Search Results

Search found 367 results on 15 pages for 'synchronous'.

Page 15/15 | < Previous Page | 11 12 13 14 15 

  • array and array_view from amp.h

    - by Daniel Moth
    This is a very long post, but it also covers what are probably the classes (well, array_view at least) that you will use the most with C++ AMP, so I hope you enjoy it! Overview The concurrency::array and concurrency::array_view template classes represent multi-dimensional data of type T, of N dimensions, specified at compile time (and you can later access the number of dimensions via the rank property). If N is not specified, it is assumed that it is 1 (i.e. single-dimensional case). They are rectangular (not jagged). The difference between them is that array is a container of data, whereas array_view is a wrapper of a container of data. So in that respect, array behaves like an STL container, whereas the closest thing an array_view behaves like is an STL iterator (albeit with random access and allowing you to view more than one element at a time!). The data in the array (whether provided at creation time or added later) resides on an accelerator (which is specified at creation time either explicitly by the developer, or set to the default accelerator at creation time by the runtime) and is laid out contiguously in memory. The data provided to the array_view is not stored by/in the array_view, because the array_view is simply a view over the real source (which can reside on the CPU or other accelerator). The underlying data is copied on demand to wherever the array_view is accessed. Elements which differ by one in the least significant dimension of the array_view are adjacent in memory. array objects must be captured by reference into the lambda you pass to the parallel_for_each call, whereas array_view objects must be captured by value (into the lambda you pass to the parallel_for_each call). Creating array and array_view objects and relevant properties You can create array_view objects from other array_view objects of the same rank and element type (shallow copy, also possible via assignment operator) so they point to the same underlying data, and you can also create array_view objects over array objects of the same rank and element type e.g.   array_view<int,3> a(b); // b can be another array or array_view of ints with rank=3 Note: Unlike the constructors above which can be called anywhere, the ones in the rest of this section can only be called from CPU code. You can create array objects from other array objects of the same rank and element type (copy and move constructors) and from other array_view objects, e.g.   array<float,2> a(b); // b can be another array or array_view of floats with rank=2 To create an array from scratch, you need to at least specify an extent object, e.g. array<int,3> a(myExtent);. Note that instead of an explicit extent object, there are convenience overloads when N<=3 so you can specify 1-, 2-, 3- integers (dependent on the array's rank) and thus have the extent created for you under the covers. At any point, you can access the array's extent thought the extent property. The exact same thing applies to array_view (extent as constructor parameters, incl. convenience overloads, and property). While passing only an extent object to create an array is enough (it means that the array will be written to later), it is not enough for the array_view case which must always wrap over some other container (on which it relies for storage space and actual content). So in addition to the extent object (that describes the shape you'd like to be viewing/accessing that data through), to create an array_view from another container (e.g. std::vector) you must pass in the container itself (which must expose .data() and a .size() methods, e.g. like std::array does), e.g.   array_view<int,2> aaa(myExtent, myContainerOfInts); Similarly, you can create an array_view from a raw pointer of data plus an extent object. Back to the array case, to optionally initialize the array with data, you can pass an iterator pointing to the start (and optionally one pointing to the end of the source container) e.g.   array<double,1> a(5, myVector.begin(), myVector.end()); We saw that arrays are bound to an accelerator at creation time, so in case you don’t want the C++ AMP runtime to assign the array to the default accelerator, all array constructors have overloads that let you pass an accelerator_view object, which you can later access via the accelerator_view property. Note that at the point of initializing an array with data, a synchronous copy of the data takes place to the accelerator, and then to copy any data back we'll see that an explicit copy call is required. This does not happen with the array_view where copying is on demand... refresh and synchronize on array_view Note that in the previous section on constructors, unlike the array case, there was no overload that accepted an accelerator_view for array_view. That is because the array_view is simply a wrapper, so the allocation of the data has already taken place before you created the array_view. When you capture an array_view variable in your call to parallel_for_each, the copy of data between the non-CPU accelerator and the CPU takes place on demand (i.e. it is implicit, versus the explicit copy that has to happen with the array). There are some subtleties to the on-demand-copying that we cover next. The assumption when using an array_view is that you will continue to access the data through the array_view, and not through the original underlying source, e.g. the pointer to the data that you passed to the array_view's constructor. So if you modify the data through the array_view on the GPU, the original pointer on the CPU will not "know" that, unless one of two things happen: you access the data through the array_view on the CPU side, i.e. using indexing that we cover below you explicitly call the array_view's synchronize method on the CPU (this also gets called in the array_view's destructor for you) Conversely, if you make a change to the underlying data through the original source (e.g. the pointer), the array_view will not "know" about those changes, unless you call its refresh method. Finally, note that if you create an array_view of const T, then the data is copied to the accelerator on demand, but it does not get copied back, e.g.   array_view<const double, 5> myArrView(…); // myArrView will not get copied back from GPU There is also a similar mechanism to achieve the reverse, i.e. not to copy the data of an array_view to the GPU. copy_to, data, and global copy/copy_async functions Both array and array_view expose two copy_to overloads that allow copying them to another array, or to another array_view, and these operations can also be achieved with assignment (via the = operator overloads). Also both array and array_view expose a data method, to get a raw pointer to the underlying data of the array or array_view, e.g. float* f = myArr.data();. Note that for array_view, this only works when the rank is equal to 1, due to the data only being contiguous in one dimension as covered in the overview section. Finally, there are a bunch of global concurrency::copy functions returning void (and corresponding concurrency::copy_async functions returning a future) that allow copying between arrays and array_views and iterators etc. Just browse intellisense or amp.h directly for the full set. Note that for array, all copying described throughout this post is deep copying, as per other STL container expectations. You can never have two arrays point to the same data. indexing into array and array_view plus projection Reading or writing data elements of an array is only legal when the code executes on the same accelerator as where the array was bound to. In the array_view case, you can read/write on any accelerator, not just the one where the original data resides, and the data gets copied for you on demand. In both cases, the way you read and write individual elements is via indexing as described next. To access (or set the value of) an element, you can index into it by passing it an index object via the subscript operator. Furthermore, if the rank is 3 or less, you can use the function ( ) operator to pass integer values instead of having to use an index object. e.g. array<float,2> arr(someExtent, someIterator); //or array_view<float,2> arr(someExtent, someContainer); index<2> idx(5,4); float f1 = arr[idx]; float f2 = arr(5,4); //f2 ==f1 //and the reverse for assigning, e.g. arr(idx[0], 7) = 6.9; Note that for both array and array_view, regardless of rank, you can also pass a single integer to the subscript operator which results in a projection of the data, and (for both array and array_view) you get back an array_view of rank N-1 (or if the rank was 1, you get back just the element at that location). Not Covered In this already very long post, I am not going to cover three very cool methods (and related overloads) that both array and array_view expose: view_as, section, reinterpret_as. We'll revisit those at some point in the future, probably on the team blog. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • CodePlex Daily Summary for Thursday, August 23, 2012

    CodePlex Daily Summary for Thursday, August 23, 2012Popular ReleasesARSoft.Tools.Net - C#/.Net DNS client/server, SPF and SenderID Library: 1.7.0: New Features:Strong name for binary release LLMNR client One-shot Multicast DNS client Some new IPAddress extensions Response validation as described in draft-vixie-dnsext-dns0x20-00 Added support for Owner EDNS option (draft-cheshire-edns0-owner-option) Added support for LLQ EDNS option (draft-sekar-dns-llq) Added support for Update Lease EDNS option (draft-sekar-dns-ul) Changes:Updated to latest IANA parameters Adapted RFC6563 - Moving A6 to Historic Status Use IPv6 addre...7zbackup - PowerShell Script to Backup Files with 7zip: 7zBackup v. 1.8.1 Stable: Do you like this piece of software ? It took some time and effort to develop. Please consider a helping me with a donation Or please visit my blog Code : New work switch maxrecursionlevel to limit recursion depth while searching files to backup Code : rotate argument switch can now be set in selection file too Code : prefix argument switch can now be set in selection file too Code : prefix argument switch is checked against invalid file name chars Code : vars script file has now...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.62: Fix for issue #18525 - escaped characters double-escaped in identifiers if the character immediately after the backslash is not normally allowed in an identifier. fixed symbol problem with nuget package. 4.62 should have nuget symbols available again.Game of Life 3D: GameOfLife3D Version 0.5.2: Support Windows 8nopCommerce. Open source shopping cart (ASP.NET MVC): nopcommerce 2.65: As some of you may know we were planning to release version 2.70 much later (the end of September). But today we have to release this intermediate version (2.65). It fixes a critical issue caused by a third-party assembly when running nopCommerce on a server with .NET 4.5 installed. No major features have been introduced with this release as our development efforts were focused on further enhancements and fixing bugs. To see the full list of fixes and changes please visit the release notes p...MyRouter (Virtual WiFi Router): MyRouter 1.2.9: . Fix: Some missing changes for fixing the window subclassing crash. · Fix: fixed bug when Run MyRouter at the first Time. · Fix: Log File · Fix: improve performance speed application · fix: solve some Exception.Smart Thread Pool: SmartThreadPool 2.2.2: Release Changes Added set name to threads Fixed the WorkItemsQueue.Dequeue. Replaced while(!Monitor.TryEnter(this)); with lock(this) { ... } Fixed SmartThreadPool.Pipe Added IsBackground option to threads Added ApartmentState to threads Fixed thread creation when queuing many work items at the same time.ZXing.Net: ZXing.Net 0.8.0.0: sync with rev. 2393 of the java version improved API, direct support for multiple barcode decoding, wrapper for barcode generating many other improvements and fixes encoder and decoder command line clients demo client for emguCV dev documentation startedScintillaNET: ScintillaNET 2.5.1: This release has been built from the 2.5 branch. Issues closed: Issue # Title 32524 32524 32550 32550 32552 32552 25148 25148 32449 32449 32551 32551 32711 32711 MFCMAPI: August 2012 Release: Build: 15.0.0.1035 Full release notes at SGriffin's blog. If you just want to run the MFCMAPI or MrMAPI, get the executables. If you want to debug them, get the symbol files and the source. The 64 bit builds will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit builds, regardless of the operating system. Facebook BadgeDocument.Editor: 2013.2: Whats new for Document.Editor 2013.2: New save as Html document Improved Traslate support Minor Bug Fix's, improvements and speed upsPulse: Pulse Beta 5: Whats new in this release? Well to start with we now have Wallbase.cc Authentication! so you can access favorites or NSFW. This version requires .NET 4.0, you probably already have it, but if you don't it's a free and easy download from Microsoft. Pulse can bet set to start on Windows startup now too. The Wallpaper setter has settings now, so you can change the background color of the desktop and the Picture Position (Tile/Center/Fill/etc...) I've switched to Windows Forms instead of WPF...Metro Paint: Metro Paint: Download it now , don't forget to give feedback to me at maitreyavyas@live.com or at my facebook page fb.com/maitreyavyas , Hope you enjoy it.MiniTwitter: 1.80: MiniTwitter 1.80 ???? ?? .NET Framework 4.5 ?????? ?? .NET Framework 4.5 ????????????? "&" ??????????????????? ???????????????????????? 2 ??????????? ReTweet ?????????????????、In reply to ?????????????? URL ???????????? ??????????????????????????????Droid Explorer: Droid Explorer 0.8.8.6 Beta: Device images are now pulled from DroidExplorer Cloud Service refined some issues with the usage statistics Added a method to get the first available value from a list of property names DroidExplorer.Configuration no longer depends on DroidExplorer.Core.UI (it is actually the other way now) fix to the bootstraper to only try to delete the SDK if it is a "local" sdk, not an existing. no longer support the "local" sdk, you must now select an existing SDK checks for sdk if it was ins...Path Copy Copy: 11.0.1: Bugfix release that corrects the following issue: 11365 If you are using Path Copy Copy in a network environment and use the UNC path commands, it is recommended that you upgrade to this version.ExtAspNet: ExtAspNet v3.1.9.1: +2012-08-18 v3.1.9 -??other/addtab.aspx???JS???BoundField??Tooltip???(Dennis_Liu)。 +??Window?GetShowReference???????????????(︶????、????、???、??~)。 -?????JavaScript?????,??????HTML????????。 -??HtmlNodeBuilder????????????????JavaScript??。 -??????WindowField、LinkButton、HyperLink????????????????????????????。 -???????????grid/griddynamiccolumns2.aspx(?????)。 -?????Type??Reset?????,??????????????????(e??)。 -?????????????????????。 -?????????int,short,double??????????(???)。 +?Window????Ge...AcDown????? - AcDown Downloader Framework: AcDown????? v4.0.1: ?? ●AcDown??????????、??、??????。????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。 ●??????AcPlay?????,??????、????????????????。 ● AcDown??????????????????,????????????????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7/8 ??:????????Windows XP???,?????????.NET Framework 2.0???(x86),?????"?????????"??? ??????????????,??????????: ??"AcDown?????"????????? ...Fluent Validation for .NET: 3.4: Changes since 3.3: Make ValidationResut.IsValid virtual Add private no-arg ctor to ValidationFailure to help with serialization Add Turkish error messages Work-around for reflection bug in .NET 4.5 that caused VerificationExceptions Assemblies are now unsigned to ease with versioning/upgrades (especially where other frameworks depend on FV) (Note if you need signed assemblies then you can use the following NuGet packages: FluentValidation-signed, FluentValidation.MVC3-signed, FluentV...DotNetNuke® Feedback: 06.02.01: Official Release - 17th August 2012 Please look at the Release Notes file included in the module packages or available on this page as a separate download for a listing of the bug fixes and enhancements found in this version. NOTE: Feedback v 06.02.00 REQUIRES a minimum DotNetNuke framework version of 06.02.00 as well as ASP.Net 3.5 SP1 and MS SQL Server 2005 or 2008 (Express or standard versions). This release brings some enhancements to the module as well as fixing all known bugs. Bug Fi...New ProjectsAD FS 2.0 RelayState Generator: HTML file for generating the RelayState URL string for use with Microsoft's AD FS 2.0 Rollup 2 and higherAtomic: A graphical, reactive, synchronous software development environment that dramatically reduces programming effort and improves team communication.Depixelizing Pixel Arts: This project is an attempt to implement the following Microsoft Research Paper in C#: http://research.microsoft.com/en-us/um/people/kopf/pixelart/Dynamics CRM 2011 Dummy Entity: Using a "Dummy" Entity, this Dynamics 2011 solution provides authenticated REST style calls from a Web Resource to a plug-in to reach back-end resources.ESPAM7mo: Solución q controla el ingreso y salida de bodega de los suministros, realizado por los alumnos del septimo semestre de la carrera de informatica de la ESPAMExisto: Existo is a project aimed at creating an enterprise business collaboration system.Fiddler2 OAuth: Allows for easy OAuth debugging with Fiddler2gView GIS OS Data - ArcMap Extension: Display and edit gView data sources in ArcMap. For example: edit PostGIS data in ArcMap...IronBoard: ReviewBoard Visual Studio extensionJulaDB: C# implementation of an in-memory database engine.JumpingBalls: a wp gameKimola Cloud Search API Client Library for .NET: A C# library that encapsulates all the internal work and let you work with concrete C# objects while developing your search enabled applications.message elgg: It is a plugin for elggTamarillo - OSGI like Service Platform for .NET: This project is based on the OSGI-Framework for Java TFS Project Test Migrator: The goal of this project is to offer a solution to migrate a test plan from a TFS project to another.TFSIntegrate with Outlook: Tool is used to integrate the outlook with TFS. It will attach the emails to the TFS.Time Controller App: ...touch_cloud_game: ?w??w???

    Read the article

  • usb wifi dongle on ubuntu server, cannot install realtek driver RTL 8188cus

    - by Sandro Dzneladze
    I got cheap Ebay wifi dongle from HongKong, Im trying to set it up on my ubuntu server. Occasionally need to move server, so it cannot always be connected to router via lan. Anyhow, usb wifi came with a driver cd. I uploaded files to my home directory and tried to run install script (RTL 8188cus): sudo bash install.sh But I get error: Authentication requested [root] for make driver: make ARCH=x86_64 CROSS_COMPILE= -C /lib/modules/2.6.38-8-server/build M=/home/minime/RTL 8188cus/Linux/driver/rtl8192CU_linux_v2.0.1324.20110126 modules make[1]: Entering directory `/usr/src/linux-headers-2.6.38-8-server' make[1]: *** No rule to make target `8188cus/Linux/driver/rtl8192CU_linux_v2.0.1324.20110126'. Stop. make[1]: Leaving directory `/usr/src/linux-headers-2.6.38-8-server' make: *** [modules] Error 2 Compile make driver error: 2, Please check error Mesg Any ideas what Im doing wrong? There is another driver folder for linux called: RTL 81XX, which doesn't have install.sh at all! I tried to use make command, but I get: make: *** No targets specified and no makefile found. Stop. Any help? this is first time I'm installing driver from source. Im on Ubuntu 11.04 server. lsusb Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. lspci -nn 00:00.0 Host bridge [0600]: Intel Corporation N10 Family DMI Bridge [8086:a000] (rev 02) 00:02.0 VGA compatible controller [0300]: Intel Corporation N10 Family Integrated Graphics Controller [8086:a001] (rev 02) 00:1b.0 Audio device [0403]: Intel Corporation N10/ICH 7 Family High Definition Audio Controller [8086:27d8] (rev 02) 00:1c.0 PCI bridge [0604]: Intel Corporation N10/ICH 7 Family PCI Express Port 1 [8086:27d0] (rev 02) 00:1d.0 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #1 [8086:27c8] (rev 02) 00:1d.1 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #2 [8086:27c9] (rev 02) 00:1d.2 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #3 [8086:27ca] (rev 02) 00:1d.3 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB UHCI Controller #4 [8086:27cb] (rev 02) 00:1d.7 USB Controller [0c03]: Intel Corporation N10/ICH 7 Family USB2 EHCI Controller [8086:27cc] (rev 02) 00:1e.0 PCI bridge [0604]: Intel Corporation 82801 Mobile PCI Bridge [8086:2448] (rev e2) 00:1f.0 ISA bridge [0601]: Intel Corporation NM10 Family LPC Controller [8086:27bc] (rev 02) 00:1f.2 IDE interface [0101]: Intel Corporation N10/ICH7 Family SATA IDE Controller [8086:27c0] (rev 02) 00:1f.3 SMBus [0c05]: Intel Corporation N10/ICH 7 Family SMBus Controller [8086:27da] (rev 02) 01:00.0 Ethernet controller [0200]: Atheros Communications Device [1969:1083] (rev c0) sudo lshw description: Desktop Computer product: To Be Filled By O.E.M. (To Be Filled By O.E.M.) vendor: To Be Filled By O.E.M. version: To Be Filled By O.E.M. serial: To Be Filled By O.E.M. width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall64 vsyscall32 configuration: boot=normal chassis=desktop family=To Be Filled By O.E.M. sku=To Be Filled By O.E.M. uuid=00020003-0004-0005-0006-000700080009 *-core description: Motherboard product: AD525PV3 vendor: ASRock physical id: 0 *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: P1.20 date: 04/01/2011 size: 64KiB capacity: 448KiB capabilities: pci upgrade shadowing cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot zipboot biosbootspecification netboot *-cpu description: CPU product: Intel(R) Atom(TM) CPU D525 @ 1.80GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Atom(TM) CPU D525 @ 1.80GHz serial: To Be Filled By O.E.M. slot: CPUSocket size: 1800MHz capacity: 1800MHz width: 64 bits clock: 200MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx constant_tsc arch_perfmon pebs bts rep_good nopl aperfmperf pni dtes64 monitor ds_cpl tm2 ssse3 cx16 xtpr pdcm movbe lahf_lm configuration: cores=2 enabledcores=2 threads=4 *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 48KiB capacity: 48KiB capabilities: internal write-back data *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 1MiB capacity: 1MiB capabilities: internal write-back unified *-memory description: System Memory physical id: c slot: System board or motherboard size: 2GiB *-bank:0 description: SODIMM DDR2 Synchronous 800 MHz (1.2 ns) product: ModulePartNumber00 vendor: Manufacturer00 physical id: 0 serial: SerNum00 slot: DIMM0 size: 2GiB width: 64 bits clock: 800MHz (1.2ns) *-bank:1 description: DIMM [empty] product: ModulePartNumber01 vendor: Manufacturer01 physical id: 1 serial: SerNum01 slot: DIMM1 *-pci description: Host bridge product: N10 Family DMI Bridge vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 02 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display description: VGA compatible controller product: N10 Family Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 02 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:41 memory:fea80000-feafffff ioport:dc00(size=8) memory:e0000000-efffffff memory:fe900000-fe9fffff *-multimedia description: Audio device product: N10/ICH 7 Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 02 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=HDA Intel latency=0 resources: irq:43 memory:fea78000-fea7bfff *-pci:0 description: PCI bridge product: N10/ICH 7 Family PCI Express Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:e000(size=4096) memory:feb00000-febfffff ioport:80000000(size=2097152) *-network description: Ethernet interface product: Atheros Communications vendor: Atheros Communications physical id: 0 bus info: pci@0000:01:00.0 logical name: eth0 version: c0 serial: XX size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI duplex=full firmware=N/A ip=192.168.1.99 latency=0 link=yes multicast=yes port=twisted pair speed=100Mbit/s resources: irq:42 memory:febc0000-febfffff ioport:ec00(size=128) *-usb:0 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:23 ioport:d880(size=32) *-usb:1 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #2 vendor: Intel Corporation physical id: 1d.1 bus info: pci@0000:00:1d.1 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:19 ioport:d800(size=32) *-usb:2 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #3 vendor: Intel Corporation physical id: 1d.2 bus info: pci@0000:00:1d.2 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:18 ioport:d480(size=32) *-usb:3 description: USB Controller product: N10/ICH 7 Family USB UHCI Controller #4 vendor: Intel Corporation physical id: 1d.3 bus info: pci@0000:00:1d.3 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:16 ioport:d400(size=32) *-usb:4 description: USB Controller product: N10/ICH 7 Family USB2 EHCI Controller vendor: Intel Corporation physical id: 1d.7 bus info: pci@0000:00:1d.7 version: 02 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:23 memory:fea77c00-fea77fff *-pci:1 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: e2 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list *-isa description: ISA bridge product: NM10 Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 02 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-ide description: IDE interface product: N10/ICH7 Family SATA IDE Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 version: 02 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list emulated configuration: driver=ata_piix latency=0 resources: irq:19 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:ff90(size=16) memory:80200000-802003ff *-disk description: ATA Disk product: WDC WD10TPVT-11U vendor: Western Digital physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 01.0 serial: WD-WXC1A80P0314 size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=00088c47 *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: /media/private version: 1.0 serial: 042daf2d-350c-4640-a76a-4554c9d98c59 size: 300GiB capacity: 300GiB capabilities: primary journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2011-11-06 11:05:03 filesystem=ext4 label=Private lastmountpoint=/media/private modified=2012-04-13 20:01:16 mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered mounted=2012-04-13 20:01:16 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 625GiB capacity: 625GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux filesystem partition physical id: 5 logical name: /dev/sda5 logical name: /media/storage capacity: 600GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered state=mounted *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: /media/dropbox capacity: 24GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered state=mounted *-volume:2 description: EXT4 volume vendor: Linux physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 logical name: /media/www version: 1.0 serial: 9b0a27b4-05d8-40d5-bfc7-4aeba198db7b size: 2570MiB capacity: 2570MiB capabilities: primary journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2011-11-06 11:05:11 filesystem=ext4 label=www lastmountpoint=/media/www modified=2012-04-15 11:31:12 mount.fstype=ext4 mount.options=rw,relatime,barrier=1,stripe=1,data=ordered mounted=2012-04-15 11:31:12 state=mounted *-volume:3 description: Linux swap volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 version: 1 serial: 6ed1130e-3aad-4fa6-890b-77e729121e3b size: 4098MiB capacity: 4098MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-serial UNCLAIMED description: SMBus product: N10/ICH 7 Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 02 width: 32 bits clock: 33MHz configuration: latency=0 resources: ioport:400(size=32) *-scsi physical id: 1 bus info: usb@1:4 logical name: scsi2 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk description: SCSI Disk physical id: 0.0.0 bus info: scsi@2:0.0.0 logical name: /dev/sdb size: 3864MiB (4051MB) capabilities: partitioned partitioned:dos configuration: signature=000b4c55 *-volume description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@2:0.0.0,1 logical name: /dev/sdb1 logical name: / version: 1.0 serial: 33926e39-4685-4f63-b83c-f2a67824b69a size: 3862MiB capacity: 3862MiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2011-10-11 14:03:46 filesystem=ext4 lastmountpoint=/ modified=2012-03-19 11:47:29 mount.fstype=ext4 mount.options=rw,noatime,errors=remount-ro,barrier=1,data=ordered mounted=2012-04-15 11:31:11 state=mounted rfkill list all Doesnt show anything! dmesg | grep -i firmware [ 0.715481] pci 0000:00:1f.0: [Firmware Bug]: TigerPoint LPC.BM_STS cleared

    Read the article

  • LINQ to Twitter Maintenance Feedback

    - by Joe Mayo
    Originally posted on: http://geekswithblogs.net/WinAZ/archive/2013/06/16/linq-to-twitter-maintenance-feedback.aspxIt’s always fun to receive positive feedback on your work. If you receive a sufficient amount of positive feedback, you know you’re doing something right. Sometimes, people provide negative feedback too. There are a couple ways to handle it: come back fighting or engage for clarification. The way you handle the negative feedback depends on what your goals are. Feedback Approaches If you know the feedback is incorrect and you need to promote your idea or product, you might want to come back fighting. The feedback might just be comments by a troll or competitor wanting to spread FUD. However, this could be the totally wrong approach if you misjudge the source and intentions of the feedback. In a lot of cases, feedback is a golden opportunity. Sometimes, a problem exists that you either don’t know about or don’t realize the true impact of the problem. If you decide to come back fighting, you might loose the opportunity to learn something new. However, if you engage the person providing the feedback, looking for clarification, you might learn something very important. Negative feedback and it’s clarification can lead to the collection of useful and actionable data. In my case, something that prompted this blog post, I noticed someone who tweeted a negative comment about LINQ to Twitter. Normally, any less than stellar comments are usually from folks that need help – so I help if I can. This was different. I was like “Don’t use LINQ to Twitter”. This is an open source project, the comment didn’t come from a competing project, and  sounded more like an expression of frustration. So I engaged. Not only did the person respond, but I got some decent quality feedback. What’s also interesting is a couple other side conversations sprouted on the subject, which gave me more useful data. LINQ to Twitter Thread Actions Essentially, this particular issue centered around maintenance. There are actually several sub-issues at play here: dependencies, error handling, debugging, and visibility. I’ll describe each one and my interpretation. Dependencies Dependencies are where a library has references to other libraries. This means that when you build your application, you need DLLs for the entire dependency graph for your application. There are several potential problems with this that include more libraries for configuration management, potential versioning mismatches, and lack of cross-platform support. In the early days of LINQ to Twitter, I allowed developers to contribute and add dependencies, but it became very problematic (for reasons stated). It was like a ball and chain that kept me from moving forward. So, I refactored and pulled other open-source into my project to eliminate external dependencies. This lets me fix the code in my project without relying on someone else to upgrade or fix their DLL. The motivation for this was from early negative feedback that translated as important data and acted on it. Today, LINQ to Twitter has zero dependencies. Note: Rejecting good code from community members who worked hard to make your project better is a painful experience in itself. I have to point out that any contribution was not in vain because they had a positive influence on my subsequent refactoring that resulted in a better developer experience. Error Handling Error handling has been a problem in the past. I have this combination of supporting both synchronous and asynchronous (APM) processing that can be complex at times. Within the last 6 months, I did a fair amount of refactoring to detect errors and process them properly. I also refactored TwitterQueryException so it includes important data from Twitter. During this refactoring, I’ve made breaking changes that I felt would improve the development experience (small things like renaming a callback property to Exception, rather than Error). I think the async error handling is much better than it was a year ago. For all the work I’ve done, there is more to do. I think that a combination of more error handling support, e.g. improving semantics, and education through documentation and samples will improve the error handling story. Because of what I’ve done so far, it isn’t bad, but I see opportunities for improvement. Debugging Debugging can be painful. Here’s why: you have multiple layers of technology to navigate and figure out where the real problem is – Twitter API, Security, HTTP, LINQ to Twitter, and application. You can probably add your own nuances to that list, but the point is that debugging in this environment can be complex. I think that my plans for error handling will contribute to making the debugging process easier. However, there’s more I can do in the way of documentation and guidance. Some of the questions to be answered revolve around when something goes wrong, how does the developer figure out that there is a problem, what the problem is, and what to do about it. One example that has gone a long way to helping LINQ to Twitter developers is the 401 FAQ. A 401 Unauthorized is the error that the Twitter API returns when a use isn’t able to authenticate and is one of the most difficult problems faced by LINQ to Twitter developers. What I did was read guidance from Twitter and collect techniques from my own development and actions helping other developers to compile an extensive list of reasons for the 401 and ways to fix the problem. At one time, over half of the questions I answered in the forums were to help solve 401 issues. After publishing the 401 FAQ, I rarely get a 401 question and it’s because the person didn’t know about the FAQ. If the person is too lazy to read the FAQ, that’s not my issue, but the results in support issues have been dramatic. I think debugging can benefit from the education and documentation approach, but I’m always open to suggestions on whatever else I can do. Visibility Visibility is a nuance of the error handling/debugging discussion but is deeply rooted in comfort and control. The questions to ask in this area are what is happening as my code runs and how testable is the code. In support of these areas, LINQ to Twitter does have logging and TwitterContext properties that help see what’s happening on requests. The logging functionality allows any developer to connect a TextWriter to the Log property of TwitterContext to see what’s happening. Further, TwitterContext has a Headers property to see the headers Twitter returns and a RawResults property to show the Json string Twitter returns. From a testing perspective, I’ve been able to write hundreds of unit tests, over 600 when this post is published, and growing. If you write your own library, you have full control over all of these aspects. The tradeoff here is that while you have access to the LINQ to Twitter source code and modify it for all the visibility, LINQ to Twitter *will* change (which is good) and you will have to figure out how to merge that with your changes (which is hard). The fact is that this is a limitation of any 3rd party library, not just LINQ to Twitter. So, it’s a design decision where the tradeoff is between control and productivity. That said, there are things I can do with LINQ to Twitter to make the visibility story more compelling. I think there are opportunities to improve diagnostics. This would be a ton of work because it would need to provide multi-level logging that can be tuned for production and support any logging provider you want to attach. I’ve considered approaches such as how the new Semantic Logging application block connects to Windows Error Reporting as a potential target. Whatever I do would need to be extensible without creating native external dependencies. e.g. how many 3rd party libraries force a dependency on a logging framework that you don’t use. So, this won’t be an easy feat, but I believe it can be part of the roadmap. I think that a lot of developers are unaware of existing visibility features, so the first step would be to provide more documentation and guidance. My thought are that this would lead to more feedback that will help improve this area. Summary Recent feedback highlights some of items that are important to LINQ to Twitter developers, such as dependencies, error handling, debugging, and visibility. I know that there are maintenance issues that have been problems for LINQ to Twitter developers in the past. I’ve done a lot of work in this area, such as improving error handling, adding visibility features, and providing extensive API documentation. That said, there is more to be done to make LINQ to Twitter the best Twitter API experience available for .NET developers and I welcome anyone’s thoughts on what I’ve written here or new improvements. @JoeMayo

    Read the article

  • Differences Between NHibernate and Entity Framework

    - by Ricardo Peres
    Introduction NHibernate and Entity Framework are two of the most popular O/RM frameworks on the .NET world. Although they share some functionality, there are some aspects on which they are quite different. This post will describe this differences and will hopefully help you get started with the one you know less. Mind you, this is a personal selection of features to compare, it is by no way an exhaustive list. History First, a bit of history. NHibernate is an open-source project that was first ported from Java’s venerable Hibernate framework, one of the first O/RM frameworks, but nowadays it is not tied to it, for example, it has .NET specific features, and has evolved in different ways from those of its Java counterpart. Current version is 3.3, with 3.4 on the horizon. It currently targets .NET 3.5, but can be used as well in .NET 4, it only makes no use of any of its specific functionality. You can find its home page at NHForge. Entity Framework 1 came out with .NET 3.5 and is now on its second major version, despite being version 4. Code First sits on top of it and but came separately and will also continue to be released out of line with major .NET distributions. It is currently on version 4.3.1 and version 5 will be released together with .NET Framework 4.5. All versions will target the current version of .NET, at the time of their release. Its home location is located at MSDN. Architecture In NHibernate, there is a separation between the Unit of Work and the configuration and model instances. You start off by creating a Configuration object, where you specify all global NHibernate settings such as the database and dialect to use, the batch sizes, the mappings, etc, then you build an ISessionFactory from it. The ISessionFactory holds model and metadata that is tied to a particular database and to the settings that came from the Configuration object, and, there will typically be only one instance of each in a process. Finally, you create instances of ISession from the ISessionFactory, which is the NHibernate representation of the Unit of Work and Identity Map. This is a lightweight object, it basically opens and closes a database connection as required and keeps track of the entities associated with it. ISession objects are cheap to create and dispose, because all of the model complexity is stored in the ISessionFactory and Configuration objects. As for Entity Framework, the ObjectContext/DbContext holds the configuration, model and acts as the Unit of Work, holding references to all of the known entity instances. This class is therefore not lightweight as its NHibernate counterpart and it is not uncommon to see examples where an instance is cached on a field. Mappings Both NHibernate and Entity Framework (Code First) support the use of POCOs to represent entities, no base classes are required (or even possible, in the case of NHibernate). As for mapping to and from the database, NHibernate supports three types of mappings: XML-based, which have the advantage of not tying the entity classes to a particular O/RM; the XML files can be deployed as files on the file system or as embedded resources in an assembly; Attribute-based, for keeping both the entities and database details on the same place at the expense of polluting the entity classes with NHibernate-specific attributes; Strongly-typed code-based, which allows dynamic creation of the model and strongly typing it, so that if, for example, a property name changes, the mapping will also be updated. Entity Framework can use: Attribute-based (although attributes cannot express all of the available possibilities – for example, cascading); Strongly-typed code mappings. Database Support With NHibernate you can use mostly any database you want, including: SQL Server; SQL Server Compact; SQL Server Azure; Oracle; DB2; PostgreSQL; MySQL; Sybase Adaptive Server/SQL Anywhere; Firebird; SQLLite; Informix; Any through OLE DB; Any through ODBC. Out of the box, Entity Framework only supports SQL Server, but a number of providers exist, both free and commercial, for some of the most used databases, such as Oracle and MySQL. See a list here. Inheritance Strategies Both NHibernate and Entity Framework support the three canonical inheritance strategies: Table Per Type Hierarchy (Single Table Inheritance), Table Per Type (Class Table Inheritance) and Table Per Concrete Type (Concrete Table Inheritance). Associations Regarding associations, both support one to one, one to many and many to many. However, NHibernate offers far more collection types: Bags of entities or values: unordered, possibly with duplicates; Lists of entities or values: ordered, indexed by a number column; Maps of entities or values: indexed by either an entity or any value; Sets of entities or values: unordered, no duplicates; Arrays of entities or values: indexed, immutable. Querying NHibernate exposes several querying APIs: LINQ is probably the most used nowadays, and really does not need to be introduced; Hibernate Query Language (HQL) is a database-agnostic, object-oriented SQL-alike language that exists since NHibernate’s creation and still offers the most advanced querying possibilities; well suited for dynamic queries, even if using string concatenation; Criteria API is an implementation of the Query Object pattern where you create a semi-abstract conceptual representation of the query you wish to execute by means of a class model; also a good choice for dynamic querying; Query Over offers a similar API to Criteria, but using strongly-typed LINQ expressions instead of strings; for this, although more refactor-friendlier that Criteria, it is also less suited for dynamic queries; SQL, including stored procedures, can also be used; Integration with Lucene.NET indexer is available. As for Entity Framework: LINQ to Entities is fully supported, and its implementation is considered very complete; it is the API of choice for most developers; Entity-SQL, HQL’s counterpart, is also an object-oriented, database-independent querying language that can be used for dynamic queries; SQL, of course, is also supported. Caching Both NHibernate and Entity Framework, of course, feature first-level cache. NHibernate also supports a second-level cache, that can be used among multiple ISessionFactorys, even in different processes/machines: Hashtable (in-memory); SysCache (uses ASP.NET as the cache provider); SysCache2 (same as above but with support for SQL Server SQL Dependencies); Prevalence; SharedCache; Memcached; Redis; NCache; Appfabric Caching. Out of the box, Entity Framework does not have any second-level cache mechanism, however, there are some public samples that show how we can add this. ID Generators NHibernate supports different ID generation strategies, coming from the database and otherwise: Identity (for SQL Server, MySQL, and databases who support identity columns); Sequence (for Oracle, PostgreSQL, and others who support sequences); Trigger-based; HiLo; Sequence HiLo (for databases that support sequences); Several GUID flavors, both in GUID as well as in string format; Increment (for single-user uses); Assigned (must know what you’re doing); Sequence-style (either uses an actual sequence or a single-column table); Table of ids; Pooled (similar to HiLo but stores high values in a table); Native (uses whatever mechanism the current database supports, identity or sequence). Entity Framework only supports: Identity generation; GUIDs; Assigned values. Properties NHibernate supports properties of entity types (one to one or many to one), collections (one to many or many to many) as well as scalars and enumerations. It offers a mechanism for having complex property types generated from the database, which even include support for querying. It also supports properties originated from SQL formulas. Entity Framework only supports scalars, entity types and collections. Enumerations support will come in the next version. Events and Interception NHibernate has a very rich event model, that exposes more than 20 events, either for synchronous pre-execution or asynchronous post-execution, including: Pre/Post-Load; Pre/Post-Delete; Pre/Post-Insert; Pre/Post-Update; Pre/Post-Flush. It also features interception of class instancing and SQL generation. As for Entity Framework, only two events exist: ObjectMaterialized (after loading an entity from the database); SavingChanges (before saving changes, which include deleting, inserting and updating). Tracking Changes For NHibernate as well as Entity Framework, all changes are tracked by their respective Unit of Work implementation. Entities can be attached and detached to it, Entity Framework does, however, also support self-tracking entities. Optimistic Concurrency Control NHibernate supports all of the imaginable scenarios: SQL Server’s ROWVERSION; Oracle’s ORA_ROWSCN; A column containing date and time; A column containing a version number; All/dirty columns comparison. Entity Framework is more focused on Entity Framework, so it only supports: SQL Server’s ROWVERSION; Comparing all/some columns. Batching NHibernate has full support for insertion batching, but only if the ID generator in use is not database-based (for example, it cannot be used with Identity), whereas Entity Framework has no batching at all. Cascading Both support cascading for collections and associations: when an entity is deleted, their conceptual children are also deleted. NHibernate also offers the possibility to set the foreign key column on children to NULL instead of removing them. Flushing Changes NHibernate’s ISession has a FlushMode property that can have the following values: Auto: changes are sent to the database when necessary, for example, if there are dirty instances of an entity type, and a query is performed against this entity type, or if the ISession is being disposed; Commit: changes are sent when committing the current transaction; Never: changes are only sent when explicitly calling Flush(). As for Entity Framework, changes have to be explicitly sent through a call to AcceptAllChanges()/SaveChanges(). Lazy Loading NHibernate supports lazy loading for Associated entities (one to one, many to one); Collections (one to many, many to many); Scalar properties (thing of BLOBs or CLOBs). Entity Framework only supports lazy loading for: Associated entities; Collections. Generating and Updating the Database Both NHibernate and Entity Framework Code First (with the Migrations API) allow creating the database model from the mapping and updating it if the mapping changes. Extensibility As you can guess, NHibernate is far more extensible than Entity Framework. Basically, everything can be extended, from ID generation, to LINQ to SQL transformation, HQL native SQL support, custom column types, custom association collections, SQL generation, supported databases, etc. With Entity Framework your options are more limited, at least, because practically no information exists as to what can be extended/changed. It features a provider model that can be extended to support any database. Integration With Other Microsoft APIs and Tools When it comes to integration with Microsoft technologies, it will come as no surprise that Entity Framework offers the best support. For example, the following technologies are fully supported: ASP.NET (through the EntityDataSource); ASP.NET Dynamic Data; WCF Data Services; WCF RIA Services; Visual Studio (through the integrated designer). Documentation This is another point where Entity Framework is superior: NHibernate lacks, for starters, an up to date API reference synchronized with its current version. It does have a community mailing list, blogs and wikis, although not much used. Entity Framework has a number of resources on MSDN and, of course, several forums and discussion groups exist. Conclusion Like I said, this is a personal list. I may come as a surprise to some that Entity Framework is so behind NHibernate in so many aspects, but it is true that NHibernate is much older and, due to its open-source nature, is not tied to product-specific timeframes and can thus evolve much more rapidly. I do like both, and I chose whichever is best for the job I have at hands. I am looking forward to the changes in EF5 which will add significant value to an already interesting product. So, what do you think? Did I forget anything important or is there anything else worth talking about? Looking forward for your comments!

    Read the article

  • JMS Step 7 - How to Write to an AQ JMS (Advanced Queueing JMS) Queue from a BPEL Process

    - by John-Brown.Evans
    JMS Step 7 - How to Write to an AQ JMS (Advanced Queueing JMS) Queue from a BPEL Process ol{margin:0;padding:0} .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} .c4_7{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c3_7{vertical-align:top;width:234pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_7{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c16_7{background-color:#ffffff;padding:0pt 0pt 0pt 0pt} .c0_7{height:11pt;direction:ltr} .c9_7{color:#1155cc;text-decoration:underline} .c17_7{color:inherit;text-decoration:inherit} .c5_7{direction:ltr} .c18_7{background-color:#ffff00} .c2_7{background-color:#f3f3f3} .c14_7{height:0pt} .c8_7{text-indent:36pt} .c11_7{text-align:center} .c7_7{font-style:italic} .c1_7{font-family:"Courier New"} .c13_7{line-height:1.0} .c15_7{border-collapse:collapse} .c12_7{font-weight:bold} .c10_7{font-size:8pt} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes This example demonstrates how to write a simple message to an Oracle AQ via the the WebLogic AQ JMS functionality from a BPEL process and a JMS adapter. If you have not yet reviewed the previous posts, please do so first, especially the JMS Step 6 post, as this one references objects created there. 1. Recap and Prerequisites In the previous example, we created an Oracle Advanced Queue (AQ) and some related JMS objects in WebLogic Server to be able to access it via JMS. Here are the objects which were created and their names and JNDI names: Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2 . Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will write a simple XML message to the AQ JMS queue via the JMS adapter, based on the following XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                xmlns="http://www.example.org"                targetNamespace="http://www.example.org"                elementFormDefault="qualified">  <xsd:element name="exampleElement" type="xsd:string">  </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project   JmsAdapterWriteAqJms  and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and select SOA Tier > SOA Project as its type. Name it JmsAdapterWriteAqJms . When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteAqJms too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd  and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the XSD item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Advanced Queueing AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the connection factory created earlier is located. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Produce Operation Parameters Destination Name: Wait for the list to populate. (Only foreign servers are listed here, because Oracle Advanced Queuing was selected earlier, in step 3) .         Select the foreign server destination created earlier, AqJmsForeignDestination (queue) . This will automatically populate the Destination Name field with the name of the foreign destination, queue/USERQUEUE . JNDI Name: The JNDI name to use for the JMS connection. This is the JNDI name of the connection pool created in the WebLogic Server.JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime. In our example, this is the value eis/aqjms/UserQueue Messages URL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement : string . Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow.   This completes the steps at the composite level. 3. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 4. Compile and Deploy the Composite Compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ----  Deployment finished.  ---- in the Deployment frame, if the deployment was successful. 5. Test the Composite Execute a Test Instance In a browser, log in to the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation. Navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite) and click on  JmsAdapterWriteAqJms [1.0] , then press the Test button. Enter any string into the text input field, for example “Test message from JmsAdapterWriteAqJms” then press Test Web Service. If the instance is successful, you should see the same text you entered in the Response payload frame. Monitor the Advanced Queue The test message will be written to the advanced queue created at the top of this sample. To confirm it, log in to the database as AQJMSUSER and query the MYQUEUETABLE database table. For example, from a shell window with SQL*Plus sqlplus aqjmsuser/aqjmsuser SQL> SELECT user_data FROM myqueuetable; which will display the message contents, for example Similarly, you can use the JDeveloper Database Navigator to view the contents. Use a database connection to the AQJMSUSER and in the navigator, expand Queues Tables and select MYQUEUETABLE. Select the Data tab and scroll to the USER_DATA column to view its contents. This concludes this example. The following post will be the last one in this series. In it, we will learn how to read the message we just wrote using a BPEL process and AQ JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • CLSF & CLK 2013 Trip Report by Jeff Liu

    - by jamesmorris
    This is a contributed post from Jeff Liu, lead XFS developer for the Oracle mainline Linux kernel team. Recently, I attended both the China Linux Storage and Filesystem workshop (CLSF), and the China Linux Kernel conference (CLK), which were held in Shanghai. Here are the highlights for both events. CLSF - 17th October XFS update (led by Jeff Liu) XFS keeps rapid progress with a lot of changes, especially focused on the infrastructure/performance improvements as well as  new feature development.  This can be reflected with a sample statistics among XFS/Ext4+JBD2/Btrfs via: # git diff --stat --minimal -C -M v3.7..v3.12-rc4 -- fs/xfs|fs/ext4+fs/jbd2|fs/btrfs XFS: 141 files changed, 27598 insertions(+), 19113 deletions(-) Ext4+JBD2: 39 files changed, 10487 insertions(+), 5454 deletions(-) Btrfs: 70 files changed, 19875 insertions(+), 8130 deletions(-) What made up those changes in XFS? Self-describing metadata(CRC32c). This is a new feature and it contributed about 70% code changes, it can be enabled via `mkfs.xfs -m crc=1 /dev/xxx` for v5 superblock. Transaction log space reservation improvements. With this change, we can calculate the log space reservation at mount time rather than runtime to reduce the the CPU overhead. User namespace support. So both XFS and USERNS can be enabled on kernel configuration begin from Linux 3.10. Thanks Dwight Engen's efforts for this thing. Split project/group quota inodes. Originally, project quota can not be enabled with group quota at the same time because they were share the same quota file inode, now it works but only for v5 super block. i.e, CRC enabled. CONFIG_XFS_WARN, an new lightweight runtime debugger which can be deployed in production environment. Readahead log object recovery, this change can speed up the log replay progress significantly. Speculative preallocation inode tracking, clearing and throttling. The main purpose is to deal with inodes with post-EOF space due to speculative preallocation, support improved quota management to free up a significant amount of unwritten space when at or near EDQUOT. It support backgroup scanning which occurs on a longish interval(5 mins by default, tunable), and on-demand scanning/trimming via ioctl(2). Bitter arguments ensued from this session, especially for the comparison between Ext4 and Btrfs in different areas, I have to spent a whole morning of the 1st day answering those questions. We basically agreed on XFS is the best choice in Linux nowadays because: Stable, XFS has a good record in stability in the past 10 years. Fengguang Wu who lead the 0-day kernel test project also said that he has observed less error than other filesystems in the past 1+ years, I own it to the XFS upstream code reviewer, they always performing serious code review as well as testing. Good performance for large/small files, XFS does not works very well for small files has already been an old story for years. Best choice (maybe) for distributed PB filesystems. e.g, Ceph recommends delopy OSD daemon on XFS because Ext4 has limited xattr size. Best choice for large storage (>16TB). Ext4 does not support a single file more than around 15.95TB. Scalability, any objection to XFS is best in this point? :) XFS is better to deal with transaction concurrency than Ext4, why? The maximum size of the log in XFS is 2038MB compare to 128MB in Ext4. Misc. Ext4 is widely used and it has been proved fast/stable in various loads and scenarios, XFS just need more customers, and Btrfs is still on the road to be a manhood. Ceph Introduction (Led by Li Wang) This a hot topic.  Li gave us a nice introduction about the design as well as their current works. Actually, Ceph client has been included in Linux kernel since 2.6.34 and supported by Openstack since Folsom but it seems that it has not yet been widely deployment in production environment. Their major work is focus on the inline data support to separate the metadata and data storage, reduce the file access time, i.e, a file access need communication twice, fetch the metadata from MDS and then get data from OSD, and also, the small file access is limited by the network latency. The solution is, for the small files they would like to store the data at metadata so that when accessing a small file, the metadata server can push both metadata and data to the client at the same time. In this way, they can reduce the overhead of calculating the data offset and save the communication to OSD. For this feature, they have only run some small scale testing but really saw noticeable improvements. Test environment: Intel 2 CPU 12 Core, 64GB RAM, Ubuntu 12.04, Ceph 0.56.6 with 200GB SATA disk, 15 OSD, 1 MDS, 1 MON. The sequence read performance for 1K size files improved about 50%. I have asked Li and Zheng Yan (the core developer of Ceph, who also worked on Btrfs) whether Ceph is really stable and can be deployed at production environment for large scale PB level storage, but they can not give a positive answer, looks Ceph even does not spread over Dreamhost (subject to confirmation). From Li, they only deployed Ceph for a small scale storage(32 nodes) although they'd like to try 6000 nodes in the future. Improve Linux swap for Flash storage (led by Shaohua Li) Because of high density, low power and low price, flash storage (SSD) is a good candidate to partially replace DRAM. A quick answer for this is using SSD as swap. But Linux swap is designed for slow hard disk storage, so there are a lot of challenges to efficiently use SSD for swap. SWAPOUT swap_map scan swap_map is the in-memory data structure to track swap disk usage, but it is a slow linear scan. It will become a bottleneck while finding many adjacent pages in the use of SSD. Shaohua Li have changed it to a cluster(128K) list, resulting in O(1) algorithm. However, this apporoach needs restrictive cluster alignment and only enabled for SSD. IO pattern In most cases, the swap io is in interleaved pattern because of mutiple reclaimers or a free cluster is shared by all reclaimers. Even though block layer can merge interleaved IO to some extent, but we cannot count on it completely. Hence the per-cpu cluster is added base on the previous change, it can help reclaimer do sequential IO and the block layer will be easier to merge IO. TLB flush: If we're reclaiming one active page, we should first move the page from active lru list to inactive lru list, and then reclaim the page from inactive lru to swap it out. During the process, we need to clear PTE twice: first is 'A'(ACCESS) bit, second is 'P'(PRESENT) bit. Processors need to send lots of ipi which make the TLB flush really expensive. Some works have been done to improve this, including rework smp_call_functiom_many() or remove the first TLB flush in x86, but there still have some arguments here and only parts of works have been pushed to mainline. SWAPIN: Page fault does iodepth=1 sync io, but it's a little waste if only issue a page size's IO. The obvious solution is doing swap readahead. But the current in-kernel swap readahead is arbitary(always 8 pages), and it always doesn't perform well for both random and sequential access workload. Shaohua introduced a new flag for madvise(MADV_WILLNEED) to do swap prefetch, so the changes happen in userspace API and leave the in-kernel readahead unchanged(but I think some improvement can also be done here). SWAP discard As we know, discard is important for SSD write throughout, but the current swap discard implementation is synchronous. He changed it to async discard which allow discard and write run in the same time. Meanwhile, the unit of discard is also optimized to cluster. Misc: lock contention For many concurrent swapout and swapin , the lock contention such as anon_vma or swap_lock is high, so he changed the swap_lock to a per-swap lock. But there still have some lock contention in very high speed SSD because of swapcache address_space lock. Zproject (led by Bob Liu) Bob gave us a very nice introduction about the current memory compression status. Now there are 3 projects(zswap/zram/zcache) which all aim at smooth swap IO storm and promote performance, but they all have their own pros and cons. ZSWAP It is implemented based on frontswap API and it uses a dynamic allocater named Zbud to allocate free pages. Zbud means pairs of zpages are "buddied" and it can only store at most two compressed pages in one page frame, so the max compress ratio is 50%. Each page frame is lru-linked and can do shink in memory pressure. If the compressed memory pool reach its limitation, shink or reclaim happens. It decompress the page frame into two new allocated pages and then write them to real swap device, but it can fail when allocating the two pages. ZRAM Acts as a compressed ramdisk and used as swap device, and it use zsmalloc as its allocator which has high density but may have fragmentation issues. Besides, page reclaim is hard since it will need more pages to uncompress and free just one page. ZRAM is preferred by embedded system which may not have any real swap device. Now both ZRAM and ZSWAP are in driver/staging tree, and in the mm community there are some disscussions of merging ZRAM into ZSWAP or viceversa, but no agreement yet. ZCACHE Handles file page compression but it is removed out of staging recently. From industry (led by Tang Jie, LSI) An LSI engineer introduced several new produces to us. The first is raid5/6 cards that it use full stripe writes to improve performance. The 2nd one he introduced is SandForce flash controller, who can understand data file types (data entropy) to reduce write amplification (WA) for nearly all writes. It's called DuraWrite and typical WA is 0.5. What's more, if enable its Dynamic Logical Capacity function module, the controller can do data compression which is transparent to upper layer. LSI testing shows that with this virtual capacity enables 1x TB drive can support up to 2x TB capacity, but the application must monitor free flash space to maintain optimal performance and to guard against free flash space exhaustion. He said the most useful application is for datebase. Another thing I think it's worth to mention is that a NV-DRAM memory in NMR/Raptor which is directly exposed to host system. Applications can directly access the NV-DRAM via a memory address - using standard system call mmap(). He said that it is very useful for database logging now. This kind of NVM produces are beginning to appear in recent years, and it is said that Samsung is building a research center in China for related produces. IMHO, NVM will bring an effect to current os layer especially on file system, e.g. its journaling may need to redesign to fully utilize these nonvolatile memory. OCFS2 (led by Canquan Shen) Without a doubt, HuaWei is the biggest contributor to OCFS2 in the past two years. They have posted 46 upstream patches and 39 patches have been merged. Their current project is based on 32/64 nodes cluster, but they also tried 128 nodes at the experimental stage. The major work they are working is to support ATS (atomic test and set), it can be works with DLM at the same time. Looks this idea is inspired by the vmware VMFS locking, i.e, http://blogs.vmware.com/vsphere/2012/05/vmfs-locking-uncovered.html CLK - 18th October 2013 Improving Linux Development with Better Tools (Andi Kleen) This talk focused on how to find/solve bugs along with the Linux complexity growing. Generally, we can do this with the following kind of tools: Static code checkers tools. e.g, sparse, smatch, coccinelle, clang checker, checkpatch, gcc -W/LTO, stanse. This can help check a lot of things, simple mistakes, complex problems, but the challenges are: some are very slow, false positives, may need a concentrated effort to get false positives down. Especially, no static checker I found can follow indirect calls (“OO in C”, common in kernel): struct foo_ops { int (*do_foo)(struct foo *obj); } foo->do_foo(foo); Dynamic runtime checkers, e.g, thread checkers, kmemcheck, lockdep. Ideally all kernel code would come with a test suite, then someone could run all the dynamic checkers. Fuzzers/test suites. e.g, Trinity is a great tool, it finds many bugs, but needs manual model for each syscall. Modern fuzzers around using automatic feedback, but notfor kernel yet: http://taviso.decsystem.org/making_software_dumber.pdf Debuggers/Tracers to understand code, e.g, ftrace, can dump on events/oops/custom triggers, but still too much overhead in many cases to run always during debug. Tools to read/understand source, e.g, grep/cscope work great for many cases, but do not understand indirect pointers (OO in C model used in kernel), give us all “do_foo” instances: struct foo_ops { int (*do_foo)(struct foo *obj); } = { .do_foo = my_foo }; foo>do_foo(foo); That would be great to have a cscope like tool that understands this based on types/initializers XFS: The High Performance Enterprise File System (Jeff Liu) [slides] I gave a talk for introducing the disk layout, unique features, as well as the recent changes.   The slides include some charts to reflect the performances between XFS/Btrfs/Ext4 for small files. About a dozen users raised their hands when I asking who has experienced with XFS. I remembered that when I asked the same question in LinuxCon/Japan, only 3 people raised their hands, but they are Chris Mason, Ric Wheeler, and another attendee. The attendee questions were mainly focused on stability, and comparison with other file systems. Linux Containers (Feng Gao) The speaker introduced us that the purpose for those kind of namespaces, include mount/UTS/IPC/Network/Pid/User, as well as the system API/ABI. For the userspace tools, He mainly focus on the Libvirt LXC rather than us(LXC). Libvirt LXC is another userspace container management tool, implemented as one type of libvirt driver, it can manage containers, create namespace, create private filesystem layout for container, Create devices for container and setup resources controller via cgroup. In this talk, Feng also mentioned another two possible new namespaces in the future, the 1st is the audit, but not sure if it should be assigned to user namespace or not. Another is about syslog, but the question is do we really need it? In-memory Compression (Bob Liu) Same as CLSF, a nice introduction that I have already mentioned above. Misc There were some other talks related to ACPI based memory hotplug, smart wake-affinity in scheduler etc., but my head is not big enough to record all those things. -- Jeff Liu

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

  • New in MySQL Enterprise Edition: Policy-based Auditing!

    - by Rob Young
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} For those with an interest in MySQL, this weekend's MySQL Connect conference in San Francisco has gotten off to a great start. On Saturday Tomas announced the feature complete MySQL 5.6 Release Candidate that is now available for Community adoption and testing. This announcement marks the sprint to GA that should be ready for release within the next 90 days. You can get a quick summary of the key 5.6 features here or better yet download the 5.6 RC (under “Development Releases”), review what's new and try it out for yourself! There were also product related announcements around MySQL Cluster 7.3 and MySQL Enterprise Edition . This latter announcement is of particular interest if you are faced with internal and regulatory compliance requirements as it addresses and solves a pain point that is shared by most developers and DBAs; new, out of the box compliance for MySQL applications via policy-based audit logging of user and query level activity. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} One of the most common requests we get for the MySQL roadmap is for quick and easy logging of audit events. This is mainly due to how web-based applications have evolved from nice-to-have enablers to mission-critical revenue generation and the important role MySQL plays in the new dynamic. In today’s virtual marketplace, PCI compliance guidelines ensure credit card data is secure within e-commerce apps; from a corporate standpoint, Sarbanes-Oxely, HIPAA and other regulations guard the medical, financial, public sector and other personal data centric industries. For supporting applications audit policies and controls that monitor the eyes and hands that have viewed and acted upon the most sensitive of data is most commonly implemented on the back-end database. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} With this in mind, MySQL 5.5 introduced an open audit plugin API that enables all MySQL users to write their own auditing plugins based on application specific requirements. While the supporting docs are very complete and provide working code samples, writing an audit plugin requires time and low-level expertise to develop, test, implement and maintain. To help those who don't have the time and/or expertise to develop such a plugin, Oracle now ships MySQL 5.5.28 and higher with an easy to use, out-of-the-box auditing solution; MySQL Enterprise Audit. MySQL Enterprise Audit The premise behind MySQL Enterprise Audit is simple; we wanted to provide an easy to use, policy-based auditing solution that enables you to quickly and seamlessly add compliance to their MySQL applications. MySQL Enterprise Audit meets this requirement by enabling you to: 1. Easily install the needed components. Installation requires an upgrade to MySQL 5.5.28 (Enterprise edition), which can be downloaded from the My Oracle Support portal or the Oracle Software Delivery Cloud. After installation, you simply add the following to your my.cnf file to register and enable the audit plugin: [mysqld] plugin-load=audit_log.so (keep in mind the audit_log suffix is platform dependent, so .dll on Windows, etc.) or alternatively you can load the plugin at runtime: mysql> INSTALL PLUGIN audit_log SONAME 'audit_log.so'; 2. Dynamically enable and disable the audit stream for a specific MySQL server. A new global variable called audit_log_policy allows you to dynamically enable and disable audit stream logging for a specific MySQL server. The variable parameters are described below. 3. Define audit policy based on what needs to be logged (everything, logins, queries, or nothing), by server. The new audit_log_policy variable uses the following valid, descriptively named values to enable, disable audit stream logging and to filter the audit events that are logged to the audit stream: "ALL" - enable audit stream and log all events "LOGINS" - enable audit stream and log only login events "QUERIES" - enable audit stream and log only querie events "NONE" - disable audit stream 4. Manage audit log files using basic MySQL log rotation features. A new global variable, audit_log_rotate_on_size, allows you to automate the rotation and archival of audit stream log files based on size with archived log files renamed and appended with datetime stamp when a new file is opened for logging. 5. Integrate the MySQL audit stream with MySQL, Oracle tools and other third-party solutions. The MySQL audit stream is written as XML, using UFT-8 and can be easily formatted for viewing using a standard XML parser. This enables you to leverage tools from MySQL and others to view the contents. The audit stream was also developed to meet the Oracle database audit stream specification so combined Oracle/MySQL shops can import and manage MySQL audit images using the same Oracle tools they use for their Oracle databases. So assuming a successful MySQL 5.5.28 upgrade or installation, a common set up and use case scenario might look something like this: Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} It should be noted that MySQL Enterprise Audit was designed to be transparent at the application layer by allowing you to control the mix of log output buffering and asynchronous or synchronous disk writes to minimize the associated overhead that comes when the audit stream is enabled. The net result is that, depending on the chosen audit stream log stream options, most application users will see little to no difference in response times when the audit stream is enabled. So what are your next steps? Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Get all of the grainy details on MySQL Enterprise Audit, including all of the additional configuration options from the MySQL documentation. MySQL Enterprise Edition customers can download MySQL 5.5.28 with the Audit extension for production use from the My Oracle Support portal. Everyone can download MySQL 5.5.28 with the Audit extension for evaluation from the Oracle Software Delivery Cloud. Learn more about MySQL Enterprise Edition. As always, thanks for your continued support of MySQL!

    Read the article

  • Scheduling runtime-specified Activity in Workflow 4 RC

    - by johnny g
    Hi, so I have this requirement to kick off Activities provided to me at run-time. To facilitate this, I have set up a WorkflowService that receives Activities as Xaml, hydrates them, and kicks them off. Sounds simple enough ... ... this is my WorkflowService in Xaml <Activity x:Class="Workflow.Services.WorkflowService.WorkflowService" ... xmlns:local1="clr-namespace:Workflow.Activities" > <Sequence sap:VirtualizedContainerService.HintSize="277,272"> <Sequence.Variables> <Variable x:TypeArguments="local:Workflow" Name="Workflow" /> </Sequence.Variables> <sap:WorkflowViewStateService.ViewState> <scg3:Dictionary x:TypeArguments="x:String, x:Object"> <x:Boolean x:Key="IsExpanded">True</x:Boolean> </scg3:Dictionary> </sap:WorkflowViewStateService.ViewState> <p:Receive CanCreateInstance="True" DisplayName="ReceiveSubmitWorkflow" sap:VirtualizedContainerService.HintSize="255,86" OperationName="SubmitWorkflow" ServiceContractName="IWorkflowService"> <p:ReceiveParametersContent> <OutArgument x:TypeArguments="local:Workflow" x:Key="workflow">[Workflow]</OutArgument> </p:ReceiveParametersContent> </p:Receive> <local1:InvokeActivity Activity="[ActivityXamlServices.Load(New System.IO.StringReader(Workflow.Xaml))]" sap:VirtualizedContainerService.HintSize="255,22" /> </Sequence> </Activity> ... which, except for repetitive use of "Workflow" is pretty straight forward. In fact, it's just a Sequence with a Receive and [currently] a custom Activity called InvokeActivity. Get to that in a bit. Receive Activity accepts a custom type, [DataContract] public class Workflow { [DataMember] public string Xaml { get; set; } } which contains a string whose contents are to be interpreted as Xaml. You can see the VB expression that then converts this Xaml to an Activity and passes it on. Now this second bit, the custom InvokeActivity is where I have questions. First question: 1) given an arbitrary task, provided at runtime [as described above] is it possible to kick off this Activity using Activities that ship with WF4RC, out of the box? I'm fairly new, and thought I did a good job going through the API and existing documentation, but may as well ask :) Second: 2) my first attempt at implementing a custom InvokeActivity looked like this public sealed class InvokeActivity : NativeActivity { private static readonly ILog _log = LogManager.GetLogger (typeof (InvokeActivity)); public InArgument<Activity> Activity { get; set; } public InvokeActivity () { _log.DebugFormat ("Instantiated."); } protected override void Execute (NativeActivityContext context) { Activity activity = Activity.Get (context); _log.DebugFormat ("Scheduling activity [{0}]...", activity.DisplayName); // throws exception to lack of metadata! :( ActivityInstance instance = context.ScheduleActivity (activity, OnComplete, OnFault); _log.DebugFormat ( "Scheduled activity [{0}] with instance id [{1}].", activity.DisplayName, instance.Id); } protected override void CacheMetadata (NativeActivityMetadata metadata) { // how does one add InArgument<T> to metadata? not easily // is my first guess base.CacheMetadata (metadata); } // private methods private void OnComplete ( NativeActivityContext context, ActivityInstance instance) { _log.DebugFormat ( "Scheduled activity [{0}] with instance id [{1}] has [{2}].", instance.Activity.DisplayName, instance.Id, instance.State); } private void OnFault ( NativeActivityFaultContext context, Exception exception, ActivityInstance instance) { _log.ErrorFormat ( @"Scheduled activity [{0}] with instance id [{1}] has faulted in state [{2}] {3}", instance.Activity.DisplayName, instance.Id, instance.State, exception.ToStringFullStackTrace ()); } } Which attempts to schedule the specified Activity within the current context. Unfortunately, however, this fails. When I attempt to schedule said Activity, the runtime returns with the following exception The provided activity was not part of this workflow definition when its metadata was being processed. The problematic activity named 'DynamicActivity' was provided by the activity named 'InvokeActivity'. Right, so the "dynamic" Activity provided at runtime is not a member of InvokeActivitys metadata. Googled and came across this. Couldn't sort out how to specify an InArgument<Activity> to metadata cache, so my second question is, naturally, how does one address this issue? Is it ill advised to use context.ScheduleActivity (...) in this manner? Third and final, 3) I have settled on this [simpler] solution for the time being, public sealed class InvokeActivity : NativeActivity { private static readonly ILog _log = LogManager.GetLogger (typeof (InvokeActivity)); public InArgument<Activity> Activity { get; set; } public InvokeActivity () { _log.DebugFormat ("Instantiated."); } protected override void Execute (NativeActivityContext context) { Activity activity = Activity.Get (context); _log.DebugFormat ("Invoking activity [{0}] ...", activity.DisplayName); // synchronous execution ... a little less than ideal, this // seems heavy handed, and not entirely semantic-equivalent // to what i want. i really want to invoke this runtime // activity as if it were one of my own, not a separate // process - wrong mentality? WorkflowInvoker.Invoke (activity); _log.DebugFormat ("Invoked activity [{0}].", activity.DisplayName); } } Which simply invokes specified task synchronously within its own runtime instance thingy [use of WF4 vernacular is certainly questionable]. Eventually, I would like to tap into WF's tracking and possibly persistance facilities. So my third and final question is, in terms of what I would like to do [ie kick off arbitrary workflows inbound from client applications] is this the preferred method? Alright, thanks in advance for your time and consideration :)

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue

    - by John-Brown.Evans
    JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue ol{margin:0;padding:0} .c11_4{vertical-align:top;width:129.8pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c9_4{vertical-align:top;width:207pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt}.c14{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c17_4{vertical-align:top;width:129.8pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c7_4{vertical-align:top;width:130pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c19_4{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c22_4{background-color:#ffffff} .c20_4{list-style-type:disc;margin:0;padding:0} .c6_4{font-size:8pt;font-family:"Courier New"} .c24_4{color:inherit;text-decoration:inherit} .c23_4{color:#1155cc;text-decoration:underline} .c0_4{height:11pt;direction:ltr} .c10_4{font-size:10pt;font-family:"Courier New"} .c3_4{padding-left:0pt;margin-left:36pt} .c18_4{font-size:8pt} .c8_4{text-align:center} .c12_4{background-color:#ffff00} .c2_4{font-weight:bold} .c21_4{background-color:#00ff00} .c4_4{line-height:1.0} .c1_4{direction:ltr} .c15_4{background-color:#f3f3f3} .c13_4{font-family:"Courier New"} .c5_4{font-style:italic} .c16_4{border-collapse:collapse} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:bold;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:0pt} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue In this example we will create a BPEL process which will write (enqueue) a message to a JMS queue using a JMS adapter. The JMS adapter will enqueue the full XML payload to the queue. This sample will use the following WebLogic Server objects. The first two, the Connection Factory and JMS Queue, were created as part of the first blog post in this series, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g. If you haven't created those objects yet, please see that post for details on how to do so. The Connection Pool will be created as part of this example. Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue 1. Verify Connection Factory and JMS Queue As mentioned above, this example uses a WLS Connection Factory called TestConnectionFactory and a JMS queue TestJMSQueue. As these are prerequisites for this example, let us verify they exist. Log in to the WebLogic Server Administration Console. Select Services > JMS Modules > TestJMSModule You should see the following objects: If not, or if the TestJMSModule is missing, please see the abovementioned article and create these objects before continuing. 2. Create a JMS Adapter Connection Pool in WebLogic Server The BPEL process we are about to create uses a JMS adapter to write to the JMS queue. The JMS adapter is deployed to the WebLogic server and needs to be configured to include a connection pool which references the connection factory associated with the JMS queue. In the WebLogic Server Console Go to Deployments > Next and select (click on) the JmsAdapter Select Configuration > Outbound Connection Pools and expand oracle.tip.adapter.jms.IJmsConnectionFactory. This will display the list of connections configured for this adapter. For example, eis/aqjms/Queue, eis/aqjms/Topic etc. These JNDI names are actually quite confusing. We are expecting to configure a connection pool here, but the names refer to queues and topics. One would expect these to be called *ConnectionPool or *_CF or similar, but to conform to this nomenclature, we will call our entry eis/wls/TestQueue . This JNDI name is also the name we will use later, when creating a BPEL process to access this JMS queue! Select New, check the oracle.tip.adapter.jms.IJmsConnectionFactory check box and Next. Enter JNDI Name: eis/wls/TestQueue for the connection instance, then press Finish. Expand oracle.tip.adapter.jms.IJmsConnectionFactory again and select (click on) eis/wls/TestQueue The ConnectionFactoryLocation must point to the JNDI name of the connection factory associated with the JMS queue you will be writing to. In our example, this is the connection factory called TestConnectionFactory, with the JNDI name jms/TestConnectionFactory.( As a reminder, this connection factory is contained in the JMS Module called TestJMSModule, under Services > Messaging > JMS Modules > TestJMSModule which we verified at the beginning of this document. )Enter jms/TestConnectionFactory  into the Property Value field for Connection Factory Location. After entering it, you must press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console. Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes as can be seen in the following screen shot: The next step is to redeploy the JmsAdapter.Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the JMS queue. To summarize: we have created a JMS adapter connection pool connector with the JNDI name jms/TestConnectionFactory. This is the JNDI name to be accessed by a process such as a BPEL process, when using the JMS adapter to access the previously created JMS queue with the JNDI name jms/TestJMSQueue. In the following step, we will set up a BPEL process to use this JMS adapter to write to the JMS queue. 3. Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will use the connection name jbevans-lx-PS5, as that is the name of the connection pointing to my SOA PS5 installation. When using a JMS adapter from within a BPEL process, there are various configuration options, such as the operation type (consume message, produce message etc.), delivery mode and message type. One of these options is the choice of the format of the JMS message payload. This can be structured around an existing XSD, in which case the full XML element and tags are passed, or it can be opaque, meaning that the payload is sent as-is to the JMS adapter. In the case of an XSD-based message, the payload can simply be copied to the input variable of the JMS adapter. In the case of an opaque message, the JMS adapter’s input variable is of type base64binary. So the payload needs to be converted to base64 binary first. I will go into this in more detail in a later blog entry. This sample will pass a simple message to the adapter, based on the following simple XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org" targetNamespace="http://www.example.org" elementFormDefault="qualified" <xsd:element name="exampleElement" type="xsd:string"> </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project JmsAdapterWriteWithXsd and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterWriteSchema. When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteSchema too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the xsd item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Weblogic JMS AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the above JMS queue and connection factory were created. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. This example uses a connection called jbevans-lx-PS5. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created earlier. JNDI Name: The JNDI name to use for the JMS connection. This is probably the most important step in this exercise and the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) MessagesURL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string. Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow. This completes the steps at the composite level. 4. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterWriteSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. ( For some reason, while I was testing this, the JMS Adapter moved back to the left-hand swim lane again after this step. There is no harm in leaving it there, but I find it easier to follow if it is in the right-hand lane, because I kind-of think of the message coming in on the left and being routed through the right. But you can follow your personal preference here.) Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 5. Compile and Deploy the Composite We won’t go into too much detail on how to compile and deploy. In JDeveloper, compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ---- Deployment finished. ---- in the Deployment frame, if the deployment was successful. 6. Test the Composite This is the exciting part. Open two tabs in your browser and log in to the WebLogic Administration Console in one tab and the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation in the other. We will use the Console to monitor the messages being written to the queue and the EM to execute the composite. In the Console, go to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. Note the number of messages under Messages Current. In the EM, go to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterWriteSchema [1.0], then press the Test button. Under Input Arguments, enter any string into the text input field for the payload, for example Test Message then press Test Web Service. If the instance is successful you should see the same text in the Response message, “Test Message”. In the Console, refresh the Monitoring screen to confirm a new message has been written to the queue. Check the checkbox and press Show Messages. Click on the newest message and view its contents. They should include the full XML of the entered payload. 7. Troubleshooting If you get an exception similar to the following at runtime ... BINDING.JCA-12510 JCA Resource Adapter location error. Unable to locate the JCA Resource Adapter via .jca binding file element The JCA Binding Component is unable to startup the Resource Adapter specified in the element: location='eis/wls/QueueTest'. The reason for this is most likely that either 1) the Resource Adapters RAR file has not been deployed successfully to the WebLogic Application server or 2) the '' element in weblogic-ra.xml has not been set to eis/wls/QueueTest. In the last case you will have to add a new WebLogic JCA connection factory (deploy a RAR). Please correct this and then restart the Application Server at oracle.integration.platform.blocks.adapter.fw.AdapterBindingException. createJndiLookupException(AdapterBindingException.java:130) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.createJCAConnectionFactory (JCAConnectionManager.java:1387) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.newPoolObject (JCAConnectionManager.java:1285) ... then this is very likely due to an incorrect JNDI name entered for the JMS Connection in the JMS Adapter Wizard. Recheck those steps. The error message prints the name of the JNDI name used. In this example, it was incorrectly entered as eis/wls/QueueTest instead of eis/wls/TestQueue. This concludes this example. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • ZFS for Database Log Files

    - by user12620111
    I've been troubled by drop outs in CPU usage in my application server, characterized by the CPUs suddenly going from close to 90% CPU busy to almost completely CPU idle for a few seconds. Here is an example of a drop out as shown by a snippet of vmstat data taken while the application server is under a heavy workload. # vmstat 1  kthr      memory            page            disk          faults      cpu  r b w   swap  free  re  mf pi po fr de sr s3 s4 s5 s6   in   sy   cs us sy id  1 0 0 130160176 116381952 0 16 0 0 0 0  0  0  0  0  0 207377 117715 203884 70 21 9  12 0 0 130160160 116381936 0 25 0 0 0 0 0  0  0  0  0 200413 117162 197250 70 20 9  11 0 0 130160176 116381920 0 16 0 0 0 0 0  0  1  0  0 203150 119365 200249 72 21 7  8 0 0 130160176 116377808 0 19 0 0 0 0  0  0  0  0  0 169826 96144 165194 56 17 27  0 0 0 130160176 116377800 0 16 0 0 0 0  0  0  0  0  1 10245 9376 9164 2  1 97  0 0 0 130160176 116377792 0 16 0 0 0 0  0  0  0  0  2 15742 12401 14784 4 1 95  0 0 0 130160176 116377776 2 16 0 0 0 0  0  0  1  0  0 19972 17703 19612 6 2 92  14 0 0 130160176 116377696 0 16 0 0 0 0 0  0  0  0  0 202794 116793 199807 71 21 8  9 0 0 130160160 116373584 0 30 0 0 0 0  0  0 18  0  0 203123 117857 198825 69 20 11 This behavior occurred consistently while the application server was processing synthetic transactions: HTTP requests from JMeter running on an external machine. I explored many theories trying to explain the drop outs, including: Unexpected JMeter behavior Network contention Java Garbage Collection Application Server thread pool problems Connection pool problems Database transaction processing Database I/O contention Graphing the CPU %idle led to a breakthrough: Several of the drop outs were 30 seconds apart. With that insight, I went digging through the data again and looking for other outliers that were 30 seconds apart. In the database server statistics, I found spikes in the iostat "asvc_t" (average response time of disk transactions, in milliseconds) for the disk drive that was being used for the database log files. Here is an example:                     extended device statistics     r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 2053.6    0.0 8234.3  0.0  0.2    0.0    0.1   0  24 c3t60080E5...F4F6d0s0     0.0 2162.2    0.0 8652.8  0.0  0.3    0.0    0.1   0  28 c3t60080E5...F4F6d0s0     0.0 1102.5    0.0 10012.8  0.0  4.5    0.0    4.1   0  69 c3t60080E5...F4F6d0s0     0.0   74.0    0.0 7920.6  0.0 10.0    0.0  135.1   0 100 c3t60080E5...F4F6d0s0     0.0  568.7    0.0 6674.0  0.0  6.4    0.0   11.2   0  90 c3t60080E5...F4F6d0s0     0.0 1358.0    0.0 5456.0  0.0  0.6    0.0    0.4   0  55 c3t60080E5...F4F6d0s0     0.0 1314.3    0.0 5285.2  0.0  0.7    0.0    0.5   0  70 c3t60080E5...F4F6d0s0 Here is a little more information about my database configuration: The database and application server were running on two different SPARC servers. Storage for the database was on a storage array connected via 8 gigabit Fibre Channel Data storage and log file were on different physical disk drives Reliable low latency I/O is provided by battery backed NVRAM Highly available: Two Fibre Channel links accessed via MPxIO Two Mirrored cache controllers The log file physical disks were mirrored in the storage device Database log files on a ZFS Filesystem with cutting-edge technologies, such as copy-on-write and end-to-end checksumming Why would I be getting service time spikes in my high-end storage? First, I wanted to verify that the database log disk service time spikes aligned with the application server CPU drop outs, and they did: At first, I guessed that the disk service time spikes might be related to flushing the write through cache on the storage device, but I was unable to validate that theory. After searching the WWW for a while, I decided to try using a separate log device: # zpool add ZFS-db-41 log c3t60080E500017D55C000015C150A9F8A7d0 The ZFS log device is configured in a similar manner as described above: two physical disks mirrored in the storage array. This change to the database storage configuration eliminated the application server CPU drop outs: Here is the zpool configuration: # zpool status ZFS-db-41   pool: ZFS-db-41  state: ONLINE  scan: none requested config:         NAME                                     STATE         ZFS-db-41                                ONLINE           c3t60080E5...F4F6d0  ONLINE         logs           c3t60080E5...F8A7d0  ONLINE Now, the I/O spikes look like this:                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1053.5    0.0 4234.1  0.0  0.8    0.0    0.7   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1131.8    0.0 4555.3  0.0  0.8    0.0    0.7   0  76 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1167.6    0.0 4682.2  0.0  0.7    0.0    0.6   0  74 c3t60080E5...F8A7d0s0     0.0  162.2    0.0 19153.9  0.0  0.7    0.0    4.2   0  12 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1247.2    0.0 4992.6  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0     0.0   41.0    0.0   70.0  0.0  0.1    0.0    1.6   0   2 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1241.3    0.0 4989.3  0.0  0.8    0.0    0.6   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1193.2    0.0 4772.9  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0 We can see the steady flow of 4k writes to the ZIL device from O_SYNC database log file writes. The spikes are from flushing the transaction group. Like almost all problems that I run into, once I thoroughly understand the problem, I find that other people have documented similar experiences. Thanks to all of you who have documented alternative approaches. Saved for another day: now that the problem is obvious, I should try "zfs:zfs_immediate_write_sz" as recommended in the ZFS Evil Tuning Guide. References: The ZFS Intent Log Solaris ZFS, Synchronous Writes and the ZIL Explained ZFS Evil Tuning Guide: Cache Flushes ZFS Evil Tuning Guide: Tuning ZFS for Database Performance

    Read the article

  • Inbound SIP calls through Cisco 881 NAT hang up after a few seconds

    - by MasterRoot24
    I've recently moved to a Cisco 881 router for my WAN link. I was previously using a Cisco Linksys WAG320N as my modem/router/WiFi AP/NAT firewall. The WAG320N is now running in bridged mode, so it's simply acting as a modem with one of it's LAN ports connected to FE4 WAN on my Cisco 881. The Cisco 881 get's a DHCP provided IP from my ISP. My LAN is part of default Vlan 1 (192.168.1.0/24). General internet connectivity is working great, I've managed to setup static NAT rules for my HTTP/HTTPS/SMTP/etc. services which are running on my LAN. I don't know whether it's worth mentioning that I've opted to use NVI NAT (ip nat enable as opposed to the traditional ip nat outside/ip nat inside) setup. My reason for this is that NVI allows NAT loopback from my LAN to the WAN IP and back in to the necessary server on the LAN. I run an Asterisk 1.8 PBX on my LAN, which connects to a SIP provider on the internet. Both inbound and outbound calls through the old setup (WAG320N providing routing/NAT) worked fine. However, since moving to the Cisco 881, inbound calls drop after around 10 seconds, whereas outbound calls work fine. The following message is logged on my Asterisk PBX: [Dec 9 15:27:45] WARNING[27734]: chan_sip.c:3641 retrans_pkt: Retransmission timeout reached on transmission [email protected] for seqno 1 (Critical Response) -- See https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions Packet timed out after 6528ms with no response [Dec 9 15:27:45] WARNING[27734]: chan_sip.c:3670 retrans_pkt: Hanging up call [email protected] - no reply to our critical packet (see https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions). (I know that this is quite a common issue - I've spend the best part of 2 days solid on this, trawling Google.) I've done as I am told and checked https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions. Referring to the section "Other SIP requests" in the page linked above, I believe that the hangup to be caused by the ACK from my SIP provider not being passed back through NAT to Asterisk on my PBX. I tried to ascertain this by dumping the packets on my WAN interface on the 881. I managed to obtain a PCAP dump of packets in/out of my WAN interface. Here's an example of an ACK being reveived by the router from my provider: 689 21.219999 193.x.x.x 188.x.x.x SIP 502 Request: ACK sip:[email protected] | However a SIP trace on the Asterisk server show's that there are no ACK's received in response to the 200 OK from my PBX: http://pastebin.com/wwHpLPPz In the past, I have been strongly advised to disable any sort of SIP ALGs on routers and/or firewalls and the many posts regarding this issue on the internet seem to support this. However, I believe on Cisco IOS, the config command to disable SIP ALG is no ip nat service sip udp port 5060 however, this doesn't appear to help the situation. To confirm that config setting is set: Router1#show running-config | include sip no ip nat service sip udp port 5060 Another interesting twist: for a short period of time, I tried another provider. Luckily, my trial account with them is still available, so I reverted my Asterisk config back to the revision before I integrated with my current provider. I then dialled in to the DDI associated with the trial trunk and the call didn't get hung up and I didn't get the error above! To me, this points at the provider, however I know, like all providers do, will say "There's no issues with our SIP proxies - it's your firewall." I'm tempted to agree with this, as this issue was not apparent with the old WAG320N router when it was doing the NAT'ing. I'm sure you'll want to see my running-config too: ! ! Last configuration change at 15:55:07 UTC Sun Dec 9 2012 by xxx version 15.2 no service pad service tcp-keepalives-in service tcp-keepalives-out service timestamps debug datetime msec localtime show-timezone service timestamps log datetime msec localtime show-timezone no service password-encryption service sequence-numbers ! hostname Router1 ! boot-start-marker boot-end-marker ! ! security authentication failure rate 10 log security passwords min-length 6 logging buffered 4096 logging console critical enable secret 4 xxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 quit no ip source-route no ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! no ip bootp server ip domain name dmz.merlin.local ip domain list dmz.merlin.local ip domain list merlin.local ip name-server x.x.x.x ip inspect audit-trail ip inspect udp idle-time 1800 ip inspect dns-timeout 7 ip inspect tcp idle-time 14400 ip inspect name autosec_inspect ftp timeout 3600 ip inspect name autosec_inspect http timeout 3600 ip inspect name autosec_inspect rcmd timeout 3600 ip inspect name autosec_inspect realaudio timeout 3600 ip inspect name autosec_inspect smtp timeout 3600 ip inspect name autosec_inspect tftp timeout 30 ip inspect name autosec_inspect udp timeout 15 ip inspect name autosec_inspect tcp timeout 3600 ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn ! ! username xxx privilege 15 secret 4 xxx username xxx secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp no ip redirects no ip unreachables no ip proxy-arp ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.1 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.2 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ip http timeout-policy idle 60 life 86400 requests 10000 ! ! no ip nat service sip udp port 5060 ip nat source list 1 interface FastEthernet4 overload ip nat source static tcp x.x.x.x 80 interface FastEthernet4 80 ip nat source static tcp x.x.x.x 443 interface FastEthernet4 443 ip nat source static tcp x.x.x.x 25 interface FastEthernet4 25 ip nat source static tcp x.x.x.x 587 interface FastEthernet4 587 ip nat source static tcp x.x.x.x 143 interface FastEthernet4 143 ip nat source static tcp x.x.x.x 993 interface FastEthernet4 993 ip nat source static tcp x.x.x.x 1723 interface FastEthernet4 1723 ! ! logging trap debugging logging facility local2 access-list 1 permit 192.168.1.0 0.0.0.255 access-list 1 permit 192.168.0.0 0.0.0.255 no cdp run ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 login authentication local_auth length 0 transport output all line aux 0 exec-timeout 15 0 login authentication local_auth transport output all line vty 0 1 access-class 1 in logging synchronous login authentication local_auth length 0 transport preferred none transport input telnet transport output all line vty 2 4 access-class 1 in login authentication local_auth length 0 transport input ssh transport output all ! ! end ...and, if it's of any use, here's my Asterisk SIP config: [general] context=default ; Default context for calls allowoverlap=no ; Disable overlap dialing support. (Default is yes) udpbindaddr=0.0.0.0 ; IP address to bind UDP listen socket to (0.0.0.0 binds to all) ; Optionally add a port number, 192.168.1.1:5062 (default is port 5060) tcpenable=no ; Enable server for incoming TCP connections (default is no) tcpbindaddr=0.0.0.0 ; IP address for TCP server to bind to (0.0.0.0 binds to all interfaces) ; Optionally add a port number, 192.168.1.1:5062 (default is port 5060) srvlookup=yes ; Enable DNS SRV lookups on outbound calls ; Note: Asterisk only uses the first host ; in SRV records ; Disabling DNS SRV lookups disables the ; ability to place SIP calls based on domain ; names to some other SIP users on the Internet ; Specifying a port in a SIP peer definition or ; when dialing outbound calls will supress SRV ; lookups for that peer or call. directmedia=no ; Don't allow direct RTP media between extensions (doesn't work through NAT) externhost=<MY DYNDNS HOSTNAME> ; Our external hostname to resolve to IP and be used in NAT'ed packets localnet=192.168.1.0/24 ; Define our local network so we know which packets need NAT'ing qualify=yes ; Qualify peers by default dtmfmode=rfc2833 ; Set the default DTMF mode disallow=all ; Disallow all codecs by default allow=ulaw ; Allow G.711 u-law allow=alaw ; Allow G.711 a-law ; ---------------------- ; SIP Trunk Registration ; ---------------------- ; Orbtalk register => <MY SIP PROVIDER USER NAME>:[email protected]/<MY DDI> ; Main Orbtalk number ; ---------- ; Trunks ; ---------- [orbtalk] ; Main Orbtalk trunk type=peer insecure=invite host=sipgw3.orbtalk.co.uk nat=yes username=<MY SIP PROVIDER USER NAME> defaultuser=<MY SIP PROVIDER USER NAME> fromuser=<MY SIP PROVIDER USER NAME> secret=xxx context=inbound I really don't know where to go with this. If anyone can help me find out why these calls are being dropped off, I'd be grateful if you could chime in! Please let me know if any further info is required.

    Read the article

  • Silverlight 4 + WCF RIA - Data Service Design Best Practices

    - by Chadd Nervig
    Hey all. I realize this is a rather long question, but I'd really appreciate any help from anyone experienced with RIA services. Thanks! I'm working on a Silverlight 4 app that views data from the server. I'm relatively inexperienced with RIA Services, so have been working through the tasks of getting the data I need down to the client, but every new piece I add to the puzzle seems to be more and more problematic. I feel like I'm missing some basic concepts here, and it seems like I'm just 'hacking' pieces on, in time-consuming ways, each one breaking the previous ones as I try to add them. I'd love to get the feedback of developers experienced with RIA services, to figure out the intended way to do what I'm trying to do. Let me lay out what I'm trying to do: First, the data. The source of this data is a variety of sources, primarily created by a shared library which reads data from our database, and exposes it as POCOs (Plain Old CLR Objects). I'm creating my own POCOs to represent the different types of data I need to pass between server and client. DataA - This app is for viewing a certain type of data, lets call DataA, in near-realtime. Every 3 minutes, the client should pull data down from the server, of all the new DataA since the last time it requested data. DataB - Users can view the DataA objects in the app, and may select one of them from the list, which displays additional details about that DataA. I'm bringing these extra details down from the server as DataB. DataC - One of the things that DataB contains is a history of a couple important values over time. I'm calling each data point of this history a DataC object, and each DataB object contains many DataCs. The Data Model - On the server side, I have a single DomainService: [EnableClientAccess] public class MyDomainService : DomainService { public IEnumerable<DataA> GetDataA(DateTime? startDate) { /*Pieces together the DataAs that have been created since startDate, and returns them*/ } public DataB GetDataB(int dataAID) { /*Looks up the extended info for that dataAID, constructs a new DataB with that DataA's data, plus the extended info (with multiple DataCs in a List<DataC> property on the DataB), and returns it*/ } //Not exactly sure why these are here, but I think it //wouldn't compile without them for some reason? The data //is entirely read-only, so I don't need to update. public void UpdateDataA(DataA dataA) { throw new NotSupportedException(); } public void UpdateDataB(DataB dataB) { throw new NotSupportedException(); } } The classes for DataA/B/C look like this: [KnownType(typeof(DataB))] public partial class DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalA { get; set; } [DataMember] public string MyStringA { get; set; } [DataMember] public DataTime MyDateTimeA { get; set; } } public partial class DataB : DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalB { get; set; } [DataMember] public string MyStringB { get; set; } [Include] //I don't know which of these, if any, I need? [Composition] [Association("DataAToC","DataAID","DataAID")] public List<DataC> DataCs { get; set; } } public partial class DataC { [Key] [DataMember] public int DataAID { get; set; } [Key] [DataMember] public DateTime Timestamp { get; set; } [DataMember] public decimal MyHistoricDecimal { get; set; } } I guess a big question I have here is... Should I be using Entities instead of POCOs? Are my classes constructed correctly to be able to pass the data down correctly? Should I be using Invoke methods instead of Query (Get) methods on the DomainService? On the client side, I'm having a number of issues. Surprisingly, one of my biggest ones has been threading. I didn't expect there to be so many threading issues with MyDomainContext. What I've learned is that you only seem to be able to create MyDomainContextObjects on the UI thread, all of the queries you can make are done asynchronously only, and that if you try to fake doing it synchronously by blocking the calling thread until the LoadOperation finishes, you have to do so on a background thread, since it uses the UI thread to make the query. So here's what I've got so far. The app should display a stream of the DataA objects, spreading each 3min chunk of them over the next 3min (so they end up displayed 3min after the occurred, looking like a continuous stream, but only have to be downloaded in 3min bursts). To do this, the main form initializes, creates a private MyDomainContext, and starts up a background worker, which continuously loops in a while(true). On each loop, it checks if it has any DataAs left over to display. If so, it displays that Data, and Thread.Sleep()s until the next DataA is scheduled to be displayed. If it's out of data, it queries for more, using the following methods: public DataA[] GetDataAs(DateTime? startDate) { _loadOperationGetDataACompletion = new AutoResetEvent(false); LoadOperation<DataA> loadOperationGetDataA = null; loadOperationGetDataA = _context.Load(_context.GetDataAQuery(startDate), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataA.Completed += new EventHandler(loadOperationGetDataA_Completed); _loadOperationGetDataACompletion.WaitOne(); List<DataA> dataAs = new List<DataA>(); foreach (var dataA in loadOperationGetDataA.Entities) dataAs.Add(dataA); return dataAs.ToArray(); } private static AutoResetEvent _loadOperationGetDataACompletion; private static void loadOperationGetDataA_Completed(object sender, EventArgs e) { _loadOperationGetDataACompletion.Set(); } Seems kind of clunky trying to force it into being synchronous, but since this already is on a background thread, I think this is OK? So far, everything actually works, as much of a hack as it seems like it may be. It's important to note that if I try to run that code on the UI thread, it locks, because it waits on the WaitOne() forever, locking the thread, so it can't make the Load request to the server. So once the data is displayed, users can click on one as it goes by to fill a details pane with the full DataB data about that object. To do that, I have the the details pane user control subscribing to a selection event I have setup, which gets fired when the selection changes (on the UI thread). I use a similar technique there, to get the DataB object: void SelectionService_SelectedDataAChanged(object sender, EventArgs e) { DataA dataA = /*Get the selected DataA*/; MyDomainContext context = new MyDomainContext(); var loadOperationGetDataB = context.Load(context.GetDataBQuery(dataA.DataAID), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataB.Completed += new EventHandler(loadOperationGetDataB_Completed); } private void loadOperationGetDataB_Completed(object sender, EventArgs e) { this.DataContext = ((LoadOperation<DataB>)sender).Entities.SingleOrDefault(); } Again, it seems kinda hacky, but it works... except on the DataB that it loads, the DataCs list is empty. I've tried all kinds of things there, and I don't see what I'm doing wrong to allow the DataCs to come down with the DataB. I'm about ready to make a 3rd query for the DataCs, but that's screaming even more hackiness to me. It really feels like I'm fighting against the grain here, like I'm doing this in an entirely unintended way. If anyone could offer any assistance, and point out what I'm doing wrong here, I'd very much appreciate it! Thanks!

    Read the article

  • Why is UITableView not reloading (even on the main thread)?

    - by radesix
    I have two programs that basically do the same thing. They read an XML feed and parse the elements. The design of both programs is to use an asynchronous NSURLConnection to get the data then to spawn a new thread to handle the parsing. As batches of 5 items are parsed it calls back to the main thread to reload the UITableView. My issue is it works fine in one program, but not the other. I know that the parsing is actually occuring on the background thread and I know that [tableView reloadData] is executing on the main thread; however, it doesn't reload the table until all parsing is complete. I'm stumped. As far as I can tell... both programs are structured exactly the same way. Here is some code from the app that isn't working correctly. - (void)startConnectionWithURL:(NSString *)feedURL feedList:(NSMutableArray *)list { self.feedList = list; // Use NSURLConnection to asynchronously download the data. This means the main thread will not be blocked - the // application will remain responsive to the user. // // IMPORTANT! The main thread of the application should never be blocked! Also, avoid synchronous network access on any thread. // NSURLRequest *feedURLRequest = [NSURLRequest requestWithURL:[NSURL URLWithString:feedURL]]; self.bloggerFeedConnection = [[[NSURLConnection alloc] initWithRequest:feedURLRequest delegate:self] autorelease]; // Test the validity of the connection object. The most likely reason for the connection object to be nil is a malformed // URL, which is a programmatic error easily detected during development. If the URL is more dynamic, then you should // implement a more flexible validation technique, and be able to both recover from errors and communicate problems // to the user in an unobtrusive manner. NSAssert(self.bloggerFeedConnection != nil, @"Failure to create URL connection."); // Start the status bar network activity indicator. We'll turn it off when the connection finishes or experiences an error. [UIApplication sharedApplication].networkActivityIndicatorVisible = YES; } - (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse *)response { self.bloggerData = [NSMutableData data]; } - (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data { [bloggerData appendData:data]; } - (void)connectionDidFinishLoading:(NSURLConnection *)connection { self.bloggerFeedConnection = nil; [UIApplication sharedApplication].networkActivityIndicatorVisible = NO; // Spawn a thread to fetch the link data so that the UI is not blocked while the application parses the XML data. // // IMPORTANT! - Don't access UIKit objects on secondary threads. // [NSThread detachNewThreadSelector:@selector(parseFeedData:) toTarget:self withObject:bloggerData]; // farkData will be retained by the thread until parseFarkData: has finished executing, so we no longer need // a reference to it in the main thread. self.bloggerData = nil; } If you read this from the top down you can see when the NSURLConnection is finished I detach a new thread and call parseFeedData. - (void)parseFeedData:(NSData *)data { // You must create a autorelease pool for all secondary threads. NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; self.currentParseBatch = [NSMutableArray array]; self.currentParsedCharacterData = [NSMutableString string]; self.feedList = [NSMutableArray array]; // // It's also possible to have NSXMLParser download the data, by passing it a URL, but this is not desirable // because it gives less control over the network, particularly in responding to connection errors. // NSXMLParser *parser = [[NSXMLParser alloc] initWithData:data]; [parser setDelegate:self]; [parser parse]; // depending on the total number of links parsed, the last batch might not have been a "full" batch, and thus // not been part of the regular batch transfer. So, we check the count of the array and, if necessary, send it to the main thread. if ([self.currentParseBatch count] > 0) { [self performSelectorOnMainThread:@selector(addLinksToList:) withObject:self.currentParseBatch waitUntilDone:NO]; } self.currentParseBatch = nil; self.currentParsedCharacterData = nil; [parser release]; [pool release]; } In the did end element delegate I check to see that 5 items have been parsed before calling the main thread to perform the update. - (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName { if ([elementName isEqualToString:kItemElementName]) { [self.currentParseBatch addObject:self.currentItem]; parsedItemsCounter++; if (parsedItemsCounter % kSizeOfItemBatch == 0) { [self performSelectorOnMainThread:@selector(addLinksToList:) withObject:self.currentParseBatch waitUntilDone:NO]; self.currentParseBatch = [NSMutableArray array]; } } // Stop accumulating parsed character data. We won't start again until specific elements begin. accumulatingParsedCharacterData = NO; } - (void)addLinksToList:(NSMutableArray *)links { [self.feedList addObjectsFromArray:links]; // The table needs to be reloaded to reflect the new content of the list. if (self.viewDelegate != nil && [self.viewDelegate respondsToSelector:@selector(parser:didParseBatch:)]) { [self.viewDelegate parser:self didParseBatch:links]; } } Finally, the UIViewController delegate: - (void)parser:(XMLFeedParser *)parser didParseBatch:(NSMutableArray *)parsedBatch { NSLog(@"parser:didParseBatch:"); [self.selectedBlogger.feedList addObjectsFromArray:parsedBatch]; [self.tableView reloadData]; } If I write to the log when my view controller delegate fires to reload the table and when cellForRowAtIndexPath fires as it's rebuilding the table then the log looks something like this: parser:didParseBatch: parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: parser:didParseBatch: parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: parser:didParseBatch: parser:didParseBatch: parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath Clearly, the tableView is not reloading when I tell it to every time. The log from the app that works correctly looks like this: parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath parser:didParseBatch: tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath tableView:cellForRowAtIndexPath

    Read the article

  • Dealing with external processes

    - by Jesse Aldridge
    I've been working on a gui app that needs to manage external processes. Working with external processes leads to a lot of issues that can make a programmer's life difficult. I feel like maintenence on this app is taking an unacceptably long time. I've been trying to list the things that make working with external processes difficult so that I can come up with ways of mitigating the pain. This kind of turned into a rant which I thought I'd post here in order to get some feedback and to provide some guidance to anybody thinking about sailing into these very murky waters. Here's what I've got so far: Output from the child can get mixed up with output from the parent. This can make both outputs misleading and hard to read. It can be hard to tell what came from where. It becomes harder to figure out what's going on when things are asynchronous. Here's a contrived example: import textwrap, os, time from subprocess import Popen test_path = 'test_file.py' with open(test_path, 'w') as file: file.write(textwrap.dedent(''' import time for i in range(3): print 'Hello %i' % i time.sleep(1)''')) proc = Popen('python -B "%s"' % test_path) for i in range(3): print 'Hello %i' % i time.sleep(1) os.remove(test_path) I guess I could have the child process write its output to a file. But it can be annoying to have to open up a file every time I want to see the result of a print statement. If I have code for the child process I could add a label, something like print 'child: Hello %i', but it can be annoying to do that for every print. And it adds some noise to the output. And of course I can't do it if I don't have access to the code. I could manually manage the process output. But then you open up a huge can of worms with threads and polling and stuff like that. A simple solution is to treat processes like synchronous functions, that is, no further code executes until the process completes. In other words, make the process block. But that doesn't work if you're building a gui app. Which brings me to the next problem... Blocking processes cause the gui to become unresponsive. import textwrap, sys, os from subprocess import Popen from PyQt4.QtGui import * from PyQt4.QtCore import * test_path = 'test_file.py' with open(test_path, 'w') as file: file.write(textwrap.dedent(''' import time for i in range(3): print 'Hello %i' % i time.sleep(1)''')) app = QApplication(sys.argv) button = QPushButton('Launch process') def launch_proc(): # Can't move the window until process completes proc = Popen('python -B "%s"' % test_path) proc.communicate() button.connect(button, SIGNAL('clicked()'), launch_proc) button.show() app.exec_() os.remove(test_path) Qt provides a process wrapper of its own called QProcess which can help with this. You can connect functions to signals to capture output relatively easily. This is what I'm currently using. But I'm finding that all these signals behave suspiciously like goto statements and can lead to spaghetti code. I think I want to get sort-of blocking behavior by having the 'finished' signal from QProcess call a function containing all the code that comes after the process call. I think that should work but I'm still a bit fuzzy on the details... Stack traces get interrupted when you go from the child process back to the parent process. If a normal function screws up, you get a nice complete stack trace with filenames and line numbers. If a subprocess screws up, you'll be lucky if you get any output at all. You end up having to do a lot more detective work everytime something goes wrong. Speaking of which, output has a way of disappearing when dealing external processes. Like if you run something via the windows 'cmd' command, the console will pop up, execute the code, and then disappear before you have a chance to see the output. You have to pass the /k flag to make it stick around. Similar issues seem to crop up all the time. I suppose both problems 3 and 4 have the same root cause: no exception handling. Exception handling is meant to be used with functions, it doesn't work with processes. Maybe there's some way to get something like exception handling for processes? I guess that's what stderr is for? But dealing with two different streams can be annoying in itself. Maybe I should look into this more... Processes can hang and stick around in the background without you realizing it. So you end up yelling at your computer cuz it's going so slow until you finally bring up your task manager and see 30 instances of the same process hanging out in the background. Also, hanging background processes can interefere with other instances of the process in various fun ways, such as causing permissions errors by holding a handle to a file or someting like that. It seems like an easy solution to this would be to have the parent process kill the child process on exit if the child process didn't close itself. But if the parent process crashes, cleanup code might not get called and the child can be left hanging. Also, if the parent waits for the child to complete, and the child is in an infinite loop or something, you can end up with two hanging processes. This problem can tie in to problem 2 for extra fun, causing your gui to stop responding entirely and force you to kill everything with the task manager. F***ing quotes Parameters often need to be passed to processes. This is a headache in itself. Especially if you're dealing with file paths. Say... 'C:/My Documents/whatever/'. If you don't have quotes, the string will often be split at the space and interpreted as two arguments. If you need nested quotes you can use ' and ". But if you need to use more than two layers of quotes, you have to do some nasty escaping, for example: "cmd /k 'python \'path 1\' \'path 2\''". A good solution to this problem is passing parameters as a list rather than as a single string. Subprocess allows you to do this. Can't easily return data from a subprocess. You can use stdout of course. But what if you want to throw a print in there for debugging purposes? That's gonna screw up the parent if it's expecting output formatted a certain way. In functions you can print one string and return another and everything works just fine. Obscure command-line flags and a crappy terminal based help system. These are problems I often run into when using os level apps. Like the /k flag I mentioned, for holding a cmd window open, who's idea was that? Unix apps don't tend to be much friendlier in this regard. Hopefully you can use google or StackOverflow to find the answer you need. But if not, you've got a lot of boring reading and frusterating trial and error to do. External factors. This one's kind of fuzzy. But when you leave the relatively sheltered harbor of your own scripts to deal with external processes you find yourself having to deal with the "outside world" to a much greater extent. And that's a scary place. All sorts of things can go wrong. Just to give a random example: the cwd in which a process is run can modify it's behavior. There are probably other issues, but those are the ones I've written down so far. Any other snags you'd like to add? Any suggestions for dealing with these problems?

    Read the article

< Previous Page | 11 12 13 14 15