Search Results

Search found 361 results on 15 pages for 'inter'.

Page 15/15 | < Previous Page | 11 12 13 14 15 

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Issue 15: Oracle Exadata Marketing Campaigns

    - by rituchhibber
         PARTNER FOCUS Oracle ExadataMarketing Campaign Steve McNickleVP Europe, cVidya Steve McNickle is VP Europe for cVidya, an innovative provider of revenue intelligence solutions for telecom, media and entertainment service providers including AT&T, BT, Deutsche Telecom and Vodafone. The company's product portfolio helps operators and service providers maximise margins, improve customer experience and optimise ecosystem relationships through revenue assurance, fraud and security management, sales performance management, pricing analytics, and inter-carrier services. cVidya has partnered with Oracle for more than a decade. RESOURCES -- Oracle PartnerNetwork (OPN) Oracle Exastack Program Oracle Exastack Optimized Oracle Exastack Labs and Enablement Resources Oracle Engineered Systems Oracle Communications cVidya SUBSCRIBE FEEDBACK PREVIOUS ISSUES Are you ready for Oracle OpenWorld this October? -- -- Please could you tell us a little about cVidya's partnering history with Oracle, and expand on your Oracle Exastack accreditations? "cVidya was established just over ten years ago and we've had a strong relationship with Oracle almost since the very beginning. Through our Revenue Intelligence work with some of the world's largest service providers we collect tremendous amounts of information, amounting to billions of records per day. We help our clients to collect, store and analyse that data to ensure that their end customers are getting the best levels of service, are billed correctly, and are happy that they are on the correct price plan. We have been an Oracle Gold level partner for seven years, and crucially just two months ago we were also accredited as Oracle Exastack Optimized for MoneyMap, our core Revenue Assurance solution. Very soon we also expect to be Oracle Exastack Optimized DRMap, our Data Retention solution." What unique capabilities and customer benefits does Oracle Exastack add to your applications? "Oracle Exastack enables us to deliver radical benefits to our customers. A typical mobile operator in the UK might handle between 500 million and two billion call data record details daily. Each transaction needs to be validated, billed correctly and fraud checked. Because of the enormous volumes involved, our clients demand scalable infrastructure that allows them to efficiently acquire, store and process all that data within controlled cost, space and environmental constraints. We have proved that the Oracle Exadata system can process data up to seven times faster and load it as much as 20 times faster than other standard best-of-breed server approaches. With the Oracle Exadata Database Machine they can reduce their datacentre equipment from say, the six or seven cabinets that they needed in the past, down to just one. This dramatic simplification delivers incredible value to the customer by cutting down enormously on all of their significant cost, space, energy, cooling and maintenance overheads." "The Oracle Exastack Program has given our clients the ability to switch their focus from reactive to proactive. Traditionally they may have spent 80 percent of their day processing, and just 20 percent enabling end customers to see advanced analytics, and avoiding issues before they occur. With our solutions and Oracle Exadata they can now switch that balance around entirely, resulting not only in reduced revenue leakage, but a far higher focus on proactive leakage prevention. How has the Oracle Exastack Program transformed your customer business? "We can already see the impact. Oracle solutions allow our delivery teams to achieve successful deployments, happy customers and self-satisfaction, and the power of Oracle's Exa solutions is easy to measure in terms of their transformational ability. We gained our first sale into a major European telco by demonstrating the major performance gains that would transform their business. Clients can measure the ease of organisational change, the early prevention of business issues, the reduction in manpower required to provide protection and coverage across all their products and services, plus of course end customer satisfaction. If customers know that that service is provided accurately and that their bills are calculated correctly, then over time this satisfaction can be attributed to revenue intelligence and the underlying systems which provide it. Combine this with the further integration we have with the other layers of the Oracle stack, including the telecommunications offerings such as NCC, OCDM and BRM, and the result is even greater customer value—not to mention the increased speed to market and the reduced project risk." What does the Oracle Exastack community bring to cVidya, both in terms of general benefits, and also tangible new opportunities and partnerships? "A great deal. We have participated in the Oracle Exastack community heavily over the past year, and have had lots of meetings with Oracle and our peers around the globe. It brings us into contact with like-minded, innovative partners, who like us are not happy to just stand still and want to take fresh technology to their customer base in order to gain enhanced value. We identified three new partnerships in each of two recent meetings, and hope these will open up new opportunities, not only in areas that exactly match where we operate today, but also in some new associative areas that will expand our reach into new business sectors. Notably, thanks to the Exastack community we were invited on stage at last year's Oracle OpenWorld conference. Appearing so publically with Oracle senior VP Judson Althoff elevated awareness and visibility of cVidya and has enabled us to participate in a number of other events with Oracle over the past eight months. We've been involved in speaking opportunities, forums and exhibitions, providing us with invaluable opportunities that we wouldn't otherwise have got close to." How has Exastack differentiated cVidya as an ISV, and helped you to evolve your business to the next level? "When we are selling to our core customer base of Tier 1 telecommunications providers, we know that they want more than just software. They want an enduring partnership that will last many years, they want innovation, and a forward thinking partner who knows how to guide them on where they need to be to meet market demand three, five or seven years down the line. Membership of respected global bodies, such as the Telemanagement Forum enables us to lead standard adherence in our area of business, giving us a lot of credibility, but Oracle is also involved in this forum with its own telecommunications portfolio, strengthening our position still further. When we approach CEOs, CTOs and CIOs at the very largest Tier 1 operators, not only can we easily show them that our technology is fantastic, we can also talk about our strong partnership with Oracle, and our joint embracing of today's standards and tomorrow's innovation." Where would you like cVidya to be in one year's time? "We want to get all of our relevant products Oracle Exastack Optimized. Our MoneyMap Revenue Assurance solution is already Exastack Optimised, our DRMAP Data Retention Solution should be Exastack Optimised within the next month, and our FraudView Fraud Management solution within the next two to three months. We'd then like to extend our Oracle accreditation out to include other members of the Oracle Engineered Systems family. We are moving into the 'Big Data' space, and so we're obviously very keen to work closely with Oracle to conduct pilots, map new technologies onto Oracle Big Data platforms, and embrace and measure the benefits of other Oracle systems, namely Oracle Exalogic Elastic Cloud, the Oracle Exalytics In-Memory Machine and the Oracle SPARC SuperCluster. We would also like to examine how the Oracle Database Appliance might benefit our Tier 2 service provider customers. Finally, we'd also like to continue working with the Oracle Communications Global Business Unit (CGBU), furthering our integration with Oracle billing products so that we are able to quickly deploy fraud solutions into Oracle's Engineered System stack, give operational benefits to our clients that are pre-integrated, more cost-effective, and can be rapidly deployed rapidly and producing benefits in three months, not nine months." Chris Baker ,Senior Vice President, Oracle Worldwide ISV-OEM-Java Sales Chris Baker is the Global Head of ISV/OEM Sales responsible for working with ISV/OEM partners to maximise Oracle's business through those partners, whilst maximising those partners' business to their end users. Chris works with partners, customers, innovators, investors and employees to develop innovative business solutions using Oracle products, services and skills. Firstly, could you please explain Oracle's current strategy for ISV partners, globally and in EMEA? "Oracle customers use independent software vendor (ISV) applications to run their businesses. They use them to generate revenue and to fulfil obligations to their own customers. Our strategy is very straight-forward. We want all of our ISV partners and OEMs to concentrate on the things that they do the best – building applications to meet the unique industry and functional requirements of their customer. We want to ensure that we deliver a best in class application platform so the ISV is free to concentrate their effort on their application functionality and user experience We invest over four billion dollars in research and development every year, and we want our ISVs to benefit from all of that investment in operating systems, virtualisation, databases, middleware, engineered systems, and other hardware. By doing this, we help them to reduce their costs, gain more consistency and agility for quicker implementations, and also rapidly differentiate themselves from other application vendors. It's all about simplification because we believe that around 25 to 30 percent of the development costs incurred by many ISVs are caused by customising infrastructure and have nothing to do with their applications. Our strategy is to enable our ISV partners to standardise their application platform using engineered architecture, so they can write once to the Oracle stack and deploy seamlessly in the cloud, on-premise, or in hybrid deployments. It's really important that architecture is the same in order to keep cost and time overheads at a minimum, so we provide standardisation and an environment that enables our ISVs to concentrate on the core business that makes them the most money and brings them success." How do you believe this strategy is helping the ISVs to work hand-in-hand with Oracle to ensure that end customers get the industry-leading solutions that they need? "We work with our ISVs not just to help them be successful, but also to help them market themselves. We have something called the 'Oracle Exastack Ready Program', which enables ISVs to publicise themselves as 'Ready' to run the core software platforms that run on Oracle's engineered systems including Exadata and Exalogic. So, for example, they can become 'Database Ready' which means that they use the latest version of Oracle Database and therefore can run their application without modification on Exadata or the Oracle Database Appliance. Alternatively, they can become WebLogic Ready, Oracle Linux Ready and Oracle Solaris Ready which means they run on the latest release and therefore can run their application, with no new porting work, on Oracle Exalogic. Those 'Ready' logos are important in helping ISVs advertise to their customers that they are using the latest technologies which have been fully tested. We now also have Exadata Ready and Exalogic Ready programmes which allow ISVs to promote the certification of their applications on these platforms. This highlights these partners to Oracle customers as having solutions that run fluently on the Oracle Exadata Database Machine, the Oracle Exalogic Elastic Cloud or one of our other engineered systems. This makes it easy for customers to identify solutions and provides ISVs with an avenue to connect with Oracle customers who are rapidly adopting engineered systems. We have also taken this programme to the next level in the shape of 'Oracle Exastack Optimized' for partners whose applications run best on the Oracle stack and have invested the time to fully optimise application performance. We ensure that Exastack Optimized partner status is promoted and supported by press releases, and we help our ISVs go to market and differentiate themselves through the use our technology and the standardisation it delivers. To date we have had several hundred organisations successfully work through our Exastack Optimized programme." How does Oracle's strategy of offering pre-integrated open platform software and hardware allow ISVs to bring their products to market more quickly? "One of the problems for many ISVs is that they have to think very carefully about the technology on which their solutions will be deployed, particularly in the cloud or hosted environments. They have to think hard about how they secure these environments, whether the concern is, for example, middleware, identity management, or securing personal data. If they don't use the technology that we build-in to our products to help them to fulfil these roles, they then have to build it themselves. This takes time, requires testing, and must be maintained. By taking advantage of our technology, partners will now know that they have a standard platform. They will know that they can confidently talk about implementation being the same every time they do it. Very large ISV applications could once take a year or two to be implemented at an on-premise environment. But it wasn't just the configuration of the application that took the time, it was actually the infrastructure - the different hardware configurations, operating systems and configurations of databases and middleware. Now we strongly believe that it's all about standardisation and repeatability. It's about making sure that our partners can do it once and are then able to roll it out many different times using standard componentry." What actions would you recommend for existing ISV partners that are looking to do more business with Oracle and its customer base, not only to maximise benefits, but also to maximise partner relationships? "My team, around the world and in the EMEA region, is available and ready to talk to any of our ISVs and to explore the possibilities together. We run programmes like 'Excite' and 'Insight' to help us to understand how we can help ISVs with architecture and widen their environments. But we also want to work with, and look at, new opportunities - for example, the Machine-to-Machine (M2M) market or 'The Internet of Things'. Over the next few years, many millions, indeed billions of devices will be collecting massive amounts of data and communicating it back to the central systems where ISVs will be running their applications. The only way that our partners will be able to provide a single vendor 'end-to-end' solution is to use Oracle integrated systems at the back end and Java on the 'smart' devices collecting the data – a complete solution from device to data centre. So there are huge opportunities to work closely with our ISVs, using Oracle's complete M2M platform, to provide the infrastructure that enables them to extract maximum value from the data collected. If any partners don't know where to start or who to contact, then they can contact me directly at [email protected] or indeed any of our teams across the EMEA region. We want to work with ISVs to help them to be as successful as they possibly can through simplification and speed to market, and we also want all of the top ISVs in the world based on Oracle." What opportunities are immediately opened to new ISV partners joining the OPN? "As you know OPN is very, very important. New members will discover a huge amount of content that instantly becomes accessible to them. They can access a wealth of no-cost training and enablement materials to build their expertise in Oracle technology. They can download Oracle software and use it for development projects. They can help themselves become more competent by becoming part of a true community and uncovering new opportunities by working with Oracle and their peers in the Oracle Partner Network. As well as publishing massive amounts of information on OPN, we also hold our global Oracle OpenWorld event, at which partners play a huge role. This takes place at the end of September and the beginning of October in San Francisco. Attending ISV partners have an unrivalled opportunity to contribute to elements such as the OpenWorld / OPN Exchange, at which they can talk to other partners and really begin thinking about how they can move their businesses on and play key roles in a very large ecosystem which revolves around technology and standardisation." Finally, are there any other messages that you would like to share with the Oracle ISV community? "The crucial message that I always like to reinforce is architecture, architecture and architecture! The key opportunities that ISVs have today revolve around standardising their architectures so that they can confidently think: “I will I be able to do exactly the same thing whenever a customer is looking to deploy on-premise, hosted or in the cloud”. The right architecture is critical to being competitive and to really start changing the game. We want to help our ISV partners to do just that; to establish standard architecture and to seize the opportunities it opens up for them. New market opportunities like M2M are enormous - just look at how many devices are all around you right now. We can help our partners to interface with these devices more effectively while thinking about their entire ecosystem, rather than just the piece that they have traditionally focused upon. With standardised architecture, we can help people dramatically improve their speed, reach, agility and delivery of enhanced customer satisfaction and value all the way from the Java side to their centralised systems. All Oracle ISV partners must take advantage of these opportunities, which is why Oracle will continue to invest in and support them." -- Gergely Strbik is Oracle Hardware and Software Product Manager for Avnet in Hungary. Avnet Technology Solutions is an OracleValue Added Distributor focused on the development of the existing Oracle channel. This includes the recruitment and enablement of Oracle partners as well as driving deeper adoption of Oracle's technology and application products within the IT channel. "The main business benefits of ODA for our customers and partners are scalability, flexibility, a great price point for the high performance delivered, and the easily configurable embedded Linux operating system. People welcome a lower point of entry and the ability to grow capacity on demand as their business expands." "Marketing and selling the ODA requires another way of thinking because it is an appliance. We have to transform the ways in which our partners and customers think from buying hardware and software independently to buying complete solutions. Successful early adopters and satisfied customer reactions will certainly help us to sell the ODA. We will have more experience with the product after the first deliveries and installations—end users need to see the power and benefits for themselves." "Our typical ODA customers will be those looking for complete solutions from a single reseller partner who is also able to manage the appliance. They will have enjoyed using Oracle Database but now want a new product that is able to unlock new levels of performance. A higher proportion of potential customers will come from our existing Oracle base, with around 30% from new business, but we intend to evangelise the ODA on the market to see how we can change this balance as all our customers adjust to the concept of 'Hardware and Software, Engineered to Work Together'. -- Back to the welcome page

    Read the article

  • Server compromised. Bounce message contains many email addresses message was not sent to

    - by Tim Duncklee
    This is not a dupe. Please read and understand the issue before marking this as a duplicate question that has been answered already. Several customers are reporting bounce messages like the one below. At first I thought their computers had a virus but then I received one that was server generated so the problem is with the server. I've inspected the logs and these email addresses do not appear in the logs. The only thing I see that I do not remember seeing in the past are entries like this: Apr 30 13:34:49 psa86 qmail-queue-handlers[20994]: hook_dir = '/var/qmail//handlers/before-queue' Apr 30 13:34:49 psa86 qmail-queue-handlers[20994]: recipient[3] = '[email protected]' Apr 30 13:34:49 psa86 qmail-queue-handlers[20994]: handlers dir = '/var/qmail//handlers/before-queue/recipient/[email protected]' I've searched here and the web and maybe I'm just not entering the right search terms but I find nothing on this issue. Does anyone know how a hacker would attach additional email addresses to a message at the server and have them not appear in the logs? CentOS release 5.4, Plesk 8.6, QMail 1.03 Hi. This is the qmail-send program at psa.aaaaaa.com. I'm afraid I wasn't able to deliver your message to the following addresses. This is a permanent error; I've given up. Sorry it didn't work out. <[email protected]>: 82.201.133.227 does not like recipient. Remote host said: 550 #5.1.0 Address rejected. Giving up on 82.201.133.227. <[email protected]>: 64.18.7.10 does not like recipient. Remote host said: 550 No such user - psmtp Giving up on 64.18.7.10. <[email protected]>: 173.194.68.27 does not like recipient. Remote host said: 550-5.1.1 The email account that you tried to reach does not exist. Please try 550-5.1.1 double-checking the recipient's email address for typos or 550-5.1.1 unnecessary spaces. Learn more at 550 5.1.1 http://support.google.com/mail/bin/answer.py?answer=6596 w8si1903qag.18 - gsmtp Giving up on 173.194.68.27. <[email protected]>: 207.115.36.23 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.36.23. <[email protected]>: 207.115.37.22 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.37.22. <[email protected]>: 207.115.37.20 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.37.20. <[email protected]>: 207.115.37.23 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.37.23. <[email protected]>: 207.115.36.22 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.36.22. <[email protected]>: 74.205.16.140 does not like recipient. Remote host said: 553 sorry, that domain isn't in my list of allowed rcpthosts; no valid cert for gatewaying (#5.7.1) Giving up on 74.205.16.140. <[email protected]>: 207.115.36.20 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.36.20. <[email protected]>: 207.115.37.21 does not like recipient. Remote host said: 550 5.2.1 <[email protected]>... Addressee unknown, relay=[174.142.62.210] Giving up on 207.115.37.21. <[email protected]>: 192.169.41.23 failed after I sent the message. Remote host said: 554 qq Sorry, no valid recipients (#5.1.3) --- Below this line is a copy of the message. Return-Path: <[email protected]> Received: (qmail 15962 invoked from network); 1 May 2013 06:49:34 -0400 Received: from exprod6mo107.postini.com (64.18.1.18) by psa.aaaaaa.com with (DHE-RSA-AES256-SHA encrypted) SMTP; 1 May 2013 06:49:34 -0400 Received: from aaaaaa.com (exprod6lut001.postini.com [64.18.1.199]) by exprod6mo107.postini.com (Postfix) with SMTP id 47F80B8CA4 for <[email protected]>; Wed, 1 May 2013 03:49:33 -0700 (PDT) From: "Support" <[email protected]> To: [email protected] Subject: Detected Potential Junk Mail Date: Wed, 1 May 2013 03:49:33 -0700 Dear [email protected], junk mail protection service has detected suspicious email message(s) since your last visit and directed them to your Message Center. You can inspect your suspicious email at: ... UPDATE: After not seeing this problem for a while, I personally sent a message and immediately got a bounce with several bad addresses that I know I did not send to. These are addresses that are not on my system or on the server. This problem happens with both Mac and Windows clients and with messages generated from Postini and sent to users on my system. This is NOT backscatter. If it was backscatter it would not have the contents of my message in it. UPDATE #2 Here is another bounce. This one was sent by me and the bounce came back immediately. Hi. This is the qmail-send program at psa.aaaaaa.com. I'm afraid I wasn't able to deliver your message to the following addresses. This is a permanent error; I've given up. Sorry it didn't work out. <[email protected]>: 71.74.56.227 does not like recipient. Remote host said: 550 5.1.1 <[email protected]>... User unknown Giving up on 71.74.56.227. <[email protected]>: Connected to 208.34.236.3 but sender was rejected. Remote host said: 550 5.7.1 This system is configured to reject mail from 174.142.62.210 [174.142.62.210] (Host blacklisted - Found on Realtime Black List server 'bl.mailspike.net') <[email protected]>: 66.96.80.22 failed after I sent the message. Remote host said: 552 sorry, mailbox [email protected] is over quota temporarily (#5.1.1) <[email protected]>: 83.145.109.52 does not like recipient. Remote host said: 550 5.1.1 <[email protected]>: Recipient address rejected: User unknown in virtual mailbox table Giving up on 83.145.109.52. <[email protected]>: 69.49.101.234 does not like recipient. Remote host said: 550 5.7.1 <[email protected]>... H:M12 [174.142.62.210] Connection refused due to abuse. Please see http://mailspike.org/anubis/lookup.html or contact your E-mail provider. Giving up on 69.49.101.234. <[email protected]>: 212.55.154.36 does not like recipient. Remote host said: 550-The account has been suspended for inactivity 550 A conta do destinatario encontra-se suspensa por inactividade (#5.2.1) Giving up on 212.55.154.36. <[email protected]>: 199.168.90.102 failed after I sent the message. Remote host said: 552 Transaction [email protected] failed, remote said "550 No such user" (#5.1.1) <[email protected]>: 98.136.217.192 failed after I sent the message. Remote host said: 554 delivery error: dd Sorry your message to [email protected] cannot be delivered. This account has been disabled or discontinued [#102]. - mta1210.sbc.mail.gq1.yahoo.com --- Below this line is a copy of the message. Return-Path: <[email protected]> Received: (qmail 2618 invoked from network); 2 Jun 2013 22:32:51 -0400 Received: from 75-138-254-239.dhcp.jcsn.tn.charter.com (HELO ?192.168.0.66?) (75.138.254.239) by psa.aaaaaa.com with SMTP; 2 Jun 2013 22:32:48 -0400 User-Agent: Microsoft-Entourage/12.34.0.120813 Date: Sun, 02 Jun 2013 21:32:39 -0500 Subject: Refinance From: Tim Duncklee <[email protected]> To: Scott jones <[email protected]> Message-ID: <CDD16A79.67344%[email protected]> Thread-Topic: Reference Thread-Index: Ac5gAp2QmTs+LRv0SEOy7AJTX2DWzQ== Mime-version: 1.0 Content-type: multipart/mixed; boundary="B_3453053568_12034440" > This message is in MIME format. Since your mail reader does not understand this format, some or all of this message may not be legible. --B_3453053568_12034440 Content-type: multipart/related; boundary="B_3453053568_11982218" --B_3453053568_11982218 Content-type: multipart/alternative; boundary="B_3453053568_12000660" --B_3453053568_12000660 Content-type: text/plain; charset="ISO-8859-1" Content-transfer-encoding: quoted-printable Scott, ... email body here ... Here are the relevant log entries: Jun 2 22:32:50 psa qmail-queue[2616]: mail: all addreses are uncheckable - need to skip scanning (by deny mode) Jun 2 22:32:50 psa qmail-queue[2616]: scan: the message(drweb.tmp.i2SY0n) sent by [email protected] to [email protected] should be passed without checks, because contains uncheckable addresses Jun 2 22:32:50 psa qmail-queue-handlers[2617]: Handlers Filter before-queue for qmail started ... Jun 2 22:32:50 psa qmail-queue-handlers[2617]: [email protected] Jun 2 22:32:50 psa qmail-queue-handlers[2617]: [email protected] Jun 2 22:32:50 psa qmail-queue-handlers[2617]: hook_dir = '/var/qmail//handlers/before-queue' Jun 2 22:32:50 psa qmail-queue-handlers[2617]: recipient[3] = '[email protected]' Jun 2 22:32:50 psa qmail-queue-handlers[2617]: handlers dir = '/var/qmail//handlers/before-queue/recipient/[email protected]' Jun 2 22:32:51 psa qmail: 1370226771.060211 starting delivery 57: msg 1540285 to remote [email protected] Jun 2 22:32:51 psa qmail: 1370226771.060402 status: local 0/10 remote 1/20 Jun 2 22:32:51 psa qmail: 1370226771.060556 new msg 4915232 Jun 2 22:32:51 psa qmail: 1370226771.060671 info msg 4915232: bytes 687899 from <[email protected]> qp 2618 uid 2020 Jun 2 22:32:51 psa qmail-remote-handlers[2619]: Handlers Filter before-remote for qmail started ... Jun 2 22:32:51 psa qmail-queue-handlers[2617]: starter: submitter[2618] exited normally Jun 2 22:32:51 psa qmail-remote-handlers[2619]: from= Jun 2 22:32:51 psa qmail-remote-handlers[2619]: [email protected] Jun 2 22:32:51 psa qmail: 1370226771.078732 starting delivery 58: msg 4915232 to remote [email protected] Jun 2 22:32:51 psa qmail: 1370226771.078825 status: local 0/10 remote 2/20 Jun 2 22:32:51 psa qmail-remote-handlers[2621]: Handlers Filter before-remote for qmail started ... Jun 2 22:32:51 psa qmail-remote-handlers[2621]: [email protected] Jun 2 22:32:51 psa qmail-remote-handlers[2621]: [email protected]

    Read the article

  • Cisco ASA: How to route PPPoE-assigned subnet?

    - by Martijn Heemels
    We've just received a fiber uplink, and I'm trying to configure our Cisco ASA 5505 to properly use it. The provider requires us to connect via PPPoE, and I managed to configure the ASA as a PPPoE client and establish a connection. The ASA is assigned an IP address by PPPoE, and I can ping out from the ASA to the internet, but I should have access to an entire /28 subnet. I can't figure out how to get that subnet configured on the ASA, so that I can route or NAT the available public addresses to various internal hosts. My assigned range is: 188.xx.xx.176/28 The address I get via PPPoE is 188.xx.xx.177/32, which according to our provider is our Default Gateway address. They claim the subnet is correctly routed to us on their side. How does the ASA know which range it is responsible for on the Fiber interface? How do I use the addresses from my range? To clarify my config; The ASA is currently configured to default-route to our ADSL uplink on port Ethernet0/0 (interface vlan2, nicknamed Outside). The fiber is connected to port Ethernet0/2 (interface vlan50, nicknamed Fiber) so I can configure and test it before making it the default route. Once I'm clear on how to set it all up, I'll fully replace the Outside interface with Fiber. My config (rather long): : Saved : ASA Version 8.3(2)4 ! hostname gw domain-name example.com enable password ****** encrypted passwd ****** encrypted names name 10.10.1.0 Inside-dhcp-network description Desktops and clients that receive their IP via DHCP name 10.10.0.208 svn.example.com description Subversion server name 10.10.0.205 marvin.example.com description LAMP development server name 10.10.0.206 dns.example.com description DNS, DHCP, NTP ! interface Vlan2 description Old ADSL WAN connection nameif outside security-level 0 ip address 192.168.1.2 255.255.255.252 ! interface Vlan10 description LAN vlan 10 Regular LAN traffic nameif inside security-level 100 ip address 10.10.0.254 255.255.0.0 ! interface Vlan11 description LAN vlan 11 Lab/test traffic nameif lab security-level 90 ip address 10.11.0.254 255.255.0.0 ! interface Vlan20 description LAN vlan 20 ISCSI traffic nameif iscsi security-level 100 ip address 10.20.0.254 255.255.0.0 ! interface Vlan30 description LAN vlan 30 DMZ traffic nameif dmz security-level 50 ip address 10.30.0.254 255.255.0.0 ! interface Vlan40 description LAN vlan 40 Guests access to the internet nameif guests security-level 50 ip address 10.40.0.254 255.255.0.0 ! interface Vlan50 description New WAN Corporate Internet over fiber nameif fiber security-level 0 pppoe client vpdn group KPN ip address pppoe ! interface Ethernet0/0 switchport access vlan 2 speed 100 duplex full ! interface Ethernet0/1 switchport trunk allowed vlan 10,11,30,40 switchport trunk native vlan 10 switchport mode trunk ! interface Ethernet0/2 switchport access vlan 50 speed 100 duplex full ! interface Ethernet0/3 shutdown ! interface Ethernet0/4 shutdown ! interface Ethernet0/5 switchport access vlan 20 ! interface Ethernet0/6 shutdown ! interface Ethernet0/7 shutdown ! boot system disk0:/asa832-4-k8.bin ftp mode passive clock timezone CEST 1 clock summer-time CEDT recurring last Sun Mar 2:00 last Sun Oct 3:00 dns domain-lookup inside dns server-group DefaultDNS name-server dns.example.com domain-name example.com same-security-traffic permit inter-interface same-security-traffic permit intra-interface object network inside-net subnet 10.10.0.0 255.255.0.0 object network svn.example.com host 10.10.0.208 object network marvin.example.com host 10.10.0.205 object network lab-net subnet 10.11.0.0 255.255.0.0 object network dmz-net subnet 10.30.0.0 255.255.0.0 object network guests-net subnet 10.40.0.0 255.255.0.0 object network dhcp-subnet subnet 10.10.1.0 255.255.255.0 description DHCP assigned addresses on Vlan 10 object network Inside-vpnpool description Pool of assignable addresses for VPN clients object network vpn-subnet subnet 10.10.3.0 255.255.255.0 description Address pool assignable to VPN clients object network dns.example.com host 10.10.0.206 description DNS, DHCP, NTP object-group service iscsi tcp description iscsi storage traffic port-object eq 3260 access-list outside_access_in remark Allow access from outside to HTTP on svn. access-list outside_access_in extended permit tcp any object svn.example.com eq www access-list Insiders!_splitTunnelAcl standard permit 10.10.0.0 255.255.0.0 access-list iscsi_access_in remark Prevent disruption of iscsi traffic from outside the iscsi vlan. access-list iscsi_access_in extended deny tcp any interface iscsi object-group iscsi log warnings ! snmp-map DenyV1 deny version 1 ! pager lines 24 logging enable logging timestamp logging asdm-buffer-size 512 logging monitor warnings logging buffered warnings logging history critical logging asdm errors logging flash-bufferwrap logging flash-minimum-free 4000 logging flash-maximum-allocation 2000 mtu outside 1500 mtu inside 1500 mtu lab 1500 mtu iscsi 9000 mtu dmz 1500 mtu guests 1500 mtu fiber 1492 ip local pool DHCP_VPN 10.10.3.1-10.10.3.20 mask 255.255.0.0 ip verify reverse-path interface outside no failover icmp unreachable rate-limit 10 burst-size 5 asdm image disk0:/asdm-635.bin asdm history enable arp timeout 14400 nat (inside,outside) source static any any destination static vpn-subnet vpn-subnet ! object network inside-net nat (inside,outside) dynamic interface object network svn.example.com nat (inside,outside) static interface service tcp www www object network lab-net nat (lab,outside) dynamic interface object network dmz-net nat (dmz,outside) dynamic interface object network guests-net nat (guests,outside) dynamic interface access-group outside_access_in in interface outside access-group iscsi_access_in in interface iscsi route outside 0.0.0.0 0.0.0.0 192.168.1.1 1 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 dynamic-access-policy-record DfltAccessPolicy aaa-server SBS2003 protocol radius aaa-server SBS2003 (inside) host 10.10.0.204 timeout 5 key ***** aaa authentication enable console SBS2003 LOCAL aaa authentication ssh console SBS2003 LOCAL aaa authentication telnet console SBS2003 LOCAL http server enable http 10.10.0.0 255.255.0.0 inside snmp-server host inside 10.10.0.207 community ***** version 2c snmp-server location Server room snmp-server contact [email protected] snmp-server community ***** snmp-server enable traps snmp authentication linkup linkdown coldstart snmp-server enable traps syslog crypto ipsec transform-set TRANS_ESP_AES-256_SHA esp-aes-256 esp-sha-hmac crypto ipsec transform-set TRANS_ESP_AES-256_SHA mode transport crypto ipsec transform-set ESP-AES-256-MD5 esp-aes-256 esp-md5-hmac crypto ipsec transform-set ESP-DES-SHA esp-des esp-sha-hmac crypto ipsec transform-set ESP-DES-MD5 esp-des esp-md5-hmac crypto ipsec transform-set ESP-AES-192-MD5 esp-aes-192 esp-md5-hmac crypto ipsec transform-set ESP-3DES-MD5 esp-3des esp-md5-hmac crypto ipsec transform-set ESP-AES-256-SHA esp-aes-256 esp-sha-hmac crypto ipsec transform-set ESP-AES-128-SHA esp-aes esp-sha-hmac crypto ipsec transform-set ESP-AES-192-SHA esp-aes-192 esp-sha-hmac crypto ipsec transform-set ESP-AES-128-MD5 esp-aes esp-md5-hmac crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 crypto dynamic-map outside_dyn_map 20 set pfs group5 crypto dynamic-map outside_dyn_map 20 set transform-set TRANS_ESP_AES-256_SHA crypto dynamic-map SYSTEM_DEFAULT_CRYPTO_MAP 65535 set transform-set ESP-AES-128-SHA ESP-AES-128-MD5 ESP-AES-192-SHA ESP-AES-192-MD5 ESP-AES-256-SHA ESP-AES-256-MD5 ESP-3DES-SHA ESP-3DES-MD5 ESP-DES-SHA ESP-DES-MD5 crypto map outside_map 65535 ipsec-isakmp dynamic SYSTEM_DEFAULT_CRYPTO_MAP crypto map outside_map interface outside crypto isakmp enable outside crypto isakmp policy 1 authentication pre-share encryption 3des hash sha group 2 lifetime 86400 telnet 10.10.0.0 255.255.0.0 inside telnet timeout 5 ssh scopy enable ssh 10.10.0.0 255.255.0.0 inside ssh timeout 5 ssh version 2 console timeout 30 management-access inside vpdn group KPN request dialout pppoe vpdn group KPN localname INSIDERS vpdn group KPN ppp authentication pap vpdn username INSIDERS password ***** store-local dhcpd address 10.40.1.0-10.40.1.100 guests dhcpd dns 8.8.8.8 8.8.4.4 interface guests dhcpd update dns interface guests dhcpd enable guests ! threat-detection basic-threat threat-detection scanning-threat threat-detection statistics host number-of-rate 2 threat-detection statistics port number-of-rate 3 threat-detection statistics protocol number-of-rate 3 threat-detection statistics access-list threat-detection statistics tcp-intercept rate-interval 30 burst-rate 400 average-rate 200 ntp server dns.example.com source inside prefer webvpn group-policy DfltGrpPolicy attributes vpn-tunnel-protocol IPSec l2tp-ipsec group-policy Insiders! internal group-policy Insiders! attributes wins-server value 10.10.0.205 dns-server value 10.10.0.206 vpn-tunnel-protocol IPSec l2tp-ipsec split-tunnel-policy tunnelspecified split-tunnel-network-list value Insiders!_splitTunnelAcl default-domain value example.com username martijn password ****** encrypted privilege 15 username marcel password ****** encrypted privilege 15 tunnel-group DefaultRAGroup ipsec-attributes pre-shared-key ***** tunnel-group Insiders! type remote-access tunnel-group Insiders! general-attributes address-pool DHCP_VPN authentication-server-group SBS2003 LOCAL default-group-policy Insiders! tunnel-group Insiders! ipsec-attributes pre-shared-key ***** ! class-map global-class match default-inspection-traffic class-map type inspect http match-all asdm_medium_security_methods match not request method head match not request method post match not request method get ! ! policy-map type inspect dns preset_dns_map parameters message-length maximum 512 policy-map type inspect http http_inspection_policy parameters protocol-violation action drop-connection policy-map global-policy class global-class inspect dns inspect esmtp inspect ftp inspect h323 h225 inspect h323 ras inspect http inspect icmp inspect icmp error inspect mgcp inspect netbios inspect pptp inspect rtsp inspect snmp DenyV1 ! service-policy global-policy global smtp-server 123.123.123.123 prompt hostname context call-home profile CiscoTAC-1 no active destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService destination address email [email protected] destination transport-method http subscribe-to-alert-group diagnostic subscribe-to-alert-group environment subscribe-to-alert-group inventory periodic monthly subscribe-to-alert-group configuration periodic monthly subscribe-to-alert-group telemetry periodic daily hpm topN enable Cryptochecksum:a76bbcf8b19019771c6d3eeecb95c1ca : end asdm image disk0:/asdm-635.bin asdm location svn.example.com 255.255.255.255 inside asdm location marvin.example.com 255.255.255.255 inside asdm location dns.example.com 255.255.255.255 inside asdm history enable

    Read the article

  • Compass - Lucene Full text search. Structure and Best Practice.

    - by Rob
    Hi, I have played about with the tutorial and Compass itself for a bit now. I have just started to ramp up the use of it and have found that the performance slows drastically. I am certain that this is due to my mappings and the relationships that I have between entities and was looking for suggestions about how this should be best done. Also as a side question I wanted to know if a variable is in an @searchableComponent but is not defined as @searchable when the component object is pulled out of Compass results will you be able to access that variable? I have 3 main classes that I want to search on - Provider, Location and Activity. They are all inter-related - a Provider can have many locations and activites and has an address; A Location has 1 provider, many activities and an address; An activity has 1 provider and many locations. I have a join table between activity and Location called ActivityLocation that can later provider additional information about the relationship. My classes are mapped to compass as shown below for provider location activity and address. This works but gives a huge index and searches on it are comparatively slow, any advice would be great. Cheers, Rob @Searchable public class AbstractActivity extends LightEntity implements Serializable { /** * Serialisation ID */ private static final long serialVersionUID = 3445339493203407152L; @SearchableId (name="actID") private Integer activityId =-1; @SearchableComponent() private Provider provider; @SearchableComponent(prefix = "activity") private Category category; private String status; @SearchableProperty (name = "activityName") @SearchableMetaData (name = "activityshortactivityName") private String activityName; @SearchableProperty (name = "shortDescription") @SearchableMetaData (name = "activityshortDescription") private String shortDescription; @SearchableProperty (name = "abRating") @SearchableMetaData (name = "activityabRating") private Integer abRating; private String contactName; private String phoneNumber; private String faxNumber; private String email; private String url; @SearchableProperty (name = "completed") @SearchableMetaData (name = "activitycompleted") private Boolean completed= false; @SearchableProperty (name = "isprivate") @SearchableMetaData (name = "activityisprivate") private Boolean isprivate= false; private Boolean subs= false; private Boolean newsfeed= true; private Set news = new HashSet(0); private Set ActivitySession = new HashSet(0); private Set payments = new HashSet(0); private Set userclub = new HashSet(0); private Set ActivityOpeningTimes = new HashSet(0); private Set Events = new HashSet(0); private User creator; private Set userInterested = new HashSet(0); boolean freeEdit = false; private Integer activityType =0; @SearchableComponent (maxDepth=2) private Set activityLocations = new HashSet(0); private Double userRating = -1.00; Getters and Setters .... @Searchable public class AbstractLocation extends LightEntity implements Serializable { /** * Serialisation ID */ private static final long serialVersionUID = 3445339493203407152L; @SearchableId (name="locationID") private Integer locationId; @SearchableComponent (prefix = "location") private Category category; @SearchableComponent (maxDepth=1) private Provider provider; @SearchableProperty (name = "status") @SearchableMetaData (name = "locationstatus") private String status; @SearchableProperty private String locationName; @SearchableProperty (name = "shortDescription") @SearchableMetaData (name = "locationshortDescription") private String shortDescription; @SearchableProperty (name = "abRating") @SearchableMetaData (name = "locationabRating") private Integer abRating; private Integer boolUseProviderDetails; @SearchableProperty (name = "contactName") @SearchableMetaData (name = "locationcontactName") private String contactName; @SearchableComponent private Address address; @SearchableProperty (name = "phoneNumber") @SearchableMetaData (name = "locationphoneNumber") private String phoneNumber; @SearchableProperty (name = "faxNumber") @SearchableMetaData (name = "locationfaxNumber") private String faxNumber; @SearchableProperty (name = "email") @SearchableMetaData (name = "locationemail") private String email; @SearchableProperty (name = "url") @SearchableMetaData (name = "locationurl") private String url; @SearchableProperty (name = "completed") @SearchableMetaData (name = "locationcompleted") private Boolean completed= false; @SearchableProperty (name = "isprivate") @SearchableMetaData (name = "locationisprivate") private Boolean isprivate= false; @SearchableComponent private Set activityLocations = new HashSet(0); private Set LocationOpeningTimes = new HashSet(0); private Set events = new HashSet(0); @SearchableProperty (name = "adult_cost") @SearchableMetaData (name = "locationadult_cost") private String adult_cost =""; @SearchableProperty (name = "child_cost") @SearchableMetaData (name = "locationchild_cost") private String child_cost =""; @SearchableProperty (name = "family_cost") @SearchableMetaData (name = "locationfamily_cost") private String family_cost =""; private Double userRating = -1.00; private Set costs = new HashSet(0); private String cost_caveats =""; Getters and Setters .... @Searchable public class AbstractActivitylocations implements java.io.Serializable { /** * */ private static final long serialVersionUID = 1365110541466870626L; @SearchableId (name="id") private Integer id; @SearchableComponent private Activity activity; @SearchableComponent private Location location; Getters and Setters..... @Searchable public class AbstractProvider extends LightEntity implements Serializable { private static final long serialVersionUID = 3060354043429663058L; @SearchableId private Integer providerId = -1; @SearchableComponent (prefix = "provider") private Category category; @SearchableProperty (name = "businessName") @SearchableMetaData (name = "providerbusinessName") private String businessName; @SearchableProperty (name = "contactName") @SearchableMetaData (name = "providercontactName") private String contactName; @SearchableComponent private Address address; @SearchableProperty (name = "phoneNumber") @SearchableMetaData (name = "providerphoneNumber") private String phoneNumber; @SearchableProperty (name = "faxNumber") @SearchableMetaData (name = "providerfaxNumber") private String faxNumber; @SearchableProperty (name = "email") @SearchableMetaData (name = "provideremail") private String email; @SearchableProperty (name = "url") @SearchableMetaData (name = "providerurl") private String url; @SearchableProperty (name = "status") @SearchableMetaData (name = "providerstatus") private String status; @SearchableProperty (name = "notes") @SearchableMetaData (name = "providernotes") private String notes; @SearchableProperty (name = "shortDescription") @SearchableMetaData (name = "providershortDescription") private String shortDescription; private Boolean completed = false; private Boolean isprivate = false; private Double userRating = -1.00; private Integer ABRating = 1; @SearchableComponent private Set locations = new HashSet(0); @SearchableComponent private Set activities = new HashSet(0); private Set ProviderOpeningTimes = new HashSet(0); private User creator; boolean freeEdit = false; Getters and Setters... Thanks for reading!! Rob

    Read the article

  • Authoritative sources about Database vs. Flatfile decision

    - by FastAl
    <tldr>looking for a reference to a book or other undeniably authoritative source that gives reasons when you should choose a database vs. when you should choose other storage methods. I have provided an un-authoritative list of reasons about 2/3 of the way down this post.</tldr> I have a situation at my company where a database is being used where it would be better to use another solution (in this case, an auto-generated piece of source code that contains a static lookup table, searched by binary sort). Normally, a database would be an OK solution even though the problem does not require a database, e.g, none of the elements of ACID are needed, as it is read-only data, updated about every 3-5 years (also requiring other sourcecode changes), and fits in memory, and can be keyed into via binary search (a tad faster than db, but speed is not an issue). The problem is that this code runs on our enterprise server, but is shared with several PC platforms (some disconnected, some use a central DB, etc.), and parts of it are managed by multiple programming units, parts by the DBAs, parts even by mathematicians in another department, etc. These hit their own platform’s version of their databases (containing their own copy of the static data). What happens is that every implementation, every little change, something different goes wrong. There are many other issues as well. I can’t even use a flatfile, because one mode of running on our enterprise server does not have permission to read files (only databases, and of course, its own literal storage, e.g., in-source table). Of course, other parts of the system use databases in proper, less obscure manners; there is no problem with those parts. So why don’t we just change it? I don’t have administrative ability to force a change. But I’m affected because sometimes I have to help fix the problems, but mostly because it causes outages and tons of extra IT time by other programmers and d*mmit that makes me mad! The reason neither management, nor the designers of the system, can see the problem is that they propose a solution that won’t work: increase communication; implement more safeguards and standards; etc. But every time, in a different part of the already-pared-down but still multi-step processes, a few different diligent, hard-working, top performing IT personnel make a unique subtle error that causes it to fail, sometimes after the last round of testing! And in general these are not single-person failures, but understandable miscommunications. And communication at our company is actually better than most. People just don't think that's the case because they haven't dug into the matter. However, I have it on very good word from somebody with extensive formal study of sociology and psychology that the relatively small amount of less-than-proper database usage in this gigantic cross-platform multi-source, multi-language project is bureaucratically un-maintainable. Impossible. No chance. At least with Human Beings in the loop, and it can’t be automated. In addition, the management and developers who could change this, though intelligent and capable, don’t understand the rigidity of this ‘how humans are’ issue, and are not convincible on the matter. The reason putting the static data in sourcecode will solve the problem is, although the solution is less sexy than a database, it would function with no technical drawbacks; and since the sharing of sourcecode already works very well, you basically erase any database-related effort from this section of the project, along with all the drawbacks of it that are causing problems. OK, that’s the background, for the curious. I won’t be able to convince management that this is an unfixable sociological problem, and that the real solution is coding around these limits of human nature, just as you would code around a bug in a 3rd party component that you can’t change. So what I have to do is exploit the unsuitableness of the database solution, and not do it using logic, but rather authority. I am aware of many reasons, and posts on this site giving reasons for one over the other; I’m not looking for lists of reasons like these (although you can add a comment if I've miss a doozy): WHY USE A DATABASE? instead of flatfile/other DB vs. file: if you need... Random Read / Transparent search optimization Advanced / varied / customizable Searching and sorting capabilities Transaction/rollback Locks, semaphores Concurrency control / Shared users Security 1-many/m-m is easier Easy modification Scalability Load Balancing Random updates / inserts / deletes Advanced query Administrative control of design, etc. SQL / learning curve Debugging / Logging Centralized / Live Backup capabilities Cached queries / dvlp & cache execution plans Interleaved update/read Referential integrity, avoid redundant/missing/corrupt/out-of-sync data Reporting (from on olap or oltp db) / turnkey generation tools [Disadvantages:] Important to get right the first time - professional design - but only b/c it's meant to last s/w & h/w cost Usu. over a network, speed issue (best vs. best design vs. local=even then a separate process req's marshalling/netwk layers/inter-p comm) indicies and query processing can stand in the way of simple processing (vs. flatfile) WHY USE FLATFILE: If you only need... Sequential Row processing only Limited usage append only (no reading, no master key/update) Only Update the record you're reading (fixed length recs only) Too big to fit into memory If Local disk / read-ahead network connection Portability / small system Email / cut & Paste / store as document by novice - simple format Low design learning curve but high cost later WHY USE IN-MEMORY/TABLE (tables, arrays, etc.): if you need... Processing a single db/ff record that was imported Known size of data Static data if hardcoding the table Narrow, unchanging use (e.g., one program or proc) -includes a class that will be shared, but encapsulates its data manipulation Extreme speed needed / high transaction frequency Random access - but search is dependent on implementation Following are some other posts about the topic: http://stackoverflow.com/questions/1499239/database-vs-flat-text-file-what-are-some-technical-reasons-for-choosing-one-over http://stackoverflow.com/questions/332825/are-flat-file-databases-any-good http://stackoverflow.com/questions/2356851/database-vs-flat-files http://stackoverflow.com/questions/514455/databases-vs-plain-text/514530 What I’d like to know is if anybody could recommend a hard, authoritative source containing these reasons. I’m looking for a paper book I can buy, or a reputable website with whitepapers about the issue (e.g., Microsoft, IBM), not counting the user-generated content on those sites. This will have a greater change to elicit a change that I’m looking for: less wasted programmer time, and more reliable programs. Thanks very much for your help. You win a prize for reading such a large post!

    Read the article

  • How do I prove I should put a table of values in source code instead of a database table?

    - by FastAl
    <tldr>looking for a reference to a book or other undeniably authoritative source that gives reasons when you should choose a database vs. when you should choose other storage methods. I have provided an un-authoritative list of reasons about 2/3 of the way down this post.</tldr> I have a situation at my company where a database is being used where it would be better to use another solution (in this case, an auto-generated piece of source code that contains a static lookup table, searched by binary sort). Normally, a database would be an OK solution even though the problem does not require a database, e.g, none of the elements of ACID are needed, as it is read-only data, updated about every 3-5 years (also requiring other sourcecode changes), and fits in memory, and can be keyed into via binary search (a tad faster than db, but speed is not an issue). The problem is that this code runs on our enterprise server, but is shared with several PC platforms (some disconnected, some use a central DB, etc.), and parts of it are managed by multiple programming units, parts by the DBAs, parts even by mathematicians in another department, etc. These hit their own platform’s version of their databases (containing their own copy of the static data). What happens is that every implementation, every little change, something different goes wrong. There are many other issues as well. I can’t even use a flatfile, because one mode of running on our enterprise server does not have permission to read files (only databases, and of course, its own literal storage, e.g., in-source table). Of course, other parts of the system use databases in proper, less obscure manners; there is no problem with those parts. So why don’t we just change it? I don’t have administrative ability to force a change. But I’m affected because sometimes I have to help fix the problems, but mostly because it causes outages and tons of extra IT time by other programmers and d*mmit that makes me mad! The reason neither management, nor the designers of the system, can see the problem is that they propose a solution that won’t work: increase communication; implement more safeguards and standards; etc. But every time, in a different part of the already-pared-down but still multi-step processes, a few different diligent, hard-working, top performing IT personnel make a unique subtle error that causes it to fail, sometimes after the last round of testing! And in general these are not single-person failures, but understandable miscommunications. And communication at our company is actually better than most. People just don't think that's the case because they haven't dug into the matter. However, I have it on very good word from somebody with extensive formal study of sociology and psychology that the relatively small amount of less-than-proper database usage in this gigantic cross-platform multi-source, multi-language project is bureaucratically un-maintainable. Impossible. No chance. At least with Human Beings in the loop, and it can’t be automated. In addition, the management and developers who could change this, though intelligent and capable, don’t understand the rigidity of this ‘how humans are’ issue, and are not convincible on the matter. The reason putting the static data in sourcecode will solve the problem is, although the solution is less sexy than a database, it would function with no technical drawbacks; and since the sharing of sourcecode already works very well, you basically erase any database-related effort from this section of the project, along with all the drawbacks of it that are causing problems. OK, that’s the background, for the curious. I won’t be able to convince management that this is an unfixable sociological problem, and that the real solution is coding around these limits of human nature, just as you would code around a bug in a 3rd party component that you can’t change. So what I have to do is exploit the unsuitableness of the database solution, and not do it using logic, but rather authority. I am aware of many reasons, and posts on this site giving reasons for one over the other; I’m not looking for lists of reasons like these (although you can add a comment if I've miss a doozy): WHY USE A DATABASE? instead of flatfile/other DB vs. file: if you need... Random Read / Transparent search optimization Advanced / varied / customizable Searching and sorting capabilities Transaction/rollback Locks, semaphores Concurrency control / Shared users Security 1-many/m-m is easier Easy modification Scalability Load Balancing Random updates / inserts / deletes Advanced query Administrative control of design, etc. SQL / learning curve Debugging / Logging Centralized / Live Backup capabilities Cached queries / dvlp & cache execution plans Interleaved update/read Referential integrity, avoid redundant/missing/corrupt/out-of-sync data Reporting (from on olap or oltp db) / turnkey generation tools [Disadvantages:] Important to get right the first time - professional design - but only b/c it's meant to last s/w & h/w cost Usu. over a network, speed issue (best vs. best design vs. local=even then a separate process req's marshalling/netwk layers/inter-p comm) indicies and query processing can stand in the way of simple processing (vs. flatfile) WHY USE FLATFILE: If you only need... Sequential Row processing only Limited usage append only (no reading, no master key/update) Only Update the record you're reading (fixed length recs only) Too big to fit into memory If Local disk / read-ahead network connection Portability / small system Email / cut & Paste / store as document by novice - simple format Low design learning curve but high cost later WHY USE IN-MEMORY/TABLE (tables, arrays, etc.): if you need... Processing a single db/ff record that was imported Known size of data Static data if hardcoding the table Narrow, unchanging use (e.g., one program or proc) -includes a class that will be shared, but encapsulates its data manipulation Extreme speed needed / high transaction frequency Random access - but search is dependent on implementation Following are some other posts about the topic: http://stackoverflow.com/questions/1499239/database-vs-flat-text-file-what-are-some-technical-reasons-for-choosing-one-over http://stackoverflow.com/questions/332825/are-flat-file-databases-any-good http://stackoverflow.com/questions/2356851/database-vs-flat-files http://stackoverflow.com/questions/514455/databases-vs-plain-text/514530 What I’d like to know is if anybody could recommend a hard, authoritative source containing these reasons. I’m looking for a paper book I can buy, or a reputable website with whitepapers about the issue (e.g., Microsoft, IBM), not counting the user-generated content on those sites. This will have a greater change to elicit a change that I’m looking for: less wasted programmer time, and more reliable programs. Thanks very much for your help. You win a prize for reading such a large post!

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • Is it possible to run dhcpd3 as non-root user in a chroot jail?

    - by Lenain
    Hi everyone. I would like to run dhcpd3 from a chroot jail on Debian Lenny. At the moment, I can run it as root from my jail. Now I want to do this as non-root user (as "-u blah -t /path/to/jail" Bind option). If I start my process like this : start-stop-daemon --chroot /home/jails/dhcp --chuid dhcp \ --start --pidfile /home/jails/dhcp/var/run/dhcp.pid --exec /usr/sbin/dhcpd3 I get stuck with these errors : Internet Systems Consortium DHCP Server V3.1.1 Copyright 2004-2008 Internet Systems Consortium. All rights reserved. For info, please visit http://www.isc.org/sw/dhcp/ unable to create icmp socket: Operation not permitted Wrote 0 deleted host decls to leases file. Wrote 0 new dynamic host decls to leases file. Wrote 0 leases to leases file. Open a socket for LPF: Operation not permitted strace : brk(0) = 0x911b000 fcntl64(0, F_GETFD) = 0 fcntl64(1, F_GETFD) = 0 fcntl64(2, F_GETFD) = 0 access("/etc/suid-debug", F_OK) = -1 ENOENT (No such file or directory) access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory) mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb775d000 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) open("/etc/ld.so.cache", O_RDONLY) = -1 ENOENT (No such file or directory) open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls/i686/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/tls/i686/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls/i686", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/tls/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/tls/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/i686/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i686/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/i686/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i686", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/libc.so.6", O_RDONLY) = 3 read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\260e\1\0004\0\0\0t"..., 512) = 512 fstat64(3, {st_mode=S_IFREG|0755, st_size=1294572, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb775c000 mmap2(NULL, 1300080, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb761e000 mmap2(0xb7756000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x138) = 0xb7756000 mmap2(0xb7759000, 9840, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7759000 close(3) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb761d000 set_thread_area({entry_number:-1 - 6, base_addr:0xb761d6b0, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0 mprotect(0xb7756000, 4096, PROT_READ) = 0 open("/dev/null", O_RDWR) = 3 close(3) = 0 brk(0) = 0x911b000 brk(0x913c000) = 0x913c000 socket(PF_FILE, SOCK_DGRAM, 0) = 3 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0 connect(3, {sa_family=AF_FILE, path="/dev/log"...}, 110) = 0 time(NULL) = 1284760816 open("/etc/localtime", O_RDONLY) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 fstat64(4, {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb761c000 read(4, "TZif2\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\f\0\0\0\f\0\0\0\0\0"..., 4096) = 2945 _llseek(4, -28, [2917], SEEK_CUR) = 0 read(4, "\nCET-1CEST,M3.5.0,M10.5.0/3\n"..., 4096) = 28 close(4) = 0 munmap(0xb761c000, 4096) = 0 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Intern"..., 73, MSG_NOSIGNAL) = 73 write(2, "Internet Systems Consortium DHCP "..., 46Internet Systems Consortium DHCP Server V3.1.1) = 46 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Copyri"..., 75, MSG_NOSIGNAL) = 75 write(2, "Copyright 2004-2008 Internet Syst"..., 48Copyright 2004-2008 Internet Systems Consortium.) = 48 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: All ri"..., 47, MSG_NOSIGNAL) = 47 write(2, "All rights reserved."..., 20All rights reserved.) = 20 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: For in"..., 77, MSG_NOSIGNAL) = 77 write(2, "For info, please visit http://www"..., 50For info, please visit http://www.isc.org/sw/dhcp/) = 50 write(2, "\n"..., 1 ) = 1 socket(PF_FILE, SOCK_STREAM, 0) = 4 fcntl64(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(4) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 4 fcntl64(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(4) = 0 open("/etc/nsswitch.conf", O_RDONLY) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=475, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb761c000 read(4, "# /etc/nsswitch.conf\n#\n# Example "..., 4096) = 475 read(4, ""..., 4096) = 0 close(4) = 0 munmap(0xb761c000, 4096) = 0 open("/lib/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/libnss_files.so.2", O_RDONLY) = 4 read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320\30\0\0004\0\0\0\250"..., 512) = 512 fstat64(4, {st_mode=S_IFREG|0644, st_size=38408, ...}) = 0 mmap2(NULL, 41624, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0xb7612000 mmap2(0xb761b000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x8) = 0xb761b000 close(4) = 0 open("/etc/services", O_RDONLY|O_CLOEXEC) = 4 fcntl64(4, F_GETFD) = 0x1 (flags FD_CLOEXEC) fstat64(4, {st_mode=S_IFREG|0644, st_size=18480, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7611000 read(4, "# Network services, Internet styl"..., 4096) = 4096 read(4, "9/tcp\t\t\t\t# Quick Mail Transfer Pr"..., 4096) = 4096 read(4, "note\t1352/tcp\tlotusnotes\t# Lotus "..., 4096) = 4096 read(4, "tion\nafs3-kaserver\t7004/udp\nafs3-"..., 4096) = 4096 read(4, "backup\t2989/tcp\t\t\t# Afmbackup sys"..., 4096) = 2096 read(4, ""..., 4096) = 0 close(4) = 0 munmap(0xb7611000, 4096) = 0 time(NULL) = 1284760816 open("/etc/protocols", O_RDONLY|O_CLOEXEC) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=2626, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7611000 read(4, "# Internet (IP) protocols\n#\n# Upd"..., 4096) = 2626 close(4) = 0 munmap(0xb7611000, 4096) = 0 socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = -1 EPERM (Operation not permitted) time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: unable"..., 80, MSG_NOSIGNAL) = 80 write(2, "unable to create icmp socket: Ope"..., 53unable to create icmp socket: Operation not permitted) = 53 write(2, "\n"..., 1 ) = 1 open("/etc/dhcp3/dhcpd.conf", O_RDONLY) = 4 lseek(4, 0, SEEK_END) = 1426 lseek(4, 0, SEEK_SET) = 0 read(4, "#----------------------------\n# G"..., 1426) = 1426 close(4) = 0 mmap2(NULL, 401408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75b0000 mmap2(NULL, 401408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb754e000 mmap2(NULL, 401408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb74ec000 brk(0x916f000) = 0x916f000 close(3) = 0 socket(PF_FILE, SOCK_DGRAM, 0) = 3 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0 connect(3, {sa_family=AF_FILE, path="/dev/log"...}, 110) = 0 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Inter"..., 74, MSG_NOSIGNAL) = 74 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Copyr"..., 76, MSG_NOSIGNAL) = 76 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: All r"..., 48, MSG_NOSIGNAL) = 48 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: For i"..., 78, MSG_NOSIGNAL) = 78 open("/var/lib/dhcp3/dhcpd.leases", O_RDONLY) = 4 lseek(4, 0, SEEK_END) = 126 lseek(4, 0, SEEK_SET) = 0 read(4, "# The format of this file is docu"..., 126) = 126 close(4) = 0 open("/var/lib/dhcp3/dhcpd.leases", O_WRONLY|O_CREAT|O_APPEND, 0666) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=126, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb74eb000 fstat64(4, {st_mode=S_IFREG|0644, st_size=126, ...}) = 0 _llseek(4, 126, [126], SEEK_SET) = 0 time(NULL) = 1284760816 time(NULL) = 1284760816 open("/var/lib/dhcp3/dhcpd.leases.1284760816", O_WRONLY|O_CREAT|O_TRUNC, 0664) = 5 fcntl64(5, F_GETFL) = 0x1 (flags O_WRONLY) fstat64(5, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb74ea000 _llseek(5, 0, [0], SEEK_CUR) = 0 close(4) = 0 munmap(0xb74eb000, 4096) = 0 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Wrote"..., 70, MSG_NOSIGNAL) = 70 write(2, "Wrote 0 deleted host decls to lea"..., 42Wrote 0 deleted host decls to leases file.) = 42 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Wrote"..., 74, MSG_NOSIGNAL) = 74 write(2, "Wrote 0 new dynamic host decls to"..., 46Wrote 0 new dynamic host decls to leases file.) = 46 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Wrote"..., 58, MSG_NOSIGNAL) = 58 write(2, "Wrote 0 leases to leases file."..., 30Wrote 0 leases to leases file.) = 30 write(2, "\n"..., 1 ) = 1 write(5, "# The format of this file is docu"..., 126) = 126 fsync(5) = 0 unlink("/var/lib/dhcp3/dhcpd.leases~") = 0 link("/var/lib/dhcp3/dhcpd.leases", "/var/lib/dhcp3/dhcpd.leases~") = 0 rename("/var/lib/dhcp3/dhcpd.leases.1284760816", "/var/lib/dhcp3/dhcpd.leases") = 0 socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 4 ioctl(4, SIOCGIFCONF, {0 - 64, NULL}) = 0 ioctl(4, SIOCGIFCONF, {64, {{"lo", {AF_INET, inet_addr("127.0.0.1")}}, {"eth0", {AF_INET, inet_addr("192.168.0.10")}}}}) = 0 ioctl(4, SIOCGIFFLAGS, {ifr_name="lo", ifr_flags=IFF_UP|IFF_LOOPBACK|IFF_RUNNING}) = 0 ioctl(4, SIOCGIFFLAGS, {ifr_name="eth0", ifr_flags=IFF_UP|IFF_BROADCAST|IFF_RUNNING|IFF_MULTICAST}) = 0 ioctl(4, SIOCGIFHWADDR, {ifr_name="eth0", ifr_hwaddr=00:c0:26:87:55:c0}) = 0 socket(PF_PACKET, SOCK_PACKET, 768) = -1 EPERM (Operation not permitted) time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Open "..., 74, MSG_NOSIGNAL) = 74 write(2, "Open a socket for LPF: Operation "..., 46Open a socket for LPF: Operation not permitted) = 46 write(2, "\n"..., 1 ) = 1 exit_group(1) = ? I understand that dhcpd wants to create sockets on port 67... but I don't know how to authorize that through the chroot. Any idea?

    Read the article

  • ASA hairpining: I basicaly want to allow 2 spokes to be able to communicate with each other.

    - by Thirst4Knowledge
    ASA Spoke to Spoke Communication I have been looking at spke to spoke comms or "hairpining" for months and have posted on numerouse forums but to no avail. I have a Hub and spoke network where the HUB is an ASA Firewall version 8.2 * I basicaly want to allow 2 spokes to be able to communicate with each other. I think that I have got the concept of the ASA Config for example: same-security-traffic permit intra-interface access-list HQ-LAN extended permit ip ASA-LAN 255.255.248.0 HQ-LAN 255.255.255.0 access-list HQ-LAN extended permit ip 192.168.99.0 255.255.255.0 HQ-LAN 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 HQ-LAN 255.255.255.0 access-list no-nat extended permit ip HQ-LAN 255.255.255.0 192.168.99.0 255.255.255.0 access-list no-nat extended permit ip 192.168.99.0 255.255.255.0 HQ-LAN 255.255.255.0 I think my problem may be that the other spokes are not CIsco Firewalls and I need to work out how to do the alternative setups. I want to at least make sure that my firewall etup is correct then I can move onto the other spokes here is my config: Hostname ASA domain-name mydomain.com names ! interface Ethernet0/0 speed 100 duplex full nameif outside security-level 0 ip address 1.1.1.246 255.255.255.224 ! interface Ethernet0/1 speed 100 duplex full nameif inside security-level 100 ip address 192.168.240.33 255.255.255.224 ! interface Ethernet0/2 description DMZ VLAN-253 speed 100 duplex full nameif DMZ security-level 50 ip address 192.168.254.1 255.255.255.0 ! interface Ethernet0/3 no nameif no security-level no ip address ! boot system disk0:/asa821-k8.bin ftp mode passive clock timezone GMT/BST 0 dns server-group DefaultDNS domain-name mydomain.com same-security-traffic permit inter-interface same-security-traffic permit intra-interface object-group network ASA_LAN_Plus_HQ_LAN network-object ASA_LAN 255.255.248.0 network-object HQ-LAN 255.255.255.0 access-list outside_acl remark Exchange web access-list outside_acl extended permit tcp any host MS-Exchange_server-NAT eq https access-list outside_acl remark PPTP Encapsulation access-list outside_acl extended permit gre any host MS-ISA-Server-NAT access-list outside_acl remark PPTP access-list outside_acl extended permit tcp any host MS-ISA-Server-NAT eq pptp access-list outside_acl remark Intra Http access-list outside_acl extended permit tcp any host MS-ISA-Server-NAT eq www access-list outside_acl remark Intra Https access-list outside_acl extended permit tcp any host MS-ISA-Server-NAT eq https access-list outside_acl remark SSL Server-Https 443 access-list outside_acl remark Https 8443(Open VPN Custom port for SSLVPN client downlaod) access-list outside_acl remark FTP 20 access-list outside_acl remark Http access-list outside_acl extended permit tcp any host OpenVPN-Srvr-NAT object-group DM_INLINE_TCP_1 access-list outside_acl extended permit tcp any host OpenVPN-Srvr-NAT eq 8443 access-list outside_acl extended permit tcp any host OpenVPN-Srvr-NAT eq www access-list outside_acl remark For secure remote Managment-SSH access-list outside_acl extended permit tcp any host OpenVPN-Srvr-NAT eq ssh access-list outside_acl extended permit ip Genimage_Anyconnect 255.255.255.0 ASA_LAN 255.255.248.0 access-list ASP-Live remark Live ASP access-list ASP-Live extended permit ip ASA_LAN 255.255.248.0 192.168.60.0 255.255.255.0 access-list Bo remark Bo access-list Bo extended permit ip ASA_LAN 255.255.248.0 192.168.169.0 255.255.255.0 access-list Bill remark Bill access-list Bill extended permit ip ASA_LAN 255.255.248.0 Bill.15 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 Bill.5 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.149.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.160.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.165.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.144.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.140.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.152.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.153.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.163.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.157.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.167.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.156.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 North-Office-LAN 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.161.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.143.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.137.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.159.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 HQ-LAN 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.169.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.150.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.162.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.166.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.168.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.174.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.127.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.173.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.175.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.176.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.100.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 192.168.99.0 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 10.10.10.0 255.255.255.0 access-list no-nat extended permit ip host 192.168.240.34 Cisco-admin-LAN 255.255.255.0 access-list no-nat extended permit ip ASA_LAN 255.255.248.0 Genimage_Anyconnect 255.255.255.0 access-list no-nat extended permit ip host Tunnel-DC host HQ-SDSL-Peer access-list no-nat extended permit ip HQ-LAN 255.255.255.0 North-Office-LAN 255.255.255.0 access-list no-nat extended permit ip North-Office-LAN 255.255.255.0 HQ-LAN 255.255.255.0 access-list Car remark Car access-list Car extended permit ip ASA_LAN 255.255.248.0 192.168.165.0 255.255.255.0 access-list Che remark Che access-list Che extended permit ip ASA_LAN 255.255.248.0 192.168.144.0 255.255.255.0 access-list Chi remark Chi access-list Chi extended permit ip ASA_LAN 255.255.248.0 192.168.140.0 255.255.255.0 access-list Cla remark Cla access-list Cla extended permit ip ASA_LAN 255.255.248.0 192.168.152.0 255.255.255.0 access-list Eas remark Eas access-list Eas extended permit ip ASA_LAN 255.255.248.0 192.168.149.0 255.255.255.0 access-list Ess remark Ess access-list Ess extended permit ip ASA_LAN 255.255.248.0 192.168.153.0 255.255.255.0 access-list Gat remark Gat access-list Gat extended permit ip ASA_LAN 255.255.248.0 192.168.163.0 255.255.255.0 access-list Hud remark Hud access-list Hud extended permit ip ASA_LAN 255.255.248.0 192.168.157.0 255.255.255.0 access-list Ilk remark Ilk access-list Ilk extended permit ip ASA_LAN 255.255.248.0 192.168.167.0 255.255.255.0 access-list Ken remark Ken access-list Ken extended permit ip ASA_LAN 255.255.248.0 192.168.156.0 255.255.255.0 access-list North-Office remark North-Office access-list North-Office extended permit ip ASA_LAN 255.255.248.0 North-Office-LAN 255.255.255.0 access-list inside_acl remark Inside_ad access-list inside_acl extended permit ip any any access-list Old_HQ remark Old_HQ access-list Old_HQ extended permit ip ASA_LAN 255.255.248.0 HQ-LAN 255.255.255.0 access-list Old_HQ extended permit ip HQ-LAN 255.255.255.0 192.168.99.0 255.255.255.0 access-list She remark She access-list She extended permit ip ASA_LAN 255.255.248.0 192.168.150.0 255.255.255.0 access-list Lit remark Lit access-list Lit extended permit ip ASA_LAN 255.255.248.0 192.168.143.0 255.255.255.0 access-list Mid remark Mid access-list Mid extended permit ip ASA_LAN 255.255.248.0 192.168.137.0 255.255.255.0 access-list Spi remark Spi access-list Spi extended permit ip ASA_LAN 255.255.248.0 192.168.162.0 255.255.255.0 access-list Tor remark Tor access-list Tor extended permit ip ASA_LAN 255.255.248.0 192.168.166.0 255.255.255.0 access-list Tra remark Tra access-list Tra extended permit ip ASA_LAN 255.255.248.0 192.168.168.0 255.255.255.0 access-list Tru remark Tru access-list Tru extended permit ip ASA_LAN 255.255.248.0 192.168.174.0 255.255.255.0 access-list Yo remark Yo access-list Yo extended permit ip ASA_LAN 255.255.248.0 192.168.127.0 255.255.255.0 access-list Nor remark Nor access-list Nor extended permit ip ASA_LAN 255.255.248.0 192.168.159.0 255.255.255.0 access-list Nor extended permit ip ASA_LAN 255.255.248.0 192.168.173.0 255.255.255.0 inactive access-list ST remark ST access-list ST extended permit ip ASA_LAN 255.255.248.0 192.168.175.0 255.255.255.0 access-list Le remark Le access-list Le extended permit ip ASA_LAN 255.255.248.0 192.168.161.0 255.255.255.0 access-list DMZ-ACL remark DMZ access-list DMZ-ACL extended permit ip host OpenVPN-Srvr any access-list no-nat-dmz remark DMZ -No Nat access-list no-nat-dmz extended permit ip 192.168.250.0 255.255.255.0 HQ-LAN 255.255.255.0 access-list Split_Tunnel_List remark ASA-LAN access-list Split_Tunnel_List standard permit ASA_LAN 255.255.248.0 access-list Split_Tunnel_List standard permit Genimage_Anyconnect 255.255.255.0 access-list outside_cryptomap_30 remark Po access-list outside_cryptomap_30 extended permit ip ASA_LAN 255.255.248.0 Po 255.255.255.0 access-list outside_cryptomap_24 extended permit ip ASA_LAN 255.255.248.0 192.168.100.0 255.255.255.0 access-list outside_cryptomap_16 extended permit ip ASA_LAN 255.255.248.0 192.168.99.0 255.255.255.0 access-list outside_cryptomap_34 extended permit ip ASA_LAN 255.255.248.0 10.10.10.0 255.255.255.0 access-list outside_31_cryptomap extended permit ip host 192.168.240.34 Cisco-admin-LAN 255.255.255.0 access-list outside_32_cryptomap extended permit ip host Tunnel-DC host HQ-SDSL-Peer access-list Genimage_VPN_Any_connect_pix_client remark Genimage "Any Connect" VPN access-list Genimage_VPN_Any_connect_pix_client standard permit Genimage_Anyconnect 255.255.255.0 access-list Split-Tunnel-ACL standard permit ASA_LAN 255.255.248.0 access-list nonat extended permit ip HQ-LAN 255.255.255.0 192.168.99.0 255.255.255.0 pager lines 24 logging enable logging timestamp logging console notifications logging monitor notifications logging buffered warnings logging asdm informational no logging message 106015 no logging message 313001 no logging message 313008 no logging message 106023 no logging message 710003 no logging message 106100 no logging message 302015 no logging message 302014 no logging message 302013 no logging message 302018 no logging message 302017 no logging message 302016 no logging message 302021 no logging message 302020 flow-export destination inside MS-ISA-Server 2055 flow-export destination outside 192.168.130.126 2055 flow-export template timeout-rate 1 flow-export delay flow-create 15 mtu outside 1500 mtu inside 1500 mtu DMZ 1500 mtu management 1500 ip local pool RAS-VPN 10.0.0.1.1-10.0.0.1.254 mask 255.255.255.255 icmp unreachable rate-limit 1 burst-size 1 icmp permit any unreachable outside icmp permit any echo outside icmp permit any echo-reply outside icmp permit any outside icmp permit any echo inside icmp permit any echo-reply inside icmp permit any echo DMZ icmp permit any echo-reply DMZ asdm image disk0:/asdm-621.bin no asdm history enable arp timeout 14400 nat-control global (outside) 1 interface global (inside) 1 interface nat (inside) 0 access-list no-nat nat (inside) 1 0.0.0.0 0.0.0.0 nat (DMZ) 0 access-list no-nat-dmz static (inside,outside) MS-ISA-Server-NAT MS-ISA-Server netmask 255.255.255.255 static (DMZ,outside) OpenVPN-Srvr-NAT OpenVPN-Srvr netmask 255.255.255.255 static (inside,outside) MS-Exchange_server-NAT MS-Exchange_server netmask 255.255.255.255 access-group outside_acl in interface outside access-group inside_acl in interface inside access-group DMZ-ACL in interface DMZ route outside 0.0.0.0 0.0.0.0 1.1.1.225 1 route inside 10.10.10.0 255.255.255.0 192.168.240.34 1 route outside Genimage_Anyconnect 255.255.255.0 1.1.1.225 1 route inside Open-VPN 255.255.248.0 OpenVPN-Srvr 1 route inside HQledon-Voice-LAN 255.255.255.0 192.168.240.34 1 route outside Bill 255.255.255.0 1.1.1.225 1 route outside Yo 255.255.255.0 1.1.1.225 1 route inside 192.168.129.0 255.255.255.0 192.168.240.34 1 route outside HQ-LAN 255.255.255.0 1.1.1.225 1 route outside Mid 255.255.255.0 1.1.1.225 1 route outside 192.168.140.0 255.255.255.0 1.1.1.225 1 route outside 192.168.143.0 255.255.255.0 1.1.1.225 1 route outside 192.168.144.0 255.255.255.0 1.1.1.225 1 route outside 192.168.149.0 255.255.255.0 1.1.1.225 1 route outside 192.168.152.0 255.255.255.0 1.1.1.225 1 route outside 192.168.153.0 255.255.255.0 1.1.1.225 1 route outside North-Office-LAN 255.255.255.0 1.1.1.225 1 route outside 192.168.156.0 255.255.255.0 1.1.1.225 1 route outside 192.168.157.0 255.255.255.0 1.1.1.225 1 route outside 192.168.159.0 255.255.255.0 1.1.1.225 1 route outside 192.168.160.0 255.255.255.0 1.1.1.225 1 route outside 192.168.161.0 255.255.255.0 1.1.1.225 1 route outside 192.168.162.0 255.255.255.0 1.1.1.225 1 route outside 192.168.163.0 255.255.255.0 1.1.1.225 1 route outside 192.168.165.0 255.255.255.0 1.1.1.225 1 route outside 192.168.166.0 255.255.255.0 1.1.1.225 1 route outside 192.168.167.0 255.255.255.0 1.1.1.225 1 route outside 192.168.168.0 255.255.255.0 1.1.1.225 1 route outside 192.168.173.0 255.255.255.0 1.1.1.225 1 route outside 192.168.174.0 255.255.255.0 1.1.1.225 1 route outside 192.168.175.0 255.255.255.0 1.1.1.225 1 route outside 192.168.99.0 255.255.255.0 1.1.1.225 1 route inside ASA_LAN 255.255.255.0 192.168.240.34 1 route inside 192.168.124.0 255.255.255.0 192.168.240.34 1 route inside 192.168.50.0 255.255.255.0 192.168.240.34 1 route inside 192.168.51.0 255.255.255.128 192.168.240.34 1 route inside 192.168.240.0 255.255.255.224 192.168.240.34 1 route inside 192.168.240.164 255.255.255.224 192.168.240.34 1 route inside 192.168.240.196 255.255.255.224 192.168.240.34 1 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 dynamic-access-policy-record DfltAccessPolicy aaa-server vpn protocol radius max-failed-attempts 5 aaa-server vpn (inside) host 192.168.X.2 timeout 60 key a5a53r3t authentication-port 1812 radius-common-pw a5a53r3t aaa authentication ssh console LOCAL aaa authentication http console LOCAL http server enable http 0.0.0.0 0.0.0.0 inside http 1.1.1.2 255.255.255.255 outside http 1.1.1.234 255.255.255.255 outside http 0.0.0.0 0.0.0.0 management http 1.1.100.198 255.255.255.255 outside http 0.0.0.0 0.0.0.0 outside crypto map FW_Outside_map 1 match address Bill crypto map FW_Outside_map 1 set peer x.x.x.121 crypto map FW_Outside_map 1 set transform-set SECURE crypto map FW_Outside_map 2 match address Bo crypto map FW_Outside_map 2 set peer x.x.x.202 crypto map FW_Outside_map 2 set transform-set SECURE crypto map FW_Outside_map 3 match address ASP-Live crypto map FW_Outside_map 3 set peer x.x.x.113 crypto map FW_Outside_map 3 set transform-set SECURE crypto map FW_Outside_map 4 match address Car crypto map FW_Outside_map 4 set peer x.x.x.205 crypto map FW_Outside_map 4 set transform-set SECURE crypto map FW_Outside_map 5 match address Old_HQ crypto map FW_Outside_map 5 set peer x.x.x.2 crypto map FW_Outside_map 5 set transform-set SECURE WG crypto map FW_Outside_map 6 match address Che crypto map FW_Outside_map 6 set peer x.x.x.204 crypto map FW_Outside_map 6 set transform-set SECURE crypto map FW_Outside_map 7 match address Chi crypto map FW_Outside_map 7 set peer x.x.x.212 crypto map FW_Outside_map 7 set transform-set SECURE crypto map FW_Outside_map 8 match address Cla crypto map FW_Outside_map 8 set peer x.x.x.215 crypto map FW_Outside_map 8 set transform-set SECURE crypto map FW_Outside_map 9 match address Eas crypto map FW_Outside_map 9 set peer x.x.x.247 crypto map FW_Outside_map 9 set transform-set SECURE crypto map FW_Outside_map 10 match address Ess crypto map FW_Outside_map 10 set peer x.x.x.170 crypto map FW_Outside_map 10 set transform-set SECURE crypto map FW_Outside_map 11 match address Hud crypto map FW_Outside_map 11 set peer x.x.x.8 crypto map FW_Outside_map 11 set transform-set SECURE crypto map FW_Outside_map 12 match address Gat crypto map FW_Outside_map 12 set peer x.x.x.212 crypto map FW_Outside_map 12 set transform-set SECURE crypto map FW_Outside_map 13 match address Ken crypto map FW_Outside_map 13 set peer x.x.x.230 crypto map FW_Outside_map 13 set transform-set SECURE crypto map FW_Outside_map 14 match address She crypto map FW_Outside_map 14 set peer x.x.x.24 crypto map FW_Outside_map 14 set transform-set SECURE crypto map FW_Outside_map 15 match address North-Office crypto map FW_Outside_map 15 set peer x.x.x.94 crypto map FW_Outside_map 15 set transform-set SECURE crypto map FW_Outside_map 16 match address outside_cryptomap_16 crypto map FW_Outside_map 16 set peer x.x.x.134 crypto map FW_Outside_map 16 set transform-set SECURE crypto map FW_Outside_map 16 set security-association lifetime seconds crypto map FW_Outside_map 17 match address Lit crypto map FW_Outside_map 17 set peer x.x.x.110 crypto map FW_Outside_map 17 set transform-set SECURE crypto map FW_Outside_map 18 match address Mid crypto map FW_Outside_map 18 set peer 78.x.x.110 crypto map FW_Outside_map 18 set transform-set SECURE crypto map FW_Outside_map 19 match address Sp crypto map FW_Outside_map 19 set peer x.x.x.47 crypto map FW_Outside_map 19 set transform-set SECURE crypto map FW_Outside_map 20 match address Tor crypto map FW_Outside_map 20 set peer x.x.x.184 crypto map FW_Outside_map 20 set transform-set SECURE crypto map FW_Outside_map 21 match address Tr crypto map FW_Outside_map 21 set peer x.x.x.75 crypto map FW_Outside_map 21 set transform-set SECURE crypto map FW_Outside_map 22 match address Yo crypto map FW_Outside_map 22 set peer x.x.x.40 crypto map FW_Outside_map 22 set transform-set SECURE crypto map FW_Outside_map 23 match address Tra crypto map FW_Outside_map 23 set peer x.x.x.145 crypto map FW_Outside_map 23 set transform-set SECURE crypto map FW_Outside_map 24 match address outside_cryptomap_24 crypto map FW_Outside_map 24 set peer x.x.x.46 crypto map FW_Outside_map 24 set transform-set SECURE crypto map FW_Outside_map 24 set security-association lifetime seconds crypto map FW_Outside_map 25 match address Nor crypto map FW_Outside_map 25 set peer x.x.x.70 crypto map FW_Outside_map 25 set transform-set SECURE crypto map FW_Outside_map 26 match address Ilk crypto map FW_Outside_map 26 set peer x.x.x.65 crypto map FW_Outside_map 26 set transform-set SECURE crypto map FW_Outside_map 27 match address Nor crypto map FW_Outside_map 27 set peer x.x.x.240 crypto map FW_Outside_map 27 set transform-set SECURE crypto map FW_Outside_map 28 match address ST crypto map FW_Outside_map 28 set peer x.x.x.163 crypto map FW_Outside_map 28 set transform-set SECURE crypto map FW_Outside_map 28 set security-association lifetime seconds crypto map FW_Outside_map 28 set security-association lifetime kilobytes crypto map FW_Outside_map 29 match address Lei crypto map FW_Outside_map 29 set peer x.x.x.4 crypto map FW_Outside_map 29 set transform-set SECURE crypto map FW_Outside_map 30 match address outside_cryptomap_30 crypto map FW_Outside_map 30 set peer x.x.x.34 crypto map FW_Outside_map 30 set transform-set SECURE crypto map FW_Outside_map 31 match address outside_31_cryptomap crypto map FW_Outside_map 31 set pfs crypto map FW_Outside_map 31 set peer Cisco-admin-Peer crypto map FW_Outside_map 31 set transform-set ESP-AES-256-SHA crypto map FW_Outside_map 32 match address outside_32_cryptomap crypto map FW_Outside_map 32 set pfs crypto map FW_Outside_map 32 set peer HQ-SDSL-Peer crypto map FW_Outside_map 32 set transform-set ESP-AES-256-SHA crypto map FW_Outside_map 34 match address outside_cryptomap_34 crypto map FW_Outside_map 34 set peer x.x.x.246 crypto map FW_Outside_map 34 set transform-set ESP-AES-128-SHA ESP-AES-192-SHA ESP-AES-256-SHA crypto map FW_Outside_map 65535 ipsec-isakmp dynamic dynmap crypto map FW_Outside_map interface outside crypto map FW_outside_map 31 set peer x.x.x.45 crypto isakmp identity address crypto isakmp enable outside crypto isakmp policy 9 webvpn enable outside svc enable group-policy ASA-LAN-VPN internal group-policy ASA_LAN-VPN attributes wins-server value 192.168.x.1 192.168.x.2 dns-server value 192.168.x.1 192.168.x.2 vpn-tunnel-protocol IPSec svc split-tunnel-policy tunnelspecified split-tunnel-network-list value Split-Tunnel-ACL default-domain value MYdomain username xxxxxxxxxx password privilege 15 tunnel-group DefaultRAGroup ipsec-attributes isakmp keepalive threshold 30 retry 2 tunnel-group DefaultWEBVPNGroup ipsec-attributes isakmp keepalive threshold 30 retry 2 tunnel-group x.x.x.121 type ipsec-l2l tunnel-group x.x.x..121 ipsec-attributes pre-shared-key * isakmp keepalive threshold 30 retry 2 tunnel-group x.x.x.202 type ipsec-l2l tunnel-group x.x.x.202 ipsec-attributes pre-shared-key * isakmp keepalive threshold 30 retry 2 tunnel-group x.x.x.113 type ipsec-l2l tunnel-group x.x.x.113 ipsec-attributes pre-shared-key * isakmp keepalive threshold 30 retry 2 tunnel-group x.x.x.205 type ipsec-l2l tunnel-group x.x.x.205 ipsec-attributes pre-shared-key * isakmp keepalive threshold 30 retry 2 tunnel-group x.x.x.204 type ipsec-l2l tunnel-group x.x.x.204 ipsec-attributes pre-shared-key * isakmp keepalive threshold 30 retry 2 tunnel-group x.x.x.212 type ipsec-l2l tunnel-group x.x.x.212 ipsec-attributes pre-shared-key * tunnel-group x.x.x.215 type ipsec-l2l tunnel-group x.x.x.215 ipsec-attributes pre-shared-key * tunnel-group x.x.x.247 type ipsec-l2l tunnel-group x.x.x.247 ipsec-attributes pre-shared-key * tunnel-group x.x.x.170 type ipsec-l2l tunnel-group x.x.x.170 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x..8 type ipsec-l2l tunnel-group x.x.x.8 ipsec-attributes pre-shared-key * tunnel-group x.x.x.212 type ipsec-l2l tunnel-group x.x.x.212 ipsec-attributes pre-shared-key * tunnel-group x.x.x.230 type ipsec-l2l tunnel-group x.x.x.230 ipsec-attributes pre-shared-key * tunnel-group x.x.x.24 type ipsec-l2l tunnel-group x.x.x.24 ipsec-attributes pre-shared-key * tunnel-group x.x.x.46 type ipsec-l2l tunnel-group x.x.x.46 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.4 type ipsec-l2l tunnel-group x.x.x.4 ipsec-attributes pre-shared-key * tunnel-group x.x.x.110 type ipsec-l2l tunnel-group x.x.x.110 ipsec-attributes pre-shared-key * tunnel-group 78.x.x.110 type ipsec-l2l tunnel-group 78.x.x.110 ipsec-attributes pre-shared-key * tunnel-group x.x.x.47 type ipsec-l2l tunnel-group x.x.x.47 ipsec-attributes pre-shared-key * tunnel-group x.x.x.34 type ipsec-l2l tunnel-group x.x.x.34 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x..129 type ipsec-l2l tunnel-group x.x.x.129 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.94 type ipsec-l2l tunnel-group x.x.x.94 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.40 type ipsec-l2l tunnel-group x.x.x.40 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.65 type ipsec-l2l tunnel-group x.x.x.65 ipsec-attributes pre-shared-key * tunnel-group x.x.x.70 type ipsec-l2l tunnel-group x.x.x.70 ipsec-attributes pre-shared-key * tunnel-group x.x.x.134 type ipsec-l2l tunnel-group x.x.x.134 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.163 type ipsec-l2l tunnel-group x.x.x.163 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.2 type ipsec-l2l tunnel-group x.x.x.2 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group ASA-LAN-VPN type remote-access tunnel-group ASA-LAN-VPN general-attributes address-pool RAS-VPN authentication-server-group vpn authentication-server-group (outside) vpn default-group-policy ASA-LAN-VPN tunnel-group ASA-LAN-VPN ipsec-attributes pre-shared-key * tunnel-group x.x.x.184 type ipsec-l2l tunnel-group x.x.x.184 ipsec-attributes pre-shared-key * tunnel-group x.x.x.145 type ipsec-l2l tunnel-group x.x.x.145 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.75 type ipsec-l2l tunnel-group x.x.x.75 ipsec-attributes pre-shared-key * tunnel-group x.x.x.246 type ipsec-l2l tunnel-group x.x.x.246 ipsec-attributes pre-shared-key * isakmp keepalive disable tunnel-group x.x.x.2 type ipsec-l2l tunnel-group x.x.x..2 ipsec-attributes pre-shared-key * tunnel-group x.x.x.98 type ipsec-l2l tunnel-group x.x.x.98 ipsec-attributes pre-shared-key * ! ! ! policy-map global_policy description Netflow class class-default flow-export event-type all destination MS-ISA-Server policy-map type inspect dns migrated_dns_map_1 parameters message-length maximum 512 Anyone have a clue because Im on the verge of going postal.....

    Read the article

< Previous Page | 11 12 13 14 15