Search Results

Search found 54683 results on 2188 pages for 'anatomy of a net assembly'.

Page 15/2188 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Integrating Flickr with ASP.Net application

    - by sreejukg
    Flickr is the popular photo management and sharing application offered by yahoo. The services from flicker allow you to store and share photos and videos online. Flicker offers strong API support for almost all services they provide. Using this API, developers can integrate photos to their public website. Since 2005, developers have collaborated on top of Flickr's APIs to build fun, creative, and gorgeous experiences around photos that extend beyond Flickr. In this article I am going to demonstrate how easily you can bring the photos stored on flicker to your website. Let me explain the scenario this article is trying to address. I have a flicker account where I upload photos and share in many ways offered by Flickr. Now I have a public website, instead of re-upload the photos again to public website, I want to show this from Flickr. Also I need complete control over what photo to display. So I went and referred the Flickr documentation and there is API support ready to address my scenario (and more… ). FlickerAPI for ASP.Net To Integrate Flicker with ASP.Net applications, there is a library available in CodePlex. You can find it here http://flickrnet.codeplex.com/ Visit the URL and download the latest version. The download includes a Zip file, when you unzip you will get a number of dlls. Since I am going to use ASP.Net application, I need FlickrNet.dll. See the screenshot of all the dlls, and there is a help file available in the download (.chm) for your reference. Once you have the dll, you need to use Flickr API from your website. I assume you have a flicker account and you are familiar with Flicker services. Arrange your photos using Sets in Flickr In flicker, you can define sets and add your uploaded photos to sets. You can compare set to photo album. A set is a logical collection of photos, which is an excellent option for you to categorize your photos. Typically you will have a number of sets each set having few photos. You can write application that brings photos from sets to your website. For the purpose of this article I already created a set Flickr and added some photos to it. Once you logged in to Flickr, you can see the Sets under the Menu. In the Sets page, you will see all the sets you have created. As you notice, you can see certain sample images I have uploaded just to test the functionality. Though I wish I couldn’t create good photos so please bear with me. I have created 2 photo sets named Blue Album and Red Album. Click on the image for the set, will take you to the corresponding set page. In the set “Red Album” there are 4 photos and the set has a unique ID (highlighted in the URL). You can simply retrieve the photos with the set id from your application. In this article I am going to retrieve the images from Red album in my ASP.Net page. For that First I need to setup FlickrAPI for my usage. Configure Flickr API Key As I mentioned, we are going to use Flickr API to retrieve the photos stored in Flickr. In order to get access to Flickr API, you need an API key. To create an API key, navigate to the URL http://www.flickr.com/services/apps/create/ Click on Request an API key link, now you need to tell Flickr whether your application in commercial or non-commercial. I have selected a non-commercial key. Now you need to enter certain information about your application. Once you enter the details, Click on the submit button. Now Flickr will create the API key for your application. Generating non-commercial API key is very easy, in couple of steps the key will be generated and you can use the key in your application immediately. ASP.Net application for retrieving photos Now we need write an ASP.Net application that display pictures from Flickr. Create an empty web application (I named this as FlickerIntegration) and add a reference to FlickerNet.dll. Add a web form page to the application where you will retrieve and display photos(I have named this as Gallery.aspx). After doing all these, the solution explorer will look similar to following. I have used the below code in the Gallery.aspx page. The output for the above code is as follows. I am going to explain the code line by line here. First it is adding a reference to the FlickrNet namespace. using FlickrNet; Then create a Flickr object by using your API key. Flickr f = new Flickr("<yourAPIKey>"); Now when you retrieve photos, you can decide what all fields you need to retrieve from Flickr. Every photo in Flickr contains lots of information. Retrieving all will affect the performance. For the demonstration purpose, I have retrieved all the available fields as follows. PhotoSearchExtras.All But if you want to specify the fields you can use logical OR operator(|). For e.g. the following statement will retrieve owner name and date taken. PhotoSearchExtras extraInfo = PhotoSearchExtras.OwnerName | PhotoSearchExtras.DateTaken; Then retrieve all the photos from a photo set using PhotoSetsGetPhotos method. I have passed the PhotoSearchExtras object created earlier. PhotosetPhotoCollection photos = f.PhotosetsGetPhotos("72157629872940852", extraInfo); The PhotoSetsGetPhotos method will return a collection of Photo objects. You can just navigate through the collection using a foreach statement. foreach (Photo p in photos) {     //access each photo properties } Photo class have lot of properties that map with the properties from Flickr. The chm documentation comes along with the CodePlex download is a great asset for you to understand the fields. In the above code I just used the following p.LargeUrl – retrieves the large image url for the photo. p.ThumbnailUrl – retrieves the thumbnail url for the photo p.Title – retrieves the Title of the photo p.DateUploaded – retrieves the date of upload Visual Studio intellisense will give you all properties, so it is easy, you can just try with Visual Studio intellisense to find the right properties you are looking for. Most of hem are self-explanatory. So you can try retrieving the required properties. In the above code, I just pushed the photos to the page. In real time you can use the retrieved photos along with JQuery libraries to create animated photo galleries, slideshows etc. Configuration and Troubleshooting If you get access denied error while executing the code, you need to disable the caching in Flickr API. FlickrNet cache the photos to your local disk when retrieved. You can specify a cache folder where the application need write permission. You can specify the Cache folder in the code as follows. Flickr.CacheLocation = Server.MapPath("./FlickerCache/"); If the application doesn’t have have write permission to the cache folder, the application will throw access denied error. If you cannot give write permission to the cache folder, then you must disable the caching. You can do this from code as follows. Flickr.CacheDisabled = true; Disabling cache will have an impact on the performance. Take care! Also you can define the Flickr settings in web.config file.You can find the documentation here. http://flickrnet.codeplex.com/wikipage?title=ExampleConfigFile&ProjectName=flickrnet Flickr is a great place for storing and sharing photos. The API access allows developers to do seamless integration with the photos uploaded on Flickr.

    Read the article

  • Blog Now Hosted on IIS 8.0–DiscountASP.Net

    - by The Official Microsoft IIS Site
    On Thursday night I was having an email conversation with Takeshi Eto from DiscountASP.Net about the hosting of my blog.  I’ve been hosting my blog with DiscountASP.Net for nearly five years and have been very, very happy with their service – always up to date often offering services faster than other hosters and very quick turn around of support tickets if ever I’ve had any issues – they also host the NEBytes site. Well on Thursday I was asking about migrating my site onto IIS 8.0 hosting and...(read more)

    Read the article

  • Creating Wizard in ASP.NET MVC (Part 3 - jQuery)

    - by bipinjoshi
    In Part 1 and Part 2 of this article series you developed a wizard in an ASP.NET MVC application using full page postback and Ajax helper respectively. In this final part of this series you will develop a client side wizard using jQuery. The navigation between various wizard steps (Next, Previous) happens without any postback (neither full nor partial). The only step that causes form submission to the server is clicking on the Finish wizard button.http://www.binaryintellect.net/articles/d278e8aa-3f37-40c5-92a2-74e65b1b5653.aspx 

    Read the article

  • Can somebody explain the differences, status and future of the various ASP.NET AJAX libraries and to

    - by tjrobinson
    I'm confused about the differences and relationships between the various Microsoft ASP.NET AJAX components/libraries/toolkits and particularly the naming of them. It starts off relatively simple with ASP.NET AJAX itself: ASP.NET AJAX 1.0 (available for ASP.NET 2.0 in a separate package called ASP.NET 1.0 Extensions) ASP.NET AJAX 3.5 (included with ASP.NET 3.5) ASP.NET AJAX 4.0 (included with ASP.NET 4.0) Then come the various projects on CodePlex and elsewhere: ASP.NET AJAX Control Toolkit (aka Original Ajax Control Toolkit) Samples CodePlex It seems that the September 2009 Release is the final release of the Original Ajax Control Toolkit and that it's been superseded by... Ajax Control Toolkit in ASP.NET Ajax Library It looks like the old ASP.NET AJAX Control Toolkit has now become part of a larger ASP.NET Ajax Library but is still maintained seperately on CodePlex. This release is in beta at time of writing so presumably if I want to use the "Control Toolkit" I should stick with the September 2009 Release of the Original ASP.NET AJAX Control Toolkit CodePlex Microsoft Ajax Library Preview Is this the same as the ASP.NET Ajax Library mentioned above just with a confusing name variation? Is the "Control Toolkit" included in Preview 6 and is it older newer or older than the code in Ajax Control Toolkit in ASP.NET Ajax Library? CodePlex Microsoft ASP.NET Ajax Wiki - note the inconsistent insertion of ASP.NET into the name Links to useful articles, roadmaps would be useful.

    Read the article

  • ASP.NET 4 Hosting :: ValidateRequest=”false” not working in .Net 4.0 (VS.Net 2010)

    - by mbridge
    When we migrated our project from .NET 3.5 to .NET 4.0, we can get this error: Error: System.Web.HttpRequestValidationException A potentially dangerous Request.Form value was detected from the client (ctl00$CC$txtAnswer=\”… World\r\n\r\nI am doing Testin…\”).”} System.Web.HttpRequestValidationException at System.Web.HttpRequest.ValidateString(String value, String collectionKey, RequestValidationSource requestCollection)    at System.Web.HttpRequest.ValidateNameValueCollection(NameValueCollection nvc, RequestValidationSource requestCollection)    at System.Web.HttpRequest.get_Form()    at System.Web.HttpRequest.get_HasForm()    at System.Web.UI.Page.GetCollectionBasedOnMethod(Boolean dontReturnNull)    at System.Web.UI.Page.DeterminePostBackMode()    at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint)    at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint)    at System.Web.UI.Page.ProcessRequest()    at System.Web.UI.Page.ProcessRequestWithNoAssert(HttpContext context)    at System.Web.UI.Page.ProcessRequest(HttpContext context)    at ASP.displaypost_aspx.ProcessRequest(HttpContext context) in c:\Windows\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files\root\a37c2f81\cfc4c927\App_Web_i2rujncl.9.cs:line 0    at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute()    at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) What is the Cause? In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request. Solution: To revert to the behavior of the ASP.NET 2.0 request validation feature, add the following setting in the Web.config file: <system.web>  <httpRuntime requestValidationMode=”2.0? /> </system.web>

    Read the article

  • How to fix: Handler “PageHandlerFactory-Integrated” has a bad module “ManagedPipelineHandler” in its module list

    - by ybbest
    Issue: Recently, I am having issues with deploying asp.net mvc 4 application to Windows Server 2008 R2.After add the necessary role and features and I setup an application in IIS. However , I received the following error message: PageHandlerFactory-Integrated” has a bad module “ManagedPipelineHandler” in its module list   Solution: It turns out that this is because ASP.Net was not completely installed with IIS even though I checked that box in the “Add Feature” dialog.   To fix this, I simply ran the following command at the command prompt %windir%\Microsoft.NET\Framework64\v4.0.30319\aspnet_regiis.exe -i If I had been on a 32 bit system, it would have looked like the following: %windir%\Microsoft.NET\Framework\v4.0.21006\aspnet_regiis.exe –i   References: http://stackoverflow.com/questions/6846544/how-to-fix-handler-pagehandlerfactory-integrated-has-a-bad-module-managedpip

    Read the article

  • Integrate BING API for Search inside ASP.Net web application

    - by sreejukg
    As you might already know, Bing is the Microsoft Search engine and is getting popular day by day. Bing offers APIs that can be integrated into your website to increase your website functionality. At this moment, there are two important APIs available. They are Bing Search API Bing Maps The Search API enables you to build applications that utilize Bing’s technology. The API allows you to search multiple source types such as web; images, video etc. and supports various output prototypes such as JSON, XML, and SOAP. Also you will be able to customize the search results as you wish for your public facing website. Bing Maps API allows you to build robust applications that use Bing Maps. In this article I am going to describe, how you can integrate Bing search into your website. In order to start using Bing, First you need to sign in to http://www.bing.com/toolbox/bingdeveloper/ using your windows live credentials. Click on the Sign in button, you will be asked to enter your windows live credentials. Once signed in you will be redirected to the Developer page. Here you can create applications and get AppID for each application. Since I am a first time user, I don’t have any applications added. Click on the Add button to add a new application. You will be asked to enter certain details about your application. The fields are straight forward, only thing you need to note is the website field, here you need to enter the website address from where you are going to use this application, and this field is optional too. Of course you need to agree on the terms and conditions and then click Save. Once you click on save, the application will be created and application ID will be available for your use. Now we got the APP Id. Basically Bing supports three protocols. They are JSON, XML and SOAP. JSON is useful if you want to call the search requests directly from the browser and use JavaScript to parse the results, thus JSON is the favorite choice for AJAX application. XML is the alternative for applications that does not support SOAP, e.g. flash/ Silverlight etc. SOAP is ideal for strongly typed languages and gives a request/response object model. In this article I am going to demonstrate how to search BING API using SOAP protocol from an ASP.Net application. For the purpose of this demonstration, I am going to create an ASP.Net project and implement the search functionality in an aspx page. Open Visual Studio, navigate to File-> New Project, select ASP.Net empty web application, I named the project as “BingSearchSample”. Add a Search.aspx page to the project, once added the solution explorer will looks similar to the following. Now you need to add a web reference to the SOAP service available from Bing. To do this, from the solution explorer, right click your project, select Add Service Reference. Now the new service reference dialog will appear. In the left bottom of the dialog, you can find advanced button, click on it. Now the service reference settings dialog will appear. In the bottom left, you can find Add Web Reference button, click on it. The add web reference dialog will appear now. Enter the URL as http://api.bing.net/search.wsdl?AppID=<YourAppIDHere>&version=2.2 (replace <yourAppIDHere> with the appID you have generated previously) and click on the button next to it. This will find the web service methods available. You can change the namespace suggested by Bing, but for the purpose of this demonstration I have accepted all the default settings. Click on the Add reference button once you are done. Now the web reference to Search service will be added your project. You can find this under solution explorer of your project. Now in the Search.aspx, that you previously created, place one textbox, button and a grid view. For the purpose of this demonstration, I have given the identifiers (ID) as txtSearch, btnSearch, gvSearch respectively. The idea is to search the text entered in the text box using Bing service and show the results in the grid view. In the design view, the search.aspx looks as follows. In the search.aspx.cs page, add a using statement that points to net.bing.api. I have added the following code for button click event handler. The code is very straight forward. It just calls the service with your AppID, a query to search and a source for searching. Let us run this page and see the output when I enter Microsoft in my textbox. If you want to search a specific site, you can include the site name in the query parameter. For e.g. the following query will search the word Microsoft from www.microsoft.com website. searchRequest.Query = “site:www.microsoft.com Microsoft”; The output of this query is as follows. Integrating BING search API to your website is easy and there is no limit on the customization of the interface you can do. There is no Bing branding required so I believe this is a great option for web developers when they plan for site search.

    Read the article

  • Integrate Microsoft Translator into your ASP.Net application

    - by sreejukg
    In this article I am going to explain how easily you can integrate the Microsoft translator API to your ASP.Net application. Why we need a translation API? Once you published a website, you are opening a channel to the global audience. So making the web content available only in one language doesn’t cover all your audience. Especially when you are offering products/services it is important to provide contents in multiple languages. Users will be more comfortable when they see the content in their native language. How to achieve this, hiring translators and translate the content to all your user’s languages will cost you lot of money, and it is not a one time job, you need to translate the contents on the go. What is the alternative, we need to look for machine translation. Thankfully there are some translator engines available that gives you API level access, so that automatically you can translate the content and display to the user. Microsoft Translator API is an excellent set of web service APIs that allows developers to use the machine translation technology in their own applications. The Microsoft Translator API is offered through Windows Azure market place. In order to access the data services published in Windows Azure market place, you need to have an account. The registration process is simple, and it is common for all the services offered through the market place. Last year I had written an article about Bing Search API, where I covered the registration process. You can refer the article here. http://weblogs.asp.net/sreejukg/archive/2012/07/04/integrate-bing-search-api-to-asp-net-application.aspx Once you registered with Windows market place, you will get your APP ID. Now you can visit the Microsoft Translator page and click on the sign up button. http://datamarket.azure.com/dataset/bing/microsofttranslator As you can see, there are several options available for you to subscribe. There is a free version available, great. Click on the sign up button under the package that suits you. Clicking on the sign up button will bring the sign up form, where you need to agree on the terms and conditions and go ahead. You need to have a windows live account in order to sign up for any service available in Windows Azure market place. Once you signed up successfully, you will receive the thank you page. You can download the C# class library from here so that the integration can be made without writing much code. The C# file name is TranslatorContainer.cs. At any point of time, you can visit https://datamarket.azure.com/account/datasets to see the applications you are subscribed to. Click on the Use link next to each service will give you the details of the application. You need to not the primary account key and URL of the service to use in your application. Now let us start our ASP.Net project. I have created an empty ASP.Net web application using Visual Studio 2010 and named it Translator Sample, any name could work. By default, the web application in solution explorer looks as follows. Now right click the project and select Add -> Existing Item and then browse to the TranslatorContainer.cs. Now let us create a page where user enter some data and perform the translation. I have added a new web form to the project with name Translate.aspx. I have placed one textbox control for user to type the text to translate, the dropdown list to select the target language, a label to display the translated text and a button to perform the translation. For the dropdown list I have selected some languages supported by Microsoft translator. You can get all the supported languages with their codes from the below link. http://msdn.microsoft.com/en-us/library/hh456380.aspx The form looks as below in the design surface of Visual Studio. All the class libraries in the windows market place requires reference to System.Data.Services.Client, let us add the reference. You can find the documentation of how to use the downloaded class library from the below link. http://msdn.microsoft.com/en-us/library/gg312154.aspx Let us evaluate the translatorContainer.cs file. You can refer the code and it is self-explanatory. Note the namespace name used (Microsoft), you need to add the namespace reference to your page. I have added the following event for the translate button. The code is self-explanatory. You are creating an object of TranslatorContainer class by passing the translation service URL. Now you need to set credentials for your Translator container object, which will be your account key. The TranslatorContainer support a method that accept a text input, source language and destination language and returns DataServiceQuery<Translation>. Let us see this working, I just ran the application and entered Good Morning in the Textbox. Selected target language and see the output as follows. It is easy to build great translator applications using Microsoft translator API, and there is a reasonable amount of translation you can perform in your application for free. For enterprises, you can subscribe to the appropriate package and make your application multi-lingual.

    Read the article

  • Unobtrusive Client Side Validation with Dynamic Contents in ASP.NET MVC 3

    - by imran_ku07
        Introduction:          A while ago, I blogged about how to perform client side validation for dynamic contents in ASP.NET MVC 2 at here. Using the approach given in that blog, you can easily validate your dynamic ajax contents at client side. ASP.NET MVC 3 also supports unobtrusive client side validation in addition to ASP.NET MVC 2 client side validation for backward compatibility. I feel it is worth to rewrite that blog post for ASP.NET MVC 3 unobtrusive client side validation. In this article I will show you how to do this.       Description:           I am going to use the same example presented at here. Create a new ASP.NET MVC 3 application. Then just open HomeController.cs and add the following code,   public ActionResult CreateUser() { return View(); } [HttpPost] public ActionResult CreateUserPrevious(UserInformation u) { return View("CreateUserInformation", u); } [HttpPost] public ActionResult CreateUserInformation(UserInformation u) { if(ModelState.IsValid) return View("CreateUserCompanyInformation"); return View("CreateUserInformation"); } [HttpPost] public ActionResult CreateUserCompanyInformation(UserCompanyInformation uc, UserInformation ui) { if (ModelState.IsValid) return Content("Thank you for submitting your information"); return View("CreateUserCompanyInformation"); }             Next create a CreateUser view and add the following lines,   <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<UnobtrusiveValidationWithDynamicContents.Models.UserInformation>" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> CreateUser </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <div id="dynamicData"> <%Html.RenderPartial("CreateUserInformation"); %> </div> </asp:Content>             Next create a CreateUserInformation partial view and add the following lines,   <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<UnobtrusiveValidationWithDynamicContents.Models.UserInformation>" %> <% Html.EnableClientValidation(); %> <%using (Html.BeginForm("CreateUserInformation", "Home")) { %> <table id="table1"> <tr style="background-color:#E8EEF4;font-weight:bold"> <td colspan="3" align="center"> User Information </td> </tr> <tr> <td> First Name </td> <td> <%=Html.TextBoxFor(a => a.FirstName)%> </td> <td> <%=Html.ValidationMessageFor(a => a.FirstName)%> </td> </tr> <tr> <td> Last Name </td> <td> <%=Html.TextBoxFor(a => a.LastName)%> </td> <td> <%=Html.ValidationMessageFor(a => a.LastName)%> </td> </tr> <tr> <td> Email </td> <td> <%=Html.TextBoxFor(a => a.Email)%> </td> <td> <%=Html.ValidationMessageFor(a => a.Email)%> </td> </tr> <tr> <td colspan="3" align="center"> <input type="submit" name="userInformation" value="Next"/> </td> </tr> </table> <%} %> <script type="text/javascript"> $("form").submit(function (e) { if ($(this).valid()) { $.post('<%= Url.Action("CreateUserInformation")%>', $(this).serialize(), function (data) { $("#dynamicData").html(data); $.validator.unobtrusive.parse($("#dynamicData")); }); } e.preventDefault(); }); </script>             Next create a CreateUserCompanyInformation partial view and add the following lines,   <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<UnobtrusiveValidationWithDynamicContents.Models.UserCompanyInformation>" %> <% Html.EnableClientValidation(); %> <%using (Html.BeginForm("CreateUserCompanyInformation", "Home")) { %> <table id="table1"> <tr style="background-color:#E8EEF4;font-weight:bold"> <td colspan="3" align="center"> User Company Information </td> </tr> <tr> <td> Company Name </td> <td> <%=Html.TextBoxFor(a => a.CompanyName)%> </td> <td> <%=Html.ValidationMessageFor(a => a.CompanyName)%> </td> </tr> <tr> <td> Company Address </td> <td> <%=Html.TextBoxFor(a => a.CompanyAddress)%> </td> <td> <%=Html.ValidationMessageFor(a => a.CompanyAddress)%> </td> </tr> <tr> <td> Designation </td> <td> <%=Html.TextBoxFor(a => a.Designation)%> </td> <td> <%=Html.ValidationMessageFor(a => a.Designation)%> </td> </tr> <tr> <td colspan="3" align="center"> <input type="button" id="prevButton" value="Previous"/>   <input type="submit" name="userCompanyInformation" value="Next"/> <%=Html.Hidden("FirstName")%> <%=Html.Hidden("LastName")%> <%=Html.Hidden("Email")%> </td> </tr> </table> <%} %> <script type="text/javascript"> $("#prevButton").click(function () { $.post('<%= Url.Action("CreateUserPrevious")%>', $($("form")[0]).serialize(), function (data) { $("#dynamicData").html(data); $.validator.unobtrusive.parse($("#dynamicData")); }); }); $("form").submit(function (e) { if ($(this).valid()) { $.post('<%= Url.Action("CreateUserCompanyInformation")%>', $(this).serialize(), function (data) { $("#dynamicData").html(data); $.validator.unobtrusive.parse($("#dynamicData")); }); } e.preventDefault(); }); </script>             Next create a new class file UserInformation.cs inside Model folder and add the following code,   public class UserInformation { public int Id { get; set; } [Required(ErrorMessage = "First Name is required")] [StringLength(10, ErrorMessage = "First Name max length is 10")] public string FirstName { get; set; } [Required(ErrorMessage = "Last Name is required")] [StringLength(10, ErrorMessage = "Last Name max length is 10")] public string LastName { get; set; } [Required(ErrorMessage = "Email is required")] [RegularExpression(@"^\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*$", ErrorMessage = "Email Format is wrong")] public string Email { get; set; } }             Next create a new class file UserCompanyInformation.cs inside Model folder and add the following code,    public class UserCompanyInformation { public int UserId { get; set; } [Required(ErrorMessage = "Company Name is required")] [StringLength(10, ErrorMessage = "Company Name max length is 10")] public string CompanyName { get; set; } [Required(ErrorMessage = "CompanyAddress is required")] [StringLength(50, ErrorMessage = "Company Address max length is 50")] public string CompanyAddress { get; set; } [Required(ErrorMessage = "Designation is required")] [StringLength(50, ErrorMessage = "Designation max length is 10")] public string Designation { get; set; } }            Next add the necessary script files in Site.Master,   <script src="<%= Url.Content("~/Scripts/jquery-1.4.4.min.js")%>" type="text/javascript"></script> <script src="<%= Url.Content("~/Scripts/jquery.validate.min.js")%>" type="text/javascript"></script> <script src="<%= Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")%>" type="text/javascript"></script>            Now run this application. You will get the same behavior as described in this article. The key important feature to note here is the $.validator.unobtrusive.parse method, which is used by ASP.NET MVC 3 unobtrusive client side validation to initialize jQuery validation plug-in to start the client side validation process. Another important method to note here is the jQuery.valid method which return true if the form is valid and return false if the form is not valid .       Summary:          There may be several occasions when you need to load your HTML contents dynamically. These dynamic HTML contents may also include some input elements and you need to perform some client side validation for these input elements before posting thier values to server. In this article I shows you how you can enable client side validation for dynamic input elements in ASP.NET MVC 3. I am also attaching a sample application. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Table sorting & pagination with jQuery and Razor in ASP.NET MVC

    - by hajan
    Introduction jQuery enjoys living inside pages which are built on top of ASP.NET MVC Framework. The ASP.NET MVC is a place where things are organized very well and it is quite hard to make them dirty, especially because the pattern enforces you on purity (you can still make it dirty if you want so ;) ). We all know how easy is to build a HTML table with a header row, footer row and table rows showing some data. With ASP.NET MVC we can do this pretty easy, but, the result will be pure HTML table which only shows data, but does not includes sorting, pagination or some other advanced features that we were used to have in the ASP.NET WebForms GridView. Ok, there is the WebGrid MVC Helper, but what if we want to make something from pure table in our own clean style? In one of my recent projects, I’ve been using the jQuery tablesorter and tablesorter.pager plugins that go along. You don’t need to know jQuery to make this work… You need to know little CSS to create nice design for your table, but of course you can use mine from the demo… So, what you will see in this blog is how to attach this plugin to your pure html table and a div for pagination and make your table with advanced sorting and pagination features.   Demo Project Resources The resources I’m using for this demo project are shown in the following solution explorer window print screen: Content/images – folder that contains all the up/down arrow images, pagination buttons etc. You can freely replace them with your own, but keep the names the same if you don’t want to change anything in the CSS we will built later. Content/Site.css – The main css theme, where we will add the theme for our table too Controllers/HomeController.cs – The controller I’m using for this project Models/Person.cs – For this demo, I’m using Person.cs class Scripts – jquery-1.4.4.min.js, jquery.tablesorter.js, jquery.tablesorter.pager.js – required script to make the magic happens Views/Home/Index.cshtml – Index view (razor view engine) the other items are not important for the demo. ASP.NET MVC 1. Model In this demo I use only one Person class which defines Person entity with several properties. You can use your own model, maybe one which will access data from database or any other resource. Person.cs public class Person {     public string Name { get; set; }     public string Surname { get; set; }     public string Email { get; set; }     public int? Phone { get; set; }     public DateTime? DateAdded { get; set; }     public int? Age { get; set; }     public Person(string name, string surname, string email,         int? phone, DateTime? dateadded, int? age)     {         Name = name;         Surname = surname;         Email = email;         Phone = phone;         DateAdded = dateadded;         Age = age;     } } 2. View In our example, we have only one Index.chtml page where Razor View engine is used. Razor view engine is my favorite for ASP.NET MVC because it’s very intuitive, fluid and keeps your code clean. 3. Controller Since this is simple example with one page, we use one HomeController.cs where we have two methods, one of ActionResult type (Index) and another GetPeople() used to create and return list of people. HomeController.cs public class HomeController : Controller {     //     // GET: /Home/     public ActionResult Index()     {         ViewBag.People = GetPeople();         return View();     }     public List<Person> GetPeople()     {         List<Person> listPeople = new List<Person>();                  listPeople.Add(new Person("Hajan", "Selmani", "[email protected]", 070070070,DateTime.Now, 25));                     listPeople.Add(new Person("Straight", "Dean", "[email protected]", 123456789, DateTime.Now.AddDays(-5), 35));         listPeople.Add(new Person("Karsen", "Livia", "[email protected]", 46874651, DateTime.Now.AddDays(-2), 31));         listPeople.Add(new Person("Ringer", "Anne", "[email protected]", null, DateTime.Now, null));         listPeople.Add(new Person("O'Leary", "Michael", "[email protected]", 32424344, DateTime.Now, 44));         listPeople.Add(new Person("Gringlesby", "Anne", "[email protected]", null, DateTime.Now.AddDays(-9), 18));         listPeople.Add(new Person("Locksley", "Stearns", "[email protected]", 2135345, DateTime.Now, null));         listPeople.Add(new Person("DeFrance", "Michel", "[email protected]", 235325352, DateTime.Now.AddDays(-18), null));         listPeople.Add(new Person("White", "Johnson", null, null, DateTime.Now.AddDays(-22), 55));         listPeople.Add(new Person("Panteley", "Sylvia", null, 23233223, DateTime.Now.AddDays(-1), 32));         listPeople.Add(new Person("Blotchet-Halls", "Reginald", null, 323243423, DateTime.Now, 26));         listPeople.Add(new Person("Merr", "South", "[email protected]", 3232442, DateTime.Now.AddDays(-5), 85));         listPeople.Add(new Person("MacFeather", "Stearns", "[email protected]", null, DateTime.Now, null));         return listPeople;     } }   TABLE CSS/HTML DESIGN Now, lets start with the implementation. First of all, lets create the table structure and the main CSS. 1. HTML Structure @{     Layout = null;     } <!DOCTYPE html> <html> <head>     <title>ASP.NET & jQuery</title>     <!-- referencing styles, scripts and writing custom js scripts will go here --> </head> <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th> value </th>                 </tr>             </thead>             <tbody>                 <tr>                     <td>value</td>                 </tr>             </tbody>             <tfoot>                 <tr>                     <th> value </th>                 </tr>             </tfoot>         </table>         <div id="pager">                      </div>     </div> </body> </html> So, this is the main structure you need to create for each of your tables where you want to apply the functionality we will create. Of course the scripts are referenced once ;). As you see, our table has class tablesorter and also we have a div with id pager. In the next steps we will use both these to create the needed functionalities. The complete Index.cshtml coded to get the data from controller and display in the page is: <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </thead>             <tbody>                 @{                     foreach (var p in ViewBag.People)                     {                                 <tr>                         <td>@p.Name</td>                         <td>@p.Surname</td>                         <td>@p.Email</td>                         <td>@p.Phone</td>                         <td>@p.DateAdded</td>                     </tr>                     }                 }             </tbody>             <tfoot>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </tfoot>         </table>         <div id="pager" style="position: none;">             <form>             <img src="@Url.Content("~/Content/images/first.png")" class="first" />             <img src="@Url.Content("~/Content/images/prev.png")" class="prev" />             <input type="text" class="pagedisplay" />             <img src="@Url.Content("~/Content/images/next.png")" class="next" />             <img src="@Url.Content("~/Content/images/last.png")" class="last" />             <select class="pagesize">                 <option selected="selected" value="5">5</option>                 <option value="10">10</option>                 <option value="20">20</option>                 <option value="30">30</option>                 <option value="40">40</option>             </select>             </form>         </div>     </div> </body> So, mainly the structure is the same. I have added @Razor code to create table with data retrieved from the ViewBag.People which has been filled with data in the home controller. 2. CSS Design The CSS code I’ve created is: /* DEMO TABLE */ body {     font-size: 75%;     font-family: Verdana, Tahoma, Arial, "Helvetica Neue", Helvetica, Sans-Serif;     color: #232323;     background-color: #fff; } table { border-spacing:0; border:1px solid gray;} table.tablesorter thead tr .header {     background-image: url(images/bg.png);     background-repeat: no-repeat;     background-position: center right;     cursor: pointer; } table.tablesorter tbody td {     color: #3D3D3D;     padding: 4px;     background-color: #FFF;     vertical-align: top; } table.tablesorter tbody tr.odd td {     background-color:#F0F0F6; } table.tablesorter thead tr .headerSortUp {     background-image: url(images/asc.png); } table.tablesorter thead tr .headerSortDown {     background-image: url(images/desc.png); } table th { width:150px;            border:1px outset gray;            background-color:#3C78B5;            color:White;            cursor:pointer; } table thead th:hover { background-color:Yellow; color:Black;} table td { width:150px; border:1px solid gray;} PAGINATION AND SORTING Now, when everything is ready and we have the data, lets make pagination and sorting functionalities 1. jQuery Scripts referencing <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.pager.js")" type="text/javascript"></script> 2. jQuery Sorting and Pagination script   <script type="text/javascript">     $(function () {         $("table.tablesorter").tablesorter({ widthFixed: true, sortList: [[0, 0]] })         .tablesorterPager({ container: $("#pager"), size: $(".pagesize option:selected").val() });     }); </script> So, with only two lines of code, I’m using both tablesorter and tablesorterPager plugins, giving some options to both these. Options added: tablesorter - widthFixed: true – gives fixed width of the columns tablesorter - sortList[[0,0]] – An array of instructions for per-column sorting and direction in the format: [[columnIndex, sortDirection], ... ] where columnIndex is a zero-based index for your columns left-to-right and sortDirection is 0 for Ascending and 1 for Descending. A valid argument that sorts ascending first by column 1 and then column 2 looks like: [[0,0],[1,0]] (source: http://tablesorter.com/docs/) tablesorterPager – container: $(“#pager”) – tells the pager container, the div with id pager in our case. tablesorterPager – size: the default size of each page, where I get the default value selected, so if you put selected to any other of the options in your select list, you will have this number of rows as default per page for the table too. END RESULTS 1. Table once the page is loaded (default results per page is 5 and is automatically sorted by 1st column as sortList is specified) 2. Sorted by Phone Descending 3. Changed pagination to 10 items per page 4. Sorted by Phone and Name (use SHIFT to sort on multiple columns) 5. Sorted by Date Added 6. Page 3, 5 items per page   ADDITIONAL ENHANCEMENTS We can do additional enhancements to the table. We can make search for each column. I will cover this in one of my next blogs. Stay tuned. DEMO PROJECT You can download demo project source code from HERE.CONCLUSION Once you finish with the demo, run your page and open the source code. You will be amazed of the purity of your code.Working with pagination in client side can be very useful. One of the benefits is performance, but if you have thousands of rows in your tables, you will get opposite result when talking about performance. Hence, sometimes it is nice idea to make pagination on back-end. So, the compromise between both approaches would be best to combine both of them. I use at most up to 500 rows on client-side and once the user reach the last page, we can trigger ajax postback which can get the next 500 rows using server-side pagination of the same data. I would like to recommend the following blog post http://weblogs.asp.net/gunnarpeipman/archive/2010/09/14/returning-paged-results-from-repositories-using-pagedresult-lt-t-gt.aspx, which will help you understand how to return page results from repository. I hope this was helpful post for you. Wait for my next posts ;). Please do let me know your feedback. Best Regards, Hajan

    Read the article

  • Free .NET Training at DevCare in Dallas...

    - by [email protected]
    Come take an early look at the debugging experience in VS 2010 this Friday (3/25/2010) at TekFocus in Dallas, at the InfoMart, at 9 AM: In this session, we’ll … Dive deep into the new IntelliTrace (formerly, historical debugging) feature, which enables you to step back in time within your debugging session and inspect or re-execute code, without having to restart your application See how to manage large numbers of breakpoints with labeling, searching and filtering Extend “data tips” by adding comments, notes and strategically “pinning” these resources to maintain their visibility throughout your session Demonstrate “collaborative debugging,“ by debugging a portion of an application and then exporting breakpoints and labeled data tips, so that others can leverage your effort, without having to start over Leverage these new debugging features in applications built in earlier versions of the .NET Framework through the MultiTargeting features available in VS 2010 You’ll walk-away with a clear understanding of how you can use this upcoming technology to vastly increase your productivity and build better software.Register to attend ==>  http://www.dallasdevcares.com/upcoming-sessions/ DevCares is a monthly series of FREE half-day events sponsored by TekFocus and Microsoft. Targeted specifically at developers, the content is presented by experts on a variety of .NET topics. These briefings include expert testimonials, working demos and sample code designed to help you get the most out of application development with .NET. Events are held on the last Friday of each month at the TekFocus offices in the Infomart near downtown Dallas.TekFocus is a full-service technology training provider with a core business delivering Microsoft-certified technical training and product skills enhancements to customers worldwide    

    Read the article

  • New Release: ImageGlue 7.0 .NET

    When it comes to manipulating images dynamically there are few toolkits that can compete with ImageGlue 6 in terms of versatility and performance. With extensive support for a huge range of graphic formats including JPEG2000, Very Large TIFF Support™, and fully multi-threaded processing, ImageGlue has proved a popular choice for use in ASP and ASP.NET server environments. Now ImageGlue 7 has arrived, introducing support for 64-bit systems, improved PostScript handling, and many other enhancements. We've also used the opportunity to revise the API, to make it more friendly and familiar to .NET coders. But don't worry about rewriting legacy code - you'll find the 'string parameter' interface is still available through the WebSupergoo.ImageGlue6 namespace. So what's new in ImageGlue 7.0? Support for 64-bit systems. ImageGlue now incorporates the PostScript rendering engine as used by ABCpdf, our PDF component, which has proven to be fast, robust and accurate. This greatly improves support for importing and exporting PS, EPS, and PDF files, and also enables you to make use of powerful PostScript drawing operations for drawing to canvas. Leveraging ABCpdf's powerful vector graphics import and export functionality also makes it possible to interoperate with XPS and MS Office documents. An improved API with new classes, methods and properties, more in keeping with normal .NET development. Plus of course the usual range of bug fixes and minor enhancements. span.fullpost {display:none;}

    Read the article

  • Unit testing internal methods in a strongly named assembly/project

    - by Rohit Gupta
    If you need create Unit tests for internal methods within a assembly in Visual Studio 2005 or greater, then we need to add an entry in the AssemblyInfo.cs file of the assembly for which you are creating the units tests for. For e.g. if you need to create tests for a assembly named FincadFunctions.dll & this assembly contains internal/friend methods within which need to write unit tests for then we add a entry in the FincadFunctions.dll’s AssemblyInfo.cs file like so : 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests")] where FincadFunctionsTests is the name of the Unit Test project which contains the Unit Tests. However if the FincadFunctions.dll is a strongly named assembly then you will the following error when compiling the FincadFunctions.dll assembly :      Friend assembly reference “FincadFunctionsTests” is invalid. Strong-name assemblies must specify a public key in their InternalsVisibleTo declarations. Thus to add a public key token to InternalsVisibleTo Declarations do the following: You need the .snk file that was used to strong-name the FincadFunctions.dll assembly. You can extract the public key from this .snk with the sn.exe tool from the .NET SDK. First we extract just the public key from the key pair (.snk) file into another .snk file. sn -p test.snk test.pub Then we ask for the value of that public key (note we need the long hex key not the short public key token): sn -tp test.pub We end up getting a super LONG string of hex, but that's just what we want, the public key value of this key pair. We add it to the strongly named project "FincadFunctions.dll" that we want to expose our internals from. Before what looked like: 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests")] Now looks like. 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests, 2: PublicKey=002400000480000094000000060200000024000052534131000400000100010011fdf2e48bb")] And we're done. hope this helps

    Read the article

  • Assembly Microsoft.Xna.Framework.dll does not load

    - by jbsnorro
    When trying to load Microsoft.Xna.Framework.dll from any project, it throws a FileNotFoundException. The specified module could not be found. (Exception from HRESULT: 0x8007007E), with no innerException. Even the simple code like the following throws that exception: static void Main(string[] args) { Assembly.LoadFile(@"C:\Microsoft.Xna.Framework.dll"); } I run XP x64, but I've set the platform in the configuration manager to x86, because I know it shouldn't(doesn't) work on x64 or Any CPU. I've manually added the dll file to GAC, but that didn't solve the problem. I have also tried the M$ Assembly Binding Log Viewer to see if those logs had any useful information, but they didn't. Everything, the loading etc, was a success according to them. Any suggestions? please?

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Localization with ASP.NET MVC ModelMetadata

    - by kazimanzurrashid
    When using the DisplayFor/EditorFor there has been built-in support in ASP.NET MVC to show localized validation messages, but no support to show the associate label in localized text, unless you are using the .NET 4.0 with Mvc Future. Lets a say you are creating a create form for Product where you have support both English and German like the following. English German I have recently added few helpers for localization in the MvcExtensions, lets see how we can use it to localize the form. As mentioned in the past that I am not a big fan when it comes to decorate class with attributes which is the recommended way in ASP.NET MVC. Instead, we will use the fluent configuration (Similar to FluentNHibernate or EF CodeFirst) of MvcExtensions to configure our View Models. For example for the above we will using: public class ProductEditModelConfiguration : ModelMetadataConfiguration<ProductEditModel> { public ProductEditModelConfiguration() { Configure(model => model.Id).Hide(); Configure(model => model.Name).DisplayName(() => LocalizedTexts.Name) .Required(() => LocalizedTexts.NameCannotBeBlank) .MaximumLength(64, () => LocalizedTexts.NameCannotBeMoreThanSixtyFourCharacters); Configure(model => model.Category).DisplayName(() => LocalizedTexts.Category) .Required(() => LocalizedTexts.CategoryMustBeSelected) .AsDropDownList("categories", () => LocalizedTexts.SelectCategory); Configure(model => model.Supplier).DisplayName(() => LocalizedTexts.Supplier) .Required(() => LocalizedTexts.SupplierMustBeSelected) .AsListBox("suppliers"); Configure(model => model.Price).DisplayName(() => LocalizedTexts.Price) .FormatAsCurrency() .Required(() => LocalizedTexts.PriceCannotBeBlank) .Range(10.00m, 1000.00m, () => LocalizedTexts.PriceMustBeBetweenTenToThousand); } } As you can we are using Func<string> to set the localized text, this is just an overload with the regular string method. There are few more methods in the ModelMetadata which accepts this Func<string> where localization can applied like Description, Watermark, ShortDisplayName etc. The LocalizedTexts is just a regular resource, we have both English and German:   Now lets see the view markup: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<Demo.Web.ProductEditModel>" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> <%= LocalizedTexts.Create %> </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <h2><%= LocalizedTexts.Create %></h2> <%= Html.ValidationSummary(false, LocalizedTexts.CreateValidationSummary)%> <% Html.EnableClientValidation(); %> <% using (Html.BeginForm()) {%> <fieldset> <%= Html.EditorForModel() %> <p> <input type="submit" value="<%= LocalizedTexts.Create %>" /> </p> </fieldset> <% } %> <div> <%= Html.ActionLink(LocalizedTexts.BackToList, "Index")%> </div> </asp:Content> As we can see that we are using the same LocalizedTexts for the other parts of the view which is not included in the ModelMetadata like the Page title, button text etc. We are also using EditorForModel instead of EditorFor for individual field and both are supported. One of the added benefit of the fluent syntax based configuration is that we will get full compile type checking for our resource as we are not depending upon the string based resource name like the ASP.NET MVC. You will find the complete localized CRUD example in the MvcExtensions sample folder. That’s it for today.

    Read the article

  • ASP.NET Performance tip- Combine multiple script file into one request with script manager

    - by Jalpesh P. Vadgama
    We all need java script for our web application and we storing our JavaScript code in .js files. Now If we have more then .js file then our browser will create a new request for each .js file. Which is a little overhead in terms of performance. If you have very big enterprise application you will have so much over head for this. Asp.net Script Manager provides a feature to combine multiple JavaScript into one request but you must remember that this feature will be available only with .NET Framework 3.5 sp1 or higher versions.  Let’s take a simple example. I am having two javascript files Jscrip1.js and Jscript2.js both are having separate functions. //Jscript1.js function Task1() { alert('task1'); } Here is another one for another file. ////Jscript1.js function Task2() { alert('task2'); } Now I am adding script reference with script manager and using this function in my code like this. <form id="form1" runat="server"> <asp:ScriptManager ID="myScriptManager" runat="server" > <Scripts> <asp:ScriptReference Path="~/JScript1.js" /> <asp:ScriptReference Path="~/JScript2.js" /> </Scripts> </asp:ScriptManager> <script language="javascript" type="text/javascript"> Task1(); Task2(); </script> </form> Now Let’s test in Firefox with Lori plug-in which will show you how many request are made for this. Here is output of that. You can see 5 Requests are there. Now let’s do same thing in with ASP.NET Script Manager combined script feature. Like following <form id="form1" runat="server"> <asp:ScriptManager ID="myScriptManager" runat="server" > <CompositeScript> <Scripts> <asp:ScriptReference Path="~/JScript1.js" /> <asp:ScriptReference Path="~/JScript2.js" /> </Scripts> </CompositeScript> </asp:ScriptManager> <script language="javascript" type="text/javascript"> Task1(); Task2(); </script> </form> Now let’s run it and let’s see how many request are there like following. As you can see now we have only 4 request compare to 5 request earlier. So script manager combined multiple script into one request. So if you have lots of javascript files you can save your loading time with this with combining multiple script files into one request. Hope you liked it. Stay tuned for more!!!.. Happy programming.. Technorati Tags: ASP.NET,ScriptManager,Microsoft Ajax

    Read the article

  • Getting Started with Chart control in ASP.Net 4.0

    - by sreejukg
    In this article I am going to demonstrate the Chart control available in ASP.Net 4 and Visual Studio 2010. Most of the web applications need to generate reports for business users. The business users are happy to view the results in a graphical format more that seeing it in numbers. For the purpose of this demonstration, I have created a sales table. I am going to create charts from this sale data. The sale table looks as follows I have created an ASP.Net web application project in Visual Studio 2010. I have a default.aspx page that I am going to use for the demonstration. First I am going to add a chart control to the page. Visual Studio 2010 has a chart control. The Chart Control comes under the Data Tab in the toolbox. Drag and drop the Chart control to the default.aspx page. Visual Studio adds the below markup to the page. <asp:Chart ID="Chart1" runat="server"></asp:Chart> In the designer view, the Chart controls gives the following output. As you can see this is exactly similar to other server controls in ASP.Net, and similar to other controls under the data tab, Chart control is also a data bound control. So I am going to bind this with my sales data. From the design view, right click the chart control and select “show smart tag” Here you need so choose the Data source property and the chart type. From the choose data source drop down, select new data source. In the data source configuration wizard, select the SQL data base and write the query to retrieve the data. At first I am going to show the chart for amount of sales done by each sales person. I am going to use the following query inside sqldatasource select command. “SELECT SUM(SaleAmount) AS Expr1, salesperson FROM SalesData GROUP BY SalesPerson” This query will give me the amount of sales achieved by each sales person. The mark up of SQLDataSource is as follows. <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$ ConnectionStrings:SampleConnectionString %>" SelectCommand="SELECT SUM(SaleAmount) as amount, SalesPerson FROM SalesData GROUP BY SalesPerson"></asp:SqlDataSource> Once you selected the data source for the chart control, you need to select the X and Y values for the columns. I have entered salesperson in the X Value member and amount in the Y value member. After modifications, the Chart control looks as follows Click F5 to run the application. The output of the page is as follows. Using ASP.Net it is much easier to represent your data in graphical format. To show this chart, I didn’t even write any single line of code. The chart control is a great tool that helps the developer to show the business intelligence in their applications without using third party products. I will write another blog that explore further possibilities that shows more reports by using the same sales data. If you want to get the Project in zipped format, post your email below.

    Read the article

  • Books or resources about x86 64 assembly written in AT&T style?

    - by Gnijuohz
    I know what I'm asking for is quite specific and many would say if you know x86 assembly, this wouldn't be an issue. But now I'm taking a course that requires me to use x86 64 assembly in AT&T style and I'm not familiar with assembly in the first place. So I think if I can find some books or web resources about x86 64 assembly written in AT&T convention, it'll help me the most. But so far, I haven't found such books or detailed web resources yet. So can anyone point me to some good resouces? Advice on learning Assembly is also appreciated here!

    Read the article

  • New Features in ASP.NET Web API 2 - Part I

    - by dwahlin
    I’m a big fan of ASP.NET Web API. It provides a quick yet powerful way to build RESTful HTTP services that can easily be consumed by a variety of clients. While it’s simple to get started using, it has a wealth of features such as filters, formatters, and message handlers that can be used to extend it when needed. In this post I’m going to provide a quick walk-through of some of the key new features in version 2. I’ll focus on some two of my favorite features that are related to routing and HTTP responses and cover additional features in a future post.   Attribute Routing Routing has been a core feature of Web API since it’s initial release and something that’s built into new Web API projects out-of-the-box. However, there are a few scenarios where defining routes can be challenging such as nested routes (more on that in a moment) and any situation where a lot of custom routes have to be defined. For this example, let’s assume that you’d like to define the following nested route:   /customers/1/orders   This type of route would select a customer with an Id of 1 and then return all of their orders. Defining this type of route in the standard WebApiConfig class is certainly possible, but it isn’t the easiest thing to do for people who don’t understand routing well. Here’s an example of how the route shown above could be defined:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "CustomerOrdersApiGet", routeTemplate: "api/customers/{custID}/orders", defaults: new { custID = 0, controller = "Customers", action = "Orders" } ); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); GlobalConfiguration.Configuration.Formatters.Insert(0, new JsonpFormatter()); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   With attribute based routing, defining these types of nested routes is greatly simplified. To get started you first need to make a call to the new MapHttpAttributeRoutes() method in the standard WebApiConfig class (or a custom class that you may have created that defines your routes) as shown next:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { // Allow for attribute based routes config.MapHttpAttributeRoutes(); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); } } Once attribute based routes are configured, you can apply the Route attribute to one or more controller actions. Here’s an example:   [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; }   This example maps the custId route parameter to the custId parameter in the Orders() method and also ensures that the route parameter is typed as an integer. The Orders() method can be called using the following route: /customers/2/orders   While this is extremely easy to use and gets the job done, it doesn’t include the default “api” string on the front of the route that you might be used to seeing. You could add “api” in front of the route and make it “api/customers/{custId:int}/orders” but then you’d have to repeat that across other attribute-based routes as well. To simply this type of task you can add the RoutePrefix attribute above the controller class as shown next so that “api” (or whatever the custom starting point of your route is) is applied to all attribute routes: [RoutePrefix("api")] public class CustomersController : ApiController { [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; } }   There’s much more that you can do with attribute-based routing in ASP.NET. Check out the following post by Mike Wasson for more details.   Returning Responses with IHttpActionResult The first version of Web API provided a way to return custom HttpResponseMessage objects which were pretty easy to use overall. However, Web API 2 now wraps some of the functionality available in version 1 to simplify the process even more. A new interface named IHttpActionResult (similar to ActionResult in ASP.NET MVC) has been introduced which can be used as the return type for Web API controller actions. To return a custom response you can use new helper methods exposed through ApiController such as: Ok NotFound Exception Unauthorized BadRequest Conflict Redirect InvalidModelState Here’s an example of how IHttpActionResult and the helper methods can be used to cleanup code. This is the typical way to return a custom HTTP response in version 1:   public HttpResponseMessage Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { return new HttpResponseMessage(HttpStatusCode.OK); } else { throw new HttpResponseException(HttpStatusCode.NotFound); } } With version 2 we can replace HttpResponseMessage with IHttpActionResult and simplify the code quite a bit:   public IHttpActionResult Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { //return new HttpResponseMessage(HttpStatusCode.OK); return Ok(); } else { //throw new HttpResponseException(HttpStatusCode.NotFound); return NotFound(); } } You can also cleanup post (insert) operations as well using the helper methods. Here’s a version 1 post action:   public HttpResponseMessage Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { var msg = new HttpResponseMessage(HttpStatusCode.Created); msg.Headers.Location = new Uri(Request.RequestUri + newCust.ID.ToString()); return msg; } else { throw new HttpResponseException(HttpStatusCode.Conflict); } } This is what the code looks like in version 2:   public IHttpActionResult Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { return Created<Customer>(Request.RequestUri + newCust.ID.ToString(), newCust); } else { return Conflict(); } } More details on IHttpActionResult and the different helper methods provided by the ApiController base class can be found here. Conclusion Although there are several additional features available in Web API 2 that I could cover (CORS support for example), this post focused on two of my favorites features. If you have .NET 4.5.1 available then I definitely recommend checking the new features out. Additional articles that cover features in ASP.NET Web API 2 can be found here.

    Read the article

  • Dependency Injection in ASP.NET MVC NerdDinner App using Unity 2.0

    - by shiju
    In my previous post Dependency Injection in ASP.NET MVC NerdDinner App using Ninject, we did dependency injection in NerdDinner application using Ninject. In this post, I demonstrate how to apply Dependency Injection in ASP.NET MVC NerdDinner App using Microsoft Unity Application Block (Unity) v 2.0.Unity 2.0Unity 2.0 is available on Codeplex at http://unity.codeplex.com . In earlier versions of Unity, the ObjectBuilder generic dependency injection mechanism, was distributed as a separate assembly, is now integrated with Unity core assembly. So you no longer need to reference the ObjectBuilder assembly in your applications. Two additional Built-In Lifetime Managers - HierarchicalifetimeManager and PerResolveLifetimeManager have been added to Unity 2.0.Dependency Injection in NerdDinner using UnityIn my Ninject post on NerdDinner, we have discussed the interfaces and concrete types of NerdDinner application and how to inject dependencies controller constructors. The following steps will configure Unity 2.0 to apply controller injection in NerdDinner application. Step 1 – Add reference for Unity Application BlockOpen the NerdDinner solution and add  reference to Microsoft.Practices.Unity.dll and Microsoft.Practices.Unity.Configuration.dllYou can download Unity from at http://unity.codeplex.com .Step 2 – Controller Factory for Unity The controller factory is responsible for creating controller instances.We extend the built in default controller factory with our own factory for working Unity with ASP.NET MVC. public class UnityControllerFactory : DefaultControllerFactory {     protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType)     {         IController controller;         if (controllerType == null)             throw new HttpException(                     404, String.Format(                         "The controller for path '{0}' could not be found" +         "or it does not implement IController.",                     reqContext.HttpContext.Request.Path));           if (!typeof(IController).IsAssignableFrom(controllerType))             throw new ArgumentException(                     string.Format(                         "Type requested is not a controller: {0}",                         controllerType.Name),                         "controllerType");         try         {             controller = MvcUnityContainer.Container.Resolve(controllerType)                             as IController;         }         catch (Exception ex)         {             throw new InvalidOperationException(String.Format(                                     "Error resolving controller {0}",                                     controllerType.Name), ex);         }         return controller;     }   }   public static class MvcUnityContainer {     public static IUnityContainer Container { get; set; } }  Step 3 – Register Types and Set Controller Factory private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()     .RegisterType<IFormsAuthentication, FormsAuthenticationService>()     .RegisterType<IMembershipService, AccountMembershipService>()     .RegisterInstance<MembershipProvider>(Membership.Provider)     .RegisterType<IDinnerRepository, DinnerRepository>();     //Set container for Controller Factory     MvcUnityContainer.Container = container;     //Set Controller Factory as UnityControllerFactory     ControllerBuilder.Current.SetControllerFactory(                         typeof(UnityControllerFactory));            } Unity 2.0 provides a fluent interface for type configuration. Now you can call all the methods in a single statement.The above Unity configuration specified in the ConfigureUnity method tells that, to inject instance of DinnerRepositiry when there is a request for IDinnerRepositiry and  inject instance of FormsAuthenticationService when there is a request for IFormsAuthentication and inject instance of AccountMembershipService when there is a request for IMembershipService. The AccountMembershipService class has a dependency with ASP.NET Membership provider. So we configure that inject the instance of Membership Provider.After the registering the types, we set UnityControllerFactory as the current controller factory. //Set container for Controller Factory MvcUnityContainer.Container = container; //Set Controller Factory as UnityControllerFactory ControllerBuilder.Current.SetControllerFactory(                     typeof(UnityControllerFactory)); When you register a type  by using the RegisterType method, the default behavior is for the container to use a transient lifetime manager. It creates a new instance of the registered, mapped, or requested type each time you call the Resolve or ResolveAll method or when the dependency mechanism injects instances into other classes. The following are the LifetimeManagers provided by Unity 2.0ContainerControlledLifetimeManager - Implements a singleton behavior for objects. The object is disposed of when you dispose of the container.ExternallyControlledLifetimeManager - Implements a singleton behavior but the container doesn't hold a reference to object which will be disposed of when out of scope.HierarchicalifetimeManager - Implements a singleton behavior for objects. However, child containers don't share instances with parents.PerResolveLifetimeManager - Implements a behavior similar to the transient lifetime manager except that instances are reused across build-ups of the object graph.PerThreadLifetimeManager - Implements a singleton behavior for objects but limited to the current thread.TransientLifetimeManager - Returns a new instance of the requested type for each call. (default behavior)We can also create custome lifetime manager for Unity container. The following code creating a custom lifetime manager to store container in the current HttpContext. public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName]             = newValue;     }     public void Dispose()     {         RemoveValue();     } }  Step 4 – Modify Global.asax.cs for configure Unity container In the Application_Start event, we call the ConfigureUnity method for configuring the Unity container and set controller factory as UnityControllerFactory void Application_Start() {     RegisterRoutes(RouteTable.Routes);       ViewEngines.Engines.Clear();     ViewEngines.Engines.Add(new MobileCapableWebFormViewEngine());     ConfigureUnity(); }Download CodeYou can download the modified NerdDinner code from http://nerddinneraddons.codeplex.com

    Read the article

  • Using transactions with LINQ-to-SQL

    - by Jalpesh P. Vadgama
    Today one of my colleague asked that how we can use transactions with the LINQ-to-SQL Classes when we use more then one entities updated at same time. It was a good question. Here is my answer for that.For ASP.NET 2.0  or higher version have a new class called TransactionScope which can be used to manage transaction with the LINQ. Let’s take a simple scenario we are having a shopping cart application in which we are storing details or particular order placed into the database using LINQ-to-SQL. There are two tables Order and OrderDetails which will have all the information related to order. Order will store particular information about orders while OrderDetails table will have product and quantity of product for particular order.We need to insert data in both tables as same time and if any errors comes then it should rollback the transaction. To use TransactionScope in above scenario first we have add a reference to System.Transactions like below. After adding the transaction we need to drag and drop the Order and Order Details tables into Linq-To-SQL Classes it will create entities for that. Below is the code for transaction scope to use mange transaction with Linq Context. MyContextDataContext objContext = new MyContextDataContext(); using (System.Transactions.TransactionScope tScope = new System.Transactions.TransactionScope(TransactionScopeOption.Required)) { objContext.Order.InsertOnSubmit(Order); objContext.OrderDetails.InsertOnSumbit(OrderDetails); objContext.SubmitChanges(); tScope.Complete(); } Here it will commit transaction only if using blocks will run successfully. Hope this will help you. Technorati Tags: Linq,Transaction,System.Transactions,ASP.NET

    Read the article

  • Keyboard locking up in Visual Studio 2010

    - by Jim Wang
    One of the initiatives I’m involved with on the ASP.NET and Visual Studio teams is the Tactical Test Team (TTT), which is a group of testers who dedicate a portion of their time to roaming around and testing different parts of the product.  What this generally translates to is a day and a bit a week helping out with areas of the product that have been flagged as risky, or tackling problems that span both ASP.NET and Visual Studio.  There is also a separate component of this effort outside of TTT which is to help with customer scenarios and design. I enjoy being on TTT because it allows me the opportunity to look at the entire product and gain expertise in a wide range of areas.  This week, I’m looking at Visual Studio 2010 performance problems, and this gem with the keyboard in Visual Studio locking up ended up catching my attention. First of all, here’s a link to one of the many Connect bugs describing the problem: Microsoft Connect I like this problem because it really highlights the challenges of reproducing customer bugs.  There aren’t any clear steps provided here, and I don’t know a lot about your environment: not just the basics like our OS version, but also what third party plug-ins or antivirus software you might be running that might contribute to the problem.  In this case, my gut tells me that there is more than one bug here, just by the sheer volume of reports.  Here’s another thread where users talk about it: Microsoft Connect The volume and different configurations are staggering.  From a customer perspective, this is a very clear cut case of basic functionality not working in the product, but from our perspective, it’s hard to find something reproducible: even customers don’t quite agree on what causes the problem (installing ReSharper seems to cause a problem…or does it?). So this then, is the start of a QA investigation. If anybody has isolated repro steps (just comment on this post) that they can provide this will immensely help us nail down the issue(s), but I’ll be doing a multi-part series on my progress and methodologies as I look into the problem.

    Read the article

  • Use ASP.NET 4 Browser Definitions with ASP.NET 3.5

    - by Stephen Walther
    We updated the browser definitions files included with ASP.NET 4 to include information on recent browsers and devices such as Google Chrome and the iPhone. You can use these browser definition files with earlier versions of ASP.NET such as ASP.NET 3.5. The updated browser definition files, and instructions for installing them, can be found here: http://aspnet.codeplex.com/releases/view/41420 The changes in the browser definition files can cause backwards compatibility issues when you upgrade an ASP.NET 3.5 web application to ASP.NET 4. If you encounter compatibility issues, you can install the old browser definition files in your ASP.NET 4 application. The old browser definition files are included in the download file referenced above. What’s New in the ASP.NET 4 Browser Definition Files The complete set of browsers supported by the new ASP.NET 4 browser definition files is represented by the following figure:     If you look carefully at the figure, you’ll notice that we added browser definitions for several types of recent browsers such as Internet Explorer 8, Firefox 3.5, Google Chrome, Opera 10, and Safari 4. Furthermore, notice that we now include browser definitions for several of the most popular mobile devices: BlackBerry, IPhone, IPod, and Windows Mobile (IEMobile). The mobile devices appear in the figure with a purple background color. To improve performance, we removed a whole lot of outdated browser definitions for old cell phones and mobile devices. We also cleaned up the information contained in the browser files. Here are some of the browser features that you can detect: Are you a mobile device? <%=Request.Browser.IsMobileDevice %> Are you an IPhone? <%=Request.Browser.MobileDeviceModel == "IPhone" %> What version of JavaScript do you support? <%=Request.Browser["javascriptversion"] %> What layout engine do you use? <%=Request.Browser["layoutEngine"] %>   Here’s what you would get if you displayed the value of these properties using Internet Explorer 8: Here’s what you get when you use Google Chrome: Testing Browser Settings When working with browser definition files, it is useful to have some way to test the capability information returned when you request a page with different browsers. You can use the following method to return the HttpBrowserCapabilities the corresponds to a particular user agent string and set of browser headers: public HttpBrowserCapabilities GetBrowserCapabilities(string userAgent, NameValueCollection headers) { HttpBrowserCapabilities browserCaps = new HttpBrowserCapabilities(); Hashtable hashtable = new Hashtable(180, StringComparer.OrdinalIgnoreCase); hashtable[string.Empty] = userAgent; // The actual method uses client target browserCaps.Capabilities = hashtable; var capsFactory = new System.Web.Configuration.BrowserCapabilitiesFactory(); capsFactory.ConfigureBrowserCapabilities(headers, browserCaps); capsFactory.ConfigureCustomCapabilities(headers, browserCaps); return browserCaps; } At the end of this blog entry, there is a link to download a simple Visual Studio 2008 project – named Browser Definition Test -- that uses this method to display capability information for arbitrary user agent strings. For example, if you enter the user agent string for an iPhone then you get the results in the following figure: The Browser Definition Test application enables you to submit a user-agent string and display a table of browser capabilities information. The browser definition files contain sample user-agent strings for each browser definition. I got the iPhone user-agent string from the comments in the iphone.browser file. Enumerating Browser Definitions Someone asked in the comments whether or not there is a way to enumerate all of the browser definitions. You can do this if you ware willing to use a little reflection and read a private property. The browser definition files in the config\browsers folder get parsed into a class named BrowserCapabilitesFactory. After you run the aspnet_regbrowsers tool, you can see the source for this class in the config\browser folder by opening a file named BrowserCapsFactory.cs. The BrowserCapabilitiesFactoryBase class has a protected property named BrowserElements that represents a Hashtable of all of the browser definitions. Here's how you can read this protected property and display the ID for all of the browser definitions: var propInfo = typeof(BrowserCapabilitiesFactory).GetProperty("BrowserElements", BindingFlags.NonPublic | BindingFlags.Instance); Hashtable browserDefinitions = (Hashtable)propInfo.GetValue(new BrowserCapabilitiesFactory(), null); foreach (var key in browserDefinitions.Keys) { Response.Write("" + key); } If you run this code using Visual Studio 2008 then you get the following results: You get a huge number of outdated browsers and devices. In all, 449 browser definitions are listed. If you run this code using Visual Studio 2010 then you get the following results: In the case of Visual Studio 2010, all the old browsers and devices have been removed and you get only 19 browser definitions. Conclusion The updated browser definition files included in ASP.NET 4 provide more accurate information for recent browsers and devices. If you would like to test the new browser definitions with different user-agent strings then I recommend that you download the Browser Definition Test project: Browser Definition Test Project

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >