Search Results

Search found 365 results on 15 pages for 'clojure'.

Page 15/15 | < Previous Page | 11 12 13 14 15 

  • Looking for a real-world example illustrating that composition can be superior to inheritance

    - by Job
    I watched a bunch of lectures on Clojure and functional programming by Rich Hickey as well as some of the SICP lectures, and I am sold on many concepts of functional programming. I incorporated some of them into my C# code at a previous job, and luckily it was easy to write C# code in a more functional style. At my new job we use Python and multiple inheritance is all the rage. My co-workers are very smart but they have to produce code fast given the nature of the company. I am learning both the tools and the codebase, but the architecture itself slows me down as well. I have not written the existing class hierarchy (neither would I be able to remember everything about it), and so, when I started adding a fairly small feature, I realized that I had to read a lot of code in the process. At the surface the code is neatly organized and split into small functions/methods and not copy-paste-repetitive, but the flip side of being not repetitive is that there is some magic functionality hidden somewhere in the hierarchy chain that magically glues things together and does work on my behalf, but it is very hard to find and follow. I had to fire up a profiler and run it through several examples and plot the execution graph as well as step through a debugger a few times, search the code for some substring and just read pages at the time. I am pretty sure that once I am done, my resulting code will be short and neatly organized, and yet not very readable. What I write feels declarative, as if I was writing an XML file that drives some other magic engine, except that there is no clear documentation on what the XML should look like and what the engine does except for the existing examples that I can read as well as the source code for the 'engine'. There has got to be a better way. IMO using composition over inheritance can help quite a bit. That way the computation will be linear rather than jumping all over the hierarchy tree. Whenever the functionality does not quite fit into an inheritance model, it will need to be mangled to fit in, or the entire inheritance hierarchy will need to be refactored/rebalanced, sort of like an unbalanced binary tree needs reshuffling from time to time in order to improve the average seek time. As I mentioned before, my co-workers are very smart; they just have been doing things a certain way and probably have an ability to hold a lot of unrelated crap in their head at once. I want to convince them to give composition and functional as opposed to OOP approach a try. To do that, I need to find some very good material. I do not think that a SCIP lecture or one by Rich Hickey will do - I am afraid it will be flagged down as too academic. Then, simple examples of Dog and Frog and AddressBook classes do not really connivence one way or the other - they show how inheritance can be converted to composition but not why it is truly and objectively better. What I am looking for is some real-world example of code that has been written with a lot of inheritance, then hit a wall and re-written in a different style that uses composition. Perhaps there is a blog or a chapter. I am looking for something that can summarize and illustrate the sort of pain that I am going through. I already have been throwing the phrase "composition over inheritance" around, but it was not received as enthusiastically as I had hoped. I do not want to be perceived as a new guy who likes to complain and bash existing code while looking for a perfect approach while not contributing fast enough. At the same time, my gut is convinced that inheritance is often the instrument of evil and I want to show a better way in a near future. Have you stumbled upon any great resources that can help me?

    Read the article

  • JavaOne 2012: Nashorn Edition

    - by $utils.escapeXML($entry.author)
    As with my JavaOne 2012: OpenJDK Edition post a while back (now updated to reflect the schedule of the talks), I find it convenient to have my JavaOne schedule ordered by subjects of interest. Beside OpenJDK in all its flavors, another subject I find very exciting is Nashorn. I blogged about the various material on Nashorn in the past, and we interviewed Jim Laskey, the Project Lead on Project Nashorn in the Java Spotlight podcast. So without further ado, here are the JavaOne 2012 talks and BOFs with Nashorn in their title, or abstract:CON5390 - Nashorn: Optimizing JavaScript and Dynamic Language Execution on the JVM - Monday, Oct 1, 8:30 AM - 9:30 AMThere are many implementations of JavaScript, meant to run either on the JVM or standalone as native code. Both approaches have their respective pros and cons. The Oracle Nashorn JavaScript project is based on the former approach. This presentation goes through the performance work that has gone on in Oracle’s Nashorn JavaScript project to date in order to make JavaScript-to-bytecode generation for execution on the JVM feasible. It shows that the new invoke dynamic bytecode gets us part of the way there but may not quite be enough. What other tricks did the Nashorn project use? The presentation also discusses future directions for increased performance for dynamic languages on the JVM, covering proposed enhancements to both the JVM itself and to the bytecode compiler.CON4082 - Nashorn: JavaScript on the JVM - Monday, Oct 1, 3:00 PM - 4:00 PMThe JavaScript programming language has been experiencing a renaissance of late, driven by the interest in HTML5. Nashorn is a JavaScript engine implemented fully in Java on the JVM. It is based on the Da Vinci Machine (JSR 292) and will be available with JDK 8. This session describes the goals of Project Nashorn, gives a top-level view of how it all works, provides the current status, and demonstrates examples of JavaScript and Java working together.BOF4763 - Meet the Nashorn JavaScript Team - Tuesday, Oct 2, 4:30 PM - 5:15 PMCome to this session to meet the Oracle JavaScript (Project Nashorn) language teamBOF6661 - Nashorn, Node, and Java Persistence - Tuesday, Oct 2, 5:30 PM - 6:15 PMWith Project Nashorn, developers will have a full and modern JavaScript engine available on the JVM. In addition, they will have support for running Node applications with Node.jar. This unique combination of capabilities opens the door for best-of-breed applications combining Node with Java SE and Java EE. In this session, you’ll learn about Node.jar and how it can be combined with Java EE components such as EclipseLink JPA for rich Java persistence. You’ll also hear about all of Node.jar’s mapping, caching, querying, performance, and scaling features.CON10657 - The Polyglot Java VM and Java Middleware - Thursday, Oct 4, 12:30 PM - 1:30 PMIn this session, Red Hat and Oracle discuss the impact of polyglot programming from their own unique perspectives, examining non-Java languages that utilize Oracle’s Java HotSpot VM. You’ll hear a discussion of topics relating to Ruby, Lisp, and Clojure and the intersection of other languages where they may touch upon individual frameworks and projects, and you’ll get perspectives on JavaScript via the Nashorn Project, an upcoming JavaScript engine, developed fully in Java.CON5251 - Putting the Metaobject Protocol to Work: Nashorn’s Java Bindings - Thursday, Oct 4, 2:00 PM - 3:00 PMProject Nashorn is Oracle’s new JavaScript runtime in Java 8. Being a JavaScript runtime running on the JVM, it provides integration with the underlying runtime by enabling JavaScript objects to manipulate Java objects, implement Java interfaces, and extend Java classes. Nashorn is invokedynamic-based, and for its Java integration, it does away with the concept of wrapper objects in favor of direct virtual machine linking to Java objects’ methods provided by a metaobject protocol, providing much higher performance than what could be expected from a scripting runtime. This session looks at the details of the integration, a topic of interest to other language implementers on the JVM and a wider audience of developers who want to understand how Nashorn works.That's 6 sessions tooting the Nashorn this year at JavaOne, up from 2 last year.

    Read the article

  • Alternatives to Java for Android development?

    - by paul.meier
    Hey all, I've started developing Android apps a couple of months ago, and have a few under my belt. While I can tolerate Java enough to keep developing, I was wondering what success the community has had getting other languages to run. I've done some investigation as to how other JVM languages work, and it appears Dalvik messes them up pretty hard. Clojure seems unable to run, Scala seems to be one of the most successful. JRuby has also had some luck, but they caution against anything major. I've also checked out Scheme via Moby and Kawa, both of which seem to have some promise. What luck have any of you had? Languages I'm missing, misrepresenting? Any non-"Hello World" apps you've written in non-Java? Any snags in trying to get another language to run (e.g. "as long as you don't use continuations, you're fine in X Scheme"). Any particular snags in developing apps non-Java, once you get them to run? Thanks, hope you well ^_^

    Read the article

  • Getting started with massive data

    - by Max
    I'm a math guy and occasionally do some statistics/machine learning analysis consulting projects on the side. The data I have access to are usually on the smaller side, at most a couple hundred of megabytes (and almost always far less), but I want to learn more about handling and analyzing data on the gigabyte/terabyte scale. What do I need to know and what are some good resources to learn from? Hadoop/MapReduce is one obvious start. Is there a particular programming language I should pick up? (I primarily work now in Python, Ruby, R, and occasionally Java, but it seems like C and Clojure are often used for large-scale data analysis?) I'm not really familiar with the whole NoSQL movement, except that it's associated with big data. What's a good place to learn about it, and is there a particular implementation (Cassandra, CouchDB, etc.) I should get familiar with? Where can I learn about applying machine learning algorithms to huge amounts of data? My math background is mostly on the theory side, definitely not on the numerical or approximation side, and I'm guessing most of the standard ML algorithms don't really scale. Any other suggestions on things to learn would be great!

    Read the article

  • Should a new language compiler target the JVM?

    - by Pindatjuh
    I'm developing a new language. My initial target was to compile to native x86 for the Windows platform, but now I am in doubt. I've seen some new languages target the JVM (most notable Scala and Clojure). Ofcourse it's not possible to port every language easily to the JVM; to do so, it may lead to small changes to the language and it's design. So that's the reason behind this doubt, and thus this question: Is targetting the JVM a good idea, when creating a compiler for a new language? Or should I stick with x86? I have experience in generating JVM bytecode. Are there any workarounds to JVM's GC? The language has deterministic implicit memory management. How to produce JIT-compatible bytecode, such that it will get the highest speedup? Is it similar to compiling for IA-32, such as the 4-1-1 muops pattern on Pentium? I can imagine some advantages (please correct me if I'm wrong): JVM bytecode is easier than x86. Like x86 communicates with Windows, JVM communicates with the Java Foundation Classes. To provide I/O, Threading, GUI, etc. Implementing "lightweight"-threads.I've seen a very clever implementation of this at http://www.malhar.net/sriram/kilim/. Most advantages of the Java Runtime (portability, etc.) The disadvantages, as I imagined, are: Less freedom? On x86 it'll be more easy to create low-level constructs, while JVM has a higher level (more abstract) processor. Most disadvantages of the Java Runtime (no native dynamic typing, etc.)

    Read the article

  • Learning libraries without books or tutorials

    - by Kawili-wili
    While many ask questions about where to find good books or tutorials, I'd like to take the opposite tack. I consider myself to be an entry-level programmer ready to move up to mid-level. I have written code in c, c++, c#, perl, python, clojure, vb, and java, so I'm not completely clueless. Where I see a problem in moving to the next level is learning to make better use of the literally hundreds upon hundreds of libraries available out there. I seem paralyzed unless there is a specific example in a book or tutorial to hand-hold me, yet I often read in various forums where another programmer attempts to assist with a question. He/she will look through the docs or scan the available classes/methods in their favorite IDE and seem to grok what's going on in a relatively short period of time, even if they had no previous experience with that specific library or function. I yearn to break the umbilical chord of constantly spending hour upon hour searching and reading, searching and reading, searching and reading. Many times there is no book or tutorial, or if there is, the discussion glosses over my specific needs or the examples shown are too far off the path for the usage I had in mind or the information is outdated and makes use of deprecated components or the library itself has fallen out of mainstream, yet is still perfectly usable (but no docs, books, or tutorials to hand-hold). My question is: In the absence of books or tutorials, what is the best way to grok new or unfamiliar libraries? I yearn to slicken the grok path so I can get down to the business of doing what I love most -- coding.

    Read the article

  • What's the *right* way to handle a POST in FP?

    - by Malvolio
    I'm just getting started with FP and I'm using Scala, which may not be the best way, since I can always fall back to an imperative style if the going gets tough. I'd just rather not. I've got a very specific question that points to a broader lacuna in my understanding of FP. When a web application is processing a GET request, the user wants information that already exists on the web-site. The application only has to process and format the data in some way. The FB way is clear. When a web application is processing a POST request, the user wants change the information held on the site. True, the information is not typically held in application variables, it's in a database or a flat-file, but still, I get the feeling I'm not grokking FP properly. Is there a pattern for handling updates to static data in an FP language? My vague picture of this is that the application is handed the request and the then-current site state. The application does its thing and returns the new site-state. If the current site-state hasn't changed since the application started, the new state becomes the current state and the reply is sent back to the browser (this is my dim image of Clojure's style); if the current state has been changed (by another thread, well, something else happens ...

    Read the article

  • Session Report - Modern Software Development Anti-Patterns

    - by Janice J. Heiss
    In this standing-room-only session, building upon his 2011 JavaOne Rock Star “Diabolical Developer” session, Martijn Verburg, this time along with Ben Evans, identified and explored common “anti-patterns” – ways of doing things that keep developers from doing their best work. They emphasized the importance of social interaction and team communication, along with identifying certain psychological pitfalls that lead developers astray. Their emphasis was less on technical coding errors and more how to function well and to keep one’s focus on what really matters. They are the authors of the highly regarded The Well-Grounded Java Developer and are both movers and shakers in the London JUG community and on the Java Community Process. The large room was packed as they gave a fast-moving, witty presentation with lots of laughs and personal anecdotes. Below are a few of the anti-patterns they discussed.Anti-Pattern One: Conference-Driven DeliveryThe theme here is the belief that “Real pros hack code and write their slides minutes before their talks.” Their response to this anti-pattern is an expression popular in the military – PPPPPP, which stands for, “Proper preparation prevents piss-poor performance.”“Communication is very important – probably more important than the code you write,” claimed Verburg. “The more you speak in front of large groups of people the easier it gets, but it’s always important to do dry runs, to present to smaller groups. And important to be members of user groups where you can give presentations. It’s a great place to practice speaking skills; to gain new skills; get new contacts, to network.”They encouraged attendees to record themselves and listen to themselves giving a presentation. They advised them to start with a spouse or friends if need be. Learning to communicate to a group, they argued, is essential to being a successful developer. The emphasis here is that software development is a team activity and good, clear, accessible communication is essential to the functioning of software teams. Anti-Pattern Two: Mortgage-Driven Development The main theme here was that, in a period of worldwide recession and economic stagnation, people are concerned about keeping their jobs. So there is a tendency for developers to treat knowledge as power and not share what they know about their systems with their colleagues, so when it comes time to fix a problem in production, they will be the only one who knows how to fix it – and will have made themselves an indispensable cog in a machine so you cannot be fired. So developers avoid documentation at all costs, or if documentation is required, put it on a USB chip and lock it in a lock box. As in the first anti-pattern, the idea here is that communicating well with your colleagues is essential and documentation is a key part of this. Social interactions are essential. Both Verburg and Evans insisted that increasingly, year by year, successful software development is more about communication than the technical aspects of the craft. Developers who understand this are the ones who will have the most success. Anti-Pattern Three: Distracted by Shiny – Always Use the Latest Technology to Stay AheadThe temptation here is to pick out some obscure framework, try a bit of Scala, HTML5, and Clojure, and always use the latest technology and upgrade to the latest point release of everything. Don’t worry if something works poorly because you are ahead of the curve. Verburg and Evans insisted that there need to be sound reasons for everything a developer does. Developers should not bring in something simply because for some reason they just feel like it or because it’s new. They recommended a site run by a developer named Matt Raible with excellent comparison spread sheets regarding Web frameworks and other apps. They praised it as a useful tool to help developers in their decision-making processes. They pointed out that good developers sometimes make bad choices out of boredom, to add shiny things to their CV, out of frustration with existing processes, or just from a lack of understanding. They pointed out that some code may stay in a business system for 15 or 20 years, but not all code is created equal and some may change after 3 or 6 months. Developers need to know where the code they are contributing fits in. What is its likely lifespan? Anti-Pattern Four: Design-Driven Design The anti-pattern: If you want to impress your colleagues and bosses, use design patents left, right, and center – MVC, Session Facades, SOA, etc. Or the UML modeling suite from IBM, back in the day… Generate super fast code. And the more jargon you can talk when in the vicinity of the manager the better.Verburg shared a true story about a time when he was interviewing a guy for a job and asked him what his previous work was. The interviewee said that he essentially took patterns and uses an approved book of Enterprise Architecture Patterns and applied them. Verburg was dumbstruck that someone could have a job in which they took patterns from a book and applied them. He pointed out that the idea that design is a separate activity is simply wrong. He repeated a saying that he uses, “You should pay your junior developers for the lines of code they write and the things they add; you should pay your senior developers for what they take away.”He explained that by encouraging people to take things away, the code base gets simpler and reflects the actual business use cases developers are trying to solve, as opposed to the framework that is being imposed. He told another true story about a project to decommission a very long system. 98% of the code was decommissioned and people got a nice bonus. But the 2% remained on the mainframe so the 98% reduction in code resulted in zero reduction in costs, because the entire mainframe was needed to run the 2% that was left. There is an incentive to get rid of source code and subsystems when they are no longer needed. The session continued with several more anti-patterns that were equally insightful.

    Read the article

  • jquerymobile conflict with autocomplete : $this.attr("href") is undefined

    - by sweets-BlingBling
    When I use jquery ui autocomplete version 1.8.5 with jquery mobile alpha 2. I get an error when I click an item from the autocomplete list: $this.attr("href") is undefined. Does anyone know any fix for it? EDITED: <html> <head> <link rel="stylesheet" type="text/css" href="css/ui-lightness/jquery-ui-1.8.custom.css"> <link rel="stylesheet" type="text/css" href="css/autocomplete.css"> </head> <body> <div id="formWrap"> <form id="messageForm" action="#"> <fieldset> <label id="toLabel">select:</label> <div id="friends" class="ui-helper-clearfix"> <input id="to" type="text"> </div> </fieldset> </form> </div> <script type="text/javascript" src="js/jquery-1.4.2.min.js"></script> <script type="text/javascript" src="js/jquery.mobile-1.0a2.js"></script> <script type="text/javascript" src="js/jquery-ui-1.8.custom.min.js"></script> <script type="text/javascript"> $(function(){ var availableTags = [ "ActionScript", "AppleScript", "Asp", "BASIC", "C", "C++", "Clojure", "COBOL", "ColdFusion", "Erlang", "Fortran", "Groovy", "Haskell", "Java", "JavaScript", "Lisp", "Perl", "PHP", "Python", "Ruby", "Scala", "Scheme" ]; //attach autocomplete $("#to").autocomplete({ source:availableTags , //define select handler select: function(e, ui) { var contact = ui.item.value; createSpan(contact); $("#to").val("").css("top", 2); return false; } }); }); function createSpan(contact){ //create formatted friend span = $("<span>").text(contact) //add contact to contact div span.insertBefore("#to"); } </script> </body> </html>

    Read the article

  • C# in Depth, Third Edition by Jon Skeet, Manning Publications Co. Book Review

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2013/10/24/c-in-depth-third-edition-by-jon-skeet-manning-publications.aspx I started reading this ebook on September 28, 2013, the same day it was sent my way by Manning Publications Co. for review while it still being fresh off the press. So 1st thing – thanks to Manning for this opportunity and a free copy of this must have on every C# developer’s desk book! Several hours ago I finished reading this book (well, except a for a large portion of its quite lengthy appendix). I jumped writing this review right away while still being full of emotions and impressions from reading it thoroughly and running code examples. Before I go any further I would like say that I used to program on various platforms using various languages starting with the Mainframe and ending on Windows, and I gradually shifted toward dealing with databases more than anything, however it happened with me to program in C# 1 a lot when it was first released and then some C# 2 with a big leap in between to C# 5. So my perception and experience reading this book may differ from yours. Also what I want to tell is somewhat funny that back then, knowing some Java and seeing C# 1 released, initially made me drawing a parallel that it is a copycat language, how wrong was I… Interestingly, Jon programs in Java full time, but how little it was mentioned in the book! So more on the book: Be informed, this is not a typical “Recipes”, “Cookbook” or any set of ready solutions, it is rather targeting mature, advanced developers who do not only know how to use a number of features, but are willing to understand how the language is operating “under the hood”. I must state immediately, at the same time I am glad the author did not go into the murky depths of the MSIL, so this is a very welcome decision on covering a modern language as C# for me, thank you Jon! Frankly, not all was that rosy regarding the tone and structure of the book, especially the the first half or so filled me with several negative and positive emotions overpowering each other. To expand more on that, some statements in the book appeared to be bias to me, or filled with pre-justice, it started to look like it had some PR-sole in it, but thankfully this was all gone toward the end of the 1st third of the book. Specifically, the mention on the C# language popularity, Java is the #1 language as per https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language (many other sources put C at the top which I highly doubt), also many interesting functional languages as Clojure and Groovy appeared and gained huge traction which run on top of Java/JVM whereas C# does not enjoy such a situation. If we want to discuss the popularity in general and say how fast a developer can find a new job that pays well it would be indeed the very Java, C++ or PHP, never C#. Or that phrase on language preference as a personal issue? We choose where to work or we are chosen because of a technology used at a given software shop, not vice versa. The book though it technically very accurate with valid code, concise examples, but I wish the author would give more concrete, real-life examples on where each feature should be used, not how. Another point to realize before you get the book is that it is almost a live book which started to be written when even C# 3 wasn’t around so a lot of ground is covered (nearly half of the book) on the pre-C# 3 feature releases so if you already have a solid background in the previous releases and do not plan to upgrade, perhaps half of the book can be skipped, otherwise this book is surely highly recommended. Alas, for me it was a hard read, most of it. It was not boring (well, only may be two times), it was just hard to grasp some concepts, but do not get me wrong, it did made me pause, on several occasions, and made me read and re-read a page or two. At times I even wondered if I have any IQ at all (LOL). Be prepared to read A LOT on generics, not that they are widely used in the field (I happen to work as a consultant and went thru a lot of code at many places) I can tell my impression is the developers today in best case program using examples found at OpenStack.com. Also unlike the Java world where having the most recent version is nearly mandated by the OSS most companies on the Microsoft platform almost never tempted to upgrade the .Net version very soon and very often. As a side note, I was glad to see code recently that included a nullable variable (myvariable? notation) and this made me smile, besides, I recommended that person this book to expand her knowledge. The good things about this book is that Jon maintains an active forum, prepared code snippets and even a small program (Snippy) that is happy to run the sample code saving you from writing any plumbing code. A tad now on the C# language itself – it sure enjoyed a wonderful road toward perfection and a very high adoption, especially for ASP development. But to me all the recent features that made this statically typed language more dynamic look strange. Don’t we have F#? Which supposed to be the dynamic language? Why do we need to have a hybrid language? Now the developers live their lives in dualism of the static and dynamic variables! And LINQ to SQL, it is covered in depth, but wasn’t it supposed to be dropped? Also it seems that very little is being added, and at a slower pace, e.g. Roslyn will come in late 2014 perhaps, and will be probably the only main feature. Again, it is quite hard to read this book as various chapters, C# versions mentioned every so often only if I only could remember what was covered exactly where! So the fact it has so many jumps/links back and forth I recommend the ebook format to make the navigations easier to perform and I do recommend using software that allows bookmarking, also make sure you have access to plenty of coffee and pizza (hey, you probably know this joke – who a programmer is) ! In terms of closing, if you stuck at C# 1 or 2 level, it is time to embrace the power of C# 5! Finally, to compliment Manning, this book unlike from any other publisher so far, was the only one as well readable (put it formatted) on my tablet as in Adobe Reader on a laptop.

    Read the article

  • How to Organize a Programming Language Club

    - by Ben Griswold
    I previously noted that we started a language club at work.  You know, I searched around but I couldn’t find a copy of the How to Organize a Programming Language Club Handbook. Maybe it’s sold out?  Yes, Stack Overflow has quite a bit of information on how to learn and teach new languages and there’s also a good number of online tutorials which provide language introductions but I was interested in group learning.  After   two months of meetings, I present to you the Unofficial How to Organize a Programming Language Club Handbook.  1. Gauge interest. Start by surveying prospects. “Excuse me, smart-developer-whom-I-work-with-and-I-think-might-be-interested-in-learning-a-new-coding-language-with-me. Are you interested in learning a new language with me?” If you’re lucky, you work with a bunch of really smart folks who aren’t shy about teaching/learning in a group setting and you’ll have a collective interest in no time.  Simply suggesting the idea is the only effort required.  If you don’t work in this type of environment, maybe you should consider a new place of employment.  2. Make it official. Send out a “Welcome to the Club” email: There’s been talk of folks itching to learn new languages – Python, Scala, F# and Haskell to name a few.  Rather than taking on new languages alone, let’s learn in the open.  That’s right.  Let’s start a languages club.  We’ll have everything a real club needs – secret handshake, goofy motto and a high-and-mighty sense that we’re better than everybody else. T-shirts?  Hell YES!  Anyway, I’ve thrown this idea around the office and no one has laughed at me yet so please consider this your very official invitation to be in THE club. [Insert your ideas about how the club might be run, solicit feedback and suggestions, ask what other folks would like to get out the club, comment about club hazing practices and talk up the T-shirts even more. Finally, call out the languages you are interested in learning and ask the group for their list.] 3.  Send out invitations to the first meeting.  Don’t skimp!  Hallmark greeting cards for everyone.  Personalized.  Hearts over the I’s and everything.  Oh, and be sure to include the list of suggested languages with vote count.  Here the list of languages we are interested in: Python 5 Ruby 4 Objective-C 3 F# 2 Haskell 2 Scala 2 Ada 1 Boo 1 C# 1 Clojure 1 Erlang 1 Go 1 Pi 1 Prolog 1 Qt 1 4.  At the first meeting, there must be cake.  Lots of cake. And you should tackle some very important questions: Which language should we start with?  You can immediately go with the top vote getter or you could do as we did and designate each person to provide a high-level review of each of the proposed languages over the next two weeks.  After all presentations are completed, vote on the language. Our high-level review consisted of answers to a series of questions. Decide how often and where the group will meet.  We, for example, meet for a brown bag lunch every Wednesday.  Decide how you’re going to learn.  We determined that the best way to learn is to just dive in and write code.  After choosing our first language (Python), we talked about building an application, or performing coding katas, but we ultimately choose to complete a series of Project Euler problems.  We kept it simple – each member works out the same two problems each week in preparation of a code review the following Wednesday. 5.  Code, Review, Learn.  Prior to the weekly meeting, everyone uploads their solutions to our internal wiki.  Each Project Euler problem has a dedicated page.  In the meeting, we use a really fancy HD projector to show off each member’s solution.  It is very important to use an HD projector.  Again, don’t skimp!  Each code author speaks to their solution, everyone else comments, applauds, points fingers and laughs, etc.  As much as I’ve learned from solving the problems on my own, I’ve learned at least twice as much at the group code review.  6.  Rinse. Lather. Repeat.  We’ve hosted the language club for 7 weeks now.  The first meeting just set the stage.  The next two meetings provided a review of the languages followed by a first language selection.  The remaining meetings focused on Python and Project Euler problems.  Today we took a vote as to whether or not we’re ready to switch to another language and/or another problem set.  Pretty much everyone wants to stay the course for a few more weeks at least.  Until then, we’ll continue to code the next two solutions, review and learn. Again, we’ve been having a good time with the programming language club.  I’m glad it got off the ground.  What do you think?  Would you be interested in a language club?  Any suggestions on what we might do better?

    Read the article

  • Nashorn, the rhino in the room

    - by costlow
    Nashorn is a new runtime within JDK 8 that allows developers to run code written in JavaScript and call back and forth with Java. One advantage to the Nashorn scripting engine is that is allows for quick prototyping of functionality or basic shell scripts that use Java libraries. The previous JavaScript runtime, named Rhino, was introduced in JDK 6 (released 2006, end of public updates Feb 2013). Keeping tradition amongst the global developer community, "Nashorn" is the German word for rhino. The Java platform and runtime is an intentional home to many languages beyond the Java language itself. OpenJDK’s Da Vinci Machine helps coordinate work amongst language developers and tool designers and has helped different languages by introducing the Invoke Dynamic instruction in Java 7 (2011), which resulted in two major benefits: speeding up execution of dynamic code, and providing the groundwork for Java 8’s lambda executions. Many of these improvements are discussed at the JVM Language Summit, where language and tool designers get together to discuss experiences and issues related to building these complex components. There are a number of benefits to running JavaScript applications on JDK 8’s Nashorn technology beyond writing scripts quickly: Interoperability with Java and JavaScript libraries. Scripts do not need to be compiled. Fast execution and multi-threading of JavaScript running in Java’s JRE. The ability to remotely debug applications using an IDE like NetBeans, Eclipse, or IntelliJ (instructions on the Nashorn blog). Automatic integration with Java monitoring tools, such as performance, health, and SIEM. In the remainder of this blog post, I will explain how to use Nashorn and the benefit from those features. Nashorn execution environment The Nashorn scripting engine is included in all versions of Java SE 8, both the JDK and the JRE. Unlike Java code, scripts written in nashorn are interpreted and do not need to be compiled before execution. Developers and users can access it in two ways: Users running JavaScript applications can call the binary directly:jre8/bin/jjs This mechanism can also be used in shell scripts by specifying a shebang like #!/usr/bin/jjs Developers can use the API and obtain a ScriptEngine through:ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn"); When using a ScriptEngine, please understand that they execute code. Avoid running untrusted scripts or passing in untrusted/unvalidated inputs. During compilation, consider isolating access to the ScriptEngine and using Type Annotations to only allow @Untainted String arguments. One noteworthy difference between JavaScript executed in or outside of a web browser is that certain objects will not be available. For example when run outside a browser, there is no access to a document object or DOM tree. Other than that, all syntax, semantics, and capabilities are present. Examples of Java and JavaScript The Nashorn script engine allows developers of all experience levels the ability to write and run code that takes advantage of both languages. The specific dialect is ECMAScript 5.1 as identified by the User Guide and its standards definition through ECMA international. In addition to the example below, Benjamin Winterberg has a very well written Java 8 Nashorn Tutorial that provides a large number of code samples in both languages. Basic Operations A basic Hello World application written to run on Nashorn would look like this: #!/usr/bin/jjs print("Hello World"); The first line is a standard script indication, so that Linux or Unix systems can run the script through Nashorn. On Windows where scripts are not as common, you would run the script like: jjs helloWorld.js. Receiving Arguments In order to receive program arguments your jjs invocation needs to use the -scripting flag and a double-dash to separate which arguments are for jjs and which are for the script itself:jjs -scripting print.js -- "This will print" #!/usr/bin/jjs var whatYouSaid = $ARG.length==0 ? "You did not say anything" : $ARG[0] print(whatYouSaid); Interoperability with Java libraries (including 3rd party dependencies) Another goal of Nashorn was to allow for quick scriptable prototypes, allowing access into Java types and any libraries. Resources operate in the context of the script (either in-line with the script or as separate threads) so if you open network sockets and your script terminates, those sockets will be released and available for your next run. Your code can access Java types the same as regular Java classes. The “import statements” are written somewhat differently to accommodate for language. There is a choice of two styles: For standard classes, just name the class: var ServerSocket = java.net.ServerSocket For arrays or other items, use Java.type: var ByteArray = Java.type("byte[]")You could technically do this for all. The same technique will allow your script to use Java types from any library or 3rd party component and quickly prototype items. Building a user interface One major difference between JavaScript inside and outside of a web browser is the availability of a DOM object for rendering views. When run outside of the browser, JavaScript has full control to construct the entire user interface with pre-fabricated UI controls, charts, or components. The example below is a variation from the Nashorn and JavaFX guide to show how items work together. Nashorn has a -fx flag to make the user interface components available. With the example script below, just specify: jjs -fx -scripting fx.js -- "My title" #!/usr/bin/jjs -fx var Button = javafx.scene.control.Button; var StackPane = javafx.scene.layout.StackPane; var Scene = javafx.scene.Scene; var clickCounter=0; $STAGE.title = $ARG.length>0 ? $ARG[0] : "You didn't provide a title"; var button = new Button(); button.text = "Say 'Hello World'"; button.onAction = myFunctionForButtonClicking; var root = new StackPane(); root.children.add(button); $STAGE.scene = new Scene(root, 300, 250); $STAGE.show(); function myFunctionForButtonClicking(){   var text = "Click Counter: " + clickCounter;   button.setText(text);   clickCounter++;   print(text); } For a more advanced post on using Nashorn to build a high-performing UI, see JavaFX with Nashorn Canvas example. Interoperable with frameworks like Node, Backbone, or Facebook React The major benefit of any language is the interoperability gained by people and systems that can read, write, and use it for interactions. Because Nashorn is built for the ECMAScript specification, developers familiar with JavaScript frameworks can write their code and then have system administrators deploy and monitor the applications the same as any other Java application. A number of projects are also running Node applications on Nashorn through Project Avatar and the supported modules. In addition to the previously mentioned Nashorn tutorial, Benjamin has also written a post about Using Backbone.js with Nashorn. To show the multi-language power of the Java Runtime, there is another interesting example that unites Facebook React and Clojure on JDK 8’s Nashorn. Summary Nashorn provides a simple and fast way of executing JavaScript applications and bridging between the best of each language. By making the full range of Java libraries to JavaScript applications, and the quick prototyping style of JavaScript to Java applications, developers are free to work as they see fit. Software Architects and System Administrators can take advantage of one runtime and leverage any work that they have done to tune, monitor, and certify their systems. Additional information is available within: The Nashorn Users’ Guide Java Magazine’s article "Next Generation JavaScript Engine for the JVM." The Nashorn team’s primary blog or a very helpful collection of Nashorn links.

    Read the article

  • Why JSF Matters (to You)

    - by reza_rahman
          "Those who have knowledge, don’t predict. Those who predict, don’t have knowledge."                                                                                                    – Lao Tzu You may have noticed Thoughtworks recently crowned the likes AngularJS, etc imminent successors to server-side web frameworks. They apparently also deemed it necessary to single out JSF for righteous scorn. I have to say as I was reading the analysis I couldn't help but remember they also promptly jumped on the Ruby, Rails, Clojure, etc bandwagon a good few years ago seemingly similarly crowing these dynamic languages imminent successors to Java. I remember thinking then as I do now whether the folks at Thoughtworks are really that much smarter than me or if they are simply more prone to the Hipster buzz of the day. I'll let you make the final call on that one. I also noticed mention of "J2EE" in the context of JSF and had to wonder how up-to-date or knowledgeable the person writing the analysis actually was given that the term was basically retired almost a decade ago. There's one thing that I am absolutely sure about though - as a long time pretty happy user of JSF, I had no choice but to speak up on what I believe JSF offers. If you feel the same way, I would encourage you to support the team behind JSF whose hard work you may have benefited from over the years. True to his outspoken character PrimeFaces lead Cagatay Civici certainly did not mince words making the case for the JSF ecosystem - his excellent write-up is well worth a read. He specifically pointed out the practical problems in going whole hog with bare metal JavaScript, CSS, HTML for many development teams. I'll admit I had to smile when I read his closing sentence as well as the rather cheerful comments to the post from actual current JSF/PrimeFaces users that are apparently supposed to be on a gloomy death march. In a similar vein, OmniFaces developer Arjan Tijms did a great job pointing out the fact that despite the extremely competitive server-side Java Web UI space, JSF seems to manage to always consistently come out in either the number one or number two spot over many years and many data sources - do give his well-written message in the JAX-RS user forum a careful read. I don't think it's really reasonable to expect this to be the case for so many years if JSF was not at least a capable if not outstanding technology. If fact if you've ever wondered, Oracle itself is one of the largest JSF users on the planet. As Oracle's Shay Shmeltzer explains in a recent JSF Central interview, many of Oracle's strategic products such as ADF, ADF Mobile and Fusion Applications itself is built on JSF. There are well over 3,000 active developers working on these codebases. I don't think anyone can think of a more compelling reason to make sure that a technology is as effective as possible for practical development under real world conditions. Standing on the shoulders of the above giants, I feel like I can be pretty brief in making my own case for JSF: JSF is a powerful abstraction that brings the original Smalltalk MVC pattern to web development. This means cutting down boilerplate code to the bare minimum such that you really can think of just writing your view markup and then simply wire up some properties and event handlers on a POJO. The best way to see what this really means is to compare JSF code for a pretty small case to other approaches. You should then multiply the additional work for the typical enterprise project to try to understand what the productivity trade-offs are. This is reason alone for me to personally never take any other approach seriously as my primary web UI solution unless it can match the sheer productivity of JSF. Thanks to JSF's focus on components from the ground-up JSF has an extremely strong ecosystem that includes projects like PrimeFaces, RichFaces, OmniFaces, ICEFaces and of course ADF Faces/Mobile. These component libraries taken together constitute perhaps the largest widget set ever developed and optimized for a single web UI technology. To begin to grasp what this really means, just briefly browse the excellent PrimeFaces showcase and think about the fact that you can readily use the widgets on that showcase by just using some simple markup and knowing near to nothing about AJAX, JavaScript or CSS. JSF has the fair and legitimate advantage of being an open vendor neutral standard. This means that no single company, individual or insular clique controls JSF - openness, transparency, accountability, plurality, collaboration and inclusiveness is virtually guaranteed by the standards process itself. You have the option to choose between compatible implementations, escape any form of lock-in or even create your own compatible implementation! As you might gather from the quote at the top of the post, I am not a fan of crystal ball gazing and certainly don't want to engage in it myself. Who knows? However far-fetched it may seem maybe AngularJS is the only future we all have after all. If that is the case, so be it. Unlike what you might have been told, Java EE is about choice at heart and it can certainly work extremely well as a back-end for AngularJS. Likewise, you are also most certainly not limited to just JSF for working with Java EE - you have a rich set of choices like Struts 2, Vaadin, Errai, VRaptor 4, Wicket or perhaps even the new action-oriented web framework being considered for Java EE 8 based on the work in Jersey MVC... Please note that any views expressed here are my own only and certainly does not reflect the position of Oracle as a company.

    Read the article

  • Code golf: Word frequency chart

    - by ChristopheD
    The challenge: Build an ASCII chart of the most commonly used words in a given text. The rules: Only accept a-z and A-Z (alphabetic characters) as part of a word. Ignore casing (She == she for our purpose). Ignore the following words (quite arbitary, I know): the, and, of, to, a, i, it, in, or, is Clarification: considering don't: this would be taken as 2 different 'words' in the ranges a-z and A-Z: (don and t). Optionally (it's too late to be formally changing the specifications now) you may choose to drop all single-letter 'words' (this could potentially make for a shortening of the ignore list too). Parse a given text (read a file specified via command line arguments or piped in; presume us-ascii) and build us a word frequency chart with the following characteristics: Display the chart (also see the example below) for the 22 most common words (ordered by descending frequency). The bar width represents the number of occurences (frequency) of the word (proportionally). Append one space and print the word. Make sure these bars (plus space-word-space) always fit: bar + [space] + word + [space] should be always <= 80 characters (make sure you account for possible differing bar and word lenghts: e.g.: the second most common word could be a lot longer then the first while not differing so much in frequency). Maximize bar width within these constraints and scale the bars appropriately (according to the frequencies they represent). An example: The text for the example can be found here (Alice's Adventures in Wonderland, by Lewis Carroll). This specific text would yield the following chart: _________________________________________________________________________ |_________________________________________________________________________| she |_______________________________________________________________| you |____________________________________________________________| said |____________________________________________________| alice |______________________________________________| was |__________________________________________| that |___________________________________| as |_______________________________| her |____________________________| with |____________________________| at |___________________________| s |___________________________| t |_________________________| on |_________________________| all |______________________| this |______________________| for |______________________| had |_____________________| but |____________________| be |____________________| not |___________________| they |__________________| so For your information: these are the frequencies the above chart is built upon: [('she', 553), ('you', 481), ('said', 462), ('alice', 403), ('was', 358), ('that ', 330), ('as', 274), ('her', 248), ('with', 227), ('at', 227), ('s', 219), ('t' , 218), ('on', 204), ('all', 200), ('this', 181), ('for', 179), ('had', 178), (' but', 175), ('be', 167), ('not', 166), ('they', 155), ('so', 152)] A second example (to check if you implemented the complete spec): Replace every occurence of you in the linked Alice in Wonderland file with superlongstringstring: ________________________________________________________________ |________________________________________________________________| she |_______________________________________________________| superlongstringstring |_____________________________________________________| said |______________________________________________| alice |________________________________________| was |_____________________________________| that |______________________________| as |___________________________| her |_________________________| with |_________________________| at |________________________| s |________________________| t |______________________| on |_____________________| all |___________________| this |___________________| for |___________________| had |__________________| but |_________________| be |_________________| not |________________| they |________________| so The winner: Shortest solution (by character count, per language). Have fun! Edit: Table summarizing the results so far (2012-02-15) (originally added by user Nas Banov): Language Relaxed Strict ========= ======= ====== GolfScript 130 143 Perl 185 Windows PowerShell 148 199 Mathematica 199 Ruby 185 205 Unix Toolchain 194 228 Python 183 243 Clojure 282 Scala 311 Haskell 333 Awk 336 R 298 Javascript 304 354 Groovy 321 Matlab 404 C# 422 Smalltalk 386 PHP 450 F# 452 TSQL 483 507 The numbers represent the length of the shortest solution in a specific language. "Strict" refers to a solution that implements the spec completely (draws |____| bars, closes the first bar on top with a ____ line, accounts for the possibility of long words with high frequency etc). "Relaxed" means some liberties were taken to shorten to solution. Only solutions shorter then 500 characters are included. The list of languages is sorted by the length of the 'strict' solution. 'Unix Toolchain' is used to signify various solutions that use traditional *nix shell plus a mix of tools (like grep, tr, sort, uniq, head, perl, awk).

    Read the article

  • Abstracting functionality

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/22/abstracting-functionality.aspxWhat is more important than data? Functionality. Yes, I strongly believe we should switch to a functionality over data mindset in programming. Or actually switch back to it. Focus on functionality Functionality once was at the core of software development. Back when algorithms were the first thing you heard about in CS classes. Sure, data structures, too, were important - but always from the point of view of algorithms. (Niklaus Wirth gave one of his books the title “Algorithms + Data Structures” instead of “Data Structures + Algorithms” for a reason.) The reason for the focus on functionality? Firstly, because software was and is about doing stuff. Secondly because sufficient performance was hard to achieve, and only thirdly memory efficiency. But then hardware became more powerful. That gave rise to a new mindset: object orientation. And with it functionality was devalued. Data took over its place as the most important aspect. Now discussions revolved around structures motivated by data relationships. (John Beidler gave his book the title “Data Structures and Algorithms: An Object Oriented Approach” instead of the other way around for a reason.) Sure, this data could be embellished with functionality. But nevertheless functionality was second. When you look at (domain) object models what you mostly find is (domain) data object models. The common object oriented approach is: data aka structure over functionality. This is true even for the most modern modeling approaches like Domain Driven Design. Look at the literature and what you find is recommendations on how to get data structures right: aggregates, entities, value objects. I´m not saying this is what object orientation was invented for. But I´m saying that´s what I happen to see across many teams now some 25 years after object orientation became mainstream through C++, Delphi, and Java. But why should we switch back? Because software development cannot become truly agile with a data focus. The reason for that lies in what customers need first: functionality, behavior, operations. To be clear, that´s not why software is built. The purpose of software is to be more efficient than the alternative. Money mainly is spent to get a certain level of quality (e.g. performance, scalability, security etc.). But without functionality being present, there is nothing to work on the quality of. What customers want is functionality of a certain quality. ASAP. And tomorrow new functionality needs to be added, existing functionality needs to be changed, and quality needs to be increased. No customer ever wanted data or structures. Of course data should be processed. Data is there, data gets generated, transformed, stored. But how the data is structured for this to happen efficiently is of no concern to the customer. Ask a customer (or user) whether she likes the data structured this way or that way. She´ll say, “I don´t care.” But ask a customer (or user) whether he likes the functionality and its quality this way or that way. He´ll say, “I like it” (or “I don´t like it”). Build software incrementally From this very natural focus of customers and users on functionality and its quality follows we should develop software incrementally. That´s what Agility is about. Deliver small increments quickly and often to get frequent feedback. That way less waste is produced, and learning can take place much easier (on the side of the customer as well as on the side of developers). An increment is some added functionality or quality of functionality.[1] So as it turns out, Agility is about functionality over whatever. But software developers’ thinking is still stuck in the object oriented mindset of whatever over functionality. Bummer. I guess that (at least partly) explains why Agility always hits a glass ceiling in projects. It´s a clash of mindsets, of cultures. Driving software development by demanding small increases in functionality runs against thinking about software as growing (data) structures sprinkled with functionality. (Excuse me, if this sounds a bit broad-brush. But you get my point.) The need for abstraction In the end there need to be data structures. Of course. Small and large ones. The phrase functionality over data does not deny that. It´s not functionality instead of data or something. It´s just over, i.e. functionality should be thought of first. It´s a tad more important. It´s what the customer wants. That´s why we need a way to design functionality. Small and large. We need to be able to think about functionality before implementing it. We need to be able to reason about it among team members. We need to be able to communicate our mental models of functionality not just by speaking about them, but also on paper. Otherwise reasoning about it does not scale. We learned thinking about functionality in the small using flow charts, Nassi-Shneiderman diagrams, pseudo code, or UML sequence diagrams. That´s nice and well. But it does not scale. You can use these tools to describe manageable algorithms. But it does not work for the functionality triggered by pressing the “1-Click Order” on an amazon product page for example. There are several reasons for that, I´d say. Firstly, the level of abstraction over code is negligible. It´s essentially non-existent. Drawing a flow chart or writing pseudo code or writing actual code is very, very much alike. All these tools are about control flow like code is.[2] In addition all tools are computationally complete. They are about logic which is expressions and especially control statements. Whatever you code in Java you can fully (!) describe using a flow chart. And then there is no data. They are about control flow and leave out the data altogether. Thus data mostly is assumed to be global. That´s shooting yourself in the foot, as I hope you agree. Even if it´s functionality over data that does not mean “don´t think about data”. Right to the contrary! Functionality only makes sense with regard to data. So data needs to be in the picture right from the start - but it must not dominate the thinking. The above tools fail on this. Bottom line: So far we´re unable to reason in a scalable and abstract manner about functionality. That´s why programmers are so driven to start coding once they are presented with a problem. Programming languages are the only tool they´ve learned to use to reason about functional solutions. Or, well, there might be exceptions. Mathematical notation and SQL may have come to your mind already. Indeed they are tools on a higher level of abstraction than flow charts etc. That´s because they are declarative and not computationally complete. They leave out details - in order to deliver higher efficiency in devising overall solutions. We can easily reason about functionality using mathematics and SQL. That´s great. Except for that they are domain specific languages. They are not general purpose. (And they don´t scale either, I´d say.) Bummer. So to be more precise we need a scalable general purpose tool on a higher than code level of abstraction not neglecting data. Enter: Flow Design. Abstracting functionality using data flows I believe the solution to the problem of abstracting functionality lies in switching from control flow to data flow. Data flow very naturally is not about logic details anymore. There are no expressions and no control statements anymore. There are not even statements anymore. Data flow is declarative by nature. With data flow we get rid of all the limiting traits of former approaches to modeling functionality. In addition, nomen est omen, data flows include data in the functionality picture. With data flows, data is visibly flowing from processing step to processing step. Control is not flowing. Control is wherever it´s needed to process data coming in. That´s a crucial difference and needs some rewiring in your head to be fully appreciated.[2] Since data flows are declarative they are not the right tool to describe algorithms, though, I´d say. With them you don´t design functionality on a low level. During design data flow processing steps are black boxes. They get fleshed out during coding. Data flow design thus is more coarse grained than flow chart design. It starts on a higher level of abstraction - but then is not limited. By nesting data flows indefinitely you can design functionality of any size, without losing sight of your data. Data flows scale very well during design. They can be used on any level of granularity. And they can easily be depicted. Communicating designs using data flows is easy and scales well, too. The result of functional design using data flows is not algorithms (too low level), but processes. Think of data flows as descriptions of industrial production lines. Data as material runs through a number of processing steps to be analyzed, enhances, transformed. On the top level of a data flow design might be just one processing step, e.g. “execute 1-click order”. But below that are arbitrary levels of flows with smaller and smaller steps. That´s not layering as in “layered architecture”, though. Rather it´s a stratified design à la Abelson/Sussman. Refining data flows is not your grandpa´s functional decomposition. That was rooted in control flows. Refining data flows does not suffer from the limits of functional decomposition against which object orientation was supposed to be an antidote. Summary I´ve been working exclusively with data flows for functional design for the past 4 years. It has changed my life as a programmer. What once was difficult is now easy. And, no, I´m not using Clojure or F#. And I´m not a async/parallel execution buff. Designing the functionality of increments using data flows works great with teams. It produces design documentation which can easily be translated into code - in which then the smallest data flow processing steps have to be fleshed out - which is comparatively easy. Using a systematic translation approach code can mirror the data flow design. That way later on the design can easily be reproduced from the code if need be. And finally, data flow designs play well with object orientation. They are a great starting point for class design. But that´s a story for another day. To me data flow design simply is one of the missing links of systematic lightweight software design. There are also other artifacts software development can produce to get feedback, e.g. process descriptions, test cases. But customers can be delighted more easily with code based increments in functionality. ? No, I´m not talking about the endless possibilities this opens for parallel processing. Data flows are useful independently of multi-core processors and Actor-based designs. That´s my whole point here. Data flows are good for reasoning and evolvability. So forget about any special frameworks you might need to reap benefits from data flows. None are necessary. Translating data flow designs even into plain of Java is possible. ?

    Read the article

< Previous Page | 11 12 13 14 15