be presented and to enable booting straight into the Live Environment! # ui gfxboot bootlogo =================== sdc1: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) ?? = ?? boot/grub/grub.cfg 0 ================= sdc1: Location of files loaded by Syslinux: ================== GiB - GB File Fragment(s) ?? = ?? ldlinux.sys 1 ?? = ?? syslinux/chain.c32 1 ?? = ?? syslinux/gfxboot.c32 1 ?? = ?? syslinux/syslinux.cfg 0 ?? = ?? syslinux/vesamenu.c32 1 ============== sdc1: Version of COM32(R) files used by Syslinux: =============== syslinux/chain.c32 : COM32R module (v4.xx) syslinux/gfxboot.c32 : COM32R module (v4.xx) syslinux/vesamenu.c32 : COM32R module (v4.xx) =============================== StdErr Messages: =============================== xz: (stdin): Compressed data is corrupt xz: (stdin): Compressed data is corrupt awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in ./bootinfoscript: line 1646: [: 2.73495e+09: integer expression expected

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • Which programming idiom to choose for this open source library?

    - by Walkman
    I have an interesting question about which programming idiom is easier to use for beginner developers writing concrete file parsing classes. I'm developing an open source library, which one of the main functionality is to parse plain text files and get structured information from them. All of the files contains the same kind of information, but can be in different formats like XML, plain text (each of them is structured differently), etc. There are a common set of information pieces which is the same in all (e.g. player names, table names, some id numbers) There are formats which are very similar to each other, so it's possible to define a common Base class for them to facilitate concrete format parser implementations. So I can clearly define base classes like SplittablePlainTextFormat, XMLFormat, SeparateSummaryFormat, etc. Each of them hints the kind of structure they aim to parse. All of the concrete classes should have the same information pieces, no matter what. To be useful at all, this library needs to define at least 30-40 of these parsers. A couple of them are more important than others (obviously the more popular formats). Now my question is, which is the best programming idiom to choose to facilitate the development of these concrete classes? Let me explain: I think imperative programming is easy to follow even for beginners, because the flow is fixed, the statements just come one after another. Right now, I have this: class SplittableBaseFormat: def parse(self): "Parses the body of the hand history, but first parse header if not yet parsed." if not self.header_parsed: self.parse_header() self._parse_table() self._parse_players() self._parse_button() self._parse_hero() self._parse_preflop() self._parse_street('flop') self._parse_street('turn') self._parse_street('river') self._parse_showdown() self._parse_pot() self._parse_board() self._parse_winners() self._parse_extra() self.parsed = True So the concrete parser need to define these methods in order in any way they want. Easy to follow, but takes longer to implement each individual concrete parser. So what about declarative? In this case Base classes (like SplittableFormat and XMLFormat) would do the heavy lifting based on regex and line/node number declarations in the concrete class, and concrete classes have no code at all, just line numbers and regexes, maybe other kind of rules. Like this: class SplittableFormat: def parse_table(): "Parses TABLE_REGEX and get information" # set attributes here def parse_players(): "parses PLAYER_REGEX and get information" # set attributes here class SpecificFormat1(SplittableFormat): TABLE_REGEX = re.compile('^(?P<table_name>.*) other info \d* etc') TABLE_LINE = 1 PLAYER_REGEX = re.compile('^Player \d: (?P<player_name>.*) has (.*) in chips.') PLAYER_LINE = 16 class SpecificFormat2(SplittableFormat): TABLE_REGEX = re.compile(r'^Tournament #(\d*) (?P<table_name>.*) other info2 \d* etc') TABLE_LINE = 2 PLAYER_REGEX = re.compile(r'^Seat \d: (?P<player_name>.*) has a stack of (\d*)') PLAYER_LINE = 14 So if I want to make it possible for non-developers to write these classes the way to go seems to be the declarative way, however, I'm almost certain I can't eliminate the declarations of regexes, which clearly needs (senior :D) programmers, so should I care about this at all? Do you think it matters to choose one over another or doesn't matter at all? Maybe if somebody wants to work on this project, they will, if not, no matter which idiom I choose. Can I "convert" non-programmers to help developing these? What are your observations? Other considerations: Imperative will allow any kind of work; there is a simple flow, which they can follow but inside that, they can do whatever they want. It would be harder to force a common interface with imperative because of this arbitrary implementations. Declarative will be much more rigid, which is a bad thing, because formats might change over time without any notice. Declarative will be harder for me to develop and takes longer time. Imperative is already ready to release. I hope a nice discussion will happen in this thread about programming idioms regarding which to use when, which is better for open source projects with different scenarios, which is better for wide range of developer skills. TL; DR: Parsing different file formats (plain text, XML) They contains same kind of information Target audience: non-developers, beginners Regex probably cannot be avoided 30-40 concrete parser classes needed Facilitate coding these concrete classes Which idiom is better?

    Read the article

  • Why does linux-image-virtual depend on a generic kernel now?

    - by ændrük
    The linux-image-virtual metapackage has historically provided a kernel that is specifically designed for use in virtual machines: Ubuntu 8.04: linux-image-2.6.24-32-virtual Ubuntu 10.04: linux-image-2.6.32-44-virtual Ubuntu 11.10: linux-image-3.0.0-26-virtual Ubuntu 12.04: linux-image-3.2.0-32-virtual Apparently, this has now changed: Ubuntu 12.10: linux-image-3.5.0-17-generic What's the explanation? Is this still the correct kernel to use in a virtual machine?

    Read the article

  • Why is lowlatency kernel not being updated in parallel with the generic kernel?

    - by FlabbergastedPickle
    All, Any idea when we'll see updates to the lowlatency version of the Ubuntu 12.04 kernel? It is still stuck at 3.2.0.23 whereas the generic kernel is already several updates ahead of it at a version 3.2.0.25? NB: I am using a 64-bit version but I don't think this is limited to the 64-bit kernels alone but rather affects both 32-bit and 64-bit builds. Please do correct me if I am wrong about this.

    Read the article

  • Should I have a separate method for Update(), Insert(), etc., or have a generic Query() that would be able to handle all of these?

    - by Prayos
    I'm currently trying to write a class library for a connection to a database. Looking over it, there are several different types of queries: Select From, Update, Insert, etc. My question is, what is the best practice for writing these queries in a C# application? Should I have a separate method for each of them(i.e. Update(), Insert()), or have a generic Query() that would be able to handle all of these? Thanks for any and all help!

    Read the article

  • Interactive Data Language, IDL: Does anybody care?

    - by Alex
    Anyone use a language called Interactive Data Language, IDL? It is popular with scientists. I think it is a poor language because it is proprietary (every terminal running it has to have an expensive license purchased) and it has minimal support (try searching for IDL, the language, right now on stack) . I am trying to convince my colleagues to stop using it and learn C/C++/Python/Fortran/Java/Ruby. Does anybody know about or even care about IDL enough to have opinions on it? What do you think of it? Should I tell my colleagues to stop wasting their time on it now? How can I convince them? Edit: People are getting the impression that I don't know or use IDL. Also, I said IDL has minimal support which is true in one sense, so I must clarify that the scientific libraries are indeed large. I use IDL all the time, but this is exactly the problem: I am only using IDL because colleagues use it. There is a file format IDL uses, the .sav, which can only be opened in IDL. So I must use IDL to work with this data and transfer the data back to colleagues, but I know I would be more efficient in another language. This is like someone sending you a microsoft word file in an email attachment and if you don't understand how wrong that is then you probably write too many words not enough code and you bought microsoft word. Edit: As an alternative to IDL Python is popular. Here is a list of The Pros of IDL (and the cons) from AstroBetter: Pros of IDL Mature many numerical and astronomical libraries available Wide astronomical user base Numerical aspect well integrated with language itself Many local users with deep experience Faster for small arrays Easier installation Good, unified documentation Standard GUI run/debug tool (IDLDE) Single widget system (no angst about which to choose or learn) SAVE/RESTORE capability Use of keyword arguments as flags more convenient Cons of IDL Narrow applicability, not well suited to general programming Slower for large arrays Array functionality less powerful Table support poor Limited ability to extend using C or Fortran, such extensions hard to distribute and support Expensive, sometimes problem collaborating with others that don’t have or can’t afford licenses. Closed source (only RSI can fix bugs) Very awkward to integrate with IRAF tasks Memory management more awkward Single widget system (useless if working within another framework) Plotting: Awkward support for symbols and math text Many font systems, portability issues (v5.1 alleviates somewhat) not as flexible or as extensible plot windows not intrinsically interactive (e.g., pan & zoom) Pros of Python Very general and powerful programming language, yet easy to learn. Strong, but optional, Object Oriented programming support Very large user and developer community, very extensive and broad library base Very extensible with C, C++, or Fortran, portable distribution mechanisms available Free; non-restrictive license; Open Source Becoming the standard scripting language for astronomy Easy to use with IRAF tasks Basis of STScI application efforts More general array capabilities Faster for large arrays, better support for memory mapping Many books and on-line documentation resources available (for the language and its libraries) Better support for table structures Plotting framework (matplotlib) more extensible and general Better font support and portability (only one way to do it too) Usable within many windowing frameworks (GTK, Tk, WX, Qt…) Standard plotting functionality independent of framework used plots are embeddable within other GUIs more powerful image handling (multiple simultaneous LUTS, optional resampling/rescaling, alpha blending, etc) Support for many widget systems Strong local influence over capabilities being developed for Python Cons of Python More items to install separately Not as well accepted in astronomical community (but support clearly growing) Scientific libraries not as mature: Documentation not as complete, not as unified Not as deep in astronomical libraries and utilities Not all IDL numerical library functions have corresponding functionality in Python Some numeric constructs not quite as consistent with language (or slightly less convenient than IDL) Array indexing convention “backwards” Small array performance slower No standard GUI run/debug tool Support for many widget systems (angst regarding which to choose) Current lack of function equivalent to SAVE/RESTORE in IDL matplotlib does not yet have equivalents for all IDL 2-D plotting capability (e.g., surface plots) Use of keyword arguments used as flags less convenient Plotting: comparatively immature, still much development going on missing some plot type (e.g., surface) 3-d capability requires VTK (though matplotlib has some basic 3-d capability)

    Read the article

  • Defend PHP; convince me it isn't horrible

    - by Jason L
    I made a tongue-in-cheek comment in another question thread calling PHP a terrible language and it got down-voted like crazy. Apparently there are lots of people here who love PHP. So I'm genuinely curious. What am I missing? What makes PHP a good language? Here are my reasons for disliking it: PHP has inconsistent naming of built-in and library functions. Predictable naming patterns are important in any design. PHP has inconsistent parameter ordering of built-in functions, eg array_map vs. array_filter which is annoying in the simple cases and raises all sorts of unexpected behaviour or worse. The PHP developers constantly deprecate built-in functions and lower-level functionality. A good example is when they deprecated pass-by-reference for functions. This created a nightmare for anyone doing, say, function callbacks. A lack of consideration in redesign. The above deprecation eliminated the ability to, in many cases, provide default keyword values for functions. They fixed this in PHP 5, but they deprecated the pass-by-reference in PHP 4! Poor execution of name spaces (formerly no name spaces at all). Now that name spaces exist, what do we use as the dereference character? Backslash! The character used universally for escaping, even in PHP! Overly-broad implicit type conversion leads to bugs. I have no problem with implicit conversions of, say, float to integer or back again. But PHP (last I checked) will happily attempt to magically convert an array to an integer. Poor recursion performance. Recursion is a fundamentally important tool for writing in any language; it can make complex algorithms far simpler. Poor support is inexcusable. Functions are case insensitive. I have no idea what they were thinking on this one. A programming language is a way to specify behavior to both a computer and a reader of the code without ambiguity. Case insensitivity introduces much ambiguity. PHP encourages (practically requires) a coupling of processing with presentation. Yes, you can write PHP that doesn't do so, but it's actually easier to write code in the incorrect (from a sound design perspective) manner. PHP performance is abysmal without caching. Does anyone sell a commercial caching product for PHP? Oh, look, the designers of PHP do. Worst of all, PHP convinces people that designing web applications is easy. And it does indeed make much of the effort involved much easier. But the fact is, designing a web application that is both secure and efficient is a very difficult task. By convincing so many to take up programming, PHP has taught an entire subgroup of programmers bad habits and bad design. It's given them access to capabilities that they lack the understanding to use safely. This has led to PHP's reputation as being insecure. (However, I will readily admit that PHP is no more or less secure than any other web programming language.) What is it that I'm missing about PHP? I'm seeing an organically-grown, poorly-managed mess of a language that's spawning poor programmers. So convince me otherwise!

    Read the article

< Previous Page | 140 141 142 143 144 145 146 147 148 149 150 151  | Next Page >