Search Results

Search found 3019 results on 121 pages for 'arrange act assert'.

Page 15/121 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Mocking successive calls of similar type via sequential mocking

    - by mehfuzh
    In this post , i show how you can benefit from  sequential mocking feature[In JustMock] for setting up expectations with successive calls of same type.  To start let’s first consider the following dummy database and entity class. public class Person {     public virtual string Name { get; set; }     public virtual int Age { get; set; } }   public interface IDataBase {     T Get<T>(); } Now, our test goal is to return different entity for successive calls on IDataBase.Get<T>(). By default, the behavior in JustMock is override , which is similar to other popular mocking tools. By override it means that the tool will consider always the latest user setup. Therefore, the first example will return the latest entity every-time and will fail in line #12: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Queue<Person> queue = new Queue<Person>();   Mock.Arrange(() => database.Get<Person>()).Returns(() => queue.Dequeue()); Mock.Arrange(() => database.Get<Person>()).Returns(person2);   // this will fail Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode());   Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); We can solve it the following way using a Queue and that removes the item from bottom on each call: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Queue<Person> queue = new Queue<Person>();   queue.Enqueue(person1); queue.Enqueue(person2);   Mock.Arrange(() => database.Get<Person>()).Returns(queue.Dequeue());   Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode()); Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); This will ensure that right entity is returned but this is not an elegant solution. So, in JustMock we introduced a  new option that lets you set up your expectations sequentially. Like: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Mock.Arrange(() => database.Get<Person>()).Returns(person1).InSequence(); Mock.Arrange(() => database.Get<Person>()).Returns(person2).InSequence();   Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode()); Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); The  “InSequence” modifier will tell the mocking tool to return the expected result as in the order it is specified by user. The solution though pretty simple and but neat(to me) and way too simpler than using a collection to solve this type of cases. Hope that helps P.S. The example shown in my blog is using interface don’t require a profiler  and you can even use a notepad and build it referencing Telerik.JustMock.dll, run it with GUI tools and it will work. But this feature also applies to concrete methods that includes JM profiler and can be implemented for more complex scenarios.

    Read the article

  • Mocking property sets

    - by mehfuzh
    In this post, i will be showing how you can mock property sets with your expected values or even action using JustMock. To begin, we have a sample interface: public interface IFoo {     int Value { get; set; } } Now,  we can create a mock that will throw on any call other than the one expected, generally its a strict mock and we can do it like: bool expected = false;  var foo = Mock.Create<IFoo>(BehaviorMode.Strict);  Mock.ArrangeSet(() => { foo.Value = 1; }).DoInstead(() => expected  = true);    foo.Value = 1;    Assert.True(expected); Here , the method for running though our expectation for set is Mock.ArrangeSet , where we can directly set our expectations or can even set matchers into it like: var foo = Mock.Create<IFoo>(BehaviorMode.Strict);   Mock.ArrangeSet(() => foo.Value = Arg.Matches<int>(x => x > 3));   foo.Value = 4; foo.Value = 5;   Assert.Throws<MockException>(() => foo.Value = 3);   In the example, any set for value not satisfying matcher expression will throw an MockException as this is a strict mock but what will be the case for loose mocks, where we also have to assert it. Here, let’s take an interface with an indexed property. Indexers are treated in the same way as properties, as with basic indexers let you access your class if it were an array. public interface IFooIndexed {     string this[int key] { get; set; } } We want to  setup a value for a particular index,  we then will pass that mock to some implementer where it will be actually called. Once done, we want to assert that if it has been invoked properly. var foo = Mock.Create<IFooIndexed>();   Mock.ArrangeSet(() => foo[0] = "ping");   foo[0] = "ping";   Mock.AssertSet(() => foo[0] = "ping"); In the above example, both the values are user defined, it might happen that we want to make it more dynamic, In this example, i set it up for set with any value and finally checked if it is set with the one i am looking for. var foo = Mock.Create<IFooIndexed>();   Mock.ArrangeSet(() => foo[0] = Arg.Any<string>());   foo[0] = "ping";   Mock.AssertSet(() => foo[0] = Arg.Matches<string>(x => string.Compare("ping", x) == 0)); This is more or less of mocking user sets , but we can further have it to throw exception or even do our own task for a particular set , like : Mock.ArrangeSet(() => foo.MyProperty = 10).Throws(new ArgumentException()); Or  bool expected = false;  var foo = Mock.Create<IFoo>(BehaviorMode.Strict);  Mock.ArrangeSet(() => { foo.Value = 1; }).DoInstead(() => expected  = true);    foo.Value = 1;    Assert.True(expected); Or call the original setter , in this example it will throw an NotImplementedExpectation var foo = Mock.Create<FooAbstract>(BehaviorMode.Strict); Mock.ArrangeSet(() => { foo.Value = 1; }).CallOriginal(); Assert.Throws<NotImplementedException>(() => { foo.Value = 1; });   Finally, try all these, find issues, post them to forum and make it work for you :-). Hope that helps,

    Read the article

  • JustMock is here !!

    - by mehfuzh
    As announced earlier by Hristo Kosev at Telerik blogs , we have started giving out JustMock builds from today. This is the first of early builds before the official Q2 release and we are pretty excited to get your feedbacks. Its pretty early to say anything on it. It actually depends on your feedback. To add few, with JustMock we tried to build a mocking tool with simple and intuitive syntax as possible excluding more and more noises and avoiding any smell that can be made to your code [We are still trying everyday] and we want to make the tool even better with your help. JustMock can be used to mock virtually anything. Moreover, we left an option open that it can be used to reduce / elevate the features  just though a single click. We tried to make a strong API and make stuffs fluent and guided as possible so that you never have the chance to get de-railed. Our syntax is AAA (Arrange – Act – Assert) , we don’t believe in Record – Reply model which some of the smarter mocking tools are planning to remove from their coming release or even don’t have [its always fun to lean from each other]. Overall more signals equals more complexity , reminds me of 37 signals :-). Currently, here are the things you can do with JustMock ( will cover more in-depth in coming days) Proxied mode Mock interfaces and class with virtuals Mock properties that includes indexers Set raise event for specific calls Use matchers to control mock arguments Assert specific occurrence of a mocked calls. Assert using matchers Do recursive mocks Do Sequential mocking ( same method with argument returns different values or perform different tasks) Do strict mocking (by default and i prefer loose , so that i can use it as stubs) Elevated mode Mock static calls Mock final class Mock sealed classes Mock Extension methods Partially mock a  class member directly using Mock.Arrange Mock MsCorlib (we will support more and more members in coming days) , currently we support FileInfo, File and DateTime. These are few, you need to take a look at the test project that is provided with the build to find more [Along with the document]. Also, one of feature that will i will be using it for my next OS projects is the ability to run it separately in  proxied mode which makes it easy to redistribute and do some personal development in a more DI model and my option to elevate as it go.   I’ve surely forgotten tons of other features to mention that i will cover time but  don’t for get the URL : www.telerik.com/justmock   Finally a little mock code:   var lvMock = Mock.Create<ILoveJustMock>();    // set your goal  Mock.Arrange(() => lvMock.Response(Arg.Any<string>())).Returns((int result) => result);    //perform  string ret =  lvMock.Echo("Yes");    Assert.Equal(ret, "Yes");  // make sure everything is fine  Mock.Assert(() => lvMock.Echo("Yes"), Occurs.Once());   Hope that helps to get started,  will cover if not :-).

    Read the article

  • Rx framework: How to wait for an event to be triggered in silverlight test

    - by user324255
    Hi, I have a ViewModel that starts loading the Model async in the constructor, and triggers an event when the Model is loaded. I got a test working with the silverlight unit test framework, like this : bool done = false; [TestMethod] [Asynchronous] public void Test_NoCustomerSelected() { ProjectListViewModel viewModel = null; EnqueueCallback(() => viewModel = new ProjectListViewModel()); EnqueueCallback(() => viewModel.ModelLoaded += new EventHandler<EventArgs>(viewModel_ModelLoaded)); EnqueueConditional(() => done); EnqueueCallback(() => Assert.IsNotNull(viewModel.FilteredProjectList)); EnqueueCallback(() => Assert.AreEqual(4, viewModel.FilteredProjectList.Count)); EnqueueTestComplete(); } void viewModel_ModelLoaded(object sender, EventArgs e) { done = true; } But I'm beginning playing with Rx Framework, and trying to get my test to work, but so far I have no luck. Here's 2 attempts : public void Test_NoCustomerSelected2() { ProjectListViewModel viewModel = null; viewModel = new ProjectListViewModel(eventAggregatorMock.Object, moduleManagerMock.Object); IObservable<IEvent<EventArgs>> eventAsObservable = Observable.FromEvent<EventArgs>( ev => viewModel.ModelLoaded += ev, ev => viewModel.ModelLoaded -= ev); eventAsObservable.Subscribe(args => viewModel_ModelLoaded(args.Sender, args.EventArgs)); eventAsObservable.First(); Assert.IsNotNull(viewModel.Model); Assert.AreEqual(4, viewModel.Model.Count); } [TestMethod] public void Test_NoCustomerSelected3() { ProjectListViewModel viewModel = null; var o = Observable.Start(() => viewModel = new ProjectListViewModel(eventAggregatorMock.Object, moduleManagerMock.Object)); IObservable<IEvent<EventArgs>> eventAsObservable = Observable.FromEvent<EventArgs>( ev => viewModel.ModelLoaded += ev, ev => viewModel.ModelLoaded -= ev); o.TakeUntil(eventAsObservable) .First(); Assert.IsNotNull(viewModel.Model); Assert.AreEqual(4, viewModel.Model.Count); } The first test goes in waiting forever, the second doesn't work because the viewModel is null when it does the FromEvent. Anyone has a clue on how to do this properly?

    Read the article

  • Unity framework DependencyAttribute only works for public properties?

    - by rally25rs
    I was trying to clean up some accessability stuff in my code, and inadvertently broke Unity dependency injection. After a while I realized that I marked some public properties that I didn't really want exposed outside my DLLs to internal. Then I started getting exceptions. So it seems that using the [Dependency] attribute in Unity only works for public properties. I suppose that makes sense since the internal and private props wouldnt be visible to the Unity assembly, but feels really dirty to have a bunch of public properties that you never want anyone to set or be able to set, other than Unity. Is there a way to let unity set internal or private properties too? Here is the unit test I'd like to see pass. Currently only the public prop test passes: [TestFixture] public class UnityFixture { [Test] public void UnityCanSetPublicDependency() { UnityContainer container = new UnityContainer(); container.RegisterType<HasPublicDep, HasPublicDep>(); container.RegisterType<TheDep, TheDep>(); var i = container.Resolve<HasPublicDep>(); Assert.IsNotNull(i); Assert.IsNotNull(i.dep); } [Test] public void UnityCanSetInternalDependency() { UnityContainer container = new UnityContainer(); container.RegisterType<HasInternalDep, HasInternalDep>(); container.RegisterType<TheDep, TheDep>(); var i = container.Resolve<HasInternalDep>(); Assert.IsNotNull(i); Assert.IsNotNull(i.dep); } [Test] public void UnityCanSetPrivateDependency() { UnityContainer container = new UnityContainer(); container.RegisterType<HasPrivateDep, HasPrivateDep>(); container.RegisterType<TheDep, TheDep>(); var i = container.Resolve<HasPrivateDep>(); Assert.IsNotNull(i); Assert.IsNotNull(i.depExposed); } } public class HasPublicDep { [Dependency] public TheDep dep { get; set; } } public class HasInternalDep { [Dependency] internal TheDep dep { get; set; } } public class HasPrivateDep { [Dependency] private TheDep dep { get; set; } public TheDep depExposed { get { return this.dep; } } } public class TheDep { } Updated: I noticed the call stack to set the property passed from: UnityCanSetPublicDependency() --> Microsoft.Practices.Unity.dll --> Microsoft.Practices.ObjectBuilder2.dll --> HasPublicDep.TheDep.set() So in an attempt to at least make the internal version work, I added these to my assembly's properties: [assembly: InternalsVisibleTo("Microsoft.Practices.Unity")] [assembly: InternalsVisibleTo("Microsoft.Practices.Unity.Configuration")] [assembly: InternalsVisibleTo("Microsoft.Practices.ObjectBuilder2")] However, no change. Unity/ObjectBuilder still won't set the internal property

    Read the article

  • MVC2 Areas and unit testing for routes

    - by Alexander Shapovalov
    Hello, I want to test my routes in unit tests. But Areas is not working in my unit tests. Is it possible to test ASP.NET MVC 2 routes for Areas? I am using this code [SetUp] public void SetUp() { this.routes = new RouteCollection(); MvcApplication.RegisterRoutes(this.routes); } #endregion private RouteCollection routes; [Test] public void Should_Navigate_To_AdminUser_Controller_EditUser_Method() { HttpContextBase fackeCtx = CreateFackeContext("~/Admin/User/Edit/3"); RouteData routeData = this.routes.GetRouteData(fackeCtx); Assert.IsNotNull(routeData, "Route is not defined!"); Assert.AreEqual("Edit", routeData.Values["action"]); Assert.AreEqual("User", routeData.Values["controller"]); Assert.AreEqual("3", routeData.Values["id"]); }

    Read the article

  • Using Moq callbacks correctly according to AAA

    - by Hadi Eskandari
    I've created a unit test that tests interactions on my ViewModel class in a Silverlight application. To be able to do this test, I'm mocking the service interface, injected to the ViewModel. I'm using Moq framework to do the mocking. to be able to verify bounded object in the ViewModel is converted properly, I've used a callback: [Test] public void SaveProposal_Will_Map_Proposal_To_WebService_Parameter() { var vm = CreateNewCampaignViewModel(); var proposal = CreateNewProposal(1, "New Proposal"); Services.Setup(x => x.SaveProposalAsync(It.IsAny<saveProposalParam>())).Callback((saveProposalParam p) => { Assert.That(p.plainProposal, Is.Not.Null); Assert.That(p.plainProposal.POrderItem.orderItemId, Is.EqualTo(1)); Assert.That(p.plainProposal.POrderItem.orderName, Is.EqualTo("New Proposal")); }); proposal.State = ObjectStates.Added; vm.CurrentProposal = proposal; vm.Save(); } It is working fine, but if you've noticed, using this mechanism the Assert and Act part of the unit test have switched their parts (Assert comes before Acting). Is there a better way to do this, while preserving correct AAA order?

    Read the article

  • Seeding repository Rhino Mocks

    - by ahsteele
    I am embarking upon my first journey of test driven development in C#. To get started I'm using MSTest and Rhino.Mocks. I am attempting to write my first unit tests against my ICustomerRepository. It seems tedious to new up a Customer for each test method. In ruby-on-rails I'd create a seed file and load the customer for each test. It seems logical that I could put this boiler plate Customer into a property of the test class but then I would run the risk of it being modified. What are my options for simplifying this code? [TestMethod] public class CustomerTests : TestClassBase { [TestMethod] public void CanGetCustomerById() { // arrange var customer = new Customer() { CustId = 5, DifId = "55", CustLookupName = "The Dude", LoginList = new[] { new Login { LoginCustId = 5, LoginName = "tdude" } } }; var repository = Stub<ICustomerRepository>(); // act repository.Stub(rep => rep.GetById(5)).Return(customer); // assert Assert.AreEqual(customer, repository.GetById(5)); } [TestMethod] public void CanGetCustomerByDifId() { // arrange var customer = new Customer() { CustId = 5, DifId = "55", CustLookupName = "The Dude", LoginList = new[] { new Login { LoginCustId = 5, LoginName = "tdude" } } }; var repository = Stub<ICustomerRepository>(); // act repository.Stub(rep => rep.GetCustomerByDifID("55")).Return(customer); // assert Assert.AreEqual(customer, repository.GetCustomerByDifID("55")); } [TestMethod] public void CanGetCustomerByLogin() { // arrange var customer = new Customer() { CustId = 5, DifId = "55", CustLookupName = "The Dude", LoginList = new[] { new Login { LoginCustId = 5, LoginName = "tdude" } } }; var repository = Stub<ICustomerRepository>(); // act repository.Stub(rep => rep.GetCustomerByLogin("tdude")).Return(customer); // assert Assert.AreEqual(customer, repository.GetCustomerByLogin("tdude")); } } Test Base Class public class TestClassBase { protected T Stub<T>() where T : class { return MockRepository.GenerateStub<T>(); } } ICustomerRepository and IRepository public interface ICustomerRepository : IRepository<Customer> { IList<Customer> FindCustomers(string q); Customer GetCustomerByDifID(string difId); Customer GetCustomerByLogin(string loginName); } public interface IRepository<T> { void Save(T entity); void Save(List<T> entity); bool Save(T entity, out string message); void Delete(T entity); T GetById(int id); ICollection<T> FindAll(); }

    Read the article

  • TypeError: unbound method make_request() must be called with XX instance, but how?

    - by Dave
    Running the code below I get E TypeError: unbound method make_request() must be called with A instance as first argument (got str instance instead) I dont want to set make_request method as static, I want to call it from an instance of an object. The example http://pytest.org/latest/fixture.html#fixture-function # content of ./test_smtpsimple.py import pytest @pytest.fixture def smtp(): import smtplib return smtplib.SMTP("merlinux.eu") def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 assert "merlinux" in msg assert 0 # for demo purposes My code """ """ import pytest class A(object): """ """ def __init__(self, name ): """ """ self._prop1 = [name] @property def prop1(self): return self._prop1 @prop1.setter def prop1(self, arguments): self._prop1 = arguments def make_request(self, sex): return 'result' def __call__(self): return self @pytest.fixture() def myfixture(): """ """ A('BigDave') return A def test_validateA(myfixture): result = myfixture.make_request('male') assert result =='result'

    Read the article

  • BigInteger.Parse() on hexadecimal number gives negative numbers.

    - by brickner
    I've started using .NET 4 System.Numerics.BigInteger Structure and I've encountered a problem. I'm trying to parse a string that contains a hexadecimal number with no sign (positive). I'm getting a negative number. For example, I do the following two asserts: Assert.IsTrue(System.Int64.Parse("8", NumberStyles.HexNumber, CultureInfo.InvariantCulture) > 0, "Int64"); Assert.IsTrue(System.Numerics.BigInteger.Parse("8", NumberStyles.HexNumber, CultureInfo.InvariantCulture) > 0, "BigInteger"); The first assert succeeds, the second assert fails. I actually get -8 instead of 8 in the BigInteger. The problem seems to be when I'm the hexadecimal starts with 1 bit and not 0 bit (a digit between 8 and F inclusive). If I add a leading 0, everything works perfectly. Is that a bad usage on my part? Is it a bug in BigInteger?

    Read the article

  • SQLAlchemy autocommiting?

    - by muckabout
    I have an issue with SQLAlchemy apparently committing. A rough sketch of my code: trans = self.conn.begin() try: assert not self.conn.execute(my_obj.__table__.select(my_obj.id == id)).first() self.conn.execute(my_obj.__table__.insert().values(id=id)) assert not self.conn.execute(my_obj.__table__.select(my_obj.id == id)).first() except: trans.rollback() raise I don't commit, and the second assert always fails! In other words, it seems the data is getting inserted into the database even though the code is within a transaction! Is this assessment accurate?

    Read the article

  • Implementing a bitfield using java enums

    - by soappatrol
    Hello, I maintain a large document archive and I often use bit fields to record the status of my documents during processing or when validating them. My legacy code simply uses static int constants such as: static int DOCUMENT_STATUS_NO_STATE = 0 static int DOCUMENT_STATUS_OK = 1 static int DOCUMENT_STATUS_NO_TIF_FILE = 2 static int DOCUMENT_STATUS_NO_PDF_FILE = 4 This makes it pretty easy to indicate the state a document is in, by setting the appropriate flags. For example: status = DOCUMENT_STATUS_NO_TIF_FILE | DOCUMENT_STATUS_NO_PDF_FILE; Since the approach of using static constants is bad practice and because I would like to improve the code, I was looking to use Enums to achieve the same. There are a few requirements, one of them being the need to save the status into a database as a numeric type. So there is a need to transform the enumeration constants to a numeric value. Below is my first approach and I wonder if this is the correct way to go about this? class DocumentStatus{ public enum StatusFlag { DOCUMENT_STATUS_NOT_DEFINED(1<<0), DOCUMENT_STATUS_OK(1<<1), DOCUMENT_STATUS_MISSING_TID_DIR(1<<2), DOCUMENT_STATUS_MISSING_TIF_FILE(1<<3), DOCUMENT_STATUS_MISSING_PDF_FILE(1<<4), DOCUMENT_STATUS_MISSING_OCR_FILE(1<<5), DOCUMENT_STATUS_PAGE_COUNT_TIF(1<<6), DOCUMENT_STATUS_PAGE_COUNT_PDF(1<<7), DOCUMENT_STATUS_UNAVAILABLE(1<<8), private final long statusFlagValue; StatusFlag(long statusFlagValue) { this.statusFlagValue = statusFlagValue } public long getStatusFlagValue(){ return statusFlagValue } } /** * Translates a numeric status code into a Set of StatusFlag enums * @param numeric statusValue * @return EnumSet representing a documents status */ public EnumSet<StatusFlag> getStatusFlags(long statusValue) { EnumSet statusFlags = EnumSet.noneOf(StatusFlag.class) StatusFlag.each { statusFlag -> long flagValue = statusFlag.statusFlagValue if ( (flagValue&statusValue ) == flagValue ) { statusFlags.add(statusFlag) } } return statusFlags } /** * Translates a set of StatusFlag enums into a numeric status code * @param Set if statusFlags * @return numeric representation of the document status */ public long getStatusValue(Set<StatusFlag> flags) { long value=0 flags.each { statusFlag -> value|=statusFlag.getStatusFlagValue() } return value } public static void main(String[] args) { DocumentStatus ds = new DocumentStatus(); Set statusFlags = EnumSet.of( StatusFlag.DOCUMENT_STATUS_OK, StatusFlag.DOCUMENT_STATUS_UNAVAILABLE) assert ds.getStatusValue( statusFlags )==258 // 0000.0001|0000.0010 long numericStatusCode = 56 statusFlags = ds.getStatusFlags(numericStatusCode) assert !statusFlags.contains(StatusFlag.DOCUMENT_STATUS_OK) assert statusFlags.contains(StatusFlag.DOCUMENT_STATUS_MISSING_TIF_FILE) assert statusFlags.contains(StatusFlag.DOCUMENT_STATUS_MISSING_PDF_FILE) assert statusFlags.contains(StatusFlag.DOCUMENT_STATUS_MISSING_OCR_FILE) } }

    Read the article

  • xUnit false positive when comparing null terminated strings

    - by mr.b
    I've come across odd behavior when comparing strings. First assert passes, but I don't think it should.. Second assert fails, as expected... [Fact] public void StringTest() { string testString_1 = "My name is Erl. I am a program\0"; string testString_2 = "My name is Erl. I am a program"; Assert.Equal<string>(testString_1, testString_2); Assert.True(testString_1.Equals(testString_2)); } Any ideas?

    Read the article

  • How can I unit test my custom validation attribute

    - by MightyAtom
    I have a custom asp.net mvc class validation attribute. My question is how can I unit test it? It would be one thing to test that the class has the attribute but this would not actually test that the logic inside it. This is what I want to test. [Serializable] [EligabilityStudentDebtsAttribute(ErrorMessage = "You must answer yes or no to all questions")] public class Eligability { [BooleanRequiredToBeTrue(ErrorMessage = "You must agree to the statements listed")] public bool StatementAgree { get; set; } [Required(ErrorMessage = "Please choose an option")] public bool? Income { get; set; } .....removed for brevity } [AttributeUsage(AttributeTargets.Class)] public class EligabilityStudentDebtsAttribute : ValidationAttribute { // If AnyDebts is true then // StudentDebts must be true or false public override bool IsValid(object value) { Eligability elig = (Eligability)value; bool ok = true; if (elig.AnyDebts == true) { if (elig.StudentDebts == null) { ok = false; } } return ok; } } I have tried to write a test as follows but this does not work: [TestMethod] public void Eligability_model_StudentDebts_is_required_if_AnyDebts_is_true() { // Arrange var eligability = new Eligability(); var controller = new ApplicationController(); // Act controller.ModelState.Clear(); controller.ValidateModel(eligability); var actionResult = controller.Section2(eligability,null,string.Empty); // Assert Assert.IsInstanceOfType(actionResult, typeof(ViewResult)); Assert.AreEqual(string.Empty, ((ViewResult)actionResult).ViewName); Assert.AreEqual(eligability, ((ViewResult)actionResult).ViewData.Model); Assert.IsFalse(((ViewResult)actionResult).ViewData.ModelState.IsValid); } The ModelStateDictionary does not contain the key for this custom attribute. It only contains the attributes for the standard validation attributes. Why is this? What is the best way to test these custom attributes? Thanks

    Read the article

  • creating proxy object in groovy

    - by IttayD
    Hi, I am looking for how to write a method that accepts some value and returns a proxy to that value where the underlying value can be retrieved with an accessor: def p = toProxy(1) assert p == 1 assert p * 2 == 2 assert p.underlying == 1 def p2 = toProxy(objWithMethodFoo) p2.foo() p2.underlying.foo() I want to do this per object instance (not for all objects of some class) and without the need to use special 'use' constructs.

    Read the article

  • Selenium testing with checksums (md5)

    - by Peter
    I am new at selenium testing and am writing a bunch of tests for a webpage that relies heavily on javascript user interaction. At first I wrote a lot of assertions of the style If I press button A" then assert number of visible rows = x, assert checkboxes checked are such assert title = bar .... [20 more] and so on. Then I switched to checksumming the HTML using MD5: If I press button A" then assert md5(html) = 8548bccac94e35d9836f1fec0da8115c. And it made my life a whole lot easier... But is this a bad practice in any way?

    Read the article

  • Using NUnit Testing How Can I test that a Save Dialog Box was displayed on the screen?

    - by user512915
    I am trying to programatically click the "save" button and test that the windows Save Dialog box appears: I have everything but the assert statement I believe. I don't know how to assert that my custom SaveDialogBox appears to the user. [test] public void Method_WhenThePersonIsNotfound_ClickingTheButtonSavesLetterToWordDocument { //arrange CreateNewPage(); //creates IE window enters fields and clicks submit on first page. //act this.InternetExplorerDriver.FindElementById("SaveForm").Click(); //assert //Assert statement to verify that when button was clicked the save dialog box to save the letter in word appears.

    Read the article

  • Why do I get Detached Entity exception when upgrading Spring Boot 1.1.4 to 1.1.5

    - by mmeany
    On updating Spring Boot from 1.1.4 to 1.1.5 a simple web application started generating detached entity exceptions. Specifically, a post authentication inteceptor that bumped number of visits was causing the problem. A quick check of loaded dependencies showed that Spring Data has been updated from 1.6.1 to 1.6.2 and a further check of the change log shows a couple of issues relating to optimistic locking, version fields and JPA issues that have been fixed. Well I am using a version field and it starts out as Null following recommendation to not set in the specification. I have produced a very simple test scenario where I get detached entity exceptions if the version field starts as null or zero. If I create an entity with version 1 however then I do not get these exceptions. Is this expected behaviour or is there still something amiss? Below is the test scenario I have for this condition. In the scenario the service layer that has been annotated @Transactional. Each test case makes multiple calls to the service layer - the tests are working with detached entities as this is the scenario I am working with in the full blown application. The test case comprises four tests: Test 1 - versionNullCausesAnExceptionOnUpdate() In this test the version field in the detached object is Null. This is how I would usually create the object prior to passing to the service. This test fails with a Detached Entity exception. I would have expected this test to pass. If there is a flaw in the test then the rest of the scenario is probably moot. Test 2 - versionZeroCausesExceptionOnUpdate() In this test I have set the version to value Long(0L). This is an edge case test and included because I found reference to Zero values being used for version field in the Spring Data change log. This test fails with a Detached Entity exception. Of interest simply because the following two tests pass leaving this as an anomaly. Test 3 - versionOneDoesNotCausesExceptionOnUpdate() In this test the version field is set to value Long(1L). Not something I would usually do, but considering the notes in the Spring Data change log I decided to give it a go. This test passes. Would not usually set the version field, but this looks like a work-around until I figure out why the first test is failing. Test 4 - versionOneDoesNotCausesExceptionWithMultipleUpdates() Encouraged by the result of test 3 I pushed the scenario a step further and perform multiple updates on the entity that started life with a version of Long(1L). This test passes. Reinforcement that this may be a useable work-around. The entity: package com.mvmlabs.domain; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.GenerationType; import javax.persistence.Id; import javax.persistence.Table; import javax.persistence.Version; @Entity @Table(name="user_details") public class User { @Id @GeneratedValue(strategy=GenerationType.AUTO) private Long id; @Version private Long version; @Column(nullable = false, unique = true) private String username; @Column(nullable = false) private Integer numberOfVisits; public Long getId() { return id; } public void setId(Long id) { this.id = id; } public Long getVersion() { return version; } public void setVersion(Long version) { this.version = version; } public Integer getNumberOfVisits() { return numberOfVisits == null ? 0 : numberOfVisits; } public void setNumberOfVisits(Integer numberOfVisits) { this.numberOfVisits = numberOfVisits; } public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } } The repository: package com.mvmlabs.dao; import org.springframework.data.repository.CrudRepository; import com.mvmlabs.domain.User; public interface UserDao extends CrudRepository<User, Long>{ } The service interface: package com.mvmlabs.service; import com.mvmlabs.domain.User; public interface UserService { User save(User user); User loadUser(Long id); User registerVisit(User user); } The service implementation: package com.mvmlabs.service; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import org.springframework.transaction.annotation.Propagation; import org.springframework.transaction.annotation.Transactional; import org.springframework.transaction.support.TransactionSynchronizationManager; import com.mvmlabs.dao.UserDao; import com.mvmlabs.domain.User; @Service @Transactional(propagation=Propagation.REQUIRED, readOnly=false) public class UserServiceJpaImpl implements UserService { @Autowired private UserDao userDao; @Transactional(readOnly=true) @Override public User loadUser(Long id) { return userDao.findOne(id); } @Override public User registerVisit(User user) { user.setNumberOfVisits(user.getNumberOfVisits() + 1); return userDao.save(user); } @Override public User save(User user) { return userDao.save(user); } } The application class: package com.mvmlabs; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.EnableAutoConfiguration; import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; @Configuration @ComponentScan @EnableAutoConfiguration public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } } The POM: <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.mvmlabs</groupId> <artifactId>jpa-issue</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>spring-boot-jpa-issue</name> <description>JPA Issue between spring boot 1.1.4 and 1.1.5</description> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>1.1.5.RELEASE</version> <relativePath /> <!-- lookup parent from repository --> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.hsqldb</groupId> <artifactId>hsqldb</artifactId> <scope>runtime</scope> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <start-class>com.mvmlabs.Application</start-class> <java.version>1.7</java.version> </properties> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project> The application properties: spring.jpa.hibernate.ddl-auto: create spring.jpa.hibernate.naming_strategy: org.hibernate.cfg.ImprovedNamingStrategy spring.jpa.database: HSQL spring.jpa.show-sql: true spring.datasource.url=jdbc:hsqldb:file:./target/testdb spring.datasource.username=sa spring.datasource.password= spring.datasource.driverClassName=org.hsqldb.jdbcDriver The test case: package com.mvmlabs; import org.junit.Assert; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.SpringApplicationConfiguration; import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; import com.mvmlabs.domain.User; import com.mvmlabs.service.UserService; @RunWith(SpringJUnit4ClassRunner.class) @SpringApplicationConfiguration(classes = Application.class) public class ApplicationTests { @Autowired UserService userService; @Test public void versionNullCausesAnExceptionOnUpdate() throws Exception { User user = new User(); user.setUsername("Version Null"); user.setNumberOfVisits(0); user.setVersion(null); user = userService.save(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(1), user.getNumberOfVisits()); Assert.assertEquals(new Long(1L), user.getVersion()); } @Test public void versionZeroCausesExceptionOnUpdate() throws Exception { User user = new User(); user.setUsername("Version Zero"); user.setNumberOfVisits(0); user.setVersion(0L); user = userService.save(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(1), user.getNumberOfVisits()); Assert.assertEquals(new Long(1L), user.getVersion()); } @Test public void versionOneDoesNotCausesExceptionOnUpdate() throws Exception { User user = new User(); user.setUsername("Version One"); user.setNumberOfVisits(0); user.setVersion(1L); user = userService.save(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(1), user.getNumberOfVisits()); Assert.assertEquals(new Long(2L), user.getVersion()); } @Test public void versionOneDoesNotCausesExceptionWithMultipleUpdates() throws Exception { User user = new User(); user.setUsername("Version One Multiple"); user.setNumberOfVisits(0); user.setVersion(1L); user = userService.save(user); user = userService.registerVisit(user); user = userService.registerVisit(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(3), user.getNumberOfVisits()); Assert.assertEquals(new Long(4L), user.getVersion()); } } The first two tests fail with detached entity exception. The last two tests pass as expected. Now change Spring Boot version to 1.1.4 and rerun, all tests pass. Are my expectations wrong? Edit: This code saved to GitHub at https://github.com/mmeany/spring-boot-detached-entity-issue

    Read the article

  • C#: How to resolve this circular dependency?

    - by Rosarch
    I have a circular dependency in my code, and I'm not sure how to resolve it. I am developing a game. A NPC has three components, responsible for thinking, sensing, and acting. These components need access to the NPC controller to get access to its model, but the controller needs these components to do anything. Thus, both take each other as arguments in their constructors. ISenseNPC sense = new DefaultSenseNPC(controller, worldQueryEngine); IThinkNPC think = new DefaultThinkNPC(sense); IActNPC act = new DefaultActNPC(combatEngine, sense, controller); controller = new ControllerNPC(act, think); (The above example has the parameter simplified a bit.) Without act and think, controller can't do anything, so I don't want to allow it to be initialized without them. The reverse is basically true as well. What should I do? ControllerNPC using think and act to update its state in the world: public class ControllerNPC { // ... public override void Update(long tick) { // ... act.UpdateFromBehavior(CurrentBehavior, tick); CurrentBehavior = think.TransitionState(CurrentBehavior, tick); } // ... } DefaultSenseNPC using controller to determine if it's colliding with anything: public class DefaultSenseNPC { // ... public bool IsCollidingWithTarget() { return worldQuery.IsColliding(controller, model.Target); } // ... }

    Read the article

  • infinite loop shutting down ensime

    - by Jeff Bowman
    When I run M-X ensime-disconnect I get the following forever: string matching regex `\"((?:[^\"\\]|\\.)*)\"' expected but `^@' found and I see this exception when I use C-c C-c Uncaught exception in com.ensime.server.SocketHandler@769aba32 java.net.SocketException: Broken pipe at java.net.SocketOutputStream.socketWrite0(Native Method) at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:109) at java.net.SocketOutputStream.write(SocketOutputStream.java:153) at sun.nio.cs.StreamEncoder.writeBytes(StreamEncoder.java:220) at sun.nio.cs.StreamEncoder.implFlushBuffer(StreamEncoder.java:290) at sun.nio.cs.StreamEncoder.implFlush(StreamEncoder.java:294) at sun.nio.cs.StreamEncoder.flush(StreamEncoder.java:140) at java.io.OutputStreamWriter.flush(OutputStreamWriter.java:229) at java.io.BufferedWriter.flush(BufferedWriter.java:253) at com.ensime.server.SocketHandler.write(server.scala:118) at com.ensime.server.SocketHandler$$anonfun$act$1$$anonfun$apply$mcV$sp$1.apply(server.scala:132) at com.ensime.server.SocketHandler$$anonfun$act$1$$anonfun$apply$mcV$sp$1.apply(server.scala:127) at scala.actors.Actor$class.receive(Actor.scala:456) at com.ensime.server.SocketHandler.receive(server.scala:67) at com.ensime.server.SocketHandler$$anonfun$act$1.apply$mcV$sp(server.scala:127) at com.ensime.server.SocketHandler$$anonfun$act$1.apply(server.scala:127) at com.ensime.server.SocketHandler$$anonfun$act$1.apply(server.scala:127) at scala.actors.Reactor$class.seq(Reactor.scala:262) at com.ensime.server.SocketHandler.seq(server.scala:67) at scala.actors.Reactor$$anon$3.andThen(Reactor.scala:240) at scala.actors.Combinators$class.loop(Combinators.scala:26) at com.ensime.server.SocketHandler.loop(server.scala:67) at scala.actors.Combinators$$anonfun$loop$1.apply(Combinators.scala:26) at scala.actors.Combinators$$anonfun$loop$1.apply(Combinators.scala:26) at scala.actors.Reactor$$anonfun$seq$1$$anonfun$apply$1.apply(Reactor.scala:259) at scala.actors.ReactorTask.run(ReactorTask.scala:36) at scala.actors.ReactorTask.compute(ReactorTask.scala:74) at scala.concurrent.forkjoin.RecursiveAction.exec(RecursiveAction.java:147) at scala.concurrent.forkjoin.ForkJoinTask.quietlyExec(ForkJoinTask.java:422) at scala.concurrent.forkjoin.ForkJoinWorkerThread.mainLoop(ForkJoinWorkerThread.java:340) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:325) Is there something else I'm missing in my config or I should check on? Thanks, Jeff

    Read the article

  • Filtering manager for django model, customized by user

    - by valya
    Hi there! I have a model, smth like this: class Action(models.Model): def can_be_applied(self, user): #whatever return True and I want to override its default Manager. But I don't know how to pass the current user variable to the manager, so I have to do smth like this: [act for act in Action.objects.all() if act.can_be_applied(current_user)] How do I get rid of it by just overriding the manager? Thanks.

    Read the article

  • Batch file: Extracting substring from input parameter to use in IF statement

    - by Neomoon
    This is a very basic example of what I am trying to implement in a more complex batch file. I would like to extract a substring from an input parameter (%1) and branch based on if the substring was found or not. @echo off SETLOCAL enableextensions enabledelayedexpansion SET _testvariable=%1 SET _testvariable=%_testvariable:~4,3% ECHO %_testvariable% IF %_testvariable%=act CALL :SOME IF NOT %_testvariable%=act CALL :ACTION :SOME ECHO Substring found GOTO :END :ACTION ECHO Substring not found GOTO :END ENDLOCAL :END This is what my ouput looks like: C:\>test someaction act =act was unexpected at this time. If possible I would like to turn this in to a IF/ELSE statement and evaluate directly from %1. However I have not had success with either.

    Read the article

  • iPhone - finding items in current entity that share related item

    - by Pedro
    G'day Folks My core data driven app has an Events entity, essentially a list of times & venues, with a related Acts entity, the names & bios of the acts appearing at those events. I have a table view that shows the event time & venue (as a table section with 1 row), the act name & act bio that works nicely. If that act is appearing at more than one event I'd like to include another table section that lists those events. I think could get that with event.act.events except that it would include the event I'm currently displaying. Can anyone suggest how to get the data I want & exclude the current record? Cheers & TIA, Pedro :) PS... I have not quite 18 hours until the promised time for a prototype of my app to be available for some testers to download.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >