Search Results

Search found 4152 results on 167 pages for 'curtis white'.

Page 15/167 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Why is 1px sometimes 2px when specified in Android XML?

    - by Daniel Lew
    I've got a desire for a one-pixel divider line, just for looks. I thought I could accomplish this using a View of height 1px, with a defined background. However, I'm getting some very odd behavior on different devices - sometimes the 1px ends up as 2px. Take this sample layout for example: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="fill_parent" android:layout_height="fill_parent"> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> <View android:layout_width="fill_parent" android:layout_height="1px" android:background="@android:color/white" android:layout_marginBottom="4dp" /> </LinearLayout> When run on my G1, this comes out fine. But on the Nexus One, it alternates between 1px lines and 2px lines. Does anyone know where this is going awry? Why does Android sometimes make 1px into 2px?

    Read the article

  • Shortest Path algorithm of a different kind

    - by Ram Bhat
    Hey guys, Lets say you have a grid like this (made randomly) Now lets say you have a car starting randomly from one of the while boxes, what would be the shortest path to go through each one of the white boxes? you can visit each white box as many times as you want and cant Jump over the black boxes. The black boxes are like walls. In simple words you can move from white box to white box only.. You can move in any direction, even diagonally.

    Read the article

  • Ajax Tabs implementation problem .

    - by SmartDev
    Hi , I have Implement ajax tabs and i have four tabs in it . In the four tabs i have four grid views with paging and sorting .The tabs are looking good i can see the grid ,but the problem is my first tab sorting works fine, where if i click on any other tab and click on the grid it goes to my first tab again . One more thing i want to change the background color of each tab. Can anyone help please here is my source code: <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server"> <asp:ScriptManager ID="ScMMyTabs" runat="server"> </asp:ScriptManager> <cc1:TabContainer ID="TCMytabs" ActiveTabIndex="0" runat="server"> <cc1:TabPanel ID="TpMyreq" runat="server" CssClass="TabBackground" HeaderText="My request"> <ContentTemplate> <table> <tr> <td> <asp:Button ID="btnexportMyRequestCsu" runat="server" Text="Export To Excel" CssClass="LabelDisplay" OnClick="btnexportMyRequestCsu_Click" /> </td> </tr> <tr> <td> <asp:GridView ID="GdvMyrequest" runat="server" CssClass="Mytabs" BackColor="White" BorderColor="White" BorderStyle="Ridge" BorderWidth="2px" CellPadding="3" CellSpacing="1" GridLines="None" OnPageIndexChanging="GdvMyrequest_PageIndexChanging" OnSorting="GdvMyrequest_Sorting" EmptyDataText="No request found for this user"> <RowStyle BackColor="#DEDFDE" ForeColor="Black" /> <FooterStyle BackColor="#C6C3C6" ForeColor="Black" /> <PagerStyle BackColor="Control" ForeColor="Gray" HorizontalAlign="Left" /> <SelectedRowStyle BackColor="#9471DE" Font-Bold="True" ForeColor="White" /> <HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#E7E7FF" /> <PagerSettings Position="TopAndBottom" /> <Columns> <asp:TemplateField> <HeaderTemplate> Row No </HeaderTemplate> <ItemTemplate> <%# Container.DataItemIndex + 1 %> </ItemTemplate> </asp:TemplateField> </Columns> </asp:GridView> </td> </tr> <tr> <td> <asp:Label ID="lblmessmyrequestAhk" runat="server" CssClass="labelmess"></asp:Label> </td> </tr> </table> </ContentTemplate> </cc1:TabPanel> <cc1:TabPanel ID="TpMyPaymentCc" runat="server" HeaderText="Payments Credit Card" > <ContentTemplate> <table> <tr> <td> <asp:GridView ID="GdvmypaymentsCc" runat="server" CssClass="Mytabs" BackColor="White" BorderColor="White" BorderStyle="Ridge" BorderWidth="2px" CellPadding="3" CellSpacing="1" GridLines="None" OnPageIndexChanging="GdvmypaymentsCc_PageIndexChanging" OnSorting="GdvmypaymentsCc_Sorting" EmptyDataText="No Data"> <RowStyle BackColor="#DEDFDE" ForeColor="Black" /> <FooterStyle BackColor="#C6C3C6" ForeColor="Black" /> <PagerStyle BackColor="Control" ForeColor="Gray" HorizontalAlign="Left" /> <SelectedRowStyle BackColor="#9471DE" Font-Bold="True" ForeColor="White" /> <HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#E7E7FF" /> <PagerSettings Position="TopAndBottom" /> </asp:GridView> </td> </tr> <tr> <td> <asp:Label ID="lblmessmypaymentsCsu" runat="server" CssClass="labelmess"></asp:Label> </td> </tr> </table> </ContentTemplate> </cc1:TabPanel> <cc1:TabPanel ID="TpMyPaymentsCk" runat="server" HeaderText="Payments Check" > <ContentTemplate> <asp:GridView ID="GdvmypaymentsCk" runat="server" CssClass="Mytabs" BackColor="White" BorderColor="White" BorderStyle="Ridge" BorderWidth="2px" CellPadding="3" CellSpacing="1" GridLines="None" OnPageIndexChanging="GdvmypaymentsCk_PageIndexChanging" OnSorting="GdvmypaymentsCk_Sorting" EmptyDataText="No Data"> <RowStyle BackColor="#DEDFDE" ForeColor="Black" /> <FooterStyle BackColor="#C6C3C6" ForeColor="Black" /> <PagerStyle BackColor="Control" ForeColor="Gray" HorizontalAlign="Left" /> <SelectedRowStyle BackColor="#9471DE" Font-Bold="True" ForeColor="White" /> <HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#E7E7FF" /> <PagerSettings Position="TopAndBottom" /> </asp:GridView> </ContentTemplate> </cc1:TabPanel> <cc1:TabPanel ID="TpMyCalls" runat="server" HeaderText="Calls" > <ContentTemplate> <table> <tr> <td> <asp:GridView ID="GdvSelectcallsP" runat="server" CssClass="Mytabs" BackColor="White" BorderColor="White" BorderStyle="Ridge" BorderWidth="2px" CellPadding="3" CellSpacing="1" GridLines="None" OnPageIndexChanging="GdvSelectcallsP_PageIndexChanging" OnRowDataBound="GdvSelectcallsP_RowDataBound" OnSorting="GdvSelectcallsP_Sorting" > <RowStyle BackColor="#DEDFDE" ForeColor="Black" /> <FooterStyle BackColor="#C6C3C6" ForeColor="Black" /> <PagerStyle BackColor="#C6C3C6" ForeColor="Black" HorizontalAlign="Right" /> <SelectedRowStyle BackColor="#9471DE" Font-Bold="True" ForeColor="White" /> <HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#E7E7FF" /> <Columns> <asp:TemplateField> <HeaderTemplate> Row No </HeaderTemplate> <ItemTemplate> <%# Container.DataItemIndex + 1 %> </ItemTemplate> </asp:TemplateField> </Columns> </asp:GridView> </td> </tr> <tr> <td> <asp:Label ID="lblmessselectcallsAhkP" runat="server" CssClass="labelmess"></asp:Label> </td> </tr> </table> </ContentTemplate> </cc1:TabPanel> </cc1:TabContainer> </asp:Content>

    Read the article

  • How to solve "GPU Lockup - switching to software fbcon" on new install of 12.10-desktop-amd64

    - by Curtis
    Error occurs during startup of Ubuntu Installation. Sometimes I'll get to the Welcome screen just like this, the screen will just glitch out, or will simply freeze during the loading icon. nvidia GTS 250 Intel Core i7 920 9 GB Memory I was able to install 12.04.1, but after performing upgrade to 12.10 it get the same problem on startup; glitches in graphics, missing content etc. Also noticed after the upgrade, I'm no longer able to connect to internet; neither ethernet or wifi.

    Read the article

  • Scheduled Deprecation of Legacy Obligation Features

    - by Wes Curtis
    The Obligation object in ETPM includes some functionality and tables that, to our knowledge, are not being used by customers and implementers are this time.  Removing this logic and the related tables should benefit the performance of and simplify logic executed during Obligation maintenance processing. The Release Notes included with ETPM v2.3.1 announced that the product plans to deprecate the functionality on Obligation for Contract Terms, Contract Quantities, Tax Exemptions, Terms & Conditions and Obligation Type Start Options.  Our plan is to remove this functionality in the next release of ETPM. We have already confirmed with most project teams that these features are not being used so the deprecation should have no impact on existing designs or process. If you think your project may be impacted by this deprecation, please review any Business Object that has been created for the Obligation maintenance object to make sure that no elements are being defined for any of the following child tables: -          CI_SA_CONTERM -          CI_SA_CONT_QTY -          CI_TOU_CONT_VAL -          CI_SA_TC   As part of this deprecation, the following administrative tables are being removed along with their related metadata: -          Contract Quantity Type -          Tax Exempt Type -          Terms and Conditions Please contact myself or the Oracle Tax Product Management team if your implementation has actually used these objects in their designs. We can discuss options to mitigate impacts of this planned deprecation.  We will continue to announce planned deprecations in the Release Notes for each release and will contact project teams ahead of time to confirm that these deprecations will have little to no impact on our customers.

    Read the article

  • Can anyone explain to me what problem Core Data solves?

    - by Curtis Sumpter
    Core Data seems to add a needless layer of complexity. If you want to save data created natively by the user in an app why not just use an object and then write the data all to SQLite or back to a server using a RESTful script if necessary. Android doesn't have Core Data (though if it has something similar I haven't seen it.). What the heck is the point of buggy CD except useless needless overhead for people who can't write SQL or CGI scripts?

    Read the article

  • Can not resolve hostnames on Xubuntu computers

    - by P Curtis
    I have a network of computers which has been running for many years. I have changed two of those to Xubuntu 11.10 and found I can no longer connect by ssh using the host-name from any other machine. I can connect and ping by IP although ping is very slow in one case (~200ms). All other machines are fine including another with Ubuntu 11.10. Host-name resolution works from Xubuntu machines to other networked machines. I am using wins resolution and have checked settings in /etc/nsswitch.conf are the same as my working Ubuntu systems. What is different in Xubuntu networking that I might have missed?

    Read the article

  • Get the following error when running Software Updater

    - by Curtis Cox
    W:Failed to fetch cdrom://Ubuntu 12.10 Quantal Quetzal - Beta i386 (20120926)/dists/quantal/main/binary-i386/Packages Please use apt-cdrom to make this CD-ROM recognized by APT. apt-get update cannot be used to add new CD-ROMs , W:Failed to fetch cdrom://Ubuntu 12.10 Quantal Quetzal - Beta i386 (20120926)/dists/quantal/restricted/binary-i386/Packages Please use apt-cdrom to make this CD-ROM recognized by APT. apt-get update cannot be used to add new CD-ROMs , E:Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • Recording Available: What's New in ETPM v2.3.0?

    - by Wes Curtis
    Our team has published recordings for 'What's New in ETPM v2.3.1?' as well as overviews of features in a number of functional areas. Partners and customers who are considering implementing on or upgrading to recent versions like 2.3.1 have asked for a similar overview of the features available in ETPM v2.3.0 so they have a more complete view of what has been recently released. The What's New in ETPM v2.3.0? recording presents an overview of the features delivered in the ETPM v2.3.0 release. This recording was conducted in an ETPM v2.3.1 environment but the content focuses solely on those features new to ETPM v2.3.0.    

    Read the article

  • Oracle Policy Automation YouTube Videos

    - by Wes Curtis
    The Oracle PSRM integration with Oracle Policy Automation provides a great option for implementing business rules as Microsoft Word and Excel documents. The following YouTube site includes a large number of videos on various OPA topics including feature introductions, tutorials and overview presentations. Be sure to check these out if you would like to learn more about OPA and it's capabilities. http://www.youtube.com/user/OraclePAVideos

    Read the article

  • Cardinality Estimation Bug with Lookups in SQL Server 2008 onward

    - by Paul White
    Cost-based optimization stands or falls on the quality of cardinality estimates (expected row counts).  If the optimizer has incorrect information to start with, it is quite unlikely to produce good quality execution plans except by chance.  There are many ways we can provide good starting information to the optimizer, and even more ways for cardinality estimation to go wrong.  Good database people know this, and work hard to write optimizer-friendly queries with a schema and metadata (e.g. statistics) that reduce the chances of poor cardinality estimation producing a sub-optimal plan.  Today, I am going to look at a case where poor cardinality estimation is Microsoft’s fault, and not yours. SQL Server 2005 SELECT th.ProductID, th.TransactionID, th.TransactionDate FROM Production.TransactionHistory AS th WHERE th.ProductID = 1 AND th.TransactionDate BETWEEN '20030901' AND '20031231'; The query plan on SQL Server 2005 is as follows (if you are using a more recent version of AdventureWorks, you will need to change the year on the date range from 2003 to 2007): There is an Index Seek on ProductID = 1, followed by a Key Lookup to find the Transaction Date for each row, and finally a Filter to restrict the results to only those rows where Transaction Date falls in the range specified.  The cardinality estimate of 45 rows at the Index Seek is exactly correct.  The table is not very large, there are up-to-date statistics associated with the index, so this is as expected. The estimate for the Key Lookup is also exactly right.  Each lookup into the Clustered Index to find the Transaction Date is guaranteed to return exactly one row.  The plan shows that the Key Lookup is expected to be executed 45 times.  The estimate for the Inner Join output is also correct – 45 rows from the seek joining to one row each time, gives 45 rows as output. The Filter estimate is also very good: the optimizer estimates 16.9951 rows will match the specified range of transaction dates.  Eleven rows are produced by this query, but that small difference is quite normal and certainly nothing to worry about here.  All good so far. SQL Server 2008 onward The same query executed against an identical copy of AdventureWorks on SQL Server 2008 produces a different execution plan: The optimizer has pushed the Filter conditions seen in the 2005 plan down to the Key Lookup.  This is a good optimization – it makes sense to filter rows out as early as possible.  Unfortunately, it has made a bit of a mess of the cardinality estimates. The post-Filter estimate of 16.9951 rows seen in the 2005 plan has moved with the predicate on Transaction Date.  Instead of estimating one row, the plan now suggests that 16.9951 rows will be produced by each clustered index lookup – clearly not right!  This misinformation also confuses SQL Sentry Plan Explorer: Plan Explorer shows 765 rows expected from the Key Lookup (it multiplies a rounded estimate of 17 rows by 45 expected executions to give 765 rows total). Workarounds One workaround is to provide a covering non-clustered index (avoiding the lookup avoids the problem of course): CREATE INDEX nc1 ON Production.TransactionHistory (ProductID) INCLUDE (TransactionDate); With the Transaction Date filter applied as a residual predicate in the same operator as the seek, the estimate is again as expected: We could also force the use of the ultimate covering index (the clustered one): SELECT th.ProductID, th.TransactionID, th.TransactionDate FROM Production.TransactionHistory AS th WITH (INDEX(1)) WHERE th.ProductID = 1 AND th.TransactionDate BETWEEN '20030901' AND '20031231'; Summary Providing a covering non-clustered index for all possible queries is not always practical, and scanning the clustered index will rarely be optimal.  Nevertheless, these are the best workarounds we have today. In the meantime, watch out for poor cardinality estimates when a predicate is applied as part of a lookup. The worst thing is that the estimate after the lookup join in the 2008+ plans is wrong.  It’s not hopelessly wrong in this particular case (45 versus 16.9951 is not the end of the world) but it easily can be much worse, and there’s not much you can do about it.  Any decisions made by the optimizer after such a lookup could be based on very wrong information – which can only be bad news. If you think this situation should be improved, please vote for this Connect item. © 2012 Paul White – All Rights Reserved twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • Deleting xml file using radio value

    - by ???? ???
    i using php to delete file, but i got table loop like this: <table border="0" width="100%" cellpadding="0" cellspacing="0" id="product-table"> <tr class="bg_tableheader"> <th class="table-header-check"><a id="toggle-all" ></a> </th> <th class="table-header-check"><a href="#"><font color="white">Username</font></a> </th> <th class="table-header-check"><a href="#"><font color="white">First Name</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Last Name</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Email</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Group</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Birthday</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Gender</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Age</font></a></th> <th class="table-header-check"><a href="#"><font color="white">Country</font></a></th> </tr> <?php $files = glob('users/*.xml'); foreach($files as $file){ $xml = new SimpleXMLElement($file, 0, true); echo ' <tr> <td></td> <form action="" method="post"> <td class="alternate-row1"><input type="radio" name="file_name" value="'. basename($file, '.xml') .'" />'. basename($file, '.xml') .'</td> <td>'. $xml->name .'&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp</td> <td class="alternate-row1">'. $xml->lastname .'</td> <td>'. $xml->email .'</td> <td class="alternate-row1">'. $xml->level .'</td> <td>'. $xml->birthday .'</td> <td class="alternate-row1">'. $xml->gender .'</td> <td>'. $xml->age .'</td> <td class="alternate-row1">'. $xml->country .'</td> </tr>'; } ?> </table> </div> <?php if(isset($_POST['file_name'])){ unlink('users/'.$_POST['file_name']); } ?> <input type="submit" value="Delete" /> </form> so as you can see i got radio value set has basename (xml file name) but from some reason it not working, any idea why is that? Thanks in advance.

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • I see no LOBs!

    - by Paul White
    Is it possible to see LOB (large object) logical reads from STATISTICS IO output on a table with no LOB columns? I was asked this question today by someone who had spent a good fraction of their afternoon trying to work out why this was occurring – even going so far as to re-run DBCC CHECKDB to see if any corruption had taken place.  The table in question wasn’t particularly pretty – it had grown somewhat organically over time, with new columns being added every so often as the need arose.  Nevertheless, it remained a simple structure with no LOB columns – no TEXT or IMAGE, no XML, no MAX types – nothing aside from ordinary INT, MONEY, VARCHAR, and DATETIME types.  To add to the air of mystery, not every query that ran against the table would report LOB logical reads – just sometimes – but when it did, the query often took much longer to execute. Ok, enough of the pre-amble.  I can’t reproduce the exact structure here, but the following script creates a table that will serve to demonstrate the effect: IF OBJECT_ID(N'dbo.Test', N'U') IS NOT NULL DROP TABLE dbo.Test GO CREATE TABLE dbo.Test ( row_id NUMERIC IDENTITY NOT NULL,   col01 NVARCHAR(450) NOT NULL, col02 NVARCHAR(450) NOT NULL, col03 NVARCHAR(450) NOT NULL, col04 NVARCHAR(450) NOT NULL, col05 NVARCHAR(450) NOT NULL, col06 NVARCHAR(450) NOT NULL, col07 NVARCHAR(450) NOT NULL, col08 NVARCHAR(450) NOT NULL, col09 NVARCHAR(450) NOT NULL, col10 NVARCHAR(450) NOT NULL, CONSTRAINT [PK dbo.Test row_id] PRIMARY KEY CLUSTERED (row_id) ) ; The next script loads the ten variable-length character columns with one-character strings in the first row, two-character strings in the second row, and so on down to the 450th row: WITH Numbers AS ( -- Generates numbers 1 - 450 inclusive SELECT TOP (450) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) INSERT dbo.Test WITH (TABLOCKX) SELECT REPLICATE(N'A', N.n), REPLICATE(N'B', N.n), REPLICATE(N'C', N.n), REPLICATE(N'D', N.n), REPLICATE(N'E', N.n), REPLICATE(N'F', N.n), REPLICATE(N'G', N.n), REPLICATE(N'H', N.n), REPLICATE(N'I', N.n), REPLICATE(N'J', N.n) FROM Numbers AS N ORDER BY N.n ASC ; Once those two scripts have run, the table contains 450 rows and 10 columns of data like this: Most of the time, when we query data from this table, we don’t see any LOB logical reads, for example: -- Find the maximum length of the data in -- column 5 for a range of rows SELECT result = MAX(DATALENGTH(T.col05)) FROM dbo.Test AS T WHERE row_id BETWEEN 50 AND 100 ; But with a different query… -- Read all the data in column 1 SELECT result = MAX(DATALENGTH(T.col01)) FROM dbo.Test AS T ; …suddenly we have 49 LOB logical reads, as well as the ‘normal’ logical reads we would expect. The Explanation If we had tried to create this table in SQL Server 2000, we would have received a warning message to say that future INSERT or UPDATE operations on the table might fail if the resulting row exceeded the in-row storage limit of 8060 bytes.  If we needed to store more data than would fit in an 8060 byte row (including internal overhead) we had to use a LOB column – TEXT, NTEXT, or IMAGE.  These special data types store the large data values in a separate structure, with just a small pointer left in the original row. Row Overflow SQL Server 2005 introduced a feature called row overflow, which allows one or more variable-length columns in a row to move to off-row storage if the data in a particular row would otherwise exceed 8060 bytes.  You no longer receive a warning when creating (or altering) a table that might need more than 8060 bytes of in-row storage; if SQL Server finds that it can no longer fit a variable-length column in a particular row, it will silently move one or more of these columns off the row into a separate allocation unit. Only variable-length columns can be moved in this way (for example the (N)VARCHAR, VARBINARY, and SQL_VARIANT types).  Fixed-length columns (like INTEGER and DATETIME for example) never move into ‘row overflow’ storage.  The decision to move a column off-row is done on a row-by-row basis – so data in a particular column might be stored in-row for some table records, and off-row for others. In general, if SQL Server finds that it needs to move a column into row-overflow storage, it moves the largest variable-length column record for that row.  Note that in the case of an UPDATE statement that results in the 8060 byte limit being exceeded, it might not be the column that grew that is moved! Sneaky LOBs Anyway, that’s all very interesting but I don’t want to get too carried away with the intricacies of row-overflow storage internals.  The point is that it is now possible to define a table with non-LOB columns that will silently exceed the old row-size limit and result in ordinary variable-length columns being moved to off-row storage.  Adding new columns to a table, expanding an existing column definition, or simply storing more data in a column than you used to – all these things can result in one or more variable-length columns being moved off the row. Note that row-overflow storage is logically quite different from old-style LOB and new-style MAX data type storage – individual variable-length columns are still limited to 8000 bytes each – you can just have more of them now.  Having said that, the physical mechanisms involved are very similar to full LOB storage – a column moved to row-overflow leaves a 24-byte pointer record in the row, and the ‘separate storage’ I have been talking about is structured very similarly to both old-style LOBs and new-style MAX types.  The disadvantages are also the same: when SQL Server needs a row-overflow column value it needs to follow the in-row pointer a navigate another chain of pages, just like retrieving a traditional LOB. And Finally… In the example script presented above, the rows with row_id values from 402 to 450 inclusive all exceed the total in-row storage limit of 8060 bytes.  A SELECT that references a column in one of those rows that has moved to off-row storage will incur one or more lob logical reads as the storage engine locates the data.  The results on your system might vary slightly depending on your settings, of course; but in my tests only column 1 in rows 402-450 moved off-row.  You might like to play around with the script – updating columns, changing data type lengths, and so on – to see the effect on lob logical reads and which columns get moved when.  You might even see row-overflow columns moving back in-row if they are updated to be smaller (hint: reduce the size of a column entry by at least 1000 bytes if you hope to see this). Be aware that SQL Server will not warn you when it moves ‘ordinary’ variable-length columns into overflow storage, and it can have dramatic effects on performance.  It makes more sense than ever to choose column data types sensibly.  If you make every column a VARCHAR(8000) or NVARCHAR(4000), and someone stores data that results in a row needing more than 8060 bytes, SQL Server might turn some of your column data into pseudo-LOBs – all without saying a word. Finally, some people make a distinction between ordinary LOBs (those that can hold up to 2GB of data) and the LOB-like structures created by row-overflow (where columns are still limited to 8000 bytes) by referring to row-overflow LOBs as SLOBs.  I find that quite appealing, but the ‘S’ stands for ‘small’, which makes expanding the whole acronym a little daft-sounding…small large objects anyone? © Paul White 2011 email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • When is a Seek not a Seek?

    - by Paul White
    The following script creates a single-column clustered table containing the integers from 1 to 1,000 inclusive. IF OBJECT_ID(N'tempdb..#Test', N'U') IS NOT NULL DROP TABLE #Test ; GO CREATE TABLE #Test ( id INTEGER PRIMARY KEY CLUSTERED ); ; INSERT #Test (id) SELECT V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 1000 ; Let’s say we need to find the rows with values from 100 to 170, excluding any values that divide exactly by 10.  One way to write that query would be: SELECT T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; That query produces a pretty efficient-looking query plan: Knowing that the source column is defined as an INTEGER, we could also express the query this way: SELECT T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; We get a similar-looking plan: If you look closely, you might notice that the line connecting the two icons is a little thinner than before.  The first query is estimated to produce 61.9167 rows – very close to the 63 rows we know the query will return.  The second query presents a tougher challenge for SQL Server because it doesn’t know how to predict the selectivity of the modulo expression (T.id % 10 > 0).  Without that last line, the second query is estimated to produce 68.1667 rows – a slight overestimate.  Adding the opaque modulo expression results in SQL Server guessing at the selectivity.  As you may know, the selectivity guess for a greater-than operation is 30%, so the final estimate is 30% of 68.1667, which comes to 20.45 rows. The second difference is that the Clustered Index Seek is costed at 99% of the estimated total for the statement.  For some reason, the final SELECT operator is assigned a small cost of 0.0000484 units; I have absolutely no idea why this is so, or what it models.  Nevertheless, we can compare the total cost for both queries: the first one comes in at 0.0033501 units, and the second at 0.0034054.  The important point is that the second query is costed very slightly higher than the first, even though it is expected to produce many fewer rows (20.45 versus 61.9167). If you run the two queries, they produce exactly the same results, and both complete so quickly that it is impossible to measure CPU usage for a single execution.  We can, however, compare the I/O statistics for a single run by running the queries with STATISTICS IO ON: Table '#Test'. Scan count 63, logical reads 126, physical reads 0. Table '#Test'. Scan count 01, logical reads 002, physical reads 0. The query with the IN list uses 126 logical reads (and has a ‘scan count’ of 63), while the second query form completes with just 2 logical reads (and a ‘scan count’ of 1).  It is no coincidence that 126 = 63 * 2, by the way.  It is almost as if the first query is doing 63 seeks, compared to one for the second query. In fact, that is exactly what it is doing.  There is no indication of this in the graphical plan, or the tool-tip that appears when you hover your mouse over the Clustered Index Seek icon.  To see the 63 seek operations, you have click on the Seek icon and look in the Properties window (press F4, or right-click and choose from the menu): The Seek Predicates list shows a total of 63 seek operations – one for each of the values from the IN list contained in the first query.  I have expanded the first seek node to show the details; it is seeking down the clustered index to find the entry with the value 101.  Each of the other 62 nodes expands similarly, and the same information is contained (even more verbosely) in the XML form of the plan. Each of the 63 seek operations starts at the root of the clustered index B-tree and navigates down to the leaf page that contains the sought key value.  Our table is just large enough to need a separate root page, so each seek incurs 2 logical reads (one for the root, and one for the leaf).  We can see the index depth using the INDEXPROPERTY function, or by using the a DMV: SELECT S.index_type_desc, S.index_depth FROM sys.dm_db_index_physical_stats ( DB_ID(N'tempdb'), OBJECT_ID(N'tempdb..#Test', N'U'), 1, 1, DEFAULT ) AS S ; Let’s look now at the Properties window when the Clustered Index Seek from the second query is selected: There is just one seek operation, which starts at the root of the index and navigates the B-tree looking for the first key that matches the Start range condition (id >= 101).  It then continues to read records at the leaf level of the index (following links between leaf-level pages if necessary) until it finds a row that does not meet the End range condition (id <= 169).  Every row that meets the seek range condition is also tested against the Residual Predicate highlighted above (id % 10 > 0), and is only returned if it matches that as well. You will not be surprised that the single seek (with a range scan and residual predicate) is much more efficient than 63 singleton seeks.  It is not 63 times more efficient (as the logical reads comparison would suggest), but it is around three times faster.  Let’s run both query forms 10,000 times and measure the elapsed time: DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON; SET STATISTICS XML OFF; ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; GO DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; On my laptop, running SQL Server 2008 build 4272 (SP2 CU2), the IN form of the query takes around 830ms and the range query about 300ms.  The main point of this post is not performance, however – it is meant as an introduction to the next few parts in this mini-series that will continue to explore scans and seeks in detail. When is a seek not a seek?  When it is 63 seeks © Paul White 2011 email: [email protected] twitter: @SQL_kiwi

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • Heaps of Trouble?

    - by Paul White NZ
    If you’re not already a regular reader of Brad Schulz’s blog, you’re missing out on some great material.  In his latest entry, he is tasked with optimizing a query run against tables that have no indexes at all.  The problem is, predictably, that performance is not very good.  The catch is that we are not allowed to create any indexes (or even new statistics) as part of our optimization efforts. In this post, I’m going to look at the problem from a slightly different angle, and present an alternative solution to the one Brad found.  Inevitably, there’s going to be some overlap between our entries, and while you don’t necessarily need to read Brad’s post before this one, I do strongly recommend that you read it at some stage; he covers some important points that I won’t cover again here. The Example We’ll use data from the AdventureWorks database, copied to temporary unindexed tables.  A script to create these structures is shown below: CREATE TABLE #Custs ( CustomerID INTEGER NOT NULL, TerritoryID INTEGER NULL, CustomerType NCHAR(1) COLLATE SQL_Latin1_General_CP1_CI_AI NOT NULL, ); GO CREATE TABLE #Prods ( ProductMainID INTEGER NOT NULL, ProductSubID INTEGER NOT NULL, ProductSubSubID INTEGER NOT NULL, Name NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AI NOT NULL, ); GO CREATE TABLE #OrdHeader ( SalesOrderID INTEGER NOT NULL, OrderDate DATETIME NOT NULL, SalesOrderNumber NVARCHAR(25) COLLATE SQL_Latin1_General_CP1_CI_AI NOT NULL, CustomerID INTEGER NOT NULL, ); GO CREATE TABLE #OrdDetail ( SalesOrderID INTEGER NOT NULL, OrderQty SMALLINT NOT NULL, LineTotal NUMERIC(38,6) NOT NULL, ProductMainID INTEGER NOT NULL, ProductSubID INTEGER NOT NULL, ProductSubSubID INTEGER NOT NULL, ); GO INSERT #Custs ( CustomerID, TerritoryID, CustomerType ) SELECT C.CustomerID, C.TerritoryID, C.CustomerType FROM AdventureWorks.Sales.Customer C WITH (TABLOCK); GO INSERT #Prods ( ProductMainID, ProductSubID, ProductSubSubID, Name ) SELECT P.ProductID, P.ProductID, P.ProductID, P.Name FROM AdventureWorks.Production.Product P WITH (TABLOCK); GO INSERT #OrdHeader ( SalesOrderID, OrderDate, SalesOrderNumber, CustomerID ) SELECT H.SalesOrderID, H.OrderDate, H.SalesOrderNumber, H.CustomerID FROM AdventureWorks.Sales.SalesOrderHeader H WITH (TABLOCK); GO INSERT #OrdDetail ( SalesOrderID, OrderQty, LineTotal, ProductMainID, ProductSubID, ProductSubSubID ) SELECT D.SalesOrderID, D.OrderQty, D.LineTotal, D.ProductID, D.ProductID, D.ProductID FROM AdventureWorks.Sales.SalesOrderDetail D WITH (TABLOCK); The query itself is a simple join of the four tables: SELECT P.ProductMainID AS PID, P.Name, D.OrderQty, H.SalesOrderNumber, H.OrderDate, C.TerritoryID FROM #Prods P JOIN #OrdDetail D ON P.ProductMainID = D.ProductMainID AND P.ProductSubID = D.ProductSubID AND P.ProductSubSubID = D.ProductSubSubID JOIN #OrdHeader H ON D.SalesOrderID = H.SalesOrderID JOIN #Custs C ON H.CustomerID = C.CustomerID ORDER BY P.ProductMainID ASC OPTION (RECOMPILE, MAXDOP 1); Remember that these tables have no indexes at all, and only the single-column sampled statistics SQL Server automatically creates (assuming default settings).  The estimated query plan produced for the test query looks like this (click to enlarge): The Problem The problem here is one of cardinality estimation – the number of rows SQL Server expects to find at each step of the plan.  The lack of indexes and useful statistical information means that SQL Server does not have the information it needs to make a good estimate.  Every join in the plan shown above estimates that it will produce just a single row as output.  Brad covers the factors that lead to the low estimates in his post. In reality, the join between the #Prods and #OrdDetail tables will produce 121,317 rows.  It should not surprise you that this has rather dire consequences for the remainder of the query plan.  In particular, it makes a nonsense of the optimizer’s decision to use Nested Loops to join to the two remaining tables.  Instead of scanning the #OrdHeader and #Custs tables once (as it expected), it has to perform 121,317 full scans of each.  The query takes somewhere in the region of twenty minutes to run to completion on my development machine. A Solution At this point, you may be thinking the same thing I was: if we really are stuck with no indexes, the best we can do is to use hash joins everywhere. We can force the exclusive use of hash joins in several ways, the two most common being join and query hints.  A join hint means writing the query using the INNER HASH JOIN syntax; using a query hint involves adding OPTION (HASH JOIN) at the bottom of the query.  The difference is that using join hints also forces the order of the join, whereas the query hint gives the optimizer freedom to reorder the joins at its discretion. Adding the OPTION (HASH JOIN) hint results in this estimated plan: That produces the correct output in around seven seconds, which is quite an improvement!  As a purely practical matter, and given the rigid rules of the environment we find ourselves in, we might leave things there.  (We can improve the hashing solution a bit – I’ll come back to that later on). Faster Nested Loops It might surprise you to hear that we can beat the performance of the hash join solution shown above using nested loops joins exclusively, and without breaking the rules we have been set. The key to this part is to realize that a condition like (A = B) can be expressed as (A <= B) AND (A >= B).  Armed with this tremendous new insight, we can rewrite the join predicates like so: SELECT P.ProductMainID AS PID, P.Name, D.OrderQty, H.SalesOrderNumber, H.OrderDate, C.TerritoryID FROM #OrdDetail D JOIN #OrdHeader H ON D.SalesOrderID >= H.SalesOrderID AND D.SalesOrderID <= H.SalesOrderID JOIN #Custs C ON H.CustomerID >= C.CustomerID AND H.CustomerID <= C.CustomerID JOIN #Prods P ON P.ProductMainID >= D.ProductMainID AND P.ProductMainID <= D.ProductMainID AND P.ProductSubID = D.ProductSubID AND P.ProductSubSubID = D.ProductSubSubID ORDER BY D.ProductMainID OPTION (RECOMPILE, LOOP JOIN, MAXDOP 1, FORCE ORDER); I’ve also added LOOP JOIN and FORCE ORDER query hints to ensure that only nested loops joins are used, and that the tables are joined in the order they appear.  The new estimated execution plan is: This new query runs in under 2 seconds. Why Is It Faster? The main reason for the improvement is the appearance of the eager Index Spools, which are also known as index-on-the-fly spools.  If you read my Inside The Optimiser series you might be interested to know that the rule responsible is called JoinToIndexOnTheFly. An eager index spool consumes all rows from the table it sits above, and builds a index suitable for the join to seek on.  Taking the index spool above the #Custs table as an example, it reads all the CustomerID and TerritoryID values with a single scan of the table, and builds an index keyed on CustomerID.  The term ‘eager’ means that the spool consumes all of its input rows when it starts up.  The index is built in a work table in tempdb, has no associated statistics, and only exists until the query finishes executing. The result is that each unindexed table is only scanned once, and just for the columns necessary to build the temporary index.  From that point on, every execution of the inner side of the join is answered by a seek on the temporary index – not the base table. A second optimization is that the sort on ProductMainID (required by the ORDER BY clause) is performed early, on just the rows coming from the #OrdDetail table.  The optimizer has a good estimate for the number of rows it needs to sort at that stage – it is just the cardinality of the table itself.  The accuracy of the estimate there is important because it helps determine the memory grant given to the sort operation.  Nested loops join preserves the order of rows on its outer input, so sorting early is safe.  (Hash joins do not preserve order in this way, of course). The extra lazy spool on the #Prods branch is a further optimization that avoids executing the seek on the temporary index if the value being joined (the ‘outer reference’) hasn’t changed from the last row received on the outer input.  It takes advantage of the fact that rows are still sorted on ProductMainID, so if duplicates exist, they will arrive at the join operator one after the other. The optimizer is quite conservative about introducing index spools into a plan, because creating and dropping a temporary index is a relatively expensive operation.  It’s presence in a plan is often an indication that a useful index is missing. I want to stress that I rewrote the query in this way primarily as an educational exercise – I can’t imagine having to do something so horrible to a production system. Improving the Hash Join I promised I would return to the solution that uses hash joins.  You might be puzzled that SQL Server can create three new indexes (and perform all those nested loops iterations) faster than it can perform three hash joins.  The answer, again, is down to the poor information available to the optimizer.  Let’s look at the hash join plan again: Two of the hash joins have single-row estimates on their build inputs.  SQL Server fixes the amount of memory available for the hash table based on this cardinality estimate, so at run time the hash join very quickly runs out of memory. This results in the join spilling hash buckets to disk, and any rows from the probe input that hash to the spilled buckets also get written to disk.  The join process then continues, and may again run out of memory.  This is a recursive process, which may eventually result in SQL Server resorting to a bailout join algorithm, which is guaranteed to complete eventually, but may be very slow.  The data sizes in the example tables are not large enough to force a hash bailout, but it does result in multiple levels of hash recursion.  You can see this for yourself by tracing the Hash Warning event using the Profiler tool. The final sort in the plan also suffers from a similar problem: it receives very little memory and has to perform multiple sort passes, saving intermediate runs to disk (the Sort Warnings Profiler event can be used to confirm this).  Notice also that because hash joins don’t preserve sort order, the sort cannot be pushed down the plan toward the #OrdDetail table, as in the nested loops plan. Ok, so now we understand the problems, what can we do to fix it?  We can address the hash spilling by forcing a different order for the joins: SELECT P.ProductMainID AS PID, P.Name, D.OrderQty, H.SalesOrderNumber, H.OrderDate, C.TerritoryID FROM #Prods P JOIN #Custs C JOIN #OrdHeader H ON H.CustomerID = C.CustomerID JOIN #OrdDetail D ON D.SalesOrderID = H.SalesOrderID ON P.ProductMainID = D.ProductMainID AND P.ProductSubID = D.ProductSubID AND P.ProductSubSubID = D.ProductSubSubID ORDER BY D.ProductMainID OPTION (MAXDOP 1, HASH JOIN, FORCE ORDER); With this plan, each of the inputs to the hash joins has a good estimate, and no hash recursion occurs.  The final sort still suffers from the one-row estimate problem, and we get a single-pass sort warning as it writes rows to disk.  Even so, the query runs to completion in three or four seconds.  That’s around half the time of the previous hashing solution, but still not as fast as the nested loops trickery. Final Thoughts SQL Server’s optimizer makes cost-based decisions, so it is vital to provide it with accurate information.  We can’t really blame the performance problems highlighted here on anything other than the decision to use completely unindexed tables, and not to allow the creation of additional statistics. I should probably stress that the nested loops solution shown above is not one I would normally contemplate in the real world.  It’s there primarily for its educational and entertainment value.  I might perhaps use it to demonstrate to the sceptical that SQL Server itself is crying out for an index. Be sure to read Brad’s original post for more details.  My grateful thanks to him for granting permission to reuse some of his material. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Beware Sneaky Reads with Unique Indexes

    - by Paul White NZ
    A few days ago, Sandra Mueller (twitter | blog) asked a question using twitter’s #sqlhelp hash tag: “Might SQL Server retrieve (out-of-row) LOB data from a table, even if the column isn’t referenced in the query?” Leaving aside trivial cases (like selecting a computed column that does reference the LOB data), one might be tempted to say that no, SQL Server does not read data you haven’t asked for.  In general, that’s quite correct; however there are cases where SQL Server might sneakily retrieve a LOB column… Example Table Here’s a T-SQL script to create that table and populate it with 1,000 rows: CREATE TABLE dbo.LOBtest ( pk INTEGER IDENTITY NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( some_value, lob_data ) SELECT TOP (1000) N.n, @Data FROM Numbers N WHERE N.n <= 1000; Test 1: A Simple Update Let’s run a query to subtract one from every value in the some_value column: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; As you might expect, modifying this integer column in 1,000 rows doesn’t take very long, or use many resources.  The STATITICS IO and TIME output shows a total of 9 logical reads, and 25ms elapsed time.  The query plan is also very simple: Looking at the Clustered Index Scan, we can see that SQL Server only retrieves the pk and some_value columns during the scan: The pk column is needed by the Clustered Index Update operator to uniquely identify the row that is being changed.  The some_value column is used by the Compute Scalar to calculate the new value.  (In case you are wondering what the Top operator is for, it is used to enforce SET ROWCOUNT). Test 2: Simple Update with an Index Now let’s create a nonclustered index keyed on the some_value column, with lob_data as an included column: CREATE NONCLUSTERED INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); This is not a useful index for our simple update query; imagine that someone else created it for a different purpose.  Let’s run our update query again: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; We find that it now requires 4,014 logical reads and the elapsed query time has increased to around 100ms.  The extra logical reads (4 per row) are an expected consequence of maintaining the nonclustered index. The query plan is very similar to before (click to enlarge): The Clustered Index Update operator picks up the extra work of maintaining the nonclustered index. The new Compute Scalar operators detect whether the value in the some_value column has actually been changed by the update.  SQL Server may be able to skip maintaining the nonclustered index if the value hasn’t changed (see my previous post on non-updating updates for details).  Our simple query does change the value of some_data in every row, so this optimization doesn’t add any value in this specific case. The output list of columns from the Clustered Index Scan hasn’t changed from the one shown previously: SQL Server still just reads the pk and some_data columns.  Cool. Overall then, adding the nonclustered index hasn’t had any startling effects, and the LOB column data still isn’t being read from the table.  Let’s see what happens if we make the nonclustered index unique. Test 3: Simple Update with a Unique Index Here’s the script to create a new unique index, and drop the old one: CREATE UNIQUE NONCLUSTERED INDEX [UQ dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); GO DROP INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest; Remember that SQL Server only enforces uniqueness on index keys (the some_data column).  The lob_data column is simply stored at the leaf-level of the non-clustered index.  With that in mind, we might expect this change to make very little difference.  Let’s see: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; Whoa!  Now look at the elapsed time and logical reads: Scan count 1, logical reads 2016, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   CPU time = 172 ms, elapsed time = 16172 ms. Even with all the data and index pages in memory, the query took over 16 seconds to update just 1,000 rows, performing over 52,000 LOB logical reads (nearly 16,000 of those using read-ahead). Why on earth is SQL Server reading LOB data in a query that only updates a single integer column? The Query Plan The query plan for test 3 looks a bit more complex than before: In fact, the bottom level is exactly the same as we saw with the non-unique index.  The top level has heaps of new stuff though, which I’ll come to in a moment. You might be expecting to find that the Clustered Index Scan is now reading the lob_data column (for some reason).  After all, we need to explain where all the LOB logical reads are coming from.  Sadly, when we look at the properties of the Clustered Index Scan, we see exactly the same as before: SQL Server is still only reading the pk and some_value columns – so what’s doing the LOB reads? Updates that Sneakily Read Data We have to go as far as the Clustered Index Update operator before we see LOB data in the output list: [Expr1020] is a bit flag added by an earlier Compute Scalar.  It is set true if the some_value column has not been changed (part of the non-updating updates optimization I mentioned earlier). The Clustered Index Update operator adds two new columns: the lob_data column, and some_value_OLD.  The some_value_OLD column, as the name suggests, is the pre-update value of the some_value column.  At this point, the clustered index has already been updated with the new value, but we haven’t touched the nonclustered index yet. An interesting observation here is that the Clustered Index Update operator can read a column into the data flow as part of its update operation.  SQL Server could have read the LOB data as part of the initial Clustered Index Scan, but that would mean carrying the data through all the operations that occur prior to the Clustered Index Update.  The server knows it will have to go back to the clustered index row to update it, so it delays reading the LOB data until then.  Sneaky! Why the LOB Data Is Needed This is all very interesting (I hope), but why is SQL Server reading the LOB data?  For that matter, why does it need to pass the pre-update value of the some_value column out of the Clustered Index Update? The answer relates to the top row of the query plan for test 3.  I’ll reproduce it here for convenience: Notice that this is a wide (per-index) update plan.  SQL Server used a narrow (per-row) update plan in test 2, where the Clustered Index Update took care of maintaining the nonclustered index too.  I’ll talk more about this difference shortly. The Split/Sort/Collapse combination is an optimization, which aims to make per-index update plans more efficient.  It does this by breaking each update into a delete/insert pair, reordering the operations, removing any redundant operations, and finally applying the net effect of all the changes to the nonclustered index. Imagine we had a unique index which currently holds three rows with the values 1, 2, and 3.  If we run a query that adds 1 to each row value, we would end up with values 2, 3, and 4.  The net effect of all the changes is the same as if we simply deleted the value 1, and added a new value 4. By applying net changes, SQL Server can also avoid false unique-key violations.  If we tried to immediately update the value 1 to a 2, it would conflict with the existing value 2 (which would soon be updated to 3 of course) and the query would fail.  You might argue that SQL Server could avoid the uniqueness violation by starting with the highest value (3) and working down.  That’s fine, but it’s not possible to generalize this logic to work with every possible update query. SQL Server has to use a wide update plan if it sees any risk of false uniqueness violations.  It’s worth noting that the logic SQL Server uses to detect whether these violations are possible has definite limits.  As a result, you will often receive a wide update plan, even when you can see that no violations are possible. Another benefit of this optimization is that it includes a sort on the index key as part of its work.  Processing the index changes in index key order promotes sequential I/O against the nonclustered index. A side-effect of all this is that the net changes might include one or more inserts.  In order to insert a new row in the index, SQL Server obviously needs all the columns – the key column and the included LOB column.  This is the reason SQL Server reads the LOB data as part of the Clustered Index Update. In addition, the some_value_OLD column is required by the Split operator (it turns updates into delete/insert pairs).  In order to generate the correct index key delete operation, it needs the old key value. The irony is that in this case the Split/Sort/Collapse optimization is anything but.  Reading all that LOB data is extremely expensive, so it is sad that the current version of SQL Server has no way to avoid it. Finally, for completeness, I should mention that the Filter operator is there to filter out the non-updating updates. Beating the Set-Based Update with a Cursor One situation where SQL Server can see that false unique-key violations aren’t possible is where it can guarantee that only one row is being updated.  Armed with this knowledge, we can write a cursor (or the WHILE-loop equivalent) that updates one row at a time, and so avoids reading the LOB data: SET NOCOUNT ON; SET STATISTICS XML, IO, TIME OFF;   DECLARE @PK INTEGER, @StartTime DATETIME; SET @StartTime = GETUTCDATE();   DECLARE curUpdate CURSOR LOCAL FORWARD_ONLY KEYSET SCROLL_LOCKS FOR SELECT L.pk FROM LOBtest L ORDER BY L.pk ASC;   OPEN curUpdate;   WHILE (1 = 1) BEGIN FETCH NEXT FROM curUpdate INTO @PK;   IF @@FETCH_STATUS = -1 BREAK; IF @@FETCH_STATUS = -2 CONTINUE;   UPDATE dbo.LOBtest SET some_value = some_value - 1 WHERE CURRENT OF curUpdate; END;   CLOSE curUpdate; DEALLOCATE curUpdate;   SELECT DATEDIFF(MILLISECOND, @StartTime, GETUTCDATE()); That completes the update in 1280 milliseconds (remember test 3 took over 16 seconds!) I used the WHERE CURRENT OF syntax there and a KEYSET cursor, just for the fun of it.  One could just as well use a WHERE clause that specified the primary key value instead. Clustered Indexes A clustered index is the ultimate index with included columns: all non-key columns are included columns in a clustered index.  Let’s re-create the test table and data with an updatable primary key, and without any non-clustered indexes: IF OBJECT_ID(N'dbo.LOBtest', N'U') IS NOT NULL DROP TABLE dbo.LOBtest; GO CREATE TABLE dbo.LOBtest ( pk INTEGER NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( pk, some_value, lob_data ) SELECT TOP (1000) N.n, N.n, @Data FROM Numbers N WHERE N.n <= 1000; Now here’s a query to modify the cluster keys: UPDATE dbo.LOBtest SET pk = pk + 1; The query plan is: As you can see, the Split/Sort/Collapse optimization is present, and we also gain an Eager Table Spool, for Halloween protection.  In addition, SQL Server now has no choice but to read the LOB data in the Clustered Index Scan: The performance is not great, as you might expect (even though there is no non-clustered index to maintain): Table 'LOBtest'. Scan count 1, logical reads 2011, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   Table 'Worktable'. Scan count 1, logical reads 2040, physical reads 0, read-ahead reads 0, lob logical reads 34000, lob physical reads 0, lob read-ahead reads 8000.   SQL Server Execution Times: CPU time = 483 ms, elapsed time = 17884 ms. Notice how the LOB data is read twice: once from the Clustered Index Scan, and again from the work table in tempdb used by the Eager Spool. If you try the same test with a non-unique clustered index (rather than a primary key), you’ll get a much more efficient plan that just passes the cluster key (including uniqueifier) around (no LOB data or other non-key columns): A unique non-clustered index (on a heap) works well too: Both those queries complete in a few tens of milliseconds, with no LOB reads, and just a few thousand logical reads.  (In fact the heap is rather more efficient). There are lots more fun combinations to try that I don’t have space for here. Final Thoughts The behaviour shown in this post is not limited to LOB data by any means.  If the conditions are met, any unique index that has included columns can produce similar behaviour – something to bear in mind when adding large INCLUDE columns to achieve covering queries, perhaps. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • MERGE Bug with Filtered Indexes

    - by Paul White
    A MERGE statement can fail, and incorrectly report a unique key violation when: The target table uses a unique filtered index; and No key column of the filtered index is updated; and A column from the filtering condition is updated; and Transient key violations are possible Example Tables Say we have two tables, one that is the target of a MERGE statement, and another that contains updates to be applied to the target.  The target table contains three columns, an integer primary key, a single character alternate key, and a status code column.  A filtered unique index exists on the alternate key, but is only enforced where the status code is ‘a’: CREATE TABLE #Target ( pk integer NOT NULL, ak character(1) NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) );   CREATE UNIQUE INDEX uq1 ON #Target (ak) INCLUDE (status_code) WHERE status_code = 'a'; The changes table contains just an integer primary key (to identify the target row to change) and the new status code: CREATE TABLE #Changes ( pk integer NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) ); Sample Data The sample data for the example is: INSERT #Target (pk, ak, status_code) VALUES (1, 'A', 'a'), (2, 'B', 'a'), (3, 'C', 'a'), (4, 'A', 'd');   INSERT #Changes (pk, status_code) VALUES (1, 'd'), (4, 'a');          Target                     Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ a           ¦    ¦  1 ¦ d           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ d           ¦ +-----------------------+ The target table’s alternate key (ak) column is unique, for rows where status_code = ‘a’.  Applying the changes to the target will change row 1 from status ‘a’ to status ‘d’, and row 4 from status ‘d’ to status ‘a’.  The result of applying all the changes will still satisfy the filtered unique index, because the ‘A’ in row 1 will be deleted from the index and the ‘A’ in row 4 will be added. Merge Test One Let’s now execute a MERGE statement to apply the changes: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; The MERGE changes the two target rows as expected.  The updated target table now contains: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦ <—changed from ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦ <—changed from ‘d’ +-----------------------+ Merge Test Two Now let’s repopulate the changes table to reverse the updates we just performed: TRUNCATE TABLE #Changes;   INSERT #Changes (pk, status_code) VALUES (1, 'a'), (4, 'd'); This will change row 1 back to status ‘a’ and row 4 back to status ‘d’.  As a reminder, the current state of the tables is:          Target                        Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ d           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ a           ¦ +-----------------------+ We execute the same MERGE statement: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; However this time we receive the following message: Msg 2601, Level 14, State 1, Line 1 Cannot insert duplicate key row in object 'dbo.#Target' with unique index 'uq1'. The duplicate key value is (A). The statement has been terminated. Applying the changes using UPDATE Let’s now rewrite the MERGE to use UPDATE instead: UPDATE t SET status_code = c.status_code FROM #Target AS t JOIN #Changes AS c ON t.pk = c.pk WHERE c.status_code <> t.status_code; This query succeeds where the MERGE failed.  The two rows are updated as expected: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ a           ¦ <—changed back to ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ d           ¦ <—changed back to ‘d’ +-----------------------+ What went wrong with the MERGE? In this test, the MERGE query execution happens to apply the changes in the order of the ‘pk’ column. In test one, this was not a problem: row 1 is removed from the unique filtered index by changing status_code from ‘a’ to ‘d’ before row 4 is added.  At no point does the table contain two rows where ak = ‘A’ and status_code = ‘a’. In test two, however, the first change was to change row 1 from status ‘d’ to status ‘a’.  This change means there would be two rows in the filtered unique index where ak = ‘A’ (both row 1 and row 4 meet the index filtering criteria ‘status_code = a’). The storage engine does not allow the query processor to violate a unique key (unless IGNORE_DUP_KEY is ON, but that is a different story, and doesn’t apply to MERGE in any case).  This strict rule applies regardless of the fact that if all changes were applied, there would be no unique key violation (row 4 would eventually be changed from ‘a’ to ‘d’, removing it from the filtered unique index, and resolving the key violation). Why it went wrong The query optimizer usually detects when this sort of temporary uniqueness violation could occur, and builds a plan that avoids the issue.  I wrote about this a couple of years ago in my post Beware Sneaky Reads with Unique Indexes (you can read more about the details on pages 495-497 of Microsoft SQL Server 2008 Internals or in Craig Freedman’s blog post on maintaining unique indexes).  To summarize though, the optimizer introduces Split, Filter, Sort, and Collapse operators into the query plan to: Split each row update into delete followed by an inserts Filter out rows that would not change the index (due to the filter on the index, or a non-updating update) Sort the resulting stream by index key, with deletes before inserts Collapse delete/insert pairs on the same index key back into an update The effect of all this is that only net changes are applied to an index (as one or more insert, update, and/or delete operations).  In this case, the net effect is a single update of the filtered unique index: changing the row for ak = ‘A’ from pk = 4 to pk = 1.  In case that is less than 100% clear, let’s look at the operation in test two again:          Target                     Changes                   Result +-----------------------+    +------------------+    +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦    ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦    ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ d           ¦    ¦  1 ¦ A  ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦    ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+    ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦                            ¦  4 ¦ A  ¦ d           ¦ +-----------------------+                            +-----------------------+ From the filtered index’s point of view (filtered for status_code = ‘a’ and shown in nonclustered index key order) the overall effect of the query is:   Before           After +---------+    +---------+ ¦ pk ¦ ak ¦    ¦ pk ¦ ak ¦ ¦----+----¦    ¦----+----¦ ¦  4 ¦ A  ¦    ¦  1 ¦ A  ¦ ¦  2 ¦ B  ¦    ¦  2 ¦ B  ¦ ¦  3 ¦ C  ¦    ¦  3 ¦ C  ¦ +---------+    +---------+ The single net change there is a change of pk from 4 to 1 for the nonclustered index entry ak = ‘A’.  This is the magic performed by the split, sort, and collapse.  Notice in particular how the original changes to the index key (on the ‘ak’ column) have been transformed into an update of a non-key column (pk is included in the nonclustered index).  By not updating any nonclustered index keys, we are guaranteed to avoid transient key violations. The Execution Plans The estimated MERGE execution plan that produces the incorrect key-violation error looks like this (click to enlarge in a new window): The successful UPDATE execution plan is (click to enlarge in a new window): The MERGE execution plan is a narrow (per-row) update.  The single Clustered Index Merge operator maintains both the clustered index and the filtered nonclustered index.  The UPDATE plan is a wide (per-index) update.  The clustered index is maintained first, then the Split, Filter, Sort, Collapse sequence is applied before the nonclustered index is separately maintained. There is always a wide update plan for any query that modifies the database. The narrow form is a performance optimization where the number of rows is expected to be relatively small, and is not available for all operations.  One of the operations that should disallow a narrow plan is maintaining a unique index where intermediate key violations could occur. Workarounds The MERGE can be made to work (producing a wide update plan with split, sort, and collapse) by: Adding all columns referenced in the filtered index’s WHERE clause to the index key (INCLUDE is not sufficient); or Executing the query with trace flag 8790 set e.g. OPTION (QUERYTRACEON 8790). Undocumented trace flag 8790 forces a wide update plan for any data-changing query (remember that a wide update plan is always possible).  Either change will produce a successfully-executing wide update plan for the MERGE that failed previously. Conclusion The optimizer fails to spot the possibility of transient unique key violations with MERGE under the conditions listed at the start of this post.  It incorrectly chooses a narrow plan for the MERGE, which cannot provide the protection of a split/sort/collapse sequence for the nonclustered index maintenance. The MERGE plan may fail at execution time depending on the order in which rows are processed, and the distribution of data in the database.  Worse, a previously solid MERGE query may suddenly start to fail unpredictably if a filtered unique index is added to the merge target table at any point. Connect bug filed here Tests performed on SQL Server 2012 SP1 CUI (build 11.0.3321) x64 Developer Edition © 2012 Paul White – All Rights Reserved Twitter: @SQL_Kiwi Email: [email protected]

    Read the article

  • Seeking on a Heap, and Two Useful DMVs

    - by Paul White
    So far in this mini-series on seeks and scans, we have seen that a simple ‘seek’ operation can be much more complex than it first appears.  A seek can contain one or more seek predicates – each of which can either identify at most one row in a unique index (a singleton lookup) or a range of values (a range scan).  When looking at a query plan, we will often need to look at the details of the seek operator in the Properties window to see how many operations it is performing, and what type of operation each one is.  As you saw in the first post in this series, the number of hidden seeking operations can have an appreciable impact on performance. Measuring Seeks and Scans I mentioned in my last post that there is no way to tell from a graphical query plan whether you are seeing a singleton lookup or a range scan.  You can work it out – if you happen to know that the index is defined as unique and the seek predicate is an equality comparison, but there’s no separate property that says ‘singleton lookup’ or ‘range scan’.  This is a shame, and if I had my way, the query plan would show different icons for range scans and singleton lookups – perhaps also indicating whether the operation was one or more of those operations underneath the covers. In light of all that, you might be wondering if there is another way to measure how many seeks of either type are occurring in your system, or for a particular query.  As is often the case, the answer is yes – we can use a couple of dynamic management views (DMVs): sys.dm_db_index_usage_stats and sys.dm_db_index_operational_stats. Index Usage Stats The index usage stats DMV contains counts of index operations from the perspective of the Query Executor (QE) – the SQL Server component that is responsible for executing the query plan.  It has three columns that are of particular interest to us: user_seeks – the number of times an Index Seek operator appears in an executed plan user_scans – the number of times a Table Scan or Index Scan operator appears in an executed plan user_lookups – the number of times an RID or Key Lookup operator appears in an executed plan An operator is counted once per execution (generating an estimated plan does not affect the totals), so an Index Seek that executes 10,000 times in a single plan execution adds 1 to the count of user seeks.  Even less intuitively, an operator is also counted once per execution even if it is not executed at all.  I will show you a demonstration of each of these things later in this post. Index Operational Stats The index operational stats DMV contains counts of index and table operations from the perspective of the Storage Engine (SE).  It contains a wealth of interesting information, but the two columns of interest to us right now are: range_scan_count – the number of range scans (including unrestricted full scans) on a heap or index structure singleton_lookup_count – the number of singleton lookups in a heap or index structure This DMV counts each SE operation, so 10,000 singleton lookups will add 10,000 to the singleton lookup count column, and a table scan that is executed 5 times will add 5 to the range scan count. The Test Rig To explore the behaviour of seeks and scans in detail, we will need to create a test environment.  The scripts presented here are best run on SQL Server 2008 Developer Edition, but the majority of the tests will work just fine on SQL Server 2005.  A couple of tests use partitioning, but these will be skipped if you are not running an Enterprise-equivalent SKU.  Ok, first up we need a database: USE master; GO IF DB_ID('ScansAndSeeks') IS NOT NULL DROP DATABASE ScansAndSeeks; GO CREATE DATABASE ScansAndSeeks; GO USE ScansAndSeeks; GO ALTER DATABASE ScansAndSeeks SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE ScansAndSeeks SET AUTO_CLOSE OFF, AUTO_SHRINK OFF, AUTO_CREATE_STATISTICS OFF, AUTO_UPDATE_STATISTICS OFF, PARAMETERIZATION SIMPLE, READ_COMMITTED_SNAPSHOT OFF, RESTRICTED_USER ; Notice that several database options are set in particular ways to ensure we get meaningful and reproducible results from the DMVs.  In particular, the options to auto-create and update statistics are disabled.  There are also three stored procedures, the first of which creates a test table (which may or may not be partitioned).  The table is pretty much the same one we used yesterday: The table has 100 rows, and both the key_col and data columns contain the same values – the integers from 1 to 100 inclusive.  The table is a heap, with a non-clustered primary key on key_col, and a non-clustered non-unique index on the data column.  The only reason I have used a heap here, rather than a clustered table, is so I can demonstrate a seek on a heap later on.  The table has an extra column (not shown because I am too lazy to update the diagram from yesterday) called padding – a CHAR(100) column that just contains 100 spaces in every row.  It’s just there to discourage SQL Server from choosing table scan over an index + RID lookup in one of the tests. The first stored procedure is called ResetTest: CREATE PROCEDURE dbo.ResetTest @Partitioned BIT = 'false' AS BEGIN SET NOCOUNT ON ; IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; IF @Partitioned = 'true' BEGIN -- Enterprise, Trial, or Developer -- required for partitioning tests IF SERVERPROPERTY('EngineEdition') = 3 BEGIN EXECUTE (' DROP TABLE dbo.Example ; IF EXISTS ( SELECT 1 FROM sys.partition_schemes WHERE name = N''PS'' ) DROP PARTITION SCHEME PS ; IF EXISTS ( SELECT 1 FROM sys.partition_functions WHERE name = N''PF'' ) DROP PARTITION FUNCTION PF ; CREATE PARTITION FUNCTION PF (INTEGER) AS RANGE RIGHT FOR VALUES (20, 40, 60, 80, 100) ; CREATE PARTITION SCHEME PS AS PARTITION PF ALL TO ([PRIMARY]) ; CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ON PS (key_col); '); END ELSE BEGIN RAISERROR('Invalid SKU for partition test', 16, 1); RETURN; END; END ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; END; GO The second stored procedure, ShowStats, displays information from the Index Usage Stats and Index Operational Stats DMVs: CREATE PROCEDURE dbo.ShowStats @Partitioned BIT = 'false' AS BEGIN -- Index Usage Stats DMV (QE) SELECT index_name = ISNULL(I.name, I.type_desc), scans = IUS.user_scans, seeks = IUS.user_seeks, lookups = IUS.user_lookups FROM sys.dm_db_index_usage_stats AS IUS JOIN sys.indexes AS I ON I.object_id = IUS.object_id AND I.index_id = IUS.index_id WHERE IUS.database_id = DB_ID(N'ScansAndSeeks') AND IUS.object_id = OBJECT_ID(N'dbo.Example', N'U') ORDER BY I.index_id ; -- Index Operational Stats DMV (SE) IF @Partitioned = 'true' SELECT index_name = ISNULL(I.name, I.type_desc), partitions = COUNT(IOS.partition_number), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; ELSE SELECT index_name = ISNULL(I.name, I.type_desc), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; END; The final stored procedure, RunTest, executes a query written against the example table: CREATE PROCEDURE dbo.RunTest @SQL VARCHAR(8000), @Partitioned BIT = 'false' AS BEGIN -- No execution plan yet SET STATISTICS XML OFF ; -- Reset the test environment EXECUTE dbo.ResetTest @Partitioned ; -- Previous call will throw an error if a partitioned -- test was requested, but SKU does not support it IF @@ERROR = 0 BEGIN -- IO statistics and plan on SET STATISTICS XML, IO ON ; -- Test statement EXECUTE (@SQL) ; -- Plan and IO statistics off SET STATISTICS XML, IO OFF ; EXECUTE dbo.ShowStats @Partitioned; END; END; The Tests The first test is a simple scan of the heap table: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example'; The top result set comes from the Index Usage Stats DMV, so it is the Query Executor’s (QE) view.  The lower result is from Index Operational Stats, which shows statistics derived from the actions taken by the Storage Engine (SE).  We see that QE performed 1 scan operation on the heap, and SE performed a single range scan.  Let’s try a single-value equality seek on a unique index next: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 32'; This time we see a single seek on the non-clustered primary key from QE, and one singleton lookup on the same index by the SE.  Now for a single-value seek on the non-unique non-clustered index: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32'; QE shows a single seek on the non-clustered non-unique index, but SE shows a single range scan on that index – not the singleton lookup we saw in the previous test.  That makes sense because we know that only a single-value seek into a unique index is a singleton seek.  A single-value seek into a non-unique index might retrieve any number of rows, if you think about it.  The next query is equivalent to the IN list example seen in the first post in this series, but it is written using OR (just for variety, you understand): EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32 OR data = 33'; The plan looks the same, and there’s no difference in the stats recorded by QE, but the SE shows two range scans.  Again, these are range scans because we are looking for two values in the data column, which is covered by a non-unique index.  I’ve added a snippet from the Properties window to show that the query plan does show two seek predicates, not just one.  Now let’s rewrite the query using BETWEEN: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data BETWEEN 32 AND 33'; Notice the seek operator only has one predicate now – it’s just a single range scan from 32 to 33 in the index – as the SE output shows.  For the next test, we will look up four values in the key_col column: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col IN (2,4,6,8)'; Just a single seek on the PK from the Query Executor, but four singleton lookups reported by the Storage Engine – and four seek predicates in the Properties window.  On to a more complex example: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WITH (INDEX([PK dbo.Example key_col])) WHERE key_col BETWEEN 1 AND 8'; This time we are forcing use of the non-clustered primary key to return eight rows.  The index is not covering for this query, so the query plan includes an RID lookup into the heap to fetch the data and padding columns.  The QE reports a seek on the PK and a lookup on the heap.  The SE reports a single range scan on the PK (to find key_col values between 1 and 8), and eight singleton lookups on the heap.  Remember that a bookmark lookup (RID or Key) is a seek to a single value in a ‘unique index’ – it finds a row in the heap or cluster from a unique RID or clustering key – so that’s why lookups are always singleton lookups, not range scans. Our next example shows what happens when a query plan operator is not executed at all: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 8 AND @@TRANCOUNT < 0'; The Filter has a start-up predicate which is always false (if your @@TRANCOUNT is less than zero, call CSS immediately).  The index seek is never executed, but QE still records a single seek against the PK because the operator appears once in an executed plan.  The SE output shows no activity at all.  This next example is 2008 and above only, I’m afraid: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WHERE key_col BETWEEN 1 AND 30', @Partitioned = 'true'; This is the first example to use a partitioned table.  QE reports a single seek on the heap (yes – a seek on a heap), and the SE reports two range scans on the heap.  SQL Server knows (from the partitioning definition) that it only needs to look at partitions 1 and 2 to find all the rows where key_col is between 1 and 30 – the engine seeks to find the two partitions, and performs a range scan seek on each partition. The final example for today is another seek on a heap – try to work out the output of the query before running it! EXECUTE dbo.RunTest @SQL = 'SELECT TOP (2) WITH TIES * FROM Example WHERE key_col BETWEEN 1 AND 50 ORDER BY $PARTITION.PF(key_col) DESC', @Partitioned = 'true'; Notice the lack of an explicit Sort operator in the query plan to enforce the ORDER BY clause, and the backward range scan. © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Day 4 - Game Sprites In Action

    - by dapostolov
    Yesterday I drew an image on the screen. Most exciting, but ... I spent more time blogging about it then actual coding. So this next little while I'm going to streamline my game and research and simply post key notes. Quick notes on the last session: The most important thing I wanted to point out were the following methods:           spriteBatch.Begin(SpriteBlendMode.AlphaBlend);           spriteBatch.Draw(sprite, position, Color.White);           spriteBatch.End(); The spriteBatch object is used to draw Textures and a 2D texture is called a Sprite A texture is generally an image, which is called an Asset in XNA The Draw Method in the Game1.cs is looped (until exit) and utilises the spriteBatch object to draw a Scene To begin drawing a Scene you call the Begin Method. To end a Scene you call the End Method. And to place an image on the Scene you call the Draw method. The most simple implementation of the draw method is:           spriteBatch.Draw(sprite, position, Color.White); 1) sprite - the 2D texture you loaded to draw 2) position - the 2d vector, a set of x & y coordinates 3) Color.White - the tint to apply to the texture, in this case, white light = nothing, nada, no tint. Game Sprites In Action! Today, I played around with Draw methods to get comfortable with their "quirks". The following is an example of the above draw method, but with more parameters available for us to use. Let's investigate!             spriteBatch.Draw(sprite, position2, null, Color.White, MathHelper.ToRadians(45.0f), new Vector2(sprite.Width / 2, sprite.Height / 2), 1.0F, SpriteEffects.None, 0.0F); The parameters (in order): 1) sprite  the texture to display 2) position2 the position on the screen / scene this can also be a rectangle 3) null the portion of the image to display within an image null = display full image this is generally used for animation strips / grids (more on this below) 4) Color.White Texture tinting White = no tint 5) MathHelper.ToRadians(45.0f) rotation of the object, in this case 45 degrees rotates from the set plotting point. 6) new Vector(0,0) the plotting point in this case the top left corner the image will rotate from the top left of the texture in the code above, the point is set to the middle of the image. 7) 1.0f Image scaling (1x) 8) SpriteEffects.None you can flip the image horizontally or vertically 9) 0.0f The z index of the image. 0 = closer, 1 behind? And playing around with different combinations I was able to come up with the following whacky display:   Checking off Yesterdays Intention List: learn game development terminology (in progress) - We learned sprite, scene, texture, and asset. how to place and position (rotate) a static image on the screen (completed) - The thing to note was, it's was in radians and I found a cool helper method to convert degrees into radians. Also, the image rotates from it's specified point. how to layer static images on the screen (completed) - I couldn't seem to get the zIndex working, but one things for sure, the order you draw the image in also determines how it is rendered on the screen. understand image scaling (in progress) - I'm not sure I have this fully covered, but for the most part plug a number in the scaling field and the image grows / shrinks accordingly. can we reuse images? (completed) - yes, I loaded one image and plotted the bugger all over the screen. understand how framerate is handled in XNA (in progress) - I hacked together some code to display the framerate each second. A framerate of 60 appears to be the standard. Interesting to note, the GameTime object does provide you with some cool timing capabilities, such as...is the game running slow? Need to investigate this down the road. how to display text , basic shapes, and colors on the screen (in progress) - i got text rendered on the screen, and i understand containing rectangles. However, I didn't display "shapes" & "colors" how to interact with an image (collision of user input?) (todo) how to animate an image and understand basic animation techniques (in progress) - I was able to create a stripe animation of numbers ranging from 1 - 4, each block was 40 x 40 pixles for a total stripe size of 160 x 40. Using the portion (source Rectangle) parameter, i limited this display to each section at varying intervals. It was interesting to note my first implementation animated at rocket speed. I then tried to create a smoother animation by limiting the redraw capacity, which seemed to work. I guess a little more research will have to be put into this for animating characters / scenes. how to detect colliding images or screen edges (todo) - but the rectangle object can detect collisions I believe. how to manipulate the image, lets say colors, stretching (in progress) - I haven't figured out how to modify a specific color to be another color, but the tinting parameter definately could be used. As for stretching, use the rectangle object as the positioning and the image will stretch to fit! how to focus on a segment of an image...like only displaying a frame on a film reel (completed) - as per basic animation techniques what's the best way to manage images (compression, storage, location, prevent artwork theft, etc.) (todo) Tomorrows Intention Tomorrow I am going to take a stab at rendering a game menu and from there I'm going to investigate how I can improve upon the code and techniques. Intention List: Render a menu, fancy or not Show the mouse cursor Hook up click event A basic animation of somesort Investigate image / menu techniques D.

    Read the article

  • Unexpected behaviour with glFramebufferTexture1D

    - by Roshan
    I am using render to texture concept with glFramebufferTexture1D. I am drawing a cube on non-default FBO with all the vertices as -1,1 (maximum) in X Y Z direction. Now i am setting viewport to X while rendering on non default FBO. My background is blue with white color of cube. For default FBO, i have created 1-D texture and attached this texture to above FBO with color attachment. I am setting width of texture equal to width*height of above FBO view-port. Now, when i render this texture to on another cube, i can see continuous white color on start or end of each face of the cube. That means part of the face is white and rest is blue. I am not sure whether this behavior is correct or not. I expect all the texels should be white as i am using -1 and 1 coordinates for cube rendered on non-default FBO. code: #define WIDTH 3 #define HEIGHT 3 GLfloat vertices8[]={ 1.0f,1.0f,1.0f, -1.0f,1.0f,1.0f, -1.0f,-1.0f,1.0f, 1.0f,-1.0f,1.0f,//face 1 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 2 1.0f,1.0f,1.0f, 1.0f,-1.0f,1.0f, 1.0f,-1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 3 -1.0f,1.0f,1.0f, -1.0f,1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,1.0f,//face 4 1.0f,1.0f,1.0f, 1.0f,1.0f,-1.0f, -1.0f,1.0f,-1.0f, -1.0f,1.0f,1.0f,//face 5 -1.0f,-1.0f,1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f,1.0f//face 6 }; GLfloat vertices[]= { 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f, -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f,//face 1 0.5f,-0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 2 0.5f,0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 3 -0.5f,0.5f,0.5f, -0.5f,0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,-0.5f,0.5f,//face 4 0.5f,0.5f,0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f, -0.5f,0.5f,0.5f,//face 5 -0.5f,-0.5f,0.5f, -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,-0.5f,0.5f//face 6 }; GLuint indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; GLfloat texcoord[] = { 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; glGenTextures(1, &id1); glBindTexture(GL_TEXTURE_1D, id1); glGenFramebuffers(1, &Fboid); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, WIDTH*HEIGHT , 0, GL_RGBA, GL_UNSIGNED_BYTE,0); glBindFramebuffer(GL_FRAMEBUFFER, Fboid); glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_1D,id1,0); draw_cube(); glBindFramebuffer(GL_FRAMEBUFFER, 0); draw(); } draw_cube() { glViewport(0, 0, WIDTH, HEIGHT); glClearColor(0.0f, 0.0f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(temp.psId,"position")); glVertexAttribPointer(glGetAttribLocation(temp.psId,"position"), 3, GL_FLOAT, GL_FALSE, 0,vertices8); glDrawArrays (GL_TRIANGLE_FAN, 0, 24); } draw() { glClearColor(1.0f, 0.0f, 0.0f, 1.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"tk_position")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"tk_position"), 3, GL_FLOAT, GL_FALSE, 0,vertices); nResult = GL_ERROR_CHECK((GL_NO_ERROR, "glVertexAttribPointer(position, 3, GL_FLOAT, GL_FALSE, 0,vertices);")); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"inputtexcoord")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"inputtexcoord"), 2, GL_FLOAT, GL_FALSE, 0,texcoord); glBindTexture(*target11, id1); glDrawElements ( GL_TRIANGLES, 36,GL_UNSIGNED_INT, indices ); when i change WIDTH=HEIGHT=2, and call a glreadpixels with height, width equal to 4 in draw_cube() i can see first 2 pixels with white color, next two with blue(glclearcolor), next two white and then blue and so on.. Now when i change width parameter in glTeximage1D to 16 then ideally i should see alternate patches of white and blue right? But its not the case here. why so?

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >