Search Results

Search found 366 results on 15 pages for 'igor liner'.

Page 15/15 | < Previous Page | 11 12 13 14 15 

  • Is there a better way to detab (expand tabs) using Perl?

    - by Uri
    I wanted to detab my source files. (Please, no flame about WHY I wanted to detab my sources. That's not the point :-) I couldn't find a utility to do that. Eclipse didn't do it for me, so I implemented my own. I couldn't fit it into a one liner (-e) program. I came with the following, which did the job just fine. while( <> ) { while( /\t/ ) { s/^(([^\t]{4})*)\t/$1 /; s/^((([^\t]{4})*)[^\t]{1})\t/$1 /; s/^((([^\t]{4})*)[^\t]{2})\t/$1 /; s/^((([^\t]{4})*)[^\t]{3})\t/$1 /; } print; } However, it makes me wonder if Perl - the champion language of processing text - is the right tool. The code doesn't seem very elegant. If I had to detab source that assume tab=8 spaces, the code would look even worse. Specifically because I can think of a deterministic state machine with only 4 states to do the job. I have a feeling that a more elegant solution exists. Am I missing a Perl idiom? In the spirit of TIMTOWTDI I'm curious about the other ways to do it. u.

    Read the article

  • How can I remove old log entries from a log file and archive them somewhere else in Linux?

    - by Mike B
    CentOS 4.x I apologize in advance if this is not the appropriate place to ask this question. It pertains to a linux server / IT admin task. I've got a log file on an old CentOS 4.x server and I want to remove log entries older than a certain date and place them in a new file for archive. Here's an example of the log format: 2012-06-07 22:32:01,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:32:03,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:32:04,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123| 2012-06-07 22:32:10,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:32:12,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:32:15,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123| 2012-06-07 22:32:40,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:32:58,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:33:01,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123| 2012-06-07 22:33:01,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123|blah blah blah 2012-06-07 22:33:02,289 ABC:0|Foo|Foo2|4.4|1234|Some Event|123| Essentially, I'm looking for a one-liner that will do the following: Find any events older than a provided YYYY-MM-DD and remove them from the primary log file. Take the deleted events from step 1 and put them in a new log file (Optional) Compress the new archive log file holding the deleted events. I'm aware that there are log rotate tools that do this but this should just be a one-time task so I'd prefer not to set that up. Additional notes: If the date part it tricky or too resource intensive, an alternative would be to just keep the last X number of lines and move the rest. I was originally thinking of something like tail -n 10000 > newfile.txt but that would mean moving the "good" logs to a new file and then doing a name swap... and then I'd still need to remove the "good" entries from the archive. This particular log file is pretty large (1 GB) so I'd prefer the task to be as resource and time efficient as possible. The extra pipes in the log concern me and I'm not sure if I'd need extra protection in the commands to avoid that from causing problems.

    Read the article

  • Modularity through HTTP

    - by Michael Williamson
    As programmers, we strive for modularity in the code we write. We hope that splitting the problem up makes it easier to solve, and allows us to reuse parts of our code in other applications. Object-orientation is the most obvious of many attempts to get us closer to this ideal, and yet one of the most successful approaches is almost accidental: the web. Programming languages provide us with functions and classes, and plenty of other ways to modularize our code. This allows us to take our large problem, split it into small parts, and solve those small parts without having to worry about the whole. It also makes it easier to reason about our code. So far, so good, but now that we’ve written our small, independent module, for example to send out e-mails to my customers, we’d like to reuse it in another application. By creating DLLs, JARs or our platform’s package container of choice, we can do just that – provided our new application is on the same platform. Want to use a Java library from C#? Well, good luck – it might be possible, but it’s not going to be smooth sailing. Even if a library exists, it doesn’t mean that using it going to be a pleasant experience. Say I want to use Java to write out an XML document to an output stream. You’d imagine this would be a simple one-liner. You’d be wrong: import org.w3c.dom.*; import java.io.*; import javax.xml.transform.*; import javax.xml.transform.dom.*; import javax.xml.transform.stream.*; private static final void writeDoc(Document doc, OutputStream out) throws IOException { try { Transformer t = TransformerFactory.newInstance().newTransformer(); t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId()); t.transform(new DOMSource(doc), new StreamResult(out)); } catch (TransformerException e) { throw new AssertionError(e); // Can't happen! } } Most of the time, there is a good chance somebody else has written the code before, but if nobody can understand the interface to that code, nobody’s going to use it. The result is that most of the code we write is just a variation on a theme. Despite our best efforts, we’ve fallen a little short of our ideal, but the web brings us closer. If we want to send e-mails to our customers, we could write an e-mail-sending library. More likely, we’d use an existing one for our language. Even then, we probably wouldn’t have niceties like A/B testing or DKIM signing. Alternatively, we could just fire some HTTP requests at MailChimp, and get a whole slew of features without getting anywhere near the code that implements them. The web is inherently language agnostic. So long as your language can send and receive text over HTTP, and probably parse some JSON, you’re about as well equipped as anybody. Instead of building libraries for a specific language, we can build a service that almost every language can reuse. The text-based nature of HTTP also helps to limit the complexity of the API. As SOAP will attest, you can still make a horrible mess using HTTP, but at least it is an obvious horrible mess. Complex data structures are tedious to marshal to and from text, providing a strong incentive to keep things simple. By contrast, spotting the complexities in a class hierarchy is often not as easy. HTTP doesn’t solve every problem. It probably isn’t such a good idea to use it inside an inner loop that’s executed thousands of times per second. What’s more, the HTTP approach might introduce some new problems. We often need to add a thin shim to each application that we wish to communicate over HTTP. For instance, we might need to write a small plugin in PHP if we want to integrate WordPress into our system. Suddenly, instead of a system written in one language, we’re maintaining a system with several distinct languages and platforms. Even then, we should strive to avoid re-implementing the same old thing. As programmers, we consistently underestimate both the cost of building a system and the ongoing maintenance. If we allow ourselves to integrate existing applications, even if they’re in unfamiliar languages, we save ourselves those development and maintenance costs, as well as being able to pick the best solution for our problem. Thanks to the web, HTTP is often the easiest way to get there.

    Read the article

  • General advice and guidelines on how to properly override object.GetHashCode()

    - by Svish
    According to MSDN, a hash function must have the following properties: If two objects compare as equal, the GetHashCode method for each object must return the same value. However, if two objects do not compare as equal, the GetHashCode methods for the two object do not have to return different values. The GetHashCode method for an object must consistently return the same hash code as long as there is no modification to the object state that determines the return value of the object's Equals method. Note that this is true only for the current execution of an application, and that a different hash code can be returned if the application is run again. For the best performance, a hash function must generate a random distribution for all input. I keep finding myself in the following scenario: I have created a class, implemented IEquatable<T> and overridden object.Equals(object). MSDN states that: Types that override Equals must also override GetHashCode ; otherwise, Hashtable might not work correctly. And then it usually stops up a bit for me. Because, how do you properly override object.GetHashCode()? Never really know where to start, and it seems to be a lot of pitfalls. Here at StackOverflow, there are quite a few questions related to GetHashCode overriding, but most of them seems to be on quite particular cases and specific issues. So, therefore I would like to get a good compilation here. An overview with general advice and guidelines. What to do, what not to do, common pitfalls, where to start, etc. I would like it to be especially directed at C#, but I would think it will work kind of the same way for other .NET languages as well(?). I think maybe the best way is to create one answer per topic with a quick and short answer first (close to one-liner if at all possible), then maybe some more information and end with related questions, discussions, blog posts, etc., if there are any. I can then create one post as the accepted answer (to get it on top) with just a "table of contents". Try to keep it short and concise. And don't just link to other questions and blog posts. Try to take the essence of them and then rather link to source (especially since the source could disappear. Also, please try to edit and improve answers instead of created lots of very similar ones. I am not a very good technical writer, but I will at least try to format answers so they look alike, create the table of contents, etc. I will also try to search up some of the related questions here at SO that answers parts of these and maybe pull out the essence of the ones I can manage. But since I am not very stable on this topic, I will try to stay away for the most part :p

    Read the article

  • Why is FLD1 loading NaN instead?

    - by Bernd Jendrissek
    I have a one-liner C function that is just return value * pow(1.+rate, -delay); - it discounts a future value to a present value. The interesting part of the disassembly is 0x080555b9 : neg %eax 0x080555bb : push %eax 0x080555bc : fildl (%esp) 0x080555bf : lea 0x4(%esp),%esp 0x080555c3 : fldl 0xfffffff0(%ebp) 0x080555c6 : fld1 0x080555c8 : faddp %st,%st(1) 0x080555ca : fxch %st(1) 0x080555cc : fstpl 0x8(%esp) 0x080555d0 : fstpl (%esp) 0x080555d3 : call 0x8051ce0 0x080555d8 : fmull 0xfffffff8(%ebp) While single-stepping through this function, gdb says (rate is 0.02, delay is 2; you can see them on the stack): (gdb) si 0x080555c6 30 return value * pow(1.+rate, -delay); (gdb) info float R7: Valid 0x4004a6c28f5c28f5c000 +41.68999999999999773 R6: Valid 0x4004e15c28f5c28f6000 +56.34000000000000341 R5: Valid 0x4004dceb851eb851e800 +55.22999999999999687 R4: Valid 0xc0008000000000000000 -2 =R3: Valid 0x3ff9a3d70a3d70a3d800 +0.02000000000000000042 R2: Valid 0x4004ff147ae147ae1800 +63.77000000000000313 R1: Valid 0x4004e17ae147ae147800 +56.36999999999999744 R0: Valid 0x4004efb851eb851eb800 +59.92999999999999972 Status Word: 0x1861 IE PE SF TOP: 3 Control Word: 0x037f IM DM ZM OM UM PM PC: Extended Precision (64-bits) RC: Round to nearest Tag Word: 0x0000 Instruction Pointer: 0x73:0x080555c3 Operand Pointer: 0x7b:0xbff41d78 Opcode: 0xdd45 And after the fld1: (gdb) si 0x080555c8 30 return value * pow(1.+rate, -delay); (gdb) info float R7: Valid 0x4004a6c28f5c28f5c000 +41.68999999999999773 R6: Valid 0x4004e15c28f5c28f6000 +56.34000000000000341 R5: Valid 0x4004dceb851eb851e800 +55.22999999999999687 R4: Valid 0xc0008000000000000000 -2 R3: Valid 0x3ff9a3d70a3d70a3d800 +0.02000000000000000042 =R2: Special 0xffffc000000000000000 Real Indefinite (QNaN) R1: Valid 0x4004e17ae147ae147800 +56.36999999999999744 R0: Valid 0x4004efb851eb851eb800 +59.92999999999999972 Status Word: 0x1261 IE PE SF C1 TOP: 2 Control Word: 0x037f IM DM ZM OM UM PM PC: Extended Precision (64-bits) RC: Round to nearest Tag Word: 0x0020 Instruction Pointer: 0x73:0x080555c6 Operand Pointer: 0x7b:0xbff41d78 Opcode: 0xd9e8 After this, everything goes to hell. Things get grossly over or undervalued, so even if there were no other bugs in my freeciv AI attempt, it would choose all the wrong strategies. Like sending the whole army to the arctic. (Sigh, if only I were getting that far.) I must be missing something obvious, or getting blinded by something, because I can't believe that fld1 should ever possibly fail. Even less that it should fail only after a handful of passes through this function. On earlier passes the FPU correctly loads 1 into ST(0). The bytes at 0x080555c6 definitely encode fld1 - checked with x/... on the running process. What gives?

    Read the article

  • initializing a vector of custom class in c++

    - by Flamewires
    Hey basically Im trying to store a "solution" and create a vector of these. The problem I'm having is with initialization. Heres my class for reference class Solution { private: // boost::thread m_Thread; int itt_found; int dim; pfn_fitness f; double value; std::vector<double> x; public: Solution(size_t size, int funcNo) : itt_found(0), x(size, 0.0), value(0.0), dim(30), f(Eval_Functions[funcNo]) { for (int i = 1; i < (int) size; i++) { x[i] = ((double)rand()/((double)RAND_MAX))*maxs[funcNo]; } } Solution() : itt_found(0), x(31, 0.0), value(0.0), dim(30), f(Eval_Functions[1]) { for (int i = 1; i < 31; i++) { x[i] = ((double)rand()/((double)RAND_MAX))*maxs[1]; } } Solution operator= (Solution S) { x = S.GetX(); itt_found = S.GetIttFound(); dim = S.GetDim(); f = S.GetFunc(); value = S.GetValue(); return *this; } void start() { value = f (dim, x); } /* plus additional getter/setter methods*/ } Solution S(30, 1) or Solution(2, 5) work and initalizes everything, but I need X of these solution objects. std::vector<Solution> Parents(X) will create X solutions with the default constructor and i want to construct using the (int, int) constructor. Is there any easy(one liner?) way to do this? Or would i have to do something like: size_t numparents = 10; vector<Solution> Parents; Parents.reserve(numparents); for (int i = 0; i<(int)numparents; i++) { Solution S(31, 0); Parents.push_back(S); }

    Read the article

  • CodePlex Daily Summary for Monday, August 13, 2012

    CodePlex Daily Summary for Monday, August 13, 2012Popular ReleasesDeForm: DeForm v1.0: Initial Version Support for: GaussianBlur effect ConvolveMatrix effect ColorMatrix effect Morphology effectLiteBlog (MVC): LiteBlog 1.31: Features of this release Windows8 styled UI Namespace and code refactoring Resolved the deployment issues in the previous release Added documentation Help file Help file is HTML based built using SandCastle Help file works in all browsers except IE10Self-Tracking Entity Generator for WPF and Silverlight: Self-Tracking Entity Generator v 2.0.0 for VS11: Self-Tracking Entity Generator for WPF and Silverlight v 2.0.0 for Entity Framework 5.0 and Visual Studio 2012Coding4Fun Tools: Coding4Fun.Phone.Toolkit v1.6.0: New Stuff ImageTile Control - think People Tile MicrophoneRecorder - Coding4Fun.Phone.Audio GzipWebClient - Coding4Fun.Phone.Net Serialize - Coding4Fun.Phone.Storage this is code I've written countless times. JSON.net is another alternative ChatBubbleTextBox - Added in Hint TimeSpan languages added: Pl Bug Fixes RoundToggleButton - Enable Visual State not being respected OpacityToggleButton - Enable Visual State not being respected Prompts VS Crash fix for IsPrompt=true More...AssaultCube Reloaded: 2.5.2 Unnamed: Linux has Ubuntu 11.10 32-bit precompiled binaries and Ubuntu 10.10 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, please wait while we try to pack it. Try to compile it. If it fails, download a virtual machine. The server pack is ready for both Windows and Linux, but you might need to compile your own for Linux (source included) Added 3rd person Added mario jumps Fixed nextprimary code exploit ...NPOI: NPOI 2.0: New features a. Implement OpenXml4Net (same as System.Packaging from Microsoft). It supports both .NET 2.0 and .NET 4.0 b. Excel 2007 read/write library (NPOI.XSSF) c. Word 2007 read/write library(NPOI.XWPF) d. NPOI.SS namespace becomes the interface shared between XSSF and HSSF e. Load xlsx template and save as new xlsx file (partially supported) f. Diagonal line in cell both in xls and xlsx g. Support isRightToLeft and setRightToLeft on the common spreadsheet Sheet interface, as per existin...BugNET Issue Tracker: BugNET 1.1: This release includes bug fixes from the 1.0 release for email notifications, RSS feeds, and several other issues. Please see the change log for a full list of changes. http://support.bugnetproject.com/Projects/ReleaseNotes.aspx?pid=1&m=76 Upgrade Notes The following changes to the web.config in the profile section have occurred: Removed <add name="NotificationTypes" type="String" defaultValue="Email" customProviderData="NotificationTypes;nvarchar;255" />Added <add name="ReceiveEmailNotifi...ClosedXML - The easy way to OpenXML: ClosedXML 0.67.0: Conditional formats now accept formulas. Major performance improvement when opening files with merged ranges. Misc fixes.Virtual Keyboard: Virtual Keyboard v2.0 Source Code: This release has a few added keys that were missing in the earlier versions.Visual Rx: V 2.0.20622.9: help will be available at my blog http://blogs.microsoft.co.il/blogs/bnaya/archive/2012/08/12/visual-rx-toc.aspx the SDK is also available though NuGet (search for VisualRx) http://nuget.org/packages/VisualRx if you want to make sure that the Visual Rx Viewer can monitor on your machine, you can install the Visual Rx Tester and run it while the Viewer is running.????: ????2.0.5: 1、?????????????。RiP-Ripper & PG-Ripper: PG-Ripper 1.4.01: changes NEW: Added Support for Clipboard Function in Mono Version NEW: Added Support for "ImgBox.com" links FIXED: "PixHub.eu" links FIXED: "ImgChili.com" links FIXED: Kitty-Kats Forum loginPlayer Framework by Microsoft: Player Framework for Windows 8 (Preview 5): Support for Smooth Streaming SDK beta 2 Support for live playback New bitrate meter and SD/HD indicators Auto smooth streaming track restriction for snapped mode to conserve bandwidth New "Go Live" button and SeekToLive API Support for offset start times Support for Live position unique from end time Support for multiple audio streams (smooth and progressive content) Improved intellisense in JS version Support for Windows 8 RTM ADDITIONAL DOWNLOADSSmooth Streaming Client SD...Media Companion: Media Companion 3.506b: This release includes an update to the XBMC scrapers, for those who prefer to use this method. There were a number of behind-the-scene tweaks to make Media Companion compatible with the new TMDb-V3 API, so it was considered important to get it out to the users to try it out. Please report back any important issues you might find. For this reason, unless you use the XBMC scrapers, there probably isn't any real necessity to download this one! The only other minor change was one to allow the mc...NVorbis: NVorbis v0.3: Fix Ogg page reader to correctly handle "split" packets Fix "zero-energy" packet handling Fix packet reader to always merge packets when needed Add statistics properties to VorbisReader.Stats Add multi-stream API (for Ogg files containing multiple Vorbis streams)System.Net.FtpClient: System.Net.FtpClient 2012.08.08: 2012.08.08 Release. Several changes, see commit notes in source code section. CHM help as well as source for this release are included in the download. Remember that Windows 7 by default (and possibly older versions) will block you from opening the CHM by default due to trust settings. To get around the problem, right click on the CHM, choose properties and click the Un-block button. Please note that this will be the last release tested to compile with the .net 2.0 framework. I will be remov...Isis2 Cloud Computing Library: Isis2 Alpha V1.1.967: This is an alpha pre-release of the August 2012 version of the system. I've been testing and fixing many problems and have also added a new group "lock" API (g.Lock("lock name")/g.Unlock/g.Holder/g.SetLockPolicy); with this, Isis2 can mimic Chubby, Google's locking service. I wouldn't say that the system is entirely stable yet, and I haven't rechecked every single problem I had seen in May/June, but I think it might be good to get some additional use of this release. By now it does seem to...JSON C# Class Generator: JSON CSharp Class Generator 1.3: Support for native JSON.net serializer/deserializer (POCO) New classes layout option: nested classes Better handling of secondary classesAxiom 3D Rendering Engine: v0.8.3376.12322: Changes Since v0.8.3102.12095 ===================================================================== Updated ndoc3 binaries to fix bug Added uninstall.ps1 to nuspec packages fixed revision component in version numbering Fixed sln referencing VS 11 Updated OpenTK Assemblies Added CultureInvarient to numeric parsing Added First Visual Studio 2010 Project Template (DirectX9) Updated SharpInputSystem Assemblies Backported fix for OpenGL Auto-created window not responding to input Fixed freeInterna...DotSpatial: DotSpatial 1.3: This is a Minor Release. See the changes in the issue tracker. Minimal -- includes DotSpatial core and essential extensions Extended -- includes debugging symbols and additional extensions Tutorials are available. Just want to run the software? End user (non-programmer) version available branded as MapWindow Want to add your own feature? Develop a plugin, using the template and contribute to the extension feed (you can also write extensions that you distribute in other ways). Components ...New Projects.NET Weather Component: NET Weather is a component that will allow you to query various weather services for forcasts, current observations, etc..AxisProvider: Axis is a .NET reactive extensions based subscription and publication framework.Blawkay Hockey: Some xna testing i'm doing.Bolt Browser: Browse the web with ease. You'll never meet a browser more simple, friendly and easy to use. Blaze through the web the way it should be. Fast and beautiful.dotHTML: dotHTML provides a .NET-based DOM for HTML and CSS, facilitating code-driven creation of Web data.Fake DbConnection for Unit Testing EF Code: Unit test Entity Framework 4.3+ and confirm you have valid LINQ-to-Entities code without any need for a database connection.FNHMVC: FNHMVC is an architectural foundation for building maintainable web applications with ASP.NET, MVC, NHibernate & Autofac.FreeAgentMobile: FreeAgentMobile is a Windows Phone project intended to provide access to the FreeAgent Accounting application.Lexer: Generate a lexical analyzer (lexer) for a custom grammar by editing a T4 template.LibXmlSocket: XmlSocket LibraryMaxAlarm: This progect i create for my friend Igor.Minecraft Text Splitter: This tool was made to assist you in writing Minecraft books by splitting text into 255-byte pages and auto-copying it for later pasting into Minecraft.MxPlugin: MxPlugin is a project which demonstrates the calling of functions contained in DLLs both statically and dynamically. Parser: Generate a parser for a custom grammar by editing a T4 template.Sliding Boxes Windows Phone Game source code: .SmartSpider: ??????Http???????????,????????、??、???????。techsolittestpro: This project is testting project of codeplexThe Tiff Library - Fast & Simple .Net Tiff Library: The Tiff Library - Fast & Simple .Net Tiff LibraryVirtualizingWrapPanel: testVisual Rx: Visual Rx is a bundle of API and a Viewer which can monitor and visualize Rx datum stream (at run-time).we7T: testWebForms Transverse Library: This projet is aimed to compile best practices in ASP .NET WebForms development as generic tools working with UI components from various origins.

    Read the article

  • 12c - SQL Text Expansion

    - by noreply(at)blogger.com (Thomas Kyte)
    Here is another small but very useful new feature in Oracle Database 12c - SQL Text Expansion.  It will come in handy in two cases:You are asked to tune what looks like a simple query - maybe a two table join with simple predicates.  But it turns out the two tables are each views of views of views and so on... In other words, you've been asked to 'tune' a 15 page query, not a two liner.You are asked to take a look at a query against tables with VPD (virtual private database) policies.  In order words, you have no idea what you are trying to 'tune'.A new function, EXPAND_SQL_TEXT, in the DBMS_UTILITY package makes seeing what the "real" SQL is quite easy. For example - take the common view ALL_USERS - we can now:ops$tkyte%ORA12CR1> variable x clobops$tkyte%ORA12CR1> begin  2          dbms_utility.expand_sql_text  3          ( input_sql_text => 'select * from all_users',  4            output_sql_text => :x );  5  end;  6  /PL/SQL procedure successfully completed.ops$tkyte%ORA12CR1> print xX--------------------------------------------------------------------------------SELECT "A1"."USERNAME" "USERNAME","A1"."USER_ID" "USER_ID","A1"."CREATED" "CREATED","A1"."COMMON" "COMMON" FROM  (SELECT "A4"."NAME" "USERNAME","A4"."USER#" "USER_ID","A4"."CTIME" "CREATED",DECODE(BITAND("A4"."SPARE1",128),128,'YES','NO') "COMMON" FROM "SYS"."USER$" "A4","SYS"."TS$" "A3","SYS"."TS$" "A2" WHERE "A4"."DATATS#"="A3"."TS#" AND "A4"."TEMPTS#"="A2"."TS#" AND "A4"."TYPE#"=1) "A1"Now it is easy to see what query is really being executed at runtime - regardless of how many views of views you might have.  You can see the expanded text - and that will probably lead you to the conclusion that maybe that 27 table join to 25 tables you don't even care about might better be written as a two table join.Further, if you've ever tried to figure out what a VPD policy might be doing to your SQL, you know it was hard to do at best.  Christian Antognini wrote up a way to sort of see it - but you never get to see the entire SQL statement: http://www.antognini.ch/2010/02/tracing-vpd-predicates/.  But now with this function - it becomes rather trivial to see the expanded SQL - after the VPD has been applied.  We can see this by setting up a small table with a VPD policy ops$tkyte%ORA12CR1> create table my_table  2  (  data        varchar2(30),  3     OWNER       varchar2(30) default USER  4  )  5  /Table created.ops$tkyte%ORA12CR1> create or replace  2  function my_security_function( p_schema in varchar2,  3                                 p_object in varchar2 )  4  return varchar2  5  as  6  begin  7     return 'owner = USER';  8  end;  9  /Function created.ops$tkyte%ORA12CR1> begin  2     dbms_rls.add_policy  3     ( object_schema   => user,  4       object_name     => 'MY_TABLE',  5       policy_name     => 'MY_POLICY',  6       function_schema => user,  7       policy_function => 'My_Security_Function',  8       statement_types => 'select, insert, update, delete' ,  9       update_check    => TRUE ); 10  end; 11  /PL/SQL procedure successfully completed.And then expanding a query against it:ops$tkyte%ORA12CR1> begin  2          dbms_utility.expand_sql_text  3          ( input_sql_text => 'select * from my_table',  4            output_sql_text => :x );  5  end;  6  /PL/SQL procedure successfully completed.ops$tkyte%ORA12CR1> print xX--------------------------------------------------------------------------------SELECT "A1"."DATA" "DATA","A1"."OWNER" "OWNER" FROM  (SELECT "A2"."DATA" "DATA","A2"."OWNER" "OWNER" FROM "OPS$TKYTE"."MY_TABLE" "A2" WHERE "A2"."OWNER"=USER@!) "A1"Not an earth shattering new feature - but extremely useful in certain cases.  I know I'll be using it when someone asks me to look at a query that looks simple but has a twenty page plan associated with it!

    Read the article

  • Cross-platform, human-readable, du on root partition that truly ignores other filesystems

    - by nice_line
    I hate this so much: Linux builtsowell 2.6.18-274.7.1.el5 #1 SMP Mon Oct 17 11:57:14 EDT 2011 x86_64 x86_64 x86_64 GNU/Linux df -kh Filesystem Size Used Avail Use% Mounted on /dev/mapper/mpath0p2 8.8G 8.7G 90M 99% / /dev/mapper/mpath0p6 2.0G 37M 1.9G 2% /tmp /dev/mapper/mpath0p3 5.9G 670M 4.9G 12% /var /dev/mapper/mpath0p1 494M 86M 384M 19% /boot /dev/mapper/mpath0p7 7.3G 187M 6.7G 3% /home tmpfs 48G 6.2G 42G 14% /dev/shm /dev/mapper/o10g.bin 25G 7.4G 17G 32% /app/SIP/logs /dev/mapper/o11g.bin 25G 11G 14G 43% /o11g tmpfs 4.0K 0 4.0K 0% /dev/vx lunmonster1q:/vol/oradb_backup/epmxs1q1 686G 507G 180G 74% /rpmqa/backup lunmonster1q:/vol/oradb_redo/bisxs1q1 4.0G 1.6G 2.5G 38% /bisxs1q/rdoctl1 lunmonster1q:/vol/oradb_backup/bisxs1q1 686G 507G 180G 74% /bisxs1q/backup lunmonster1q:/vol/oradb_exp/bisxs1q1 2.0T 1.1T 984G 52% /bisxs1q/exp lunmonster2q:/vol/oradb_home/bisxs1q1 10G 174M 9.9G 2% /bisxs1q/home lunmonster2q:/vol/oradb_data/bisxs1q1 52G 5.2G 47G 10% /bisxs1q/oradata lunmonster1q:/vol/oradb_redo/bisxs1q2 4.0G 1.6G 2.5G 38% /bisxs1q/rdoctl2 ip-address1:/vol/oradb_home/cspxs1q1 10G 184M 9.9G 2% /cspxs1q/home ip-address2:/vol/oradb_backup/cspxs1q1 674G 314G 360G 47% /cspxs1q/backup ip-address2:/vol/oradb_redo/cspxs1q1 4.0G 1.5G 2.6G 37% /cspxs1q/rdoctl1 ip-address2:/vol/oradb_exp/cspxs1q1 4.1T 1.5T 2.6T 37% /cspxs1q/exp ip-address2:/vol/oradb_redo/cspxs1q2 4.0G 1.5G 2.6G 37% /cspxs1q/rdoctl2 ip-address1:/vol/oradb_data/cspxs1q1 160G 23G 138G 15% /cspxs1q/oradata lunmonster1q:/vol/oradb_exp/epmxs1q1 2.0T 1.1T 984G 52% /epmxs1q/exp lunmonster2q:/vol/oradb_home/epmxs1q1 10G 80M 10G 1% /epmxs1q/home lunmonster2q:/vol/oradb_data/epmxs1q1 330G 249G 82G 76% /epmxs1q/oradata lunmonster1q:/vol/oradb_redo/epmxs1q2 5.0G 609M 4.5G 12% /epmxs1q/rdoctl2 lunmonster1q:/vol/oradb_redo/epmxs1q1 5.0G 609M 4.5G 12% /epmxs1q/rdoctl1 /dev/vx/dsk/slaxs1q/slaxs1q-vol1 183G 17G 157G 10% /slaxs1q/backup /dev/vx/dsk/slaxs1q/slaxs1q-vol4 173G 58G 106G 36% /slaxs1q/oradata /dev/vx/dsk/slaxs1q/slaxs1q-vol5 75G 952M 71G 2% /slaxs1q/exp /dev/vx/dsk/slaxs1q/slaxs1q-vol2 9.8G 381M 8.9G 5% /slaxs1q/home /dev/vx/dsk/slaxs1q/slaxs1q-vol6 4.0G 1.6G 2.2G 42% /slaxs1q/rdoctl1 /dev/vx/dsk/slaxs1q/slaxs1q-vol3 4.0G 1.6G 2.2G 42% /slaxs1q/rdoctl2 /dev/mapper/appoem 30G 1.3G 27G 5% /app/em Yet, I equally, if not quite a bit more, also hate this: SunOS solarious 5.10 Generic_147440-19 sun4u sparc SUNW,SPARC-Enterprise Filesystem size used avail capacity Mounted on kiddie001Q_rpool/ROOT/s10s_u8wos_08a 8G 7.7G 1.3G 96% / /devices 0K 0K 0K 0% /devices ctfs 0K 0K 0K 0% /system/contract proc 0K 0K 0K 0% /proc mnttab 0K 0K 0K 0% /etc/mnttab swap 15G 1.8M 15G 1% /etc/svc/volatile objfs 0K 0K 0K 0% /system/object sharefs 0K 0K 0K 0% /etc/dfs/sharetab fd 0K 0K 0K 0% /dev/fd kiddie001Q_rpool/ROOT/s10s_u8wos_08a/var 31G 8.3G 6.6G 56% /var swap 512M 4.6M 507M 1% /tmp swap 15G 88K 15G 1% /var/run swap 15G 0K 15G 0% /dev/vx/dmp swap 15G 0K 15G 0% /dev/vx/rdmp /dev/dsk/c3t4d4s0 3 20G 279G 41G 88% /fs_storage /dev/vx/dsk/oracle/ora10g-vol1 292G 214G 73G 75% /o10g /dev/vx/dsk/oec/oec-vol1 64G 33G 31G 52% /oec/runway /dev/vx/dsk/oracle/ora9i-vol1 64G 33G 31G 59% /o9i /dev/vx/dsk/home 23G 18G 4.7G 80% /export/home /dev/vx/dsk/dbwork/dbwork-vol1 292G 214G 73G 92% /db03/wk01 /dev/vx/dsk/oradg/ebusredovol 2.0G 475M 1.5G 24% /u21 /dev/vx/dsk/oradg/ebusbckupvol 200G 32G 166G 17% /u31 /dev/vx/dsk/oradg/ebuscrtlvol 2.0G 475M 1.5G 24% /u20 kiddie001Q_rpool 31G 97K 6.6G 1% /kiddie001Q_rpool monsterfiler002q:/vol/ebiz_patches_nfs/NSA0304 203G 173G 29G 86% /oracle/patches /dev/odm 0K 0K 0K 0% /dev/odm The people with the authority don't rotate logs or delete packages after install in my environment. Standards, remediation, cohesion...all fancy foreign words to me. ============== How am I supposed to deal with / filesystem full issues across multiple platforms that have a devastating number of mounts? On Red Hat el5, du -x apparently avoids traversal into other filesystems. While this may be so, it does not appear to do anything if run from the / directory. On Solaris 10, the equivalent flag is du -d, which apparently packs no surprises, allowing Sun to uphold its legacy of inconvenience effortlessly. (I'm hoping I've just been doing it wrong.) I offer up for sacrifice my Frankenstein's monster. Tell me how ugly it is. Tell me I should download forbidden 3rd party software. Tell me I should perform unauthorized coreutils updates, piecemeal, across 2000 systems, with no single sign-on, no authorized keys, and no network update capability. Then, please help me make this bastard better: pwd / du * | egrep -v "$(echo $(df | awk '{print $1 "\n" $5 "\n" $6}' | \ cut -d\/ -f2-5 | egrep -v "[0-9]|^$|Filesystem|Use|Available|Mounted|blocks|vol|swap")| \ sed 's/ /\|/g')" | egrep -v "proc|sys|media|selinux|dev|platform|system|tmp|tmpfs|mnt|kernel" | \ cut -d\/ -f1-2 | sort -k2 -k1,1nr | uniq -f1 | sort -k1,1n | cut -f2 | xargs du -shx | \ egrep "G|[5-9][0-9]M|[1-9][0-9][0-9]M" My biggest failure and regret is that it still requires a single character edit for Solaris: pwd / du * | egrep -v "$(echo $(df | awk '{print $1 "\n" $5 "\n" $6}' | \ cut -d\/ -f2-5 | egrep -v "[0-9]|^$|Filesystem|Use|Available|Mounted|blocks|vol|swap")| \ sed 's/ /\|/g')" | egrep -v "proc|sys|media|selinux|dev|platform|system|tmp|tmpfs|mnt|kernel" | \ cut -d\/ -f1-2 | sort -k2 -k1,1nr | uniq -f1 | sort -k1,1n | cut -f2 | xargs du -shd | \ egrep "G|[5-9][0-9]M|[1-9][0-9][0-9]M" This will exclude all non / filesystems in a du search from the / directory by basically munging an egrepped df from a second pipe-delimited egrep regex subshell exclusion that is naturally further excluded upon by a third egrep in what I would like to refer to as "the whale." The munge-fest frantically escalates into some xargs du recycling where -x/-d is actually useful, and a final, gratuitous egrep spits out a list of directories that almost feels like an accomplishment: Linux: 54M etc/gconf 61M opt/quest 77M opt 118M usr/ ##===\ 149M etc 154M root 303M lib/modules 313M usr/java ##====\ 331M lib 357M usr/lib64 ##=====\ 433M usr/lib ##========\ 1.1G usr/share ##=======\ 3.2G usr/local ##========\ 5.4G usr ##<=============Ascending order to parent 94M app/SIP ##<==\ 94M app ##<=======Were reported as 7gb and then corrected by second du with -x. Solaris: 63M etc 490M bb 570M root/cores.ric.20100415 1.7G oec/archive 1.1G root/packages 2.2G root 1.7G oec Guess what? It's really slow. Edit: Are there any bash one-liner heroes out there than can turn my bloated abomination into divine intervention, or at least something resembling gingerly copypasta?

    Read the article

  • Filtering List Data with a jQuery-searchFilter Plugin

    - by Rick Strahl
    When dealing with list based data on HTML forms, filtering that data down based on a search text expression is an extremely useful feature. We’re used to search boxes on just about anything these days and HTML forms should be no different. In this post I’ll describe how you can easily filter a list down to just the elements that match text typed into a search box. It’s a pretty simple task and it’s super easy to do, but I get a surprising number of comments from developers I work with who are surprised how easy it is to hook up this sort of behavior, that I thought it’s worth a blog post. But Angular does that out of the Box, right? These days it seems everybody is raving about Angular and the rich SPA features it provides. One of the cool features of Angular is the ability to do drop dead simple filters where you can specify a filter expression as part of a looping construct and automatically have that filter applied so that only items that match the filter show. I think Angular has single handedly elevated search filters to first rate, front-row status because it’s so easy. I love using Angular myself, but Angular is not a generic solution to problems like this. For one thing, using Angular requires you to render the list data with Angular – if you have data that is server rendered or static, then Angular doesn’t work. Not all applications are client side rendered SPAs – not by a long shot, and nor do all applications need to become SPAs. Long story short, it’s pretty easy to achieve text filtering effects using jQuery (or plain JavaScript for that matter) with just a little bit of work. Let’s take a look at an example. Why Filter? Client side filtering is a very useful tool that can make it drastically easier to sift through data displayed in client side lists. In my applications I like to display scrollable lists that contain a reasonably large amount of data, rather than the classic paging style displays which tend to be painful to use. So I often display 50 or so items per ‘page’ and it’s extremely useful to be able to filter this list down. Here’s an example in my Time Trakker application where I can quickly glance at various common views of my time entries. I can see Recent Entries, Unbilled Entries, Open Entries etc and filter those down by individual customers and so forth. Each of these lists results tends to be a few pages worth of scrollable content. The following screen shot shows a filtered view of Recent Entries that match the search keyword of CellPage: As you can see in this animated GIF, the filter is applied as you type, displaying only entries that match the text anywhere inside of the text of each of the list items. This is an immediately useful feature for just about any list display and adds significant value. A few lines of jQuery The good news is that this is trivially simple using jQuery. To get an idea what this looks like, here’s the relevant page layout showing only the search box and the list layout:<div id="divItemWrapper"> <div class="time-entry"> <div class="time-entry-right"> May 11, 2014 - 7:20pm<br /> <span style='color:steelblue'>0h:40min</span><br /> <a id="btnDeleteButton" href="#" class="hoverbutton" data-id="16825"> <img src="images/remove.gif" /> </a> </div> <div class="punchedoutimg"></div> <b><a href='/TimeTrakkerWeb/punchout/16825'>Project Housekeeping</a></b><br /> <small><i>Sawgrass</i></small> </div> ... more items here </div> So we have a searchbox txtSearchPage and a bunch of DIV elements with a .time-entry CSS class attached that makes up the list of items displayed. To hook up the search filter with jQuery is merely a matter of a few lines of jQuery code hooked to the .keyup() event handler: <script type="text/javascript"> $("#txtSearchPage").keyup(function() { var search = $(this).val(); $(".time-entry").show(); if (search) $(".time-entry").not(":contains(" + search + ")").hide(); }); </script> The idea here is pretty simple: You capture the keystroke in the search box and capture the search text. Using that search text you first make all items visible and then hide all the items that don’t match. Since DOM changes are applied after a method finishes execution in JavaScript, the show and hide operations are effectively batched up and so the view changes only to the final list rather than flashing the whole list and then removing items on a slow machine. You get the desired effect of the list showing the items in question. Case Insensitive Filtering But there is one problem with the solution above: The jQuery :contains filter is case sensitive, so your search text has to match expressions explicitly which is a bit cumbersome when typing. In the screen capture above I actually cheated – I used a custom filter that provides case insensitive contains behavior. jQuery makes it really easy to create custom query filters, and so I created one called containsNoCase. Here’s the implementation of this custom filter:$.expr[":"].containsNoCase = function(el, i, m) { var search = m[3]; if (!search) return false; return new RegExp(search, "i").test($(el).text()); }; This filter can be added anywhere where page level JavaScript runs – in page script or a seperately loaded .js file.  The filter basically extends jQuery with a : expression. Filters get passed a tokenized array that contains the expression. In this case the m[3] contains the search text from inside of the brackets. A filter basically looks at the active element that is passed in and then can return true or false to determine whether the item should be matched. Here I check a regular expression that looks for the search text in the element’s text. So the code for the filter now changes to:$(".time-entry").not(":containsNoCase(" + search + ")").hide(); And voila – you now have a case insensitive search.You can play around with another simpler example using this Plunkr:http://plnkr.co/edit/hDprZ3IlC6uzwFJtgHJh?p=preview Wrapping it up in a jQuery Plug-in To make this even easier to use and so that you can more easily remember how to use this search type filter, we can wrap this logic into a small jQuery plug-in:(function($, undefined) { $.expr[":"].containsNoCase = function(el, i, m) { var search = m[3]; if (!search) return false; return new RegExp(search, "i").test($(el).text()); }; $.fn.searchFilter = function(options) { var opt = $.extend({ // target selector targetSelector: "", // number of characters before search is applied charCount: 1 }, options); return this.each(function() { var $el = $(this); $el.keyup(function() { var search = $(this).val(); var $target = $(opt.targetSelector); $target.show(); if (search && search.length >= opt.charCount) $target.not(":containsNoCase(" + search + ")").hide(); }); }); }; })(jQuery); To use this plug-in now becomes a one liner:$("#txtSearchPagePlugin").searchFilter({ targetSelector: ".time-entry", charCount: 2}) You attach the .searchFilter() plug-in to the text box you are searching and specify a targetSelector that is to be filtered. Optionally you can specify a character count at which the filter kicks in since it’s kind of useless to filter at a single character typically. Summary This is s a very easy solution to a cool user interface feature your users will thank you for. Search filtering is a simple but highly effective user interface feature, and as you’ve seen in this post it’s very simple to create this behavior with just a few lines of jQuery code. While all the cool kids are doing Angular these days, jQuery is still useful in many applications that don’t embrace the ‘everything generated in JavaScript’ paradigm. I hope this jQuery plug-in or just the raw jQuery will be useful to some of you… Resources Example on Plunker© Rick Strahl, West Wind Technologies, 2005-2014Posted in jQuery  HTML5  JavaScript   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • .NET Declarative Security: Why is SecurityAction.Deny impossible to work with?

    - by rally25rs
    I've been messing with this for about a day and a half now sifting through .NET reflector and MSDN docs, and can't figure anything out... As it stands in the .NET framework, you can demand that the current Principal belong to a role to be able to execute a method by marking a method like this: [PrincipalPermission(SecurityAction.Demand, Role = "CanEdit")] public void Save() { ... } I am working with an existing security model that already has a "ReadOnly" role defined, so I need to do exactly the opposite of above... block the Save() method if a user is in the "ReadOnly" role. No problem, right? just flip the SecurityAction to .Deny: [PrincipalPermission(SecurityAction.Deny, Role = "ReadOnly")] public void Save() { ... } Well, it turns out that this does nothing at all. The method still runs fine. It seems that the PrincipalPermissionAttribute defines: public override IPermission CreatePermission() But when the attribute is set to SecurityAction.Deny, this method is never called, so no IPermission object is ever created. Does anyone know of a way to get .Deny to work? I've been trying to make a custom secutiry attribute, but even that doesn't work. I tried to get tricky and do: public class MyPermissionAttribute : CodeAccessSecurityAttribute { private SecurityAction securityAction; public MyPermissionAttribute(SecurityAction action) : base(SecurityAction.Demand) { if (action != SecurityAction.Demand && action != SecurityAction.Deny) throw new ArgumentException("Unsupported SecurityAction. Only Demand and Deny are supported."); this.securityAction = action; } public override IPermission CreatePermission() { // do something based on the SecurityAction... } } Notice my attribute constructor always passes SecurityAction.Demand, which is the one action that would work previously. However, even in this case, the CreatePermission() method is still only called when the attribute is set to .Demand, and not .Deny! Maybe the runtime is actually checking the attribute instead of the SecurityAction passed to the CodeAccessSecurityAttribute constructor? I'm not sure what else to try here... anyone have any ideas? You wouldn't think it would be that hard to deny method access based on a role, instead of only demanding it. It really disturbed me that the default PrincipalPermission appears from within an IDE like it would be just fine doing a .Deny, and there is like a 1-liner in the MSDN docs that hint that it won't work. You would think the PrincipalPermissionAttribute constructor would throw an exception immediately if anything other that .Demand is specified, since that could create a big security hole! I never would have realized that .Deny does nothing at all if I hadn't been unit testing! Again, all this stems from having to deal with an existing security model that has a "ReadOnly" role that needs to be denied access, instead of doing it the other way around, where I cna just grant access to a role. Thanks for any help! Quick followup: I can actually make my custom attribute work by doing this: public class MyPermissionAttribute : CodeAccessSecurityAttribute { public SecurityAction SecurityAction { get; set; } public MyPermissionAttribute(SecurityAction action) : base(action) { } public override IPermission CreatePermission() { switch(this.SecurityAction) { ... } // check Demand or Deny } } And decorating the method: [MyPermission(SecurityAction.Demand, SecurityAction = SecurityAction.Deny, Role = "ReadOnly")] public void Save() { ... } But that is terribly ugly, since I'm specifying both Demand and Deny in the same attribute. But it does work... Another interesting note: My custom class extends CodeAccessSecurityAttribute, which in turn only extends SecurityAttribute. If I cnage my custom class to directly extend SecurityAttribute, then nothing at all works. So it seems the runtime is definately looking for only CodeAccessSecurityAttribute instances in the metadata, and does something funny with the SecurityAction specified, even if a custom constructor overrides it.

    Read the article

  • What are good CLI tools for JSON?

    - by jasonmp85
    General Problem Though I may be diagnosing the root cause of an event, determining how many users it affected, or distilling timing logs in order to assess the performance and throughput impact of a recent code change, my tools stay the same: grep, awk, sed, tr, uniq, sort, zcat, tail, head, join, and split. To glue them all together, Unix gives us pipes, and for fancier filtering we have xargs. If these fail me, there's always perl -e. These tools are perfect for processing CSV files, tab-delimited files, log files with a predictable line format, or files with comma-separated key-value pairs. In other words, files where each line has next to no context. XML Analogues I recently needed to trawl through Gigabytes of XML to build a histogram of usage by user. This was easy enough with the tools I had, but for more complicated queries the normal approaches break down. Say I have files with items like this: <foo user="me"> <baz key="zoidberg" value="squid" /> <baz key="leela" value="cyclops" /> <baz key="fry" value="rube" /> </foo> And let's say I want to produce a mapping from user to average number of <baz>s per <foo>. Processing line-by-line is no longer an option: I need to know which user's <foo> I'm currently inspecting so I know whose average to update. Any sort of Unix one liner that accomplishes this task is likely to be inscrutable. Fortunately in XML-land, we have wonderful technologies like XPath, XQuery, and XSLT to help us. Previously, I had gotten accustomed to using the wonderful XML::XPath Perl module to accomplish queries like the one above, but after finding a TextMate Plugin that could run an XPath expression against my current window, I stopped writing one-off Perl scripts to query XML. And I just found out about XMLStarlet which is installing as I type this and which I look forward to using in the future. JSON Solutions? So this leads me to my question: are there any tools like this for JSON? It's only a matter of time before some investigation task requires me to do similar queries on JSON files, and without tools like XPath and XSLT, such a task will be a lot harder. If I had a bunch of JSON that looked like this: { "firstName": "Bender", "lastName": "Robot", "age": 200, "address": { "streetAddress": "123", "city": "New York", "state": "NY", "postalCode": "1729" }, "phoneNumber": [ { "type": "home", "number": "666 555-1234" }, { "type": "fax", "number": "666 555-4567" } ] } And wanted to find the average number of phone numbers each person had, I could do something like this with XPath: fn:avg(/fn:count(phoneNumber)) Questions Are there any command-line tools that can "query" JSON files in this way? If you have to process a bunch of JSON files on a Unix command line, what tools do you use? Heck, is there even work being done to make a query language like this for JSON? If you do use tools like this in your day-to-day work, what do you like/dislike about them? Are there any gotchas? I'm noticing more and more data serialization is being done using JSON, so processing tools like this will be crucial when analyzing large data dumps in the future. Language libraries for JSON are very strong and it's easy enough to write scripts to do this sort of processing, but to really let people play around with the data shell tools are needed. Related Questions Grep and Sed Equivalent for XML Command Line Processing Is there a query language for JSON? JSONPath or other XPath like utility for JSON/Javascript; or Jquery JSON

    Read the article

  • How to extract comment out of header file using python, perl, or sed?

    - by WilliamKF
    I have a header file like this: /* * APP 180-2 ALG-254/258/772 implementation * Last update: 03/01/2006 * Issue date: 08/22/2004 * * Copyright (C) 2006 Somebody's Name here * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef HEADER_H #define HEADER_H /* More comments and C++ code here. */ #endif /* End of file. */ And I wish to extract out the contents of the first C style comment only and drop the " *" at the start of each line to get a file with the following contents: APP 180-2 ALG-254/258/772 implementation Last update: 03/01/2006 Issue date: 08/22/2004 Copyright (C) 2006 Somebody's Name here All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Please suggest an easy way to do this with Python, Perl, sed, or some other way on Unix. Preferably as a one-liner.

    Read the article

  • CodePlex Daily Summary for Tuesday, March 01, 2011

    CodePlex Daily Summary for Tuesday, March 01, 2011Popular ReleasesDirectQ: Release 1.8.7 (Beta 3): Fixes some problems and adds some more enhancements.Sandcastle Help File Builder: SHFB v1.9.2.0 Release: NOTE TO 32-BIT WINDOWS XP USERS: There is a problem with a type converter that fails on 32-bit Windows XP due to how it searches for the framework versions. I'll issue an update later today that fixes the issue. This release supports the Sandcastle June 2010 Release (v2.6.10621.1). It includes full support for generating, installing, and removing MS Help Viewer files. This new release is compiled under .NET 4.0, supports Visual Studio 2010 solutions and projects as documentation sources, ...Network Monitor Open Source Parsers: Microsoft Network Monitor Parsers 3.4.2554: The Network Monitor Parsers packages contain parsers for more than 400 network protocols, including RFC based public protocols and protocols for Microsoft products defined in the Microsoft Open Specifications for Windows and SQL Server. NetworkMonitor_Parsers.msi is the base parser package which defines parsers for commonly used public protocols and protocols for Microsoft Windows. In this release, we have added 4 new protocol parsers and updated 79 existing parsers in the NetworkMonitor_Pa...Ajax Minifier: Microsoft Ajax Minifier 4.13: New features: switches and settings for turning off Conditional Compilation comment processing; for adding variable and/or function names that should not be renamed automatically; for adding manual renaming of variables/functions/properties; for automatic evaluation of certain literal expressions (but not all).Image Resizer for Windows: Image Resizer 3 Preview 1: Prepare to have your minds blown. This is the first preview of what will eventually become 39613. There are still a lot of rough edges and plenty of areas still under construction, but for your basic needs, it should be relativly stable. Note: You will need the .NET Framework 4 installed to use this version. Below is a status report of where this release is in terms of the overall goal for version 3. If you're feeling a bit technically ambitious and want to check out some of the features th...JSON Toolkit: JSON Toolkit 1.1: updated GetAllJsonObjects() method and GetAllProperties() methods to JsonObject and Properties propertiesFacebook Graph Toolkit: Facebook Graph Toolkit 1.0: Refer to http://computerbeacon.net for Documentation and Tutorial New features:added FQL support added Expires property to Api object added support for publishing to a user's friend / Facebook Page added support for posting and removing comments on posts added support for adding and removing likes on posts and comments added static methods for Page class added support for Iframe Application Tab of Facebook Page added support for obtaining the user's country, locale and age in If...ASP.NET MVC Project Awesome, jQuery Ajax helpers (controls): 1.7.1: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form, Popup and Pager small improvements for some helpers and AjaxDropdown has Data like the Lookup except it's value gets reset and list refilled if any element from data gets changedManaged Extensibility Framework: MEF 2 Preview 3: This release aims .net 4.0 and Silverlight 4.0. Accordingly, there are two solutions files. The assemblies are named System.ComponentModel.Composition.Codeplex.dll as a way to avoid clashing with the version shipped with the 4th version of the framework. Introduced CompositionOptions to container instantiation CompositionOptions.DisableSilentRejection makes MEF throw an exception on composition errors. Useful for diagnostics Support for open generics Support for attribute-less registr...PHPExcel: PHPExcel 1.7.6 Production: DonationsDonate via PayPal via PayPal. If you want to, we can also add your name / company on our Donation Acknowledgements page. PEAR channelWe now also have a full PEAR channel! Here's how to use it: New installation: pear channel-discover pear.pearplex.net pear install pearplex/PHPExcel Or if you've already installed PHPExcel before: pear upgrade pearplex/PHPExcel The official page can be found at http://pearplex.net. Want to contribute?Please refer the Contribute page.WPF Application Framework (WAF): WPF Application Framework (WAF) 2.0.0.4: Version: 2.0.0.4 (Milestone 4): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Remark The sample applications are using Microsoft’s IoC container MEF. However, the WPF Application Framework (WAF) doesn’t force you to use the same IoC container in your application. You can use ...VidCoder: 0.8.2: Updated auto-naming to handle seconds and frames ranges as well. Deprecated the {chapters} token for auto-naming in favor of {range}. Allowing file drag to preview window and enabling main window shortcut keys to work no matter what window is focused. Added option in config to enable giving custom names to audio tracks. (Note that these names will only show up certain players like iTunes or on the iPod. Players that support custom track names normally may not show them.) Added tooltips ...SQL Server Compact Toolbox: Standalone version 2.0 for SQL Server Compact 4.0: Download the Visual Studio add-in for SQL Server Compact 4.0 and 3.5 from here Standalone version of (most of) the same functionality as the add-in, for SQL Server Compact 4.0. Useful for anyone not having Visual Studio Professional or higher installed. Requires .NET 4.0. Any feedback much appreciated.Claims Based Identity & Access Control Guide: Drop 1 - Claims Identity Guide V2: Highlights of drop #1 This is the first drop of the new "Claims Identity Guide" edition. In this release you will find: All previous samples updated and enhanced. All code upgraded to .NET 4 and Visual Studio 2010. Extensive cleanup. Refactored Simulated Issuers: each solution now gets its own issuers. This results in much cleaner and simpler to understand code. Added Single Sign Out support. Added first sample using ACS ("ACS as a Federation Provider"). This sample extends the ori...Simple Notify: Simple Notify Beta 2011-02-25: Feature: host the service with a single click in console Feature: host the service as a windows service Feature: notification cient application Feature: push client application Feature: push notifications from your powershell script Feature: C# wrapper libraries for your applicationspatterns & practices: Project Silk: Project Silk Community Drop 3 - 25 Feb 2011: IntroductionWelcome to the third community drop of Project Silk. For this drop we are requesting feedback on overall application architecture, code review of the JavaScript Conductor and Widgets, and general direction of the application. Project Silk provides guidance and sample implementations that describe and illustrate recommended practices for building modern web applications using technologies such as HTML5, jQuery, CSS3 and Internet Explorer 9. This guidance is intended for experien...Minemapper: Minemapper v0.1.5: Now supports new Minecraft beta v1.3 map format, thanks to updated mcmap. Disabled biomes, until Minecraft Biome Extractor supports new format.HERB.IQ: HERB.IQ.NEW.INSTALL.0.6.0.zip: HERB.IQ.NEW.INSTALL.0.6.0.zipCoding4Fun Tools: Coding4Fun.Phone.Toolkit v1.2: New control, Toast Prompt! Removed progress bar since Silverlight Toolkit Feb 2010 has it.HubbleDotNet - Open source full-text search engine: V1.1.0.0: Add Sqlite3 DBAdapter Add App Report when Query Cache is Collecting. Improve the performance of index through Synchronize. Add top 0 feature so that we can only get count of the result. Improve the score calculating algorithm of match. Let the score of the record that match all items large then others. Add MySql DBAdapter Improve performance for multi-fields sort . Using hash table to access the Payload data. The version before used bin search. Using heap sort instead of qui...New ProjectsAssembly Explorer: Assembly Explorer is a developer utility that displays the namespaces, types, and members in an assembly. It also displays the MSIL or translated .NET language code.automated reporting system: ???????? ??????????? ?????????????? ???????????????? ????????? ?????? ?????????? ????????? Custom XSLT with Group by in Biztalk 2009: Custom XSLT with Group by in Biztalk 2009DotNet Repository: A simple to use, generic repository using Linq to SQL or Linq to Objects. euler 28: euler 28euler29: euler 29 problemFreeType for AirplaySDK: FreeType adoptation for Airplay SDK.Icicle Framework: An in-the-works component based game framework for XNA.Jogo dos Palitinhos: Jogo desenvolvido por alunos do 4º Ciclo Noturno de Programação do Curso de Análise de Sistemas e Tecnologia da Informação da Faculdade de Tecnologia de Carapicuíba. Este é o jogo dos palitinhos: uma mistura de lógica, advinhação e sorte. Será desenvolvido na plataforma Java.karmencita: Karmencita is a high level object query language for .NET . Its purpose is to allow easy querying from in memory structured data.Libero Site 011: libero sit 011MaLoRTLib: raytracer library used in the MaLoRT.MetroEdit: A WPF Text Editor based on the Metro UI Design Guidelines. Features: - Clean and simple UI based on Metro - 32bit and 64bit support - Tabbing - Syntax highlighting NOTE: Based on .NET Framework 4.0 and uses the following libraries: - MVVM Light Toolkit - AvalonEditMiaSocks: A .NET SOCKS Server Implementation base on SuperSocketmicroruntime: The MicroRuntime project is a .NET utility library.MVC Forum: A bulletin board system (like phpBB) running on ASP.NET MVC.newshehuishijianzhongxin: newshehuishijianzhongxinPrism Extension: Contains extensions for prism to reinforce some functionsRInterfaces: An interface to pass data toward and back from R and executing R code from .NETSharePoint 2007 Wiki Export: A very simple wiki export utility for SharePoint 2007. You can export a wiki library to the file system with the specified file extension, and wrapped in the speciified markup. Written in C#. The List service url is set dynamically so there is a dummy url in the configurations.Simon Squared: Simon Squared is a Multi-player Puzzle game for Windows Phone 7. It uses the XNA framework on the Phone, and the WCF Http CTP on the server side to handle communication between phones. It's written in C#.Sitefinity Toolkit: The Sitefinity Toolkit is a collection of enhancements to the Sitefinity Content Management System by Telerik. It currently supports Sitefinity version 3.7 (through SP4), and includes a number of tools to automate and simplify a number of actions and features.Slog: Slog is blog engine like Wordpress in Silverlight 4 that will have same fonctionality to bigin with and the same extensiblity thanks to MEF. Server side will be WCF DataServices, Entity Framework 4 and SQL Server Compact 4.SnagL: Social Network Analysis Graph Live (SnagL) is a light-weight, pluggable application that operates from a web browser and works with existing applications and back-end data stores to provide a visual way to understand information and enhance analysis.SocialShare Starter Kit: SocialShare Starter Kit is a web application that illustrate a wide range of features that needed to build a social site.This web application framework written in C# ASP.NET 4.0.Split Large XML file into small XML files: Split Large XML file into group of smaller XML files in sequential order. As posted to http://codeproject.com <a href='http://www.codeproject.com/KB/XML/SplitLargeXMLintoSmallFil.aspx'>Link</a>SSIS SSH Components: SSIS control flow tasks for SFTP and executing shell commands along with an SSH connection manager.StudioShell: StudioShell is a deeply integrated PowerShell module for Visual Studio 2010 and 2008. It will change the way you interact with your IDE and code by exposing the IDE extensibility features to PowerShell. What once took a binary can now be done in a one-liner.TBS: TBS TEZ BILGI SISTEMI tez bilgi sistemiuTestingService: uTestingService is a webservice with wrappers around Node and Document to allow for end-end testing of UmbracoWebsite Panel: Website Panel is a Windows application to help you manage multiple Dotnetnuke applications. Easy installations, backups & upgrades of DNN websites are just a few features of this application. Zinc: Zinc is a utility library for ASP.NET web forms development. It has support for: - utility methods for working easier with controls - CSV exports - HttpModules for dealing with caching and path based rights. - custom controls This library runs on .NET 2.0 and i would like to kee

    Read the article

  • SimpleMembership, Membership Providers, Universal Providers and the new ASP.NET 4.5 Web Forms and ASP.NET MVC 4 templates

    - by Jon Galloway
    The ASP.NET MVC 4 Internet template adds some new, very useful features which are built on top of SimpleMembership. These changes add some great features, like a much simpler and extensible membership API and support for OAuth. However, the new account management features require SimpleMembership and won't work against existing ASP.NET Membership Providers. I'll start with a summary of top things you need to know, then dig into a lot more detail. Summary: SimpleMembership has been designed as a replacement for traditional the previous ASP.NET Role and Membership provider system SimpleMembership solves common problems people ran into with the Membership provider system and was designed for modern user / membership / storage needs SimpleMembership integrates with the previous membership system, but you can't use a MembershipProvider with SimpleMembership The new ASP.NET MVC 4 Internet application template AccountController requires SimpleMembership and is not compatible with previous MembershipProviders You can continue to use existing ASP.NET Role and Membership providers in ASP.NET 4.5 and ASP.NET MVC 4 - just not with the ASP.NET MVC 4 AccountController The existing ASP.NET Role and Membership provider system remains supported as is part of the ASP.NET core ASP.NET 4.5 Web Forms does not use SimpleMembership; it implements OAuth on top of ASP.NET Membership The ASP.NET Web Site Administration Tool (WSAT) is not compatible with SimpleMembership The following is the result of a few conversations with Erik Porter (PM for ASP.NET MVC) to make sure I had some the overall details straight, combined with a lot of time digging around in ILSpy and Visual Studio's assembly browsing tools. SimpleMembership: The future of membership for ASP.NET The ASP.NET Membership system was introduces with ASP.NET 2.0 back in 2005. It was designed to solve common site membership requirements at the time, which generally involved username / password based registration and profile storage in SQL Server. It was designed with a few extensibility mechanisms - notably a provider system (which allowed you override some specifics like backing storage) and the ability to store additional profile information (although the additional  profile information was packed into a single column which usually required access through the API). While it's sometimes frustrating to work with, it's held up for seven years - probably since it handles the main use case (username / password based membership in a SQL Server database) smoothly and can be adapted to most other needs (again, often frustrating, but it can work). The ASP.NET Web Pages and WebMatrix efforts allowed the team an opportunity to take a new look at a lot of things - e.g. the Razor syntax started with ASP.NET Web Pages, not ASP.NET MVC. The ASP.NET Web Pages team designed SimpleMembership to (wait for it) simplify the task of dealing with membership. As Matthew Osborn said in his post Using SimpleMembership With ASP.NET WebPages: With the introduction of ASP.NET WebPages and the WebMatrix stack our team has really be focusing on making things simpler for the developer. Based on a lot of customer feedback one of the areas that we wanted to improve was the built in security in ASP.NET. So with this release we took that time to create a new built in (and default for ASP.NET WebPages) security provider. I say provider because the new stuff is still built on the existing ASP.NET framework. So what do we call this new hotness that we have created? Well, none other than SimpleMembership. SimpleMembership is an umbrella term for both SimpleMembership and SimpleRoles. Part of simplifying membership involved fixing some common problems with ASP.NET Membership. Problems with ASP.NET Membership ASP.NET Membership was very obviously designed around a set of assumptions: Users and user information would most likely be stored in a full SQL Server database or in Active Directory User and profile information would be optimized around a set of common attributes (UserName, Password, IsApproved, CreationDate, Comment, Role membership...) and other user profile information would be accessed through a profile provider Some problems fall out of these assumptions. Requires Full SQL Server for default cases The default, and most fully featured providers ASP.NET Membership providers (SQL Membership Provider, SQL Role Provider, SQL Profile Provider) require full SQL Server. They depend on stored procedure support, and they rely on SQL Server cache dependencies, they depend on agents for clean up and maintenance. So the main SQL Server based providers don't work well on SQL Server CE, won't work out of the box on SQL Azure, etc. Note: Cory Fowler recently let me know about these Updated ASP.net scripts for use with Microsoft SQL Azure which do support membership, personalization, profile, and roles. But the fact that we need a support page with a set of separate SQL scripts underscores the underlying problem. Aha, you say! Jon's forgetting the Universal Providers, a.k.a. System.Web.Providers! Hold on a bit, we'll get to those... Custom Membership Providers have to work with a SQL-Server-centric API If you want to work with another database or other membership storage system, you need to to inherit from the provider base classes and override a bunch of methods which are tightly focused on storing a MembershipUser in a relational database. It can be done (and you can often find pretty good ones that have already been written), but it's a good amount of work and often leaves you with ugly code that has a bunch of System.NotImplementedException fun since there are a lot of methods that just don't apply. Designed around a specific view of users, roles and profiles The existing providers are focused on traditional membership - a user has a username and a password, some specific roles on the site (e.g. administrator, premium user), and may have some additional "nice to have" optional information that can be accessed via an API in your application. This doesn't fit well with some modern usage patterns: In OAuth and OpenID, the user doesn't have a password Often these kinds of scenarios map better to user claims or rights instead of monolithic user roles For many sites, profile or other non-traditional information is very important and needs to come from somewhere other than an API call that maps to a database blob What would work a lot better here is a system in which you were able to define your users, rights, and other attributes however you wanted and the membership system worked with your model - not the other way around. Requires specific schema, overflow in blob columns I've already mentioned this a few times, but it bears calling out separately - ASP.NET Membership focuses on SQL Server storage, and that storage is based on a very specific database schema. SimpleMembership as a better membership system As you might have guessed, SimpleMembership was designed to address the above problems. Works with your Schema As Matthew Osborn explains in his Using SimpleMembership With ASP.NET WebPages post, SimpleMembership is designed to integrate with your database schema: All SimpleMembership requires is that there are two columns on your users table so that we can hook up to it – an “ID” column and a “username” column. The important part here is that they can be named whatever you want. For instance username doesn't have to be an alias it could be an email column you just have to tell SimpleMembership to treat that as the “username” used to log in. Matthew's example shows using a very simple user table named Users (it could be named anything) with a UserID and Username column, then a bunch of other columns he wanted in his app. Then we point SimpleMemberhip at that table with a one-liner: WebSecurity.InitializeDatabaseFile("SecurityDemo.sdf", "Users", "UserID", "Username", true); No other tables are needed, the table can be named anything we want, and can have pretty much any schema we want as long as we've got an ID and something that we can map to a username. Broaden database support to the whole SQL Server family While SimpleMembership is not database agnostic, it works across the SQL Server family. It continues to support full SQL Server, but it also works with SQL Azure, SQL Server CE, SQL Server Express, and LocalDB. Everything's implemented as SQL calls rather than requiring stored procedures, views, agents, and change notifications. Note that SimpleMembership still requires some flavor of SQL Server - it won't work with MySQL, NoSQL databases, etc. You can take a look at the code in WebMatrix.WebData.dll using a tool like ILSpy if you'd like to see why - there places where SQL Server specific SQL statements are being executed, especially when creating and initializing tables. It seems like you might be able to work with another database if you created the tables separately, but I haven't tried it and it's not supported at this point. Note: I'm thinking it would be possible for SimpleMembership (or something compatible) to run Entity Framework so it would work with any database EF supports. That seems useful to me - thoughts? Note: SimpleMembership has the same database support - anything in the SQL Server family - that Universal Providers brings to the ASP.NET Membership system. Easy to with Entity Framework Code First The problem with with ASP.NET Membership's system for storing additional account information is that it's the gate keeper. That means you're stuck with its schema and accessing profile information through its API. SimpleMembership flips that around by allowing you to use any table as a user store. That means you're in control of the user profile information, and you can access it however you'd like - it's just data. Let's look at a practical based on the AccountModel.cs class in an ASP.NET MVC 4 Internet project. Here I'm adding a Birthday property to the UserProfile class. [Table("UserProfile")] public class UserProfile { [Key] [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] public int UserId { get; set; } public string UserName { get; set; } public DateTime Birthday { get; set; } } Now if I want to access that information, I can just grab the account by username and read the value. var context = new UsersContext(); var username = User.Identity.Name; var user = context.UserProfiles.SingleOrDefault(u => u.UserName == username); var birthday = user.Birthday; So instead of thinking of SimpleMembership as a big membership API, think of it as something that handles membership based on your user database. In SimpleMembership, everything's keyed off a user row in a table you define rather than a bunch of entries in membership tables that were out of your control. How SimpleMembership integrates with ASP.NET Membership Okay, enough sales pitch (and hopefully background) on why things have changed. How does this affect you? Let's start with a diagram to show the relationship (note: I've simplified by removing a few classes to show the important relationships): So SimpleMembershipProvider is an implementaiton of an ExtendedMembershipProvider, which inherits from MembershipProvider and adds some other account / OAuth related things. Here's what ExtendedMembershipProvider adds to MembershipProvider: The important thing to take away here is that a SimpleMembershipProvider is a MembershipProvider, but a MembershipProvider is not a SimpleMembershipProvider. This distinction is important in practice: you cannot use an existing MembershipProvider (including the Universal Providers found in System.Web.Providers) with an API that requires a SimpleMembershipProvider, including any of the calls in WebMatrix.WebData.WebSecurity or Microsoft.Web.WebPages.OAuth.OAuthWebSecurity. However, that's as far as it goes. Membership Providers still work if you're accessing them through the standard Membership API, and all of the core stuff  - including the AuthorizeAttribute, role enforcement, etc. - will work just fine and without any change. Let's look at how that affects you in terms of the new templates. Membership in the ASP.NET MVC 4 project templates ASP.NET MVC 4 offers six Project Templates: Empty - Really empty, just the assemblies, folder structure and a tiny bit of basic configuration. Basic - Like Empty, but with a bit of UI preconfigured (css / images / bundling). Internet - This has both a Home and Account controller and associated views. The Account Controller supports registration and login via either local accounts and via OAuth / OpenID providers. Intranet - Like the Internet template, but it's preconfigured for Windows Authentication. Mobile - This is preconfigured using jQuery Mobile and is intended for mobile-only sites. Web API - This is preconfigured for a service backend built on ASP.NET Web API. Out of these templates, only one (the Internet template) uses SimpleMembership. ASP.NET MVC 4 Basic template The Basic template has configuration in place to use ASP.NET Membership with the Universal Providers. You can see that configuration in the ASP.NET MVC 4 Basic template's web.config: <profile defaultProvider="DefaultProfileProvider"> <providers> <add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </profile> <membership defaultProvider="DefaultMembershipProvider"> <providers> <add name="DefaultMembershipProvider" type="System.Web.Providers.DefaultMembershipProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <roleManager defaultProvider="DefaultRoleProvider"> <providers> <add name="DefaultRoleProvider" type="System.Web.Providers.DefaultRoleProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </roleManager> <sessionState mode="InProc" customProvider="DefaultSessionProvider"> <providers> <add name="DefaultSessionProvider" type="System.Web.Providers.DefaultSessionStateProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" /> </providers> </sessionState> This means that it's business as usual for the Basic template as far as ASP.NET Membership works. ASP.NET MVC 4 Internet template The Internet template has a few things set up to bootstrap SimpleMembership: \Models\AccountModels.cs defines a basic user account and includes data annotations to define keys and such \Filters\InitializeSimpleMembershipAttribute.cs creates the membership database using the above model, then calls WebSecurity.InitializeDatabaseConnection which verifies that the underlying tables are in place and marks initialization as complete (for the application's lifetime) \Controllers\AccountController.cs makes heavy use of OAuthWebSecurity (for OAuth account registration / login / management) and WebSecurity. WebSecurity provides account management services for ASP.NET MVC (and Web Pages) WebSecurity can work with any ExtendedMembershipProvider. There's one in the box (SimpleMembershipProvider) but you can write your own. Since a standard MembershipProvider is not an ExtendedMembershipProvider, WebSecurity will throw exceptions if the default membership provider is a MembershipProvider rather than an ExtendedMembershipProvider. Practical example: Create a new ASP.NET MVC 4 application using the Internet application template Install the Microsoft ASP.NET Universal Providers for LocalDB NuGet package Run the application, click on Register, add a username and password, and click submit You'll get the following execption in AccountController.cs::Register: To call this method, the "Membership.Provider" property must be an instance of "ExtendedMembershipProvider". This occurs because the ASP.NET Universal Providers packages include a web.config transform that will update your web.config to add the Universal Provider configuration I showed in the Basic template example above. When WebSecurity tries to use the configured ASP.NET Membership Provider, it checks if it can be cast to an ExtendedMembershipProvider before doing anything else. So, what do you do? Options: If you want to use the new AccountController, you'll either need to use the SimpleMembershipProvider or another valid ExtendedMembershipProvider. This is pretty straightforward. If you want to use an existing ASP.NET Membership Provider in ASP.NET MVC 4, you can't use the new AccountController. You can do a few things: Replace  the AccountController.cs and AccountModels.cs in an ASP.NET MVC 4 Internet project with one from an ASP.NET MVC 3 application (you of course won't have OAuth support). Then, if you want, you can go through and remove other things that were built around SimpleMembership - the OAuth partial view, the NuGet packages (e.g. the DotNetOpenAuthAuth package, etc.) Use an ASP.NET MVC 4 Internet application template and add in a Universal Providers NuGet package. Then copy in the AccountController and AccountModel classes. Create an ASP.NET MVC 3 project and upgrade it to ASP.NET MVC 4 using the steps shown in the ASP.NET MVC 4 release notes. None of these are particularly elegant or simple. Maybe we (or just me?) can do something to make this simpler - perhaps a NuGet package. However, this should be an edge case - hopefully the cases where you'd need to create a new ASP.NET but use legacy ASP.NET Membership Providers should be pretty rare. Please let me (or, preferably the team) know if that's an incorrect assumption. Membership in the ASP.NET 4.5 project template ASP.NET 4.5 Web Forms took a different approach which builds off ASP.NET Membership. Instead of using the WebMatrix security assemblies, Web Forms uses Microsoft.AspNet.Membership.OpenAuth assembly. I'm no expert on this, but from a bit of time in ILSpy and Visual Studio's (very pretty) dependency graphs, this uses a Membership Adapter to save OAuth data into an EF managed database while still running on top of ASP.NET Membership. Note: There may be a way to use this in ASP.NET MVC 4, although it would probably take some plumbing work to hook it up. How does this fit in with Universal Providers (System.Web.Providers)? Just to summarize: Universal Providers are intended for cases where you have an existing ASP.NET Membership Provider and you want to use it with another SQL Server database backend (other than SQL Server). It doesn't require agents to handle expired session cleanup and other background tasks, it piggybacks these tasks on other calls. Universal Providers are not really, strictly speaking, universal - at least to my way of thinking. They only work with databases in the SQL Server family. Universal Providers do not work with Simple Membership. The Universal Providers packages include some web config transforms which you would normally want when you're using them. What about the Web Site Administration Tool? Visual Studio includes tooling to launch the Web Site Administration Tool (WSAT) to configure users and roles in your application. WSAT is built to work with ASP.NET Membership, and is not compatible with Simple Membership. There are two main options there: Use the WebSecurity and OAuthWebSecurity API to manage the users and roles Create a web admin using the above APIs Since SimpleMembership runs on top of your database, you can update your users as you would any other data - via EF or even in direct database edits (in development, of course)

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

< Previous Page | 11 12 13 14 15