Search Results

Search found 19134 results on 766 pages for 'support contract'.

Page 149/766 | < Previous Page | 145 146 147 148 149 150 151 152 153 154 155 156  | Next Page >

  • MySQL Connector/Net 6.6 GA has been released

    - by fernando
    MySQL Connector/Net 6.6, a new version of the all-managed .NET driver for MySQL has been released.  This is the GA intended to introduce users to the new features in the release.  This release is feature complete. It is recommended for use in production environments. It is appropriate for use with MySQL server versions 5.0-5.6 It is now available in source and binary form from http://dev.mysql.com/downloads/connector/net/#downloads and mirror sites (note that not all mirror sites may be up to date at this point-if you can't find this version on some mirror, please try again later or choose another download site.) The 6.6 version of MySQL Connector/Net brings the following new features:   * Stored routine debugging   * Entity Framework 4.3 Code First support   * Pluggable authentication (now third parties can plug new authentications mechanisms into the driver).   * Full Visual Studio 2012 support: everything from Server Explorer to Intellisense&   the Stored Routine debugger. The release is available to download athttp://dev.mysql.com/downloads/connector/net/6.6.html Documentation ------------------------------------- You can view current Connector/Net documentation at http://dev.mysql.com/doc/refman/5.5/en/connector-net.html For specific topics: Stored Routine Debugger:http://dev.mysql.com/doc/refman/5.5/en/connector-net-visual-studio-debugger.html Authentication plugin:http://dev.mysql.com/doc/refman/5.5/en/connector-net-programming-authentication-user-plugin.html You can find our team blog at http://blogs.oracle.com/MySQLOnWindows. You can also post questions on our forums at http://forums.mysql.com/. Enjoy and thanks for the support! 

    Read the article

  • Should I charge for travel expenses as a contractor?

    - by Keith
    Here's a question for all my fellow contractors - I'm paid quite handsomely for my normal contracted hours (any overtime is billed at the same rate) but do you think it fair to bill for travel time to the other end of the country (regional office) when this takes place outside of the normal working day (or overlapping into the evening) as well as actual time holed up in a hotel room when you get there, ready for a normal working day the next day, along with the return journey? Petrol is claimed normally (nominal rate) and hotel is covered by the company I contract for.

    Read the article

  • AS2 Server Software Costs

    - by CandyCo
    We're currently using Cleo LexiCom as our server software for receiving EDI transmissions via the AS2 protocol. We have 7 trading partners per year, and this runs us about $800/year for support from Cleo. We need to expand from 7 trading partners to 10 or so, and Cleo charges roughly $600 per new host, plus an expanded yearly support fee. My question(s) are: Does anyone know of a cheaper developer of AS2 server software, and perhaps one that doesn't charge per new host? Does anyone have any clue why we are being charged an upfront fee for new hosts, and if this is a standard practice for AS2 software providers? It seems really odd that we are required to pay upfront costs for this. I could completely understand an increase in the yearly support, however.

    Read the article

  • Workflow Adapter/Connector Pair

    The Workflow Adapter/Connector pair are custom WF Activities for a Business-To-Business Logical Connectivity based on the Interface Contract. The connectivity handles the invoking and consuming of Workflows, Remoting objects, WCF Services in the transparent manner based on the configuration.

    Read the article

  • Transparent, unicode X terminal not tied to a Desktop Environment?

    - by jamuraa
    I've been looking for this for a while now and I just haven't been able to find one. The last few that I used were: aterm - this one was fast and had good transparency support, but it doesn't support Unicode at all as far as I can tell. The dependency graph is also reasonable. gnome-terminal - was good, and had good transparency support plus unicode, but it pulls in about everything in gnome, and I don't use anything else in gnome. It was also somewhat slow (noticable lag in updating at times) and wouldn't use fonts that I wanted. Eterm - same thing as aterm, good dependencies and transparency but no unicode. Does anyone have suggestions, or will I be stuck with gnome-terminal's dependencies and slowness?

    Read the article

  • designing solution to dynamically load class

    - by dot
    Background Information I have a web app that allows end users to connect to ssh-enabled devices and manipulate them. Right now, i only support one version of firmware. The logic is something like this: user clicks on a button to run some command on device. web application looks up the class name containing the correct ssh interface for the device, using the device's model name. (because the number of hardware models is so small, i have a list that's hardcoded in my web app) web app creates a new ssh object using the class loaded in step 2. ssh command is run and session closed. command results displayed on web page. This all works fine. Now the end user wants me to be able to support multiple versions of firmware. But the catch is, they don't want to have to document the firmware version anywhere becuase the amount of overhead this will create in maintaining the system database. In other words, I can't look up the firmware version based on the device. The good news is that it sounds like at most, I'll have to support two different versions of firmware per device. One option is to name the the classes like this: deviceX.1.php deviceX.2.php deviceY.1.php deviceY.2.php where "X" and "Y" represent the model names, and 1 and 2 represent the firmware versions. When a user runs a command, I will first try it with one of the class files, if it fails, i can try with the second. I think always try the newer version of firmware first... so let's say in the above example, I would load deviceX.2.php before deviceX.1.php. This will work, but it's not very efficient. But I can't think of another way around this. Any suggestions?

    Read the article

  • Save Time and Money - Create a Website Brief That Works

    If you have been given the task of creating or updating a website for your business or organisation, there are some key questions you need to ask before you get started. Answering these questions will prove to be invaluable in saving you precious time once you contract a web development company, and ensuring you get the kind of website that really works for you.

    Read the article

  • Save Time and Money - Create a Website Brief That Works

    If you have been given the task of creating or updating a website for your business or organisation, there are some key questions you need to ask before you get started. Answering these questions will prove to be invaluable in saving you precious time once you contract a web development company, and ensuring you get the kind of website that really works for you.

    Read the article

  • ViewPager and Fragment Pager adapter implementation

    - by Rohit Deshmukh
    So I am trying to implement sliding views/fragments using viewpager and fragment pager adapter. convert_home is my main xml file that has android.support.v4.view.PagerTitleStrip and temperature.xml and velocity.xml are my two other views. I have no clue where I am going wrong. package app.converto; import android.os.Bundle; import android.support.v4.app.Fragment; import android.support.v4.app.FragmentActivity; import android.support.v4.app.FragmentManager; import android.support.v4.app.FragmentPagerAdapter; import android.support.v4.view.ViewPager; import android.view.LayoutInflater; import android.view.Menu; import android.view.View; import android.view.ViewGroup; import android.widget.TextView; public class ConverTo extends FragmentActivity { SectionsPagerAdapter mSectionsPagerAdapter; ViewPager mViewPager; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mSectionsPagerAdapter = new SectionsPagerAdapter(getSupportFragmentManager()); mViewPager.setAdapter(mSectionsPagerAdapter); setContentView(R.layout.converto_home); mViewPager = (ViewPager) findViewById(R.id.pager); } @Override public boolean onCreateOptionsMenu(Menu menu) { getMenuInflater().inflate(R.menu.converto_home, menu); return true; } public class SectionsPagerAdapter extends FragmentPagerAdapter { public SectionsPagerAdapter(FragmentManager fm) { super(fm); } @Override public Fragment getItem(int i) { switch(i){ case 0: Fragment1 fragment = new Fragment1(); return fragment; case 1: Fragment2 fragment2 = new Fragment2(); return fragment2; } defaultFragment fragment3 = new defaultFragment(); return fragment3; } @Override public int getCount() { return 2; } // // @Override // public CharSequence getPageTitle(int position) { // switch (position) { // case 0: return getString(R.string.velocity); // case 1: return getString(R.string.temperature); // case 2: return getString(R.string.distance); // } // return null; // } } public static class Fragment1 extends Fragment{ public Fragment1(){ } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); } @Override public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) { //return inflater.inflate(R.layout.temperature, container, false); View view = inflater.inflate(R.layout.temperature, container, false); TextView textView = (TextView) view.findViewById(R.id.sample); textView.setText(getArguments().getString("title")); return view; } } public static class Fragment2 extends Fragment{ public Fragment2(){ } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); } @Override public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) { //return inflater.inflate(R.layout.velocity, container, false); View view = inflater.inflate(R.layout.temperature, container, false); TextView textView = (TextView) view.findViewById(R.id.sample); textView.setText(getArguments().getString("title")); return view; } } public static class defaultFragment extends Fragment{ public defaultFragment(){ }//end constructor @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); } @Override public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) { // return inflater.inflate(R.layout.temperature, container, false); View view = inflater.inflate(R.layout.temperature, container, false); TextView textView = (TextView) view.findViewById(R.id.sample); textView.setText(getArguments().getString("title")); return view; }//end oncreate }//end default fragment }

    Read the article

  • What do you expect from a package manager for Emacs

    - by tarsius
    Although several hundred Emacs Lisp libraries exist GNU Emacs does not have an (internal) package manager. I guess that most users would agree that it is currently rather inconvenient to find, install and especially keep up-to-date Emacs Lisp libraries. These pages make life a bit easier Emacs Lisp List - Problem: I see dead people (links). Emacswiki - Problem: May contain traces of nuts (malicious code). These are some package managers XEmacs package manager package.el - ELPA pases install.el install-elisp.el plugin.el use-package.el jem-pkg.el epkg/elm - the one I am working. And this are some packages that provide functionality that might be useful in a package manager ell.el - Browse the Emacs Lisp List genauto.el - helps generate autoloads for your elisp packages date-calc.el - date calculation and parsing routines strptime.el - partial implementation of POSIX date and time parsing wikirel.el - Visit relevant pages on the Emacs Wiki loadhist.el, lib-requires.el, elisp-depend.el - Commands to list Emacs Lisp library dependencies. project-root.el - Define a project root and take actions based upon it So I would like to know from you what you consider important/unimportant/supplementary... in a package manager for Emacs. Some ideas Many packages (incorporate the Emacs Lisp List and other lists of libraries). Only packages that have been tested. Support for more than one package archive (so people can choose between many/tested packages). Dependency calculated based on required features only. Dependencies take particular versions into account. Only use versions that have been released upstream. Use versions from version control systems if available. Packages are categorized. Packages can be uninstalled and updated not only installed. Support creating fork of upstream version of packages. Support publishing these forks. Support choosing a fork. After installation packages are activated. Generate autoloads. Integration with Emacswiki (see wikirel.el). Users can tag, comment ... packages and share that information. Only FSF-assigned/GPL/FOSS software or don't care about license. Package manager should be integrated in Emacs. Support contacting author. Lots of metadata. Suggest alternatives before installing a particular package. Some discussions about the subject at hand emacs-devel 20080801 comp.emacs 20021121 RationalElispPackaging I am hoping for these kinds of answers Pointers to more implementations, discussions etc. Lengthy descriptions of a set of features that make up your ideal package manager. Descriptions of one particular disired/undisired feature. This has the advantage that the regular voting mechanism allows us to see what features are most welcomed. Feel free to elaborate on my ideas from above. Surprise me.

    Read the article

  • jquery data selector

    - by Tauren
    I need to select elements based on values stored in an element's .data() object. At a minimum, I'd like to select top-level data properties using selectors, perhaps like this: $('a').data("category","music"); $('a:data(category=music)'); Or perhaps the selector would be in regular attribute selector format: $('a[category=music]'); Or in attribute format, but with a specifier to indicate it is in .data(): $('a[:category=music]'); I've found James Padolsey's implementation to look simple, yet good. The selector formats above mirror methods shown on that page. There is also this Sizzle patch. For some reason, I recall reading a while back that jQuery 1.4 would include support for selectors on values in the jquery .data() object. However, now that I'm looking for it, I can't find it. Maybe it was just a feature request that I saw. Is there support for this and I'm just not seeing it? Ideally, I'd like to support sub-properties in data() using dot notation. Like this: $('a').data("user",{name: {first:"Tom",last:"Smith"},username: "tomsmith"}); $('a[:user.name.first=Tom]'); I also would like to support multiple data selectors, where only elements with ALL specified data selectors are found. The regular jquery multiple selector does an OR operation. For instance, $('a.big, a.small') selects a tags with either class big or small). I'm looking for an AND, perhaps like this: $('a').data("artist",{id: 3281, name: "Madonna"}); $('a').data("category","music"); $('a[:category=music && :artist.name=Madonna]'); Lastly, it would be great if comparison operators and regex features were available on data selectors. So $(a[:artist.id>5000]) would be possible. I realize I could probably do much of this using filter(), but it would be nice to have a simple selector format. What solutions are available to do this? Is Jame's Padolsey's the best solution at this time? My concern is primarily in regards to performance, but also in the extra features like sub-property dot-notation and multiple data selectors. Are there other implementations that support these things or are better in some way?

    Read the article

  • Browser detection Plugin?

    - by chobo2
    Hi I have a website that I made and I am planning to redo it. The current version of the site used a jquery callout plugin that did not fully work in IE6. This got me thinking about browser detection. At first I was just going to put the supported browsers on the home page but then today on Digg I saw some post about some jquery plugins and wordpress and in the article there was a plugin for detecting IE. So I started to look around for some browser detection plugins. I found a few of them but they where over the top like this one sevenup Its nice but it makes a huge popup and tells them to update. This one is better then another one I found where they basically forced the user to update or they could not continue on the site. So I found this one jquery plugin This one is pretty nice since it looks at the major browsers and does detection on them too expect for chrome which I noticed triggers and an outdated browser with this plugin. So I started to look at the jquery documentation to see if they had a browser detection for chrome this is when I saw that they "Deprecated" and now recommend "Support". So now I am just confused like "Support" seems to be good and I read many posts on this site saying you should use it. But then it does not support stuff like .png detection that might have been useful to me since of that plugin(however I probably will not be using the plugin anymore since I think the author just gave up on it). Plus I don't know if this is something I am looking for at this time. Like I am guessing with "Support" you use it to detect something that is not supported and then do some alternative thing for that browser? For me I am more looking for something to tell the user "Hey look I tested this browser in the these versions of Firefox(3.5+), IE(8+), Opera(9.5+),Chrome(Something), Safari(Something). If your not using these versions you may not being seeing the site how it was intended" Of course I would try to have something shorter then that message but that the gyst. I am also assuming that the site would work in future versions of these browsers. I still check to see if my site works(they usually do) and is half decent in IE 6 but I won't spend hours fixing stuff that might be off in older browsers like IE 6. I won't test my site in older version of other browsers like firefox since I would think the user have to the sense to update so no point testing firefox 2.0 or whatever. So is there a plugin that fits this description? Or can "Support" do what I want? Thanks

    Read the article

  • A Security (encryption) Dilemma

    - by TravisPUK
    I have an internal WPF client application that accesses a database. The application is a central resource for a Support team and as such includes Remote Access/Login information for clients. At the moment this database is not available via a web interface etc, but one day is likely to. The remote access information includes the username and passwords for the client's networks so that our client's software applications can be remotely supported by us. I need to store the usernames and passwords in the database and provide the support consultants access to them so that they can login to the client's system and then provide support. Hope this is making sense. So the dilemma is that I don't want to store the usernames and passwords in cleartext on the database to ensure that if the DB was ever compromised, I am not then providing access to our client's networks to whomever gets the database. I have looked at two-way encryption of the passwords, but as they say, two-way is not much different to cleartext as if you can decrypt it, so can an attacker... eventually. The problem here is that I have setup a method to use a salt and a passcode that are stored in the application, I have used a salt that is stored in the db, but all have their weaknesses, ie if the app was reflected it exposes the salts etc. How can I secure the usernames and passwords in my database, and yet still provide the ability for my support consultants to view the information in the application so they can use it to login? This is obviously different to storing user's passwords as these are one way because I don't need to know what they are. But I do need to know what the client's remote access passwords are as we need to enter them in at the time of remoting to them. Anybody have some theories on what would be the best approach here? update The function I am trying to build is for our CRM application that will store the remote access details for the client. The CRM system provides call/issue tracking functionality and during the course of investigating the issue, the support consultant will need to remote in. They will then view the client's remote access details and make the connection

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Update BIOS on Sun Fire X4150 server

    - by Massimo
    I have some Sun Fire X4150 servers with a very old BIOS release (1ADQW015), which seems to have some compatibility problems with WMware ESX Server 3.5 and Windows 2008 R2 virtual machines; so I want to update the BIOS on them. The problem: according to this page, if your servers run ELOM (mine do), you first need to update to the latest ELOM release, then to the interim transition release, then finally you can update to the latest one. Ok, I'm willing to do that... but it looks like Sun (now Oracle) will happily let you download the latest firmware DVD (3.3.0), but it will not let you download the transition release (2.0) if you don't have a support contract. Well, I actuall don't care at all about the servers' management controllers (we don't even use them), so upgrading from ELOM to ILOM is totally irrelevant to me; but I need to update the servers' BIOS. So my question is: can I update the servers' BIOS to the latest version without doing the full ELOM-to-ILOM migration, or will this not work (or even make the servers unusable)? Do BIOS versions and SP ones need to be matched, or can one be updated without bothering with the other? Bonus question: if this whole ELOM-to-ILOM thing actually is needed in order to update the BIOS, can that 2.0 CD-ROM be obtained without having a support contract with Sun/Oracle (which we are definitely not going to sign, being that quite old hardware)? Update: I tried upgrading only the BIOS on one of the servers, and it didn't boot anymore. So it really looks like a full firmware upgrade is needed, and the management controller and BIOS versions should be kept in sync. So... where can I find that *&!£%$% 2.0 CD-ROM? Or at least the transition firmware that can be found on it?

    Read the article

  • Cisco Catalyst 3550 + Alteon 184 Load-Balancing Issues...

    - by upkels
    I have just deployed a couple Cisco Catalyst 3550 switches, and a couple Alteon 184 Web Switches for load-balancing. I can ping all RIPs and VIPs to/from the Alteon. Topology Before: (server) <- (Alteon) <- (Internet) Topology Now: (server) <- (3550) <- Alteon <- (Internet) Cisco Port Configuration (Alteon Uplink Port): description LB_1_PORT_9_PRIMARY switchport access vlan 10 switchport mode access switchport nonegotiate speed 100 duplex full Alteon Port 9 Configuration (VLAN 10 WAN): >> Main# /c/port 9/cur Current Port 9 configuration: enabled pref fast, backup gig, PVID 10, BW Contract 1024 name UPLINK >> Main# /c/port 9/fast/cur Current Port 9 Fast link configuration: speed 100, mode full duplex, fctl none, auto off Cisco Configuration (Load-Balanced Servers Port): description LB_1_PORT_1_PRIMARY switchport access vlan 30 switchport mode access switchport nonegotiate speed 100 duplex full Alteon Port 1 Configuration (VLAN 30 LOAD-BALANCED LAN): >> Main# /c/port 1/cur Current Port 1 configuration: enabled pref fast, backup gig, PVID 30, BW Contract 1024 name LB_PORT_1 >> Main# /c/port 1/fast/cur Current Port 1 Fast link configuration: speed 100, mode full duplex, fctl both, auto on Each of my servers are on vlan 10 and 30, properly communicating. I have tried to turn on VLAN tagging on the Alteon, however it seems to cause all communications to stop working. When I tcpdump -i vlan30 on any of the webservers, I see normal ARP communications, and some STP communications, which may or may not be part of the problem: ... 15:00:51.035882 STP 802.1d, Config, Flags [none], bridge-id 801e.00:11:5c:62:fe:80.8041, length 42 15:00:51.493154 IP 10.1.1.254.33923 > 10.1.1.1.http: Flags [S], seq 707324510, win 8760, options [mss 1460], length 0 15:00:51.493336 IP 10.1.1.1.http > 10.1.1.254.33923: Flags [S.], seq 3981707623, ack 707324511, win 65535, options [mss 1460], len gth 0 15:00:51.493778 ARP, Request who-has 10.1.3.1 tell 10.1.3.254, length 46 etc... I'm not sure if I've provided enough information, so please let me know if any more is necessary. Thank you!

    Read the article

  • Update BIOS on Sun Fire X4150 server

    - by Massimo
    I have some Sun Fire X4150 servers with a very old BIOS release (1ADQW015), which seems to have some compatibility problems with WMware ESX Server 3.5 and Windows 2008 R2 virtual machines; so I want to update the BIOS on them. The problem: according to this page, if your servers run ELOM (mine do), you first need to update to the latest ELOM release, then to the interim transition release, then finally you can update to the latest one. Ok, I'm willing to do that... but it looks like Sun (now Oracle) will happily let you download the latest firmware DVD (3.3.0), but it will not let you download the transition release (2.0) if you don't have a support contract. Well, I actuall don't care at all about the servers' management controllers (we don't even use them), so upgrading from ELOM to ILOM is totally irrelevant to me; but I need to update the servers' BIOS. So my question is: can I update the servers' BIOS to the latest version without doing the full ELOM-to-ILOM migration, or will this not work (or even make the servers unusable)? Do BIOS versions and SP ones need to be matched, or can one be updated without bothering with the other? Bonus question: if this whole ELOM-to-ILOM thing actually is needed in order to update the BIOS, can that 2.0 CD-ROM be obtained without having a support contract with Sun/Oracle (which we are definitely not going to sign, being that quite old hardware)? Update: I tried upgrading only the BIOS on one of the servers, and it didn't boot anymore. So it really looks like a full firmware upgrade is needed, and the management controller and BIOS versions should be kept in sync. So... where can I find that *&!£%$% 2.0 CD-ROM? Or at least the transition firmware that can be found on it?

    Read the article

  • Trying to connect phpMyAdmin to remote mySQL server ( 2002: can't connect )

    - by Malcolm Jones
    Trying to get phpMyAdmin to talk to a remote mySQL server. The config is below and there is already a user set up in mySQL DB to be able to log in from the specified host that PMA sits on. Hosting is provided by Rackspace (Rightscale) and both cloud servers behind the same firewall. [config.inc.php] <?php $cfg['blowfish_secret'] = ''; $i = 0; $i++; $cfg['Servers'][$i]['host'] = 'XX.XX.XX.XX'; // MySQL hostname or IP address $cfg['Servers'][$i]['port'] = ''; // MySQL port - leave blank for default port $cfg['Servers'][$i]['socket'] = ''; // Path to the socket - leave blank for default socket $cfg['Servers'][$i]['connect_type'] = 'tcp'; // How to connect to MySQL server ('tcp' or 'socket') $cfg['Servers'][$i]['extension'] = 'mysql'; // The php MySQL extension to use ('mysql' or 'mysqli') $cfg['Servers'][$i]['compress'] = FALSE; // Use compressed protocol for the MySQL connection // (requires PHP >= 4.3.0) $cfg['Servers'][$i]['controluser'] = ''; // MySQL control user settings // (this user must have read-only $cfg['Servers'][$i]['controlpass'] = ''; // access to the "mysql/user" // and "mysql/db" tables). // The controluser is also // used for all relational // features (pmadb) $cfg['Servers'][$i]['auth_type'] = 'config'; // Authentication method (config, http or cookie based)? $cfg['Servers'][$i]['user'] = 'USERNAME'; // MySQL user $cfg['Servers'][$i]['password'] = 'PASSWORD'; // MySQL password (only needed // with 'config' auth_type) $cfg['Servers'][$i]['only_db'] = ''; // If set to a db-name, only // this db is displayed in left frame // It may also be an array of db-names, where sorting order is relevant. $cfg['Servers'][$i]['hide_db'] = ''; // Database name to be hidden from listings $cfg['Servers'][$i]['verbose'] = ''; // Verbose name for this host - leave blank to show the hostname $cfg['Servers'][$i]['pmadb'] = ''; // Database used for Relation, Bookmark and PDF Features // (see scripts/create_tables.sql) // - leave blank for no support // DEFAULT: 'phpmyadmin' $cfg['Servers'][$i]['bookmarktable'] = ''; // Bookmark table // - leave blank for no bookmark support // DEFAULT: 'pma_bookmark' $cfg['Servers'][$i]['relation'] = ''; // table to describe the relation between links (see doc) // - leave blank for no relation-links support // DEFAULT: 'pma_relation' $cfg['Servers'][$i]['table_info'] = ''; // table to describe the display fields // - leave blank for no display fields support // DEFAULT: 'pma_table_info' $cfg['Servers'][$i]['table_coords'] = ''; // table to describe the tables position for the PDF schema // - leave blank for no PDF schema support // DEFAULT: 'pma_table_coords' $cfg['Servers'][$i]['pdf_pages'] = ''; // table to describe pages of relationpdf // - leave blank if you don't want to use this // DEFAULT: 'pma_pdf_pages' $cfg['Servers'][$i]['column_info'] = ''; // table to store column information // - leave blank for no column comments/mime types // DEFAULT: 'pma_column_info' $cfg['Servers'][$i]['history'] = ''; // table to store SQL history // - leave blank for no SQL query history // DEFAULT: 'pma_history' $cfg['Servers'][$i]['verbose_check'] = TRUE; // set to FALSE if you know that your pma_* tables // are up to date. This prevents compatibility // checks and thereby increases performance. $cfg['Servers'][$i]['AllowRoot'] = TRUE; // whether to allow root login $cfg['Servers'][$i]['AllowDeny']['order'] // Host authentication order, leave blank to not use = ''; $cfg['Servers'][$i]['AllowDeny']['rules'] // Host authentication rules, leave blank for defaults = array(); Please let me know if you need anymore info. -- Malcolm

    Read the article

  • Cisco Catalyst 3550 + Alteon 184 Load-Balancing Issues

    - by upkels
    I have just deployed a couple Cisco Catalyst 3550 switches, and a couple Alteon 184 Web Switches for load-balancing. I can ping all RIPs and VIPs to/from the Alteon. Topology Before: (server) <- (Alteon) <- (Internet) Topology Now: (server) <- (3550) <- Alteon <- (Internet) Cisco Port Configuration (Alteon Uplink Port): description LB_1_PORT_9_PRIMARY switchport access vlan 10 switchport mode access switchport nonegotiate speed 100 duplex full Alteon Port 9 Configuration (VLAN 10 WAN): >> Main# /c/port 9/cur Current Port 9 configuration: enabled pref fast, backup gig, PVID 10, BW Contract 1024 name UPLINK >> Main# /c/port 9/fast/cur Current Port 9 Fast link configuration: speed 100, mode full duplex, fctl none, auto off Cisco Configuration (Load-Balanced Servers Port): description LB_1_PORT_1_PRIMARY switchport access vlan 30 switchport mode access switchport nonegotiate speed 100 duplex full Alteon Port 1 Configuration (VLAN 30 LOAD-BALANCED LAN): >> Main# /c/port 1/cur Current Port 1 configuration: enabled pref fast, backup gig, PVID 30, BW Contract 1024 name LB_PORT_1 >> Main# /c/port 1/fast/cur Current Port 1 Fast link configuration: speed 100, mode full duplex, fctl both, auto on Each of my servers are on vlan 10 and 30, properly communicating. I have tried to turn on VLAN tagging on the Alteon, however it seems to cause all communications to stop working. When I tcpdump -i vlan30 on any of the webservers, I see normal ARP communications, and some STP communications, which may or may not be part of the problem: ... 15:00:51.035882 STP 802.1d, Config, Flags [none], bridge-id 801e.00:11:5c:62:fe:80.8041, length 42 15:00:51.493154 IP 10.1.1.254.33923 > 10.1.1.1.http: Flags [S], seq 707324510, win 8760, options [mss 1460], length 0 15:00:51.493336 IP 10.1.1.1.http > 10.1.1.254.33923: Flags [S.], seq 3981707623, ack 707324511, win 65535, options [mss 1460], len gth 0 15:00:51.493778 ARP, Request who-has 10.1.3.1 tell 10.1.3.254, length 46 etc... I'm not sure if I've provided enough information, so please let me know if any more is necessary. Thank you!

    Read the article

  • April 14th Links: ASP.NET, ASP.NET MVC, ASP.NET Web API and Visual Studio

    - by ScottGu
    Here is the latest in my link-listing blog series: ASP.NET Easily overlooked features in VS 11 Express for Web: Good post by Scott Hanselman that highlights a bunch of easily overlooked improvements that are coming to VS 11 (and specifically the free express editions) for web development: unit testing, browser chooser/launcher, IIS Express, CSS Color Picker, Image Preview in Solution Explorer and more. Get Started with ASP.NET 4.5 Web Forms: Good 5-part tutorial that walks-through building an application using ASP.NET Web Forms and highlights some of the nice improvements coming with ASP.NET 4.5. What is New in Razor V2 and What Else is New in Razor V2: Great posts by Andrew Nurse, a dev on the ASP.NET team, about some of the new improvements coming with ASP.NET Razor v2. ASP.NET MVC 4 AllowAnonymous Attribute: Nice post from David Hayden that talks about the new [AllowAnonymous] filter introduced with ASP.NET MVC 4. Introduction to the ASP.NET Web API: Great tutorial by Stephen Walher that covers how to use the new ASP.NET Web API support built-into ASP.NET 4.5 and ASP.NET MVC 4. Comprehensive List of ASP.NET Web API Tutorials and Articles: Tugberk Ugurlu links to a huge collection of articles, tutorials, and samples about the new ASP.NET Web API capability. Async Mashups using ASP.NET Web API: Nice post by Henrik on how you can use the new async language support coming with .NET 4.5 to easily and efficiently make asynchronous network requests that do not block threads within ASP.NET. ASP.NET and Front-End Web Development Visual Studio 11 and Front End Web Development - JavaScript/HTML5/CSS3: Nice post by Scott Hanselman that highlights some of the great improvements coming with VS 11 (including the free express edition) for front-end web development. HTML5 Drag/Drop and Async Multi-file Upload with ASP.NET Web API: Great post by Filip W. that demonstrates how to implement an async file drag/drop uploader using HTML5 and ASP.NET Web API. Device Emulator Guide for Mobile Development with ASP.NET: Good post from Rachel Appel that covers how to use various device emulators with ASP.NET and VS to develop cross platform mobile sites. Fixing these jQuery: A Guide to Debugging: Great presentation by Adam Sontag on debugging with JavaScript and jQuery.  Some really good tips, tricks and gotchas that can save a lot of time. ASP.NET and Open Source Getting Started with ASP.NET Web Stack Source on CodePlex: Fantastic post by Henrik (an architect on the ASP.NET team) that provides step by step instructions on how to work with the ASP.NET source code we recently open sourced. Contributing to ASP.NET Web Stack Source on CodePlex: Follow-on to the post above (also by Henrik) that walks-through how you can submit a code contribution to the ASP.NET MVC, Web API and Razor projects. Overview of the WebApiContrib project: Nice post by Pedro Reys on the new open source WebApiContrib project that has been started to deliver cool extensions and libraries for use with ASP.NET Web API. Entity Framework Entity Framework 5 Performance Improvements and Performance Considerations for EF5:  Good articles that describes some of the big performance wins coming with EF5 (which will ship with both .NET 4.5 and ASP.NET MVC 4). Automatic compilation of LINQ queries will yield some significant performance wins (up to 600% faster). ASP.NET MVC 4 and EF Database Migrations: Good post by David Hayden that covers the new database migrations support within EF 4.3 which allows you to easily update your database schema during development - without losing any of the data within it. Visual Studio What's New in Visual Studio 11 Unit Testing: Nice post by Peter Provost (from the VS team) that talks about some of the great improvements coming to VS11 for unit testing - including built-in VS tooling support for a broad set of unit test frameworks (including NUnit, XUnit, Jasmine, QUnit and more) Hope this helps, Scott

    Read the article

  • June 26th Links: ASP.NET, ASP.NET MVC, .NET and NuGet

    - by ScottGu
    Here is the latest in my link-listing series.  Also check out my Best of 2010 Summary for links to 100+ other posts I’ve done in the last year. [I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET Introducing new ASP.NET Universal Providers: Great post from Scott Hanselman on the new System.Web.Providers we are working on.  This release delivers new ASP.NET Membership, Role Management, Session, Profile providers that work with SQL Server, SQL CE and SQL Azure. CSS Sprites and the ASP.NET Sprite and Image Optimization Library: Great post from Scott Mitchell that talks about a free library for ASP.NET that you can use to optimize your CSS and images to reduce HTTP requests and speed up your site. Better HTML5 Support for the VS 2010 Editor: Another great post from Scott Hanselman on an update several people on my team did that enables richer HTML5 editing support within Visual Studio 2010. Install the Ajax Control Toolkit from NuGet: Nice post by Stephen Walther on how you can now use NuGet to install the Ajax Control Toolkit within your applications.  This makes it much easier to reference and use. May 2011 Release of the Ajax Control Toolkit: Another great post from Stephen Walther that talks about the May release of the Ajax Control Toolkit. It includes a bunch of nice enhancements and fixes. SassAndCoffee 0.9 Released: Paul Betts blogs about the latest release of his SassAndCoffee extension (available via NuGet). It enables you to easily use Sass and Coffeescript within your ASP.NET applications (both MVC and Webforms). ASP.NET MVC ASP.NET MVC Mini-Profiler: The folks at StackOverflow.com (a great site built with ASP.NET MVC) have released a nice (free) profiler they’ve built that enables you to easily profile your ASP.NET MVC 3 sites and tune them for performance.  Globalization, Internationalization and Localization in ASP.NET MVC 3: Great post from Scott Hanselman on how to enable internationalization, globalization and localization support within your ASP.NET MVC 3 and jQuery solutions. Precompile your MVC Razor Views: Great post from David Ebbo that discusses a new Razor Generator tool that enables you to pre-compile your razor view templates as assemblies – which enables a bunch of cool scenarios. Unit Testing Razor Views: Nice post from David Ebbo that shows how to use his new Razor Generator to enable unit testing of razor view templates with ASP.NET MVC. Bin Deploying ASP.NET MVC 3: Nice post by Phil Haack that covers a cool feature added to VS 2010 SP1 that makes it really easy to \bin deploy ASP.NET MVC and Razor within your application. This enables you to easily deploy the app to servers that don’t have ASP.NET MVC 3 installed. .NET Table Splitting with EF 4.1 Code First: Great post from Morteza Manavi that discusses how to split up a single database table across multiple EF entity classes.  This shows off some of the power behind EF 4.1 and is very useful when working with legacy database schemas. Choosing the Right Collection Class: Nice post from James Michael Hare that talks about the different collection class options available within .NET.  A nice overview for people who haven’t looked at all of the support now built into the framework. Little Wonders: Empty(), DefaultIfEmpty() and Count() helper methods: Another in James Michael Hare’s excellent series on .NET/C# “Little Wonders”.  This post covers some of the great helper methods now built-into .NET that make coding even easier. NuGet NuGet 1.4 Released: Learn all about the latest release of NuGet – which includes a bunch of cool new capabilities.  It takes only seconds to update to it – go for it! NuGet in Depth: Nice presentation from Scott Hanselman all about NuGet and some of the investments we are making to enable a better open source ecosystem within .NET. NuGet for the Enterprise – NuGet in a Continuous Integration Automated Build System: Great post from Scott Hanselman on how to integrate NuGet within enterprise build environments and enable it with CI solutions. Hope this helps, Scott

    Read the article

< Previous Page | 145 146 147 148 149 150 151 152 153 154 155 156  | Next Page >