Search Results

Search found 4147 results on 166 pages for 'nhibernate collections'.

Page 144/166 | < Previous Page | 140 141 142 143 144 145 146 147 148 149 150 151  | Next Page >

  • ASP.NET Custom Control - Template Allowing Literal Content

    - by Bob Fincheimer
    I want my User Control to be able to have Literal Content inside of it. For Example: <fc:Text runat="server">Please enter your login information:</fc:Text> Currently the code for my user control is: <ParseChildren(True, "Content")> _ Partial Public Class ctrFormText Inherits FormControl Private _content As ArrayList <PersistenceMode(PersistenceMode.InnerDefaultProperty), _ DesignerSerializationVisibility(DesignerSerializationVisibility.Content), _ TemplateInstance(TemplateInstance.Single)> _ Public Property Content() As ArrayList Get If _content Is Nothing Then Return New ArrayList End If Return _content End Get Set(ByVal value As ArrayList) _content = value End Set End Property Protected Overrides Sub CreateChildControls() If _content IsNot Nothing Then ctrChildren.Controls.Clear() For Each i As Control In _content ctrChildren.Controls.Add(i) Next End If MyBase.CreateChildControls() End Sub End Class And when I put text inside this control (like above) i get this error: Parser Error Message: Literal content ('Please enter your login information to access CKMS:') is not allowed within a 'System.Collections.ArrayList'. This control could have other content than just the text, so making the Content property an attribute will not solve my problem. I found in some places that I need to implement a ControlBuilder Class, along with another class that implements IParserAccessor. Anyway I just want my default "Content" property to have all types of controls allowed in it, both literal and actual controls.

    Read the article

  • StackOverflow Error at java.util.AbstractColllection.<init>(Unknown Source)

    - by thebulge
    I fixed my prior problem yesterday by just separating all the classes into separate files. Nevertheless, I wrote all the code down and seeing no errors was able to compile the program. Or so I thought. Here's the error code: Exception in thread "main" java.lang.StackOverflowError at java.util.AbstractCollection.<init>(Unknown Source) at java.util.AbstractList.<init>(Unknown Source) at java.util.Vector.<init>(Unknown Source) at java.util.Vector.<init>(Unknown Source) at java.util.Vector.<init>(Unknown Source Here are the spots where my I get the errors(marked with problem?) public class GameWorld implements IObservable, IGameWorld { // create collections class public Vector<GameObject> GameObjectList = new Vector<GameObject>(); // PROBLEM private Vector<IObserver> ObserverList = new Vector<IObserver>(); // declare objects Tank pTank = new Tank(10, 10); // other objects and variables to declare public GameWorld() { // add objects to GameObjectList } // accessors/mutators } I get another error here public class Tank extends Movable implements ISteerable { private int armorStrength; private int missileCount; public Tank() {} public Tank(int armStr, int misslCt) // problem? { armorStrength = armStr; // default armorStrength missileCount = misslCt; // default missileCount } public void setDirection(int direction) { this.setDirection(direction); // get input from left turn or right turn // updateValues(); } // access/mutators here I'm stumped on what to do here.

    Read the article

  • c# Find value in a range using lambda

    - by n4rzul
    I'm trying to find an item in a list of values based on another value using a lambda expression using the Find method. In this example I'm expecting to get back -1000, but for the life of me, I just can't come up with the proper lamda expression. If that sounds confusing I hope the code and comments below explain it better. TIA. using System; using System.Collections.Generic; namespace TestingStuff { class Program { static void Main(string[] args) { double amount = -200; //The Range of values List<MyValue> values = new List<MyValue>(); values.Add(new MyValue(-1000)); values.Add(new MyValue(-100)); values.Add(new MyValue(-10)); values.Add(new MyValue(0)); values.Add(new MyValue(100)); values.Add(new MyValue(1000)); //Find it!!! MyValue fVal = values.Find(x => (x.Value > amount) && (x.Value < amount)); //Expecting -1000 as a result here since -200 falls between -1000 and -100 //if it were -90 I'd expect -100 since it falls between -100 and 0 if (fVal != null) Console.WriteLine(fVal.Value); Console.ReadKey(); } } public class MyValue { public double Value { get; set; } public MyValue(double value) { Value = value; } } }

    Read the article

  • Do running times match with O(nlogn)?

    - by user472221
    Hi I have written a class(greedy strategy) that at first i used sort method which has O(nlogn) Collections.sort(array, new SortingObjectsWithProbabilityField()); and then i used the insert method of binary search tree which takes O(h) and h here is the tree height. for different n ,the running time will be : n,running time 17,515428 33,783340 65,540572 129,1285080 257,2052216 513,4299709 which I think is not correct because for increasing n , the running time should almost increase. This method will take the running time: Exponent = -1; for(int n = 2;n<1000;n+=Math.pow(2,exponent){ for (int j = 1; j <= 3; j++) { Random rand = new Random(); for (int i = 0; i < n; i++) { Element e = new Element(rand.nextInt(100) + 1, rand.nextInt(100) + 1, 0); for (int k = 0; k < i; k++) { if (e.getDigit() == randList.get(k).getDigit()) { e.setDigit(e.getDigit() + 1); } } randList.add(e); } double sum = 0.0; for (int i = 0; i < randList.size(); i++) { sum += randList.get(i).getProbability(); } for (Element i : randList) { i.setProbability(i.getProbability() / sum); } //Get time. long t2 = System.nanoTime(); GreedyVersion greedy = new GreedyVersion((ArrayList<Element>) randList); long t3 = System.nanoTime(); timeForGreedy = timeForGreedy + t3 - t2; } System.out.println(n + "," + "," + timeForGreedy/3 ); exponent++; } thanks

    Read the article

  • how the get estimated output in timer

    - by ratty
    i have working with twp timer,the code below using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; namespace example { public partial class Form1 : Form { int i = 0; int j = 0; public Form1() { InitializeComponent(); timer1.Interval = 3000; } private void button1_Click(object sender, EventArgs e) { timer1.Enabled = true; } private void timer1_Tick(object sender, EventArgs e) { i++; timer2.Enabled = true; if (i < 3) time1(i); else timer1.Enabled = false; } private void timer2_Tick(object sender, EventArgs e) { j++; timer2.Interval = timer1.Interval / 5; if (j < 5) time2(j); else timer2.Enabled = false; } private void time1(int i) { MessageBox.Show(i.ToString(), "First Timer"); } private void time2(int j) { MessageBox.Show(j.ToString(), "SecondTimer"); } } } when running this program it gives output like this firsttimer:1 secondTimer:1 secondTimer:2 secondTimer:3 secondTimer:4 firsttimer:2 in message box but when debugging debug cannot move that order.after finisheg the secondtimer:2 it gose back to first timer. but i need to go for how i am output get i need for this in another application. why it occurs

    Read the article

  • Java: multi-threaded maps: how do the implementations compare?

    - by user346629
    I'm looking for a good hash map implementation. Specifically, one that's good for creating a large number of maps, most of them small. So memory is an issue. It should be thread-safe (though losing the odd put might be an OK compromise in return for better performance), and fast for both get and put. And I'd also like the moon on a stick, please, with a side-order of justice. The options I know are: HashMap. Disastrously un-thread safe. ConcurrentHashMap. My first choice, but this has a hefty memory footprint - about 2k per instance. Collections.sychronizedMap(HashMap). That's working OK for me, but I'm sure there must be faster alternatives. Trove or Colt - I think neither of these are thread-safe, but perhaps the code could be adapted to be thread safe. Any others? Any advice on what beats what when? Any really good new hash map algorithms that Java could use an implementation of? Thanks in advance for your input!

    Read the article

  • Something wrong on my very first LINQ to SQL c # code

    - by user334813
    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; namespace Advanced_LinQ_Query { public partial class Form1 : Form { public Form1() { InitializeComponent(); } private DataClasses1DataContext database = new DataClasses1DataContext(); private void Form1_Load(object sender, EventArgs e) { database.Log= Console.Out; comboBox.SelectedIndex=0; } private void titleBindingNavigatorSaveItem_Click(object sender, EventArgs e) { Validate(); titleBindingSource.EndEdit(); database.SubmitChanges(); comboBox.SelectedIndex=0; } private void comboBox_SelectedIndexChanged(object sender, EventArgs e) { switch (comboBox.SelectedIndex) { case 0: titleBindingSource.DataSource = from Title in database.Titles orderby Title.BookTitle select Title; break; case 1: titleBindingSource.DataSource = from Title in database.Titles where Title.Copyright == "2008" orderby Title.BookTitle select Title; break; case 2: titleBindingSource.DataSource = from Title in database.Titles where Title.BookTitle.EndsWith("How to Program") orderby Title.BookTitle select Title; break; } titleBindingSource.MoveFirst(); } } } no connection seems to built after debugging between Title table in my database (book.mdf) and titleBindingSource! Where is the problem?

    Read the article

  • How is covariance cooler than polymorphism...and not redundant?

    - by P.Brian.Mackey
    .NET 4 introduces covariance. I guess it is useful. After all, MS went through all the trouble of adding it to the C# language. But, why is Covariance more useful than good old polymorphism? I wrote this example to understand why I should implement Covariance, but I still don't get it. Please enlighten me. using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Sample { class Demo { public delegate void ContraAction<in T>(T a); public interface IContainer<out T> { T GetItem(); void Do(ContraAction<T> action); } public class Container<T> : IContainer<T> { private T item; public Container(T item) { this.item = item; } public T GetItem() { return item; } public void Do(ContraAction<T> action) { action(item); } } public class Shape { public void Draw() { Console.WriteLine("Shape Drawn"); } } public class Circle:Shape { public void DrawCircle() { Console.WriteLine("Circle Drawn"); } } public static void Main() { Circle circle = new Circle(); IContainer<Shape> container = new Container<Circle>(circle); container.Do(s => s.Draw());//calls shape //Old school polymorphism...how is this not the same thing? Shape shape = new Circle(); shape.Draw(); } } }

    Read the article

  • How can I avoid garbage collection delays in Java games? (Best Practices)

    - by Brian
    I'm performance tuning interactive games in Java for the Android platform. Once in a while there is a hiccup in drawing and interaction for garbage collection. Usually it's less than one tenth of a second, but sometimes it can be as large as 200ms on very slow devices. I am using the ddms profiler (part of the Android SDK) to search out where my memory allocations come from and excise them from my inner drawing and logic loops. The worst offender had been short loops done like, for(GameObject gob : interactiveObjects) gob.onDraw(canvas); where every single time the loop was executed there was an iterator allocated. I'm using arrays (ArrayList) for my objects now. If I ever want trees or hashes in an inner loop I know that I need to be careful or even reimplement them instead of using the Java Collections framework since I can't afford the extra garbage collection. That may come up when I'm looking at priority queues. I also have trouble where I want to display scores and progress using Canvas.drawText. This is bad, canvas.drawText("Your score is: " + Score.points, x, y, paint); because Strings, char arrays and StringBuffers will be allocated all over to make it work. If you have a few text display items and run the frame 60 times a second that begins to add up and will increase your garbage collection hiccups. I think the best choice here is to keep char[] arrays and decode your int or double manually into it and concatenate strings onto the beginning and end. I'd like to hear if there's something cleaner. I know there must be others out there dealing with this. How do you handle it and what are the pitfalls and best practices you've discovered to run interactively on Java or Android? These gc issues are enough to make me miss manual memory management, but not very much.

    Read the article

  • ASP.NET MVC: How to show value in a label from selected Drop Down List item?

    - by Lillie
    Hi! I'm trying to show a value of selected Drop Down List item in a label. I managed to make this work with Web Forms but with MVC I'm totally lost. My Index looks like this: [...] <% using (Html.BeginForm()) { %> <table> <tr> <td>Processor</td> <td><%= Html.DropDownList("lstProcessor1", new SelectList((IEnumerable)ViewData["Processor1List"], "product_price", "product_description")) %></td> </tr> <tr> <td>Total Amount</td> <td>0,00 €</td> </tr> </table> <input type="submit" value="Submit" /> <% } %> [...] And my HomeController starts with: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using System.Web.Mvc.Ajax; using MvcApplication1.Models; namespace MvcApplication1.Controllers { [HandleError] public class HomeController : Controller { // Connect database DB50DataContext _ctx = new DB50DataContext(); // GET: /Home/ public ActionResult Index() { // Search: Processors var products = from prod in _ctx.products where prod.product_searchcode == "processor1" select prod; ViewData["Processort1List"] = products; return View(); } I would like the product_price to show on the second line of the table, where it now says 0,00 €. It should also update the price automatically when the item from the Drop Down List is changed. I guess I should use JQuery but I have no idea how. Could someone please give me some tips how to do this?

    Read the article

  • How do i use Form.ShowDialog?

    - by Daniel Lip
    private void button2_Click(object sender, EventArgs e) { ChangeLink cl = new ChangeLink(); // Show testDialog as a modal dialog and determine if DialogResult = OK. if (cl.ShowDialog() == DialogResult.OK) { // Read the contents of testDialog's TextBox. // cl.AcceptButton.DialogResult = DialogResult.OK; this.label4.Text = cl.textBox1Text; } else { this.label4.Text = "Cancelled"; } cl.Dispose(); } When i click the button i see the new Form and the textBox1 in the new Form and i can type in the textBox1 something but i dont see anywhere an OK or CANCEL buttons. Should i add them manualy in the new Form designer ? And how to use them then ? This is the code in my new Form what i wanted to do is to type something in the new Form textBox1 and pass the text in the textBox1 to Form1 label4. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; namespace GatherLinks { public partial class ChangeLink : Form { public ChangeLink() { InitializeComponent(); } public string textBox1Text { get { return textBox1Text = textBox1.Text; } set { } } } } So where are the OK and CANCEL buttons of the Form.ShowDialog ?

    Read the article

  • C# return and display syntax issue

    - by thatdude
    I am having trouble passing the return value from TheMethod() to Main and displaying the word if the if statement is passed as true. I have thought of two ways of doing this, neither has worked but I think I am missing synatx. Using a return ?; non void method and then displaying the returned value. Using a void method and actually writing out(example below) So yes I am new at this, however I have made so many iterations everything is blending together and I have forgot what I have tried. Any help on the syntax be great for either of these ways. Basically I need it to iterate numbers 1,2,3,4 and depending on if the current iteration matches an expression in the if statements it will display a word. Example: if (3 = i) { Console.WriteLine("Word"); } Code: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Proj5 { class Program { int i = 0; static void Main(int i) { for (i = 0; i < 101; i++) { Console.WriteLine("test"); } } string TheMethod(int i) { string f = "Word1"; string b = "Word2"; if (i == 3) { return f; } if (i == 5) { return b; } if (0 == (i % 3)) { return f; } if (0 == i % 5) { return b; } else { return b; } } } }

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • "No message serializer has been configured" error when starting NServiceBus endpoint

    - by SteveBering
    My GenericHost hosted service is failing to start with the following message: 2010-05-07 09:13:47,406 [1] FATAL NServiceBus.Host.Internal.GenericHost [(null)] <(null) - System.InvalidOperationException: No message serializer has been con figured. at NServiceBus.Unicast.Transport.Msmq.MsmqTransport.CheckConfiguration() in d:\BuildAgent-02\work\672d81652eaca4e1\src\impl\unicast\NServiceBus.Unicast.Msmq\ MsmqTransport.cs:line 241 at NServiceBus.Unicast.Transport.Msmq.MsmqTransport.Start() in d:\BuildAgent-02\work\672d81652eaca4e1\src\impl\unicast\NServiceBus.Unicast.Msmq\MsmqTransport .cs:line 211 at NServiceBus.Unicast.UnicastBus.NServiceBus.IStartableBus.Start(Action startupAction) in d:\BuildAgent-02\work\672d81652eaca4e1\src\unicast\NServiceBus.Uni cast\UnicastBus.cs:line 694 at NServiceBus.Unicast.UnicastBus.NServiceBus.IStartableBus.Start() in d:\BuildAgent-02\work\672d81652eaca4e1\src\unicast\NServiceBus.Unicast\UnicastBus.cs:l ine 665 at NServiceBus.Host.Internal.GenericHost.Start() in d:\BuildAgent-02\work\672d81652eaca4e1\src\host\NServiceBus.Host\Internal\GenericHost.cs:line 77 My endpoint configuration looks like: public class ServiceEndpointConfiguration : IConfigureThisEndpoint, AsA_Publisher, IWantCustomInitialization { public void Init() { // build out persistence infrastructure var sessionFactory = Bootstrapper.InitializePersistence(); // configure NServiceBus infrastructure var container = Bootstrapper.BuildDependencies(sessionFactory); // set up logging log4net.Config.XmlConfigurator.Configure(); Configure.With() .Log4Net() .UnityBuilder(container) .XmlSerializer(); } } And my app.config looks like: <configSections> <section name="MsmqTransportConfig" type="NServiceBus.Config.MsmqTransportConfig, NServiceBus.Core" /> <section name="UnicastBusConfig" type="NServiceBus.Config.UnicastBusConfig, NServiceBus.Core" /> <section name="Logging" type="NServiceBus.Config.Logging, NServiceBus.Core" /> <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler, log4net" requirePermission="false" /> </configSections> <Logging Threshold="DEBUG" /> <MsmqTransportConfig InputQueue="NServiceBus.ServiceInput" ErrorQueue="NServiceBus.Errors" NumberOfWorkerThreads="1" MaxRetries="2" /> <UnicastBusConfig DistributorControlAddress="" DistributorDataAddress="" ForwardReceivedMessagesTo="NServiceBus.Auditing"> <MessageEndpointMappings> <!-- publishers don't need to set this for their own message types --> </MessageEndpointMappings> </UnicastBusConfig> <connectionStrings> <add name="Db" connectionString="Data Source=..." providerName="System.Data.SqlClient" /> </connectionStrings> <log4net debug="true"> <root> <level value="INFO"/> </root> <logger name="NHibernate"> <level value="ERROR" /> </logger> </log4net> This has worked in the past, but seems to be failing when the generic host starts. My endpoint configuration is below, along with the app.config for the service. What is strange is that in my endpoint configuration, I am specifying to use the XmlSerializer for message serialization. I don't see any other errors in the console output preceding the error message. What am I missing? Thanks, Steve

    Read the article

  • ASP.NET MVC 2: Updating a Linq-To-Sql Entity with an EntitySet

    - by Simon
    I have a Linq to Sql Entity which has an EntitySet. In my View I display the Entity with it's properties plus an editable list for the child entites. The user can dynamically add and delete those child entities. The DefaultModelBinder works fine so far, it correctly binds the child entites. Now my problem is that I just can't get Linq To Sql to delete the deleted child entities, it will happily add new ones but not delete the deleted ones. I have enabled cascade deleting in the foreign key relationship, and the Linq To Sql designer added the "DeleteOnNull=true" attribute to the foreign key relationships. If I manually delete a child entity like this: myObject.Childs.Remove(child); context.SubmitChanges(); This will delete the child record from the DB. But I can't get it to work for a model binded object. I tried the following: // this does nothing public ActionResult Update(int id, MyObject obj) // obj now has 4 child entities { var obj2 = _repository.GetObj(id); // obj2 has 6 child entities if(TryUpdateModel(obj2)) //it sucessfully updates obj2 and its childs { _repository.SubmitChanges(); // nothing happens, records stay in DB } else ..... return RedirectToAction("List"); } and this throws an InvalidOperationException, I have a german OS so I'm not exactly sure what the error message is in english, but it says something along the lines of that the entity needs a Version (Timestamp row?) or no update check policies. I have set UpdateCheck="Never" to every column except the primary key column. public ActionResult Update(MyObject obj) { _repository.MyObjectTable.Attach(obj, true); _repository.SubmitChanges(); // never gets here, exception at attach } I've read alot about similar "problems" with Linq To Sql, but it seems most of those "problems" are actually by design. So am I right in my assumption that this doesn't work like I expect it to work? Do I really have to manually iterate through the child entities and delete, update and insert them manually? For such a simple object this may work, but I plan to create more complex objects with nested EntitySets and so on. This is just a test to see what works and what not. So far I'm disappointed with Linq To Sql (maybe I just don't get it). Would be the Entity Framework or NHibernate a better choice for this scenario? Or would I run into the same problem?

    Read the article

  • How do I merge a transient entity with a session using Castle ActiveRecordMediator?

    - by Daniel T.
    I have a Store and a Product entity: public class Store { public Guid Id { get; set; } public int Version { get; set; } public ISet<Product> Products { get; set; } } public class Product { public Guid Id { get; set; } public int Version { get; set; } public Store ParentStore { get; set; } public string Name { get; set; } } In other words, I have a Store that can contain multiple Products in a bidirectional one-to-many relationship. I'm sending data back and forth between a web browser and a web service. The following steps emulates the communication between the two, using session-per-request. I first save a new instance of a Store: using (new SessionScope()) { // this is data from the browser var store = new Store { Id = Guid.Empty }; ActiveRecordMediator.SaveAndFlush(store); } Then I grab the store out of the DB, add a new product to it, and then save it: using (new SessionScope()) { // this is data from the browser var product = new Product { Id = Guid.Empty, Name = "Apples" }); var store = ActiveRecordLinq.AsQueryable<Store>().First(); store.Products.Add(product); ActiveRecordMediator.SaveAndFlush(store); } Up to this point, everything works well. Now I want to update the Product I just saved: using (new SessionScope()) { // data from browser var product = new Product { Id = Guid.Empty, Version = 1, Name = "Grapes" }; var store = ActiveRecordLinq.AsQueryable<Store>().First(); store.Products.Add(product); // throws exception on this call ActiveRecordMediator.SaveAndFlush(store); } When I try to update the product, I get the following exception: a different object with the same identifier value was already associated with the session: 00000000-0000-0000-0000-000000000000, of entity:Product" As I understand it, the problem is that when I get the Store out of the database, it also gets the Product that's associated with it. Both entities are persistent. Then I tried to save a transient Product (the one that has the updated info from the browser) that has the same ID as the one that's already associated with the session, and an exception is thrown. However, I don't know how to get around this problem. If I could get access to a NHibernate.ISession, I could call ISession.Merge() on it, but it doesn't look like ActiveRecordMediator has anything similar (SaveCopy threw the same exception). Does anyone know the solution? Any help would be greatly appreciated!

    Read the article

  • How to Connect Crystal Reports to MySQL directly by C# code without DSN or a DataSet

    - by Yanko Hernández Alvarez
    How can I connect a Crystal Report (VS 2008 basic) to a MySQL DB without using a DSN or a preload DataSet using C#? I need install the program on several places, so I must change the connection parameters. I don't want to create a DSN on every place, nor do I want to preload a DataSet and pass it to the report engine. I use nhibernate to access the database, so to create and fill the additional DS would take twice the work and additional maintenance later. I think the best option would be to let the crystal reports engine to connect to MySQL server by itself using ODBC. I managed to create the connection in the report designer (VS2008) using the Database Expert, creating an ODBC(RDO) connection and entering this connection string "DRIVER={MySQL ODBC 5.1 Driver};SERVER=myserver.mydomain" and in the "Next" page filling the "User ID", "Password" and "Database" parameters. I didn't fill the "Server" parameter. It worked. As a matter of fact, if you use the former connection string, it doesn't matter what you put on the "Server" parameter, it seems the parameter is unused. On the other hand, if you use "DRIVER={MySQL ODBC 5.1 Driver}" as a connection string and later fill the "Server" parameter with the FQDN of the server, the connection doesn't work. How can I do that by code? All the examples I've seen till now, use a DSN or the DataSet method. I saw the same question posted but for PostgreSQL and tried to adapt it to mysql, but so far, no success. The first method: Rp.Load(); Rp.DataSourceConnections[0].SetConnection("DRIVER={MySQL ODBC 5.1 Driver};SERVER=myserver.mydomain", "database", "user", "pass"); Rp.ExportToDisk(ExportFormatType.PortableDocFormat, "report.pdf"); raise an CrystalDecisions.CrystalReports.Engine.LogOnException during ExportToDisk Message="Logon failed.\nDetails: IM002:[Microsoft][ODBC Driver Manager] Data source name not found and no default driver specified.\rError in File temporal file path.rpt:\nUnable to connect: incorrect log on parameters. the InnerException is an System.Runtime.InteropServices.COMException with the same message and no InnerException The "no default driver specified" makes me wonder if the server parameter is unused here too (see above). In that case: How can I specify the connection string? I haven't tried the second method because it doesn't apply. Does anybody know the solution?

    Read the article

  • Further Performance Tuning on Medium SharePoint Farm?

    - by elorg
    I figured I would post this here, since it may be related more to the server configuration than the SharePoint configuration or a combination of both? I'm open for ideas to try, or even feedback on things that maybe have been configured incorrectly as far as performance is concerned. We have a medium MOSS 2007 install prepped and ready for receiving the WSS 2003 data to upgrade. The environment was originally architected by a previous coworker, and I have since added a few configuration modifications to assist with performance before we finally performed the install. When testing the new site collections & SharePoint install (no actual data yet), things seemed a bit slow. I had assumed that it was because I was accessing it remotely. Apparently the client is still experiencing this and it is unacceptably slow. 1 SQL Server running SQL Server 2008 2x SharePoint WFEs - hosting queries (no index) 1x SharePoint Index - hosting index (no queries) MOSS 2007 installed and patched up through December '09 on WFEs & Index All 4 servers are VMs, should have more than sufficient disk space & RAM (don't recall at the moment), and are running Windows Server 2008 - everything is 64-bit. The WFEs have Windows NLB configured, with a DNS name & IP for the NLB cluster. Single NIC on each server (virtual, since VMWare). The Index server is configured as a WFE (outside of the NLB cluster) so that it can index itself and replicate the indexes to the WFEs that will serve the queries. Everything is configured & working properly - it just takes a minute or two to load a page on the local LAN. The client is still using their old portal (we haven't started the migration/upgrade just yet) so there's virtually no data or users. We need to either further tune the configuration, or fix anything that may have been configured incorrectly which is causing this slowness? I've already reviewed & taken into account everything that I could find that was relevant before we even started the install. Does anyone have ideas or pointers? Perhaps there's something that I've missed?

    Read the article

  • How to fire server-side methods with jQuery

    - by Nasser Hajloo
    I have a large application and I'm going to enabling short-cut key for it. I'd find 2 JQuery plug-ins (demo plug-in 1 - Demo plug-in 2) that do this for me. you can find both of them in this post in StackOverFlow My application is a completed one and I'm goining to add some functionality to it so I don't want towrite code again. So as a short-cut is just catching a key combination, I'm wonder how can I call the server methods which a short-cut key should fire? So How to use either of these plug-ins, by just calling the methods I'd written before? Actually How to fire Server methods with Jquery? You can also find a good article here, by Dave Ward Update: here is the scenario. When User press CTRL+Del the GridView1_OnDeleteCommand so I have this protected void grdDocumentRows_DeleteCommand(object source, System.Web.UI.WebControls.DataGridCommandEventArgs e) { try { DeleteRow(grdDocumentRows.DataKeys[e.Item.ItemIndex].ToString()); clearControls(); cmdSaveTrans.Text = Hajloo.Portal.Common.Constants.Accounting.Documents.InsertClickText; btnDelete.Visible = false; grdDocumentRows.EditItemIndex = -1; BindGrid(); } catch (Exception ex) { Page.AddMessage(GetLocalResourceObject("AProblemAccuredTryAgain").ToString(), MessageControl.TypeEnum.Error); } } private void BindGrid() { RefreshPage(); grdDocumentRows.DataSource = ((DataSet)Session[Hajloo.Portal.Common.Constants.Accounting.Session.AccDocument]).Tables[AccDocument.TRANSACTIONS_TABLE]; grdDocumentRows.DataBind(); } private void RefreshPage() { Creditors = (decimal)((AccDocument)Session[Hajloo.Portal.Common.Constants.Accounting.Session.AccDocument]).Tables[AccDocument.ACCDOCUMENT_TABLE].Rows[0][AccDocument.ACCDOCUMENT_CREDITORS_SUM_FIELD]; Debtors = (decimal)((AccDocument)Session[Hajloo.Portal.Common.Constants.Accounting.Session.AccDocument]).Tables[AccDocument.ACCDOCUMENT_TABLE].Rows[0][AccDocument.ACCDOCUMENT_DEBTORS_SUM_FIELD]; if ((Creditors - Debtors) != 0) labBalance.InnerText = GetLocalResourceObject("Differentiate").ToString() + "?" + (Creditors - Debtors).ToString(Hajloo.Portal.Common.Constants.Common.Documents.CF) + "?"; else labBalance.InnerText = GetLocalResourceObject("Balance").ToString(); lblSumDebit.Text = Debtors.ToString(Hajloo.Portal.Common.Constants.Common.Documents.CF); lblSumCredit.Text = Creditors.ToString(Hajloo.Portal.Common.Constants.Common.Documents.CF); if (grdDocumentRows.EditItemIndex == -1) clearControls(); } Th other scenario are the same. How to enable short-cut for these kind of code (using session , NHibernate, etc)

    Read the article

  • programatically check if a domain is availible?

    - by acidzombie24
    Using this solution http://serverfault.com/questions/98940/bot-check-if-a-domain-name-is-availible/98956#98956 I wrote a quick script (pasted below) in C# to check if the domain MIGHT be available. A LOT of results come up with taken domains. It looks like all 2 and 3 letter .com domains are taken and it looks like all 3 letter are taken (not including numbers which many are available). Is there a command or website to take my list of domains and check if they are registered or available? using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Text.RegularExpressions; using System.Diagnostics; using System.IO; namespace domainCheck { class Program { static void Main(string[] args) { var sw = (TextWriter)File.CreateText(@"c:\path\aviliableUrlsCA.txt"); int countIndex = 0; int letterAmount=3; char [] sz = new char[letterAmount]; for(int z=0; z<letterAmount; z++) { sz[z] = '0'; } //*/ List<string> urls = new List<string>(); //var sz = "df3".ToCharArray(); int i=0; while (i <letterAmount) { if (sz[i] == '9') sz[i] = 'a'; else if (sz[i] == 'z') { if (i != 0 && i != letterAmount - 1) sz[i] = '-'; else { sz[i] = 'a'; i++; continue; } } else if (sz[i] == '-') { sz[i] = 'a'; i++; continue; } else sz[i]++; string uu = new string(sz); string url = uu + ".ca"; Console.WriteLine(url); Process p = new Process(); p.StartInfo.UseShellExecute = false; p.StartInfo.RedirectStandardError = true; p.StartInfo.RedirectStandardOutput = true; p.StartInfo.FileName = "nslookup "; p.StartInfo.Arguments = url; p.Start(); var res = ((TextReader) new StreamReader( p.StandardError.BaseStream)).ReadToEnd(); if (res.IndexOf("Non-existent domain") != -1) { sw.WriteLine(uu); if (++countIndex >= 100) { sw.Flush(); countIndex = 0; } urls.Add(uu); Console.WriteLine("Found domain {0}", url); } i = 0; } Console.WriteLine("Writing out list of urls"); foreach (var u in urls) Console.WriteLine(u); sw.Close(); } } }

    Read the article

  • Classes to Entities; Like-class inheritence problems

    - by Stacey
    Beyond work, some friends and I are trying to build a game of sorts; The way we structure some of it works pretty well for a normal object oriented approach, but as most developers will attest this does not always translate itself well into a database persistent approach. This is not the absolute layout of what we have, it is just a sample model given for sake of representation. The whole project is being done in C# 4.0, and we have every intention of using Entity Framework 4.0 (unless Fluent nHibernate can really offer us something we outright cannot do in EF). One of the problems we keep running across is inheriting things in database models. Using the Entity Framework designer, I can draw the same code I have below; but I'm sure it is pretty obvious that it doesn't work like it is expected to. To clarify a little bit; 'Items' have bonuses, which can be of anything. Therefore, every part of the game must derive from something similar so that no matter what is 'changed' it is all at a basic enough level to be hooked into. Sounds fairly simple and straightforward, right? So then, we inherit everything that pertains to the game from 'Unit'. Weights, Measures, Random (think like dice, maybe?), and there will be other such entities. Some of them are similar, but in code they will each react differently. We're having a really big problem with abstracting this kind of thing into a database model. Without 'Enum' support, it is proving difficult to translate into multiple tables that still share a common listing. One solution we've depicted is to use a 'key ring' type approach, where everything that attaches to a character is stored on a 'Ring' with a 'Key', where each Key has a Value that represents a type. This works functionally but we've discovered it becomes very sluggish and performs poorly. We also dislike this approach because it begins to feel as if everything is 'dumped' into one class; which makes management and logical structure difficult to adhere to. I was hoping someone else might have some ideas on what I could do with this problem. It's really driving me up the wall; To summarize; the goal is to build a type (Unit) that can be used as a base type (Table per Type) for generic reference across a relatively global scope, without having to dump everything into a single collection. I can use an Interface to determine actual behavior so that isn't too big of an issue. This is 'roughly' the same idea expressed in the Entity Framework.

    Read the article

  • C# Select clause returns system exception instead of relevant object

    - by Kashif
    I am trying to use the select clause to pick out an object which matches a specified name field from a database query as follows: objectQuery = from obj in objectList where obj.Equals(objectName) select obj; In the results view of my query, I get: base {System.SystemException} = {"Boolean Equals(System.Object)"} Where I should be expecting something like a Car, Make, or Model Would someone please explain what I am doing wrong here? The method in question can be seen here: // this function searches the database's table for a single object that matches the 'Name' property with 'objectName' public static T Read<T>(string objectName) where T : IEquatable<T> { using (ISession session = NHibernateHelper.OpenSession()) { IQueryable<T> objectList = session.Query<T>(); // pull (query) all the objects from the table in the database int count = objectList.Count(); // return the number of objects in the table // alternative: int count = makeList.Count<T>(); IQueryable<T> objectQuery = null; // create a reference for our queryable list of objects T foundObject = default(T); // create an object reference for our found object if (count > 0) { // give me all objects that have a name that matches 'objectName' and store them in 'objectQuery' objectQuery = from obj in objectList where obj.Equals(objectName) select obj; // make sure that 'objectQuery' has only one object in it try { foundObject = (T)objectQuery.Single(); } catch { return default(T); } // output some information to the console (output screen) Console.WriteLine("Read Make: " + foundObject.ToString()); } // pass the reference of the found object on to whoever asked for it return foundObject; } } Note that I am using the interface "IQuatable<T>" in my method descriptor. An example of the classes I am trying to pull from the database is: public class Make: IEquatable<Make> { public virtual int Id { get; set; } public virtual string Name { get; set; } public virtual IList<Model> Models { get; set; } public Make() { // this public no-argument constructor is required for NHibernate } public Make(string makeName) { this.Name = makeName; } public override string ToString() { return Name; } // Implementation of IEquatable<T> interface public virtual bool Equals(Make make) { if (this.Id == make.Id) { return true; } else { return false; } } // Implementation of IEquatable<T> interface public virtual bool Equals(String name) { if (this.Name.Equals(name)) { return true; } else { return false; } } } And the interface is described simply as: public interface IEquatable<T> { bool Equals(T obj); }

    Read the article

  • Generate A Simple Read-Only DAL?

    - by David
    I've been looking around for a simple solution to this, trying my best to lean towards something like NHibernate, but so far everything I've found seems to be trying to solve a slightly different problem. Here's what I'm looking at in my current project: We have an IBM iSeries database as a primary repository for a third party software suite used for our core business (a financial institution). Part of what my team does is write applications that report on or key off of a lot of this data in some way. In the past, we've been manually creating ADO .NET connections (we're using .NET 3.5 and Visual Studio 2008, by the way) and manually writing queries, etc. Moving forward, I'd like to simplify the process of getting data from there for the development team. Rather than creating connections and queries and all that each time, I'd much rather a developer be able to simply do something like this: var something = (from t in TableName select t); And, ideally, they'd just get some IQueryable or IEnumerable of generated entities. This would be done inside a new domain core that I'm building where these entities would live and the applications would interface with it through a request/response service layer. A few things to note are: The entities that correspond to the database tables should be generated once and we'd prefer to manually keep them updated over time. That is, if columns/tables are added to the database then we shouldn't have to do anything. (If some are deleted, of course, it will break, but that's fine.) But if we need to use a new column, we should be able to just add it to the necessary class(es) without having to re-gen the whole thing. The whole thing should be SELECT-only. We're not doing a full DAL here because we don't want to be able to break anything in the database (even accidentally). We don't need any kind of mapping between our domain objects and the generated entity types. The domain barely covers a fraction of the data that's in there, most of it we'll never need, and we would rather just create re-usable maps manually over time. I already have a logical separation for the DAL where my "repository" classes return domain objects, I'm just looking for a better alternative to manual ADO to be used inside the repository classes. Any suggestions? It seems like what I'm doing is just enough outside the normal demand for DAL/ORM tools/tutorials online that I haven't been able to find anything. Or maybe I'm just overlooking something obvious?

    Read the article

  • Architecture Suggestions/Recommendations for a Web Application with Sub-Apps

    - by user579218
    Hello. I’m starting to plan an architecture for a big web application, and I wanted to get suggestions and/or recommendations on where to begin and which technologies and/or frameworks to use. The application will be an Intranet-based web site using Windows authentication, running on IIS and using SQL Server and ASP.NET. It’ll need to be structured as a main/shell application with sub-applications that are “pluggable” based on some configuration settings. The main or shell application is to provide the overall user interface structure – header/footer, dynamically built tabs for each available sub-app, and a content area in which the sub-application will be loaded when the user clicks on the sub-application’s tab. So, on start-up of the main/shell application, configuration information will be queried from a database, and, based on the user and which of the sub-apps are available, the main or shell app would dynamically build tabs (or buttons or something) as a way to access each individual application. On start-up, the content area will be populated with the “home” sub-app. But, clicking on an sub-app tab will cause the content area to be populated with the sub-app corresponding to the tab. For example, we’re going to have a reports application, a display application, and probably a couple other distinct applications. On startup of the main/shell application, after determining who the user is, the main app will query the database to determine which sub-apps the user can use and build out the UI. Then the user can navigate between available sub-apps and do their work in each. Finally, the entire app and all sub-apps need to be a layered design with presentation, service, business, and data access layers, as well as cross-cutting objects for things such as logging, exception handling, etc. Anyway, my questions revolve around where to begin to plan something like this application. What technologies/frameworks would work best in developing a solution for this application? MVC? MVP? WCSF? EF? NHibernate? Enterprise Library? Repository Pattern? Others???? I know all these technologies/frameworks are not used for the same purpose, but knowing which ones to focus on is a little overwhelming. Which ones would be the best choice(s) for a solution? Which ones work well together for an end-to-end design? How would one structure the VS project for something like this? Thanks!

    Read the article

  • Getting up to speed on modern architecture

    - by Matt Thrower
    Hi, I don't have any formal qualifications in computer science, rather I taught myself classic ASP back in the days of the dotcom boom and managed to get myself a job and my career developed from there. I was a confident and, I think, pretty good programmer in ASP 3 but as others have observed one of the problems with classic ASP was that it did a very good job of hiding the nitty-gritty of http so you could become quite competent as a programmer on the basis of relatively poor understanding of the technology you were working with. When I changed on to .NET at first I treated it like classic ASP, developing stand-alone applications as individual websites simply because I didn't know any better at the time. I moved jobs at this point and spent the next several years working on a single site whose architecture relied heavily on custom objects: in other words I gained a lot of experience working with .NET as a middle-tier development tool using a quite old-fashioned approach to OO design along the lines of the classic "car" class example that's so often used to teach OO. Breaking down programs into blocks of functionality and basing your classes and methods around that. Although we worked under an Agile approach to manage the work the whole setup was classic client/server stuff. That suited me and I gradually got to grips with .NET and started using it far more in the manner that it should be, and I began to see the power inherent in the technology and precisely why it was so much better than good old ASP 3. In my latest job I have found myself suddenly dropped in at the deep end with two quite young, skilled and very cutting-edge programmers. They've built a site architecture which is modelling along a lot of stuff which is new to me and which, in truth I'm having a lot of trouble understanding. The application is built on a cloud computing model with multi-tenancy and the architecture is all loosely coupled using a lot of interfaces, factories and the like. They use nHibernate a lot too. Shortly after I joined, both these guys left and I'm now supposedly the senior developer on a system whose technology and architecture I don't really understand and I have no-one to ask questions of. Except you, the internet. Frankly I feel like I've been pitched in at the deep end and I'm sinking. I'm not sure if this is because I lack the educational background to understand this stuff, if I'm simply not mathematically minded enough for modern computing (my maths was never great - my approach to design is often to simply debug until it works, then refactor until it looks neat), or whether I've simply been presented with too much of too radical a nature at once. But the only way to find out which it is is to try and learn it. So can anyone suggest some good places to start? Good books, tutorials or blogs? I've found a lot of internet material simply presupposes a level of understanding that I just don't have. Your advice is much appreciated. Help a middle-aged, stuck in the mud developer get enthusastic again! Please!

    Read the article

< Previous Page | 140 141 142 143 144 145 146 147 148 149 150 151  | Next Page >