Search Results

Search found 3786 results on 152 pages for 'life'.

Page 150/152 | < Previous Page | 146 147 148 149 150 151 152  | Next Page >

  • Html.BeginForm() not rendering properly

    - by Taskos George
    While searching in stackoverflow the other questions didn't exactly helped in my situation. How it would be possible to debug such an error like the one that the Html.BeginForm does not properly rendered to the page. I use this code @model ExtremeProduction.Models.SelectUserGroupsViewModel @{ ViewBag.Title = "User Groups"; } <h2>Groups for user @Html.DisplayFor(model => model.UserName)</h2> <hr /> @using (Html.BeginForm("UserGroups", "Account", FormMethod.Post, new { encType = "multipart/form-data", id = "userGroupsForm" })) { @Html.AntiForgeryToken() <div class="form-horizontal"> @Html.ValidationSummary(true) <div class="form-group"> <div class="col-md-10"> @Html.HiddenFor(model => model.UserName) </div> </div> <h4>Select Group Assignments</h4> <br /> <hr /> <table> <tr> <th> Select </th> <th> Group </th> </tr> @Html.EditorFor(model => model.Groups) </table> <br /> <hr /> <div class="form-group"> <div class="col-md-offset-2 col-md-10"> <input type="submit" value="Save" class="btn btn-default" /> </div> </div> </div> } <div> @Html.ActionLink("Back to List", "Index") </div> EDIT: Added the Model // Wrapper for SelectGroupEditorViewModel to select user group membership: public class SelectUserGroupsViewModel { public string UserName { get; set; } public string FirstName { get; set; } public string LastName { get; set; } public List<SelectGroupEditorViewModel> Groups { get; set; } public SelectUserGroupsViewModel() { this.Groups = new List<SelectGroupEditorViewModel>(); } public SelectUserGroupsViewModel(ApplicationUser user) : this() { this.UserName = user.UserName; this.FirstName = user.FirstName; this.LastName = user.LastName; var Db = new ApplicationDbContext(); // Add all available groups to the public list: var allGroups = Db.Groups; foreach (var role in allGroups) { // An EditorViewModel will be used by Editor Template: var rvm = new SelectGroupEditorViewModel(role); this.Groups.Add(rvm); } // Set the Selected property to true where user is already a member: foreach (var group in user.Groups) { var checkUserRole = this.Groups.Find(r => r.GroupName == group.Group.Name); checkUserRole.Selected = true; } } } // Used to display a single role group with a checkbox, within a list structure: public class SelectGroupEditorViewModel { public SelectGroupEditorViewModel() { } public SelectGroupEditorViewModel(Group group) { this.GroupName = group.Name; this.GroupId = group.Id; } public bool Selected { get; set; } [Required] public int GroupId { get; set; } public string GroupName { get; set; } } public class Group { public Group() { } public Group(string name) : this() { Roles = new List<ApplicationRoleGroup>(); Name = name; } [Key] [Required] public virtual int Id { get; set; } public virtual string Name { get; set; } public virtual ICollection<ApplicationRoleGroup> Roles { get; set; } } ** EDIT ** And I get this form http://i834.photobucket.com/albums/zz268/gtas/formmine_zpsf6470e02.png I should receive a form like the one that I copied the code like this http://i834.photobucket.com/albums/zz268/gtas/formcopied_zpsdb2f129e.png Any ideas where or how to look the source of evil that makes my life hard for some time now?

    Read the article

  • C# UDP decoding datagrams fails randomly

    - by Tom Frey
    Hi, I'm experiencing an issue in a multi threaded application and have been debugging it for the last 3 days but for the life of it can not figure it out. I'm writing this, hoping that I either have a DUH moment when typing this or somebody sees something obvious in the code snippets I provide. Here's what's going on: I've been working on a new UDP networking library and have a data producer that multicasts UDP datagrams to several receiver applications. The sender sends on two different sockets that are bound to separate UDP multicast addresses and separate ports. The receiver application also creates two sockets and binds each one to one of the sender's multicast address/port. When the receiver receives the datagram, it copies it from the the buffer in a MemoryStream which is then put onto a thread safe queue, where another thread reads from it and decodes the data out of the MemoryStream. Both sockets have their own queues. What happens now is really weird, it happens randomly, non-reproducible and when I run multiple receiver applications, it only happens randomly on one of them every now and then. Basically, the thread that reads the MemoryStream out of the queue, reads it via a BinaryReader like ReadInt32(), etc. and thereby decodes the data. Every now and then however when it reads the data, the data it reads from it is incorrect, e.g. a negative integer number which the sender never would encode. However, as mentioned before, the decoding only fails in one of the receiver applications, in the other ones the datagram decodes fine. Now you might be saying, well, probably the UDP datagram has a byte corruption or something but I've logged every single datagram that's coming in and compared them on all receivers and the datagrams every application receives are absolutely identical. Now it gets even weirder, when I dump the datagram that failed to decode to disk and write a unit test that reads it and runs it through the decoder, it decodes just fine. Also when I wrap a try/catch around the decoder, reset the MemoryStream position in the catch and run it through the decoder again, it decodes just fine. To make it even weirder, this also only happens when I bind both sockets to read data from the sender, if I only bind one, it doesn't happen or at least I wasn't able to reproduce it. Here are is some corresponding code to what's going on: This is the receive callback for the socket: private void ReceiveCompleted(object sender, SocketAsyncEventArgs args) { if (args.SocketError != SocketError.Success) { InternalShutdown(args.SocketError); return; } if (args.BytesTransferred > SequencedUnitHeader.UNIT_HEADER_SIZE) { DataChunk chunk = new DataChunk(args.BytesTransferred); Buffer.BlockCopy(args.Buffer, 0, chunk.Buffer, 0, args.BytesTransferred); chunk.MemoryStream = new MemoryStream(chunk.Buffer); chunk.BinaryReader = new BinaryReader(chunk.MemoryStream); chunk.SequencedUnitHeader.SequenceID = chunk.BinaryReader.ReadUInt32(); chunk.SequencedUnitHeader.Count = chunk.BinaryReader.ReadByte(); if (prevSequenceID + 1 != chunk.SequencedUnitHeader.SequenceID) { log.Error("UdpDatagramGap\tName:{0}\tExpected:{1}\tReceived:{2}", unitName, prevSequenceID + 1, chunk.SequencedUnitHeader.SequenceID); } else if (chunk.SequencedUnitHeader.SequenceID < prevSequenceID) { log.Error("UdpOutOfSequence\tName:{0}\tExpected:{1}\tReceived:{2}", unitName, prevSequenceID + 1, chunk.SequencedUnitHeader.SequenceID); } prevSequenceID = chunk.SequencedUnitHeader.SequenceID; messagePump.Produce(chunk); } else UdpStatistics.FramesRxDiscarded++; Socket.InvokeAsyncMethod(Socket.ReceiveAsync, ReceiveCompleted, asyncReceiveArgs); } Here's some stub code that decodes the data: public static void OnDataChunk(DataChunk dataChunk) { try { for (int i = 0; i < dataChunk.SequencedUnitHeader.Count; i++) { int val = dataChunk.BinaryReader.ReadInt32(); if(val < 0) throw new Exception("EncodingException"); // do something with that value } } catch (Exception ex) { writer.WriteLine("ID:" + dataChunk.SequencedUnitHeader.SequenceID + " Count:" + dataChunk.SequencedUnitHeader.Count + " " + BitConverter.ToString(dataChunk.Buffer, 0, dataChunk.Size)); writer.Flush(); log.ErrorException("OnDataChunk", ex); log.Info("RETRY FRAME:{0} Data:{1}", dataChunk.SequencedUnitHeader.SequenceID, BitConverter.ToString(dataChunk.Buffer, 0, dataChunk.Size)); dataChunk.MemoryStream.Position = 0; dataChunk.SequencedUnitHeader.SequenceID = dataChunk.BinaryReader.ReadUInt32(); dataChunk.SequencedUnitHeader.Count = dataChunk.BinaryReader.ReadByte(); OnDataChunk(dataChunk); } } You see in the catch{} part I simply reset the MemoryStream.Position to 0 and call the same method again and it works just fine that next time? I'm really out of ideas at this point and unfortunately had no DUH moment writing this. Anybody have any kind of idea what might be going on or what else I could do to troubleshoot this? Thanks, Tom

    Read the article

  • Job conditions conflicting with personal principles on software-development - how much is too much?

    - by Baelnorn
    Sorry for the incoming wall'o'text (and for my probably bad English) but I just need to get this off somehow. I also accept that this question will be probably closed as subjective and argumentative, but I need to know one thing: "how much BS are programmers supposed to put up with before breaking?" My background I'm 27 years old and have a B.Sc. in Computer engineering with a graduation grade of 1.8 from a university of applied science. I went looking for a job right after graduation. I got three offers right away, with two offers paying vastly more than the last one, but that last one seemed more interesting so I went for that. My situation I've been working for the company now for 17 months now, but it feels like a drag more and more each day. Primarily because the company (which has only 5 other developers but me, and of these I work with 4) turned out to be pretty much the anti-thesis of what I expected (and was taught in university) from a modern software company. I agreed to accept less than half of the usual payment appropriate for my qualification for the first year because I was promised a trainee program. However, the trainee program turned out to be "here you got a computer, there's some links on the stuff we use, and now do what you colleagues tell you". Further, during my whole time there (trainee or not) I haven't been given the grace of even a single code-review - apparently nobody's interested in my work as long as it "just works". I was told in the job interview that "Microsoft technology played a central role in the company" yet I've been slowly eroding my congnitive functions with Flex/Actionscript/Cairngorm ever since I started (despite having applied as a C#/.NET developer). Actually, the company's primary projects are based on Java/XSLT and Flex/Actionscript (with some SAP/ABAP stuff here and there but I'm not involved in that) and they've been working on these before I even applied. Having had no experience either with that particular technology nor the framework nor the field (RIA) nor in developing business scale applications I obviously made several mistakes. However, my boss told me that he let me make those mistakes (which ate at least 2 months of development time on their own) on purpose to provide some "learning experience". Even when I was still a trainee I was already tasked with working on a business-critical application. On my own. Without supervision. Without code-reviews. My boss thinks agile methods are a waste of time/money and deems putting more than one developer on any project not efficient. Documentation is not necessary and each developer should only document what he himself needs for his work. Recently he wanted us to do bug tracking with Excel and Email instead of using an already existing Bugzilla, overriding an unanimous decision made by all developers and testers involved in the process - only after another senior developer had another hour-long private discussion with him he agreed to let us use the bugtracker. Project management is basically not present, there are only a few Excel sheets floating around where the senior developer lists some things (not all, mind you) with a time estimate ranging from days to months, trying to at least somehow organize the whole mess. A development process is also basically not present, each developer just works on his own however he wants. There are not even coding conventions in the company. Testing is done manually with a single tester (sometimes two testers) per project because automated testing wasn't given the least thought when the whole project was started. I guess it's not a big surprise when I say that each developer also has his own share of hundreds of overhours (which are, of course, unpaid). Each developer is tasked with working on his own project(s) which in turn leads to a very extensive knowledge monopolization - if one developer was to have an accident or become ill there would be absolutely no one who could even hope to do his work. Considering that each developer has his own business-critical application to work on, I guess that's a pretty bad situation. I've been trying to change things for the better. I tried to introduce a development process, but my first attempt was pretty much shot down by my boss with "I don't want to discuss agile methods". After that I put together a process that at least resembled how most of the developers were already working and then include stuff like automated (or at least organized) testing, coding conventions, etc. However, this was also shot down because it wasn't "simple" enought to be shown on a business slide (actually, I wasn't even given the 15 minutes I'd have needed to present the process in the meeting). My problem I can't stand working there any longer. Seriously, I consider to resign on monday, which still leaves me with 3 months to work there due to the cancelation period. My primary goal since I started studying computer science was being a good computer scientist, working with modern technologies and adhering to modern and proven principles and methods. However, the company I'm working for seems to make that impossible. Some days I feel as if was living in a perverted real-life version of the Dilbert comics. My question Am I overreacting? Is this the reality each graduate from university has to face? Should I betray my sound principles and just accept these working conditions? Or should I gtfo of there? What's the opinion of other developers on this matter. Would you put up with all that stuff?

    Read the article

  • Using RJS to replace innerHTML with a real live instance variable.

    - by Steve Cotner
    I can't for the life of me get RJS to replace an element's innerHTML with an instance variable's attribute, i.e. something like @thing.name I'll show all the code (simplified from the actual project, but still complete), and I hope the solution will be forehead-slap obvious to someone... In RoR, I've made a simple page displaying a random Chinese character. This is a Word object with attributes chinese and english. Clicking on a link titled "What is this?" reveals the english attribute using RJS. Currently, it also hides the "What is this?" link and reveals a "Try Another?" link that just reloads the page, effectively starting over with a new random character. This is fine, but there are other elements on the page that make their own database queries, so I would like to load a new random character by an AJAX call, leaving the rest of the page alone. This has turned out to be harder than I expected: I have no trouble replacing the html using link_remote_to and page.replace_html, but I can't get it to display anything that includes an instance variable. I have a Word resource and a Page resource, which has a home page, where all this fun takes place. In the PagesController, I've made a couple ways to get random words. Either one works fine... Here's the code: class PagesController < ApplicationController def home all_words = Word.find(:all) @random_word = all_words.rand @random_words = Word.find(:all, :limit => 100, :order => 'rand()') @random_first = @random_words[1] end end As an aside, the SQL call with :limit => 100 is just in case I think of some way to cycle through those random words. Right now it's not useful. Also, the 'rand()' is MySQL specific, as far as I know. In the home page view (it's HAML), I have this: #character_box = render(:partial => "character", :object => @random_word) if @random_word #whatisthis = link_to_remote "? what is this?", :url => { :controller => 'words', :action => 'reveal_character' }, :html => { :title => "Click for the translation." } #tryanother.{:style => "display:none"} = link_to "try another?", root_path Note that the #'s in this case represent divs (with the given ids), not comments, because this is HAML. The "character" partial looks like this (it's erb, for no real reason): <div id="character"> <%= "#{@random_word.chinese}" } %> </div> <div id="revealed" style="display:none"> <ul> <li><span id="english"><%= "#{@random_word.english_name}" %></span></li> </ul> </div> The reveal_character.rjs file looks like this: page[:revealed].visual_effect :slide_down, :duration => '.2' page[:english].visual_effect :highlight, :startcolor => "#ffff00", :endcolor => "#ffffff", :duration => '2.5' page.delay(0.8) do page[:whatisthis].visual_effect :fade, :duration => '.3' page[:tryanother].visual_effect :appear end That all works perfectly fine. But if I try to turn link_to "try another?" into link_to_remote, and point it to an RJS template that replaces the "character" element with something new, it only works when I replace the innerHTML with static text. If I try to pass an instance variable in there, it never works. For instance, let's say I've defined a second random word under Pages#home... I'll add @random_second = @random_words[2] there. Then, in the home page view, I'll replace the "try another?" link (previously pointing to the root_path), with this: = link_to_remote "try another?", :url => { :controller => 'words', :action => 'second_character' }, :html => { :title => "Click for a new character." } I'll make that new RJS template, at app/views/words/second_character.rjs, and a simple test like this shows that it's working: page.replace_html("character", "hi") But if I change it to this: page.replace_html("character", "#{@random_second.english}") I get an error saying I fed it a nil object: ActionView::TemplateError (undefined method `english_name' for nil:NilClass) on line #1 of app/views/words/second_character.rjs: 1: page.replace_html("character", "#{@random_second.english}") Of course, actually instantiating @random_second, @random_third and so on ad infinitum would be ridiculous in a real app (I would eventually figure out some better way to keep grabbing a new random record without reloading the page), but the point is that I don't know how to get any instance variable to work here. This is not even approaching my ideal solution of rendering a partial that includes the object I specify, like this: page.replace_html 'character', :partial => 'new_character', :object => @random_second As I can't get an instance variable to work directly, I obviously cannot get it to work via a partial. I have tried various things like: :object => @random_second or :locals => { :random_second => @random_second } I've tried adding these all over the place -- in the link_to_remote options most obviously -- and studying what gets passed in the parameters, but to no avail. It's at this point that I realize I don't know what I'm doing. This is my first question here. I erred on the side of providing all necessary code, rather than being brief. Any help would be greatly appreciated.

    Read the article

  • What is stopping data flow with .NET 3.5 asynchronous System.Net.Sockets.Socket?

    - by TonyG
    I have a .NET 3.5 client/server socket interface using the asynchronous methods. The client connects to the server and the connection should remain open until the app terminates. The protocol consists of the following pattern: send stx receive ack send data1 receive ack send data2 (repeat 5-6 while more data) receive ack send etx So a single transaction with two datablocks as above would consist of 4 sends from the client. After sending etx the client simply waits for more data to send out, then begins the next transmission with stx. I do not want to break the connection between individual exchanges or after each stx/data/etx payload. Right now, after connection, the client can send the first stx, and get a single ack, but I can't put more data onto the wire after that. Neither side disconnects, the socket is still intact. The client code is seriously abbreviated as follows - I'm following the pattern commonly available in online code samples. private void SendReceive(string data) { // ... SocketAsyncEventArgs completeArgs; completeArgs.Completed += new EventHandler<SocketAsyncEventArgs>(OnSend); clientSocket.SendAsync(completeArgs); // two AutoResetEvents, one for send, one for receive if ( !AutoResetEvent.WaitAll(autoSendReceiveEvents , -1) ) Log("failed"); else Log("success"); // ... } private void OnSend( object sender , SocketAsyncEventArgs e ) { // ... Socket s = e.UserToken as Socket; byte[] receiveBuffer = new byte[ 4096 ]; e.SetBuffer(receiveBuffer , 0 , receiveBuffer.Length); e.Completed += new EventHandler<SocketAsyncEventArgs>(OnReceive); s.ReceiveAsync(e); // ... } private void OnReceive( object sender , SocketAsyncEventArgs e ) {} // ... if ( e.BytesTransferred > 0 ) { Int32 bytesTransferred = e.BytesTransferred; String received = Encoding.ASCII.GetString(e.Buffer , e.Offset , bytesTransferred); dataReceived += received; } autoSendReceiveEvents[ SendOperation ].Set(); // could be moved elsewhere autoSendReceiveEvents[ ReceiveOperation ].Set(); // releases mutexes } The code on the server is very similar except that it receives first and then sends a response - the server is not doing anything (that I can tell) to modify the connection after it sends a response. The problem is that the second time I hit SendReceive in the client, the connection is already in a weird state. Do I need to do something in the client to preserve the SocketAsyncEventArgs, and re-use the same object for the lifetime of the socket/connection? I'm not sure which eventargs object should hang around during the life of the connection or a given exchange. Do I need to do something, or Not do something in the server to ensure it continues to Receive data? The server setup and response processing looks like this: void Start() { // ... listenSocket.Bind(...); listenSocket.Listen(0); StartAccept(null); // note accept as soon as we start. OK? mutex.WaitOne(); } void StartAccept(SocketAsyncEventArgs acceptEventArg) { if ( acceptEventArg == null ) { acceptEventArg = new SocketAsyncEventArgs(); acceptEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(OnAcceptCompleted); } Boolean willRaiseEvent = this.listenSocket.AcceptAsync(acceptEventArg); if ( !willRaiseEvent ) ProcessAccept(acceptEventArg); // ... } private void OnAcceptCompleted( object sender , SocketAsyncEventArgs e ) { ProcessAccept(e); } private void ProcessAccept( SocketAsyncEventArgs e ) { // ... SocketAsyncEventArgs readEventArgs = new SocketAsyncEventArgs(); readEventArgs.SetBuffer(dataBuffer , 0 , Int16.MaxValue); readEventArgs.Completed += new EventHandler<SocketAsyncEventArgs>(OnIOCompleted); readEventArgs.UserToken = e.AcceptSocket; dataReceived = ""; // note server is degraded for single client/thread use // As soon as the client is connected, post a receive to the connection. Boolean willRaiseEvent = e.AcceptSocket.ReceiveAsync(readEventArgs); if ( !willRaiseEvent ) this.ProcessReceive(readEventArgs); // Accept the next connection request. this.StartAccept(e); } private void OnIOCompleted( object sender , SocketAsyncEventArgs e ) { // switch ( e.LastOperation ) case SocketAsyncOperation.Receive: ProcessReceive(e); // similar to client code // operate on dataReceived here case SocketAsyncOperation.Send: ProcessSend(e); // similar to client code } // execute this when a data has been processed into a response (ack, etc) private SendResponseToClient(string response) { // create buffer with response // currentEventArgs has class scope and is re-used currentEventArgs.SetBuffer(sendBuffer , 0 , sendBuffer.Length); Boolean willRaiseEvent = currentClient.SendAsync(currentEventArgs); if ( !willRaiseEvent ) ProcessSend(currentEventArgs); } A .NET trace shows the following when sending ABC\r\n: Socket#7588182::SendAsync() Socket#7588182::SendAsync(True#1) Data from Socket#7588182::FinishOperation(SendAsync) 00000000 : 41 42 43 0D 0A Socket#7588182::ReceiveAsync() Exiting Socket#7588182::ReceiveAsync() - True#1 And it stops there. It looks just like the first send from the client but the server shows no activity. I think that could be info overload for now but I'll be happy to provide more details as required. Thanks!

    Read the article

  • Page.ClientScript Register a pair of javascript code

    - by blgnklc
    How can I register a javascript code a page? I want to put th javascript function to the aspx.page; I thing it might be like that; string strJS= "<script language = javascript> (function(images, elements) { var fetchImages = function() { if(images.length > 0) { var numImages = 10; while(images.length > 0 && numImages-- > 0) { // assuming your elements are <img> document.getElementById(elements.shift()).src = images.shift(); // if not you could also set the background (or backgroundImage) css property // document.getElementById(elements.shift()).style.background = "url(" + images.shift() + ")"; } setTimeout(fetchImages, 5000); } } // bind to window onload window.onload = fetchImages; // if you're going to use something like jquery then do something like this instead //$(fetchImages); }(['url1', 'url2', 'url3'], ['img1', 'img2', 'img3'])) </script>"; Page.ClientScript.RegisterClientScriptBlock(typeof(ui_SUBMVGInfo), "SmartPenCheck", strJS); The second Questin is; ... ... g(ctrlIDBirthPlaceCode).onchange(); }} </script> <script language = javascript> var url1 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Adiniz'; var url2 ='http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Soyadiniz'; var url3 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_tarih'; var url4 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Adiniz'; var url5 ='http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Soyadiniz'; var url6 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_tarih'; var url7 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Adiniz'; var url8 ='http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Soyadiniz'; var url9 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_tarih'; var url10 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Adiniz'; var url11 ='http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_Soyadiniz'; var url12 = 'http://localhost:3645/ImageHandler.ashx?FormId=XXX.11&FieldId=s1_tarih'; function(images, elements) {var fetchImages = function() {if(images.length > 0) {var numImages = 5; while(images.length > 0 && numImages-- > 0) { document.getElementById(elements.shift()).src = images.shift(); }setTimeout(fetchImages, 5000); }}window.onload = fetchImages; }(['+url1+', '+url2+', '+url3+','+url4+', '+url5+', '+url6+','+url7+', '+url8+', '+url9+','+url10+', '+url11+', '+url12+'], ['ui_taskFormControl$ctl03$ctl00$ctl03$ui_CustomerNameImage', 'ui_taskFormControl$ctl03$ctl00$ctl03$ui_CustomerSurNameImage', 'ui_taskFormControl$ctl03$ctl00$ctl03$ui_MaritalStatusImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_SexImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_BirthDateImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_BirthPlaceCodeImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_BirthPlaceImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_IdNationalityImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_MotherOldSurNameImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_TaxNoImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_CitizenshipNoImage','ui_taskFormControl$ctl03$ctl00$ctl03$ui_HomePhoneImage'])); </script> <script> var ui_BirthPlaceCode_a='Intertech.Utility'; var ui_BirthPlaceCode_c='Intertech.Utility.Common'; var ui_BirthPlaceCode_sbn=''; ... .. What do you think is it allright or how can I do that? And according to second question above; the use of the code is correct? ref:** PS: To see my purpose please continue reading below; There is a web site page which is coded on asp.net with using c# and ajax is enabled too. I want a very fast loading web page; which is going to happen with the following architecture; 1- First all data is shown by the text boxes (There are 50 text boxes, it is an application form.) 2- When the web Page is requested and loaded, then I want all the photos are shown near the each text boxes 10 by 10 from top of the page till the end of it. (Each photo is between 5 kb - 20 kb; ) I know ImageHandler's the question is how can I put all these idea into real life? some examples and ideas will be great ! thanks This issue has been answered and you may have a look - here Regards Bk

    Read the article

  • How to filter Backbone.js Collection and Rerender App View?

    - by Jeremy H.
    Is is a total Backbone.js noob question. I am working off of the ToDo Backbone.js example trying to build out a fairly simple single app interface. While the todo project is more about user input, this app is more about filtering the data based on the user options (click events). I am completely new to Backbone.js and Mongoose and have been unable to find a good example of what I am trying to do. I have been able to get my api to pull the data from the MongoDB collection and drop it into the Backbone.js collection which renders it in the app. What I cannot for the life of me figure out how to do is filter that data and re-render the app view. I am trying to filter by the "type" field in the document. Here is my script: (I am totally aware of some major refactoring needed, I am just rapid prototyping a concept.) $(function() { window.Job = Backbone.Model.extend({ idAttribute: "_id", defaults: function() { return { attachments: false } } }); window.JobsList = Backbone.Collection.extend({ model: Job, url: '/api/jobs', leads: function() { return this.filter(function(job){ return job.get('type') == "Lead"; }); } }); window.Jobs = new JobsList; window.JobView = Backbone.View.extend({ tagName: "div", className: "item", template: _.template($('#item-template').html()), initialize: function() { this.model.bind('change', this.render, this); this.model.bind('destroy', this.remove, this); }, render: function() { $(this.el).html(this.template(this.model.toJSON())); this.setText(); return this; }, setText: function() { var month=new Array(); month[0]="Jan"; month[1]="Feb"; month[2]="Mar"; month[3]="Apr"; month[4]="May"; month[5]="Jun"; month[6]="Jul"; month[7]="Aug"; month[8]="Sep"; month[9]="Oct"; month[10]="Nov"; month[11]="Dec"; var title = this.model.get('title'); var description = this.model.get('description'); var datemonth = this.model.get('datem'); var dateday = this.model.get('dated'); var jobtype = this.model.get('type'); var jobstatus = this.model.get('status'); var amount = this.model.get('amount'); var paymentstatus = this.model.get('paymentstatus') var type = this.$('.status .jobtype'); var status = this.$('.status .jobstatus'); this.$('.title a').text(title); this.$('.description').text(description); this.$('.date .month').text(month[datemonth]); this.$('.date .day').text(dateday); type.text(jobtype); status.text(jobstatus); if(amount > 0) this.$('.paymentamount').text(amount) if(paymentstatus) this.$('.paymentstatus').text(paymentstatus) if(jobstatus === 'New') { status.addClass('new'); } else if (jobstatus === 'Past Due') { status.addClass('pastdue') }; if(jobtype === 'Lead') { type.addClass('lead'); } else if (jobtype === '') { type.addClass(''); }; }, remove: function() { $(this.el).remove(); }, clear: function() { this.model.destroy(); } }); window.AppView = Backbone.View.extend({ el: $("#main"), events: { "click #leads .highlight" : "filterLeads" }, initialize: function() { Jobs.bind('add', this.addOne, this); Jobs.bind('reset', this.addAll, this); Jobs.bind('all', this.render, this); Jobs.fetch(); }, addOne: function(job) { var view = new JobView({model: job}); this.$("#activitystream").append(view.render().el); }, addAll: function() { Jobs.each(this.addOne); }, filterLeads: function() { // left here, this event fires but i need to figure out how to filter the activity list. } }); window.App = new AppView; });

    Read the article

  • Assembly - Read next sector of a virtual disk

    - by ali
    As any programmer in the world at least once in his/her life, I am trying to create my "revolutionary", the new and only one operating system. :D Well, I am using a virtual emulator (Oracle VM Virtual Box), for which I create a new unknwon operating system, with a vmdk disk. I like vmdk because they are just plain files, so I can paste my boot-loader over the first 512 bytes of the virtual hard disk. Now, I am trying to read the next sector of this virtual disk, on which I would paste a simple kernel that would display a message. I have two questions: Am I reading the second segment (the first -512 bytes- is occupied by the bootloader) correctly? CODE: CitesteDisc: mov bx, 0x8000 ; segment mov es, bx mov bx, 0x0000 ; offset mov ah, 0x02 ; read function mov al, 0x01 ; sectors - this might be wrong, trying to read from hd mov ch, 0x00 ; cylinder mov cl, 0x02 ; sector mov dh, 0x00 ; head mov dl, 0x80 ; drive - trying to read from hd int 0x13 ; disk int mov si, ErrorMessage ; - This will display an error message jc ShowMessage jmp [es:bx] ; buffer Here, I get the error message, after checking CF. However, if I use INT 13, 1 to get last status message, AL is 0 - so no error is saved. Am I pasting my simple kernel in the correct place inside the vmdk? What I do is pasting it after the 512th byte of the file, the first 512 bytes, as I said, are the boot-loader. The file would look like this: BE 45 7C E8 16 00 EB FE B4 0E B7 00 B3 07 CD 10 <- First sector C3 AC 08 C0 74 05 E8 EF FF EB F6 C3 B4 00 B2 80 CD 13 BE 5D 7C 72 F5 BB 00 80 8E C3 BB 00 00 B4 02 B0 06 B5 00 B1 01 B6 00 B2 07 CD 13 BE 4E 7C 72 CF 26 FF 27 57 65 6C 63 6F 6D 65 21 00 52 65 61 64 69 6E 67 20 65 72 72 6F 72 21 00 52 65 73 65 74 74 69 6E 67 20 65 72 72 6F 72 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA <- Boot-loader signature B4 0E B0 2E CD 10 EB FE 00 00 00 00 00 00 00 00 <- Start of the second sector 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 So, this is the way I am trying to add the kernel to the second sector. What do you think is wrong with this? Thanks!

    Read the article

  • Simple syntax error still eluding me.

    - by melee
    Here is the header for a class I started: #ifndef CANVAS_ #define CANVAS_ #include <iostream> #include <iomanip> #include <string> #include <stack> class Canvas { public: Canvas(); void Paint(int R, int C, char Color); const int Nrow; const int Ncol; string Title; int image[][100]; stack<int> path; struct PixelCoordinates { unsigned int r; unsigned int c; } position; Canvas operator<< (const Canvas& One ); Canvas operator>>( Canvas& One ); }; /*----------------------------------------------------------------------------- Name: operator<< Purpose: Put a Canvas into an output stream -----------------------------------------------------------------------------*/ ostream& operator<<( ostream& Out, const Canvas& One ) { Out << One.Title << endl; Out << "Rows: " << One.Nrow << " Columns: " << One.Ncol << endl; int i,j; for( i=0; i<One.Nrow; i++) { cout<<"\n\n\n"; cout<< " COLUMN\n"; cout<< " 1 2 3"; for(i=0;i<One.Nrow;i++) { cout<<"\nROW "<<i+1; for(j=0;j<One.Ncol;j++) cout<< One.image[i][j]; } } return Out; } /*----------------------------------------------------------------------------- Name: operator>> Purpose: Get a Canvas from an input stream -----------------------------------------------------------------------------*/ istream& operator>>( istream& In, Canvas& One ) { // string Line; // int Place = 0; // { // In >> Line; // if (In.good()) // { // One.image[Place][0] = Line; // Place++; // } // return In; #endif Here is my implementation file for class Canvas: using namespace std; #include <iostream> #include <iomanip> #include <string> #include <stack> #include "proj05.canvas.h" //----------------Constructor----------------// Canvas::Canvas() { Title = ""; Nrow = 0; Ncol = 0; image[][100] = {}; position.r = 0; position.c = 0; } //-------------------Paint------------------// void Canvas::Paint(int R, int C, char Color) { cout << "Paint to be implemented" << endl; } And the errors I'm getting are these: proj05.canvas.cpp: In function 'std::istream& operator>>(std::istream&, Canvas&)': proj05.canvas.cpp:11: error: expected `;' before '{' token proj05.canvas.cpp:24: error: expected `}' at end of input From my limited experience, they look like simple syntax errors but for the life of me, I cannot see what I am missing. I know putting a ; at the end of Canvas::Canvas() is wrong but that seems to be what it expects. Could someone please clarify for me? (Also, I know much of the code for the << and operator definitions look terrible, but unless that is the specific reason for the error please do not address it. This is a draft :) )

    Read the article

  • Access violation using LocalAlloc()

    - by PaulH
    I have a Visual Studio 2008 Windows Mobile 6 C++ application that is using an API that requires the use of LocalAlloc(). To make my life easier, I created an implementation of a standard allocator that uses LocalAlloc() internally: /// Standard library allocator implementation using LocalAlloc and LocalReAlloc /// to create a dynamically-sized array. /// Memory allocated by this allocator is never deallocated. That is up to the /// user. template< class T, int max_allocations > class LocalAllocator { public: typedef T value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; pointer address( reference r ) const { return &r; }; const_pointer address( const_reference r ) const { return &r; }; LocalAllocator() throw() : c_( NULL ) { }; /// Attempt to allocate a block of storage with enough space for n elements /// of type T. n>=1 && n<=max_allocations. /// If memory cannot be allocated, a std::bad_alloc() exception is thrown. pointer allocate( size_type n, const void* /*hint*/ = 0 ) { if( NULL == c_ ) { c_ = LocalAlloc( LPTR, sizeof( T ) * n ); } else { HLOCAL c = LocalReAlloc( c_, sizeof( T ) * n, LHND ); if( NULL == c ) LocalFree( c_ ); c_ = c; } if( NULL == c_ ) throw std::bad_alloc(); return reinterpret_cast< T* >( c_ ); }; /// Normally, this would release a block of previously allocated storage. /// Since that's not what we want, this function does nothing. void deallocate( pointer /*p*/, size_type /*n*/ ) { // no deallocation is performed. that is up to the user. }; /// maximum number of elements that can be allocated size_type max_size() const throw() { return max_allocations; }; private: /// current allocation point HLOCAL c_; }; // class LocalAllocator My application is using that allocator implementation in a std::vector< #define MAX_DIRECTORY_LISTING 512 std::vector< WIN32_FIND_DATA, LocalAllocator< WIN32_FIND_DATA, MAX_DIRECTORY_LISTING > > file_list; WIN32_FIND_DATA find_data = { 0 }; HANDLE find_file = ::FindFirstFile( folder.c_str(), &find_data ); if( NULL != find_file ) { do { // access violation here on the 257th item. file_list.push_back( find_data ); } while ( ::FindNextFile( find_file, &find_data ) ); ::FindClose( find_file ); } // data submitted to the API that requires LocalAlloc()'d array of WIN32_FIND_DATA structures SubmitData( &file_list.front() ); On the 257th item added to the vector<, the application crashes with an access violation: Data Abort: Thread=8e1b0400 Proc=8031c1b0 'rapiclnt' AKY=00008001 PC=03f9e3c8(coredll.dll+0x000543c8) RA=03f9ff04(coredll.dll+0x00055f04) BVA=21ae0020 FSR=00000007 First-chance exception at 0x03f9e3c8 in rapiclnt.exe: 0xC0000005: Access violation reading location 0x01ae0020. LocalAllocator::allocate is called with an n=512 and LocalReAlloc() succeeds. The actual Access Violation exception occurs within the std::vector< code after the LocalAllocator::allocate call: 0x03f9e3c8 0x03f9ff04 > MyLib.dll!stlp_std::priv::__copy_trivial(const void* __first = 0x01ae0020, const void* __last = 0x01b03020, void* __result = 0x01b10020) Line: 224, Byte Offsets: 0x3c C++ MyLib.dll!stlp_std::vector<_WIN32_FIND_DATAW,LocalAllocator<_WIN32_FIND_DATAW,512> >::_M_insert_overflow(_WIN32_FIND_DATAW* __pos = 0x01b03020, _WIN32_FIND_DATAW& __x = {...}, stlp_std::__true_type& __formal = {...}, unsigned int __fill_len = 1, bool __atend = true) Line: 112, Byte Offsets: 0x5c C++ MyLib.dll!stlp_std::vector<_WIN32_FIND_DATAW,LocalAllocator<_WIN32_FIND_DATAW,512> >::push_back(_WIN32_FIND_DATAW& __x = {...}) Line: 388, Byte Offsets: 0xa0 C++ MyLib.dll!Foo(unsigned long int cbInput = 16, unsigned char* pInput = 0x01a45620, unsigned long int* pcbOutput = 0x1dabfbbc, unsigned char** ppOutput = 0x1dabfbc0, IRAPIStream* __formal = 0x00000000) Line: 66, Byte Offsets: 0x1e4 C++ If anybody can point out what I may be doing wrong, I would appreciate it. Thanks, PaulH

    Read the article

  • Why does this code generate an error? [closed]

    - by user559601
    <link rel="search" type="application/opensearchdescription+xml" href="http://b.static.ak.fbcdn.net/rsrc.php/yJ/r/H2SSvhJMJA-.xml" title="" /> <link rel="shortcut icon" href="http://static.ak.fbcdn.net/rsrc.php/y7/r/5875srnzL-I.ico" /></head> <body class="WelcomePage UIPage_LoggedOut mac Locale_en_US"> <div id="FB_HiddenContainer" style="position:absolute; top:-10000px; width:0px; height:0px;" ></div> <div id="blueBar" class="loggedOut"></div> <div id="globalContainer"><div id="dialogContainer"></div><div id="dropmenu_container"></div> <div id="content" class="fb_content clearfix"><div ><!-- 2365fa3194ecdc0cab15721ce967a9f8663937c7 --> <div class="WelcomePage_Container"><div class="loggedout_menubar_container"><div class="clearfix loggedout_menubar"><a class="lfloat" href="/" title="Go to Home"><img class="fb_logo img" src="http://static.ak.fbcdn.net/rsrc.php/yp/r/kk8dc2UJYJ4.png" alt="Facebook logo" width="170" height="36" /></a><div class="rfloat"><div class="menu_login_container"><form method="POST" action="https://login.facebook.com/login.php?login_attempt=1" id="login_form" onsubmit="return Event.__inlineSubmit(this,event)"><input type="hidden" name="charset_test" value="&euro;,&acute;,€,´,?,?,?" /><input type="hidden" name="lsd" value="hEICz" autocomplete="off" /><input type="hidden" id="locale" name="locale" value="en_US" autocomplete="off" /><table cellspacing="0"><tr><td class="html7magic"><label for="email">Email</label></td><td class="html7magic"><label for="pass">Password</label></td></tr><tr><td><input type="text" class="inputtext" name="email" id="email" tabindex="1" /></td><td><input type="password" class="inputtext" name="pass" id="pass" tabindex="2" /></td><td><label class="uiButton uiButtonConfirm"><input value="Login" tabindex="4" type="submit" /></label></td></tr><tr><td class="login_form_label_field"><input type="checkbox" class="inputcheckbox" value="1" id="persistent" name="persistent" checked="1" /><input type="hidden" name="default_persistent" value="1" /><label id="label_persistent" for="persistent">Keep me logged in</label></td><td class="login_form_label_field"><a href="http://www.facebook.com/reset.php" rel="nofollow">Forgot your password?</a></td></tr></table><input type="hidden" name="charset_test" value="&euro;,&acute;,€,´,?,?,?" /><input type="hidden" id="lsd" name="lsd" value="hEICz" autocomplete="off" /></form> </div></div></div></div><div class="WelcomePage_MainSell"><div class="WelcomePage_MainSellCenter clearfix"><div class="WelcomePage_MainSellLeft"><div class="WelcomePage_MainMessage">Facebook helps you connect and share with the people in your life.</div><div class="WelcomePage_MainMap">&nbsp;</div></div><div class="WelcomePage_MainSellRight"><div class="WelcomePage_SignUpSection"><div class="WelcomePage_SignUpMessage"><div class="WelcomePage_SignUpHeadline">Sign Up</div><div class="WelcomePage_SignUpSubheadline">It's free, and always will be.</div></div><div class="WelcomePage_SimpleReg" id="registration_container"><div><noscript><div id="no_js_box"><h2>Javascript is disabled on your browser.</h2><p>Please enable JavaScript on your browser or upgrade to a Javascript-capable browser to register for Facebook.</p></div></noscript><div id="simple_registration_container" class="simple_registration_container"><div id="reg_box"><form method="post" id="reg" name="reg" onsubmit="return function(event)&#123;return false;&#125;.call(this,event)!==false &amp;&amp; Event.__inlineSubmit(this,event)"><input type="hidden" autocomplete="off" name="post_form_id" value="c3a2bed7243b9a85f53d69f23a38da9d" /><input type="hidden" name="lsd" value="hEICz" autocomplete="off" /><input type="hidden" autocomplete="off" id="reg_instance" name="reg_instance" value="bpgeTawHFSiHa5-7SR4gbif7" /><input type="hidden" autocomplete="off" id="locale" name="locale" value="en_US" /><input type="hidden" autocomplete="off" id="terms" name="terms" value="on" /><input type="hidden" autocomplete="off" id="abtest_registration_group" name="abtest_registration_group" value="1" /><input type="hidden" autocomplete="off" id="referrer" name="referrer" value="" /><input type="hidden" autocomplete="off" id="md5pass" name="md5pass" value="" /><input type="hidden" autocomplete="off" id="validate_mx_records" name="validate_mx_records" value="1" /><input type="hidden" autocomplete="off" id="ab_test_data" name="ab_test_data" value="" /><div id="reg_form_box" class="large_form"><table class="uiGrid editor" cellspacing="0" cellpadding="1"><tbody><tr><td class="label">First Name:</td><td><div class="field_container"><input type="text" class="inputtext" id="firstname" name="firstname" /></div></td></tr><tr><td class="label">Last Name:</td><td><div class="field_container"><input type="text" class="inputtext" id="lastname" name="lastname" /></div></td></tr><tr><td class="label">Your Email:</td><td><div class="field_container"><input type="text" class="inputtext" id="reg_email__" name="reg_email__" /></div></td></tr><tr><td class="label">Re-enter Email:</td><td><div class="field_container"><input type="text" class="inputtext" id="reg_email_confirmation__" name="reg_email_confirmation__" /></div></td></tr><tr><td class="label">New Password:</td><td><div class="field_container"><input type="password" class="inputtext" id="reg_passwd__" name="reg_passwd__" value="" /></div></td></tr><tr><td class="label">I am:</td><td><div class="field_container"><div class="hidden_elem"><select><option></option><option></option></select><select><option></option><option></option></select></div><select class="select" name="sex" id="sex"><option value="0">Select Sex:</option><option value="1">Female</option><option value="2">Male</option></select></div></td></tr><tr><td class="label">Birthday:</td><td><div class="field_container"> <select class="" id="birthday_month" name="birthday_month" onchange="return run_with(this, [&quot;editor&quot;], function() &#123;editor_date_month_change(this, &quot;birthday_day&quot;, &quot;birthday_year&quot;);&#125;);"><option value="-1">Month:</option><option value="1">Jan</option>

    Read the article

  • JSF and Jquery - doesn't work

    - by darkrain
    Hi I am trying to get Jquery work in JSF. But i doesn't work. Can somebody help me ? The scripts are in the folder : resources This is my JSP code : I am using netbeans and the <?xml version="1.0" encoding="UTF-8"?> <!-- Document : testpage Created on : 08.07.2009, 01:16:01 Author : reBourne --> <jsp:root version="2.1" xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:jsp="http://java.sun.com/JSP/Page" xmlns:webuijsf="http://www.sun.com/webui/webuijsf"> <jsp:directive.page contentType="text/html;charset=UTF-8" pageEncoding="UTF-8"/> <f:view> <webuijsf:page id="page1"> <webuijsf:html id="html1"> <webuijsf:head id="head1"> <webuijsf:link id="link1" url="/resources/css/stylesheet.css"/> <webuijsf:script id="script1" url="resources/jquery.js"/> <webuijsf:script id="script2" url="recources/main.js" /> <style> body { margin:0; padding:40px; background:#fff; font:80% Arial, Helvetica, sans-serif; color:#555; line-height:180%; } h1{ font-size:180%; font-weight:normal; color:#555; } h2{ clear:both; font-size:160%; font-weight:normal; color:#555; margin:0; padding:.5em 0; } a{ text-decoration:none; color:#f30; } p{ clear:both; margin:0; padding:.5em 0; } pre{ display:block; font:100% "Courier New", Courier, monospace; padding:10px; border:1px solid #bae2f0; background:#e3f4f9; margin:.5em 0; overflow:auto; width:800px; } img{border:none;} ul,li{ margin:0; padding:0; } li{ list-style:none; float:left; display:inline; margin-right:10px; } /* */ #preview{ position:absolute; border:1px solid #ccc; background:#333; padding:5px; display:none; color:#fff; } /* */ </style> </webuijsf:head> <webuijsf:body id="body1" style="-rave-layout: grid"> <webuijsf:form id="form1"> <ul> <li> <a class="preview" href="resources/images/1.jpg"> <img alt="gallery thumbnail" src="resources/images/1s.jpg"/> </a> </li> <li> <a class="preview" href="resources/images/2.jpg"> <img alt="gallery thumbnail" src="resources/images/2s.jpg"/> </a> </li> <li> <a class="preview" href="resources/images/3.jpg"> <img alt="gallery thumbnail" src="resources/images/3s.jpg"/> </a> </li> <li> <a class="preview" href="resources/images/4.jpg"> <img alt="gallery thumbnail" src="resources/images/4s.jpg"/> </a> </li> </ul> </webuijsf:form> </webuijsf:body> </webuijsf:html> </webuijsf:page> </f:view> </jsp:root> Or has someone a real life example with Javascript ?!

    Read the article

  • Dynamic parameters for XSLT 2.0 group-by

    - by Ophileon
    I got this input <?xml version="1.0" encoding="UTF-8"?> <result> <datapoint poiid="2492" period="2004" value="1240"/> <datapoint poiid="2492" period="2005" value="1290"/> <datapoint poiid="2492" period="2006" value="1280"/> <datapoint poiid="2492" period="2007" value="1320"/> <datapoint poiid="2492" period="2008" value="1330"/> <datapoint poiid="2492" period="2009" value="1340"/> <datapoint poiid="2492" period="2010" value="1340"/> <datapoint poiid="2492" period="2011" value="1335"/> <datapoint poiid="2493" period="2004" value="1120"/> <datapoint poiid="2493" period="2005" value="1120"/> <datapoint poiid="2493" period="2006" value="1100"/> <datapoint poiid="2493" period="2007" value="1100"/> <datapoint poiid="2493" period="2008" value="1100"/> <datapoint poiid="2493" period="2009" value="1110"/> <datapoint poiid="2493" period="2010" value="1105"/> <datapoint poiid="2493" period="2011" value="1105"/> </result> and I use this xslt 2.0 <?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0"> <xsl:output method="xml" indent="yes"/> <xsl:template match="result"> <xsl:for-each-group select="datapoint" group-by="@poiid"> <node type="poiid" id="{@poiid}"> <xsl:for-each select="current-group()"> <node type="period" id="{@period}" value="{@value}"/> </xsl:for-each> </node> </xsl:for-each-group> </xsl:template> </xsl:stylesheet> to convert it into <?xml version="1.0" encoding="UTF-8"?> <node type="poiid" id="2492"> <node type="period" id="2004" value="1240"/> <node type="period" id="2005" value="1290"/> <node type="period" id="2006" value="1280"/> <node type="period" id="2007" value="1320"/> <node type="period" id="2008" value="1330"/> <node type="period" id="2009" value="1340"/> <node type="period" id="2010" value="1340"/> <node type="period" id="2011" value="1335"/> </node> <node type="poiid" id="2493"> <node type="period" id="2004" value="1120"/> <node type="period" id="2005" value="1120"/> <node type="period" id="2006" value="1100"/> <node type="period" id="2007" value="1100"/> <node type="period" id="2008" value="1100"/> <node type="period" id="2009" value="1110"/> <node type="period" id="2010" value="1105"/> <node type="period" id="2011" value="1105"/> </node> Works smoothly. Where I got stuck is when I tried to make it more dynamic. The real life input has 6 attributes for each datapoint instead of 3, and the usecase requires the possibility to set the grouping parameters dynamically. I tried using parameters <xsl:param name="k1" select="'poiid'"/> <xsl:param name="k2" select="'period'"/> but passing them to the rest of the xslt is something that I can't get right. The code below doesn't work, but clarifies hopefully, what I'm looking for. <xsl:template match="result"> <xsl:for-each-group select="datapoint" group-by="@{$k1}"> <node type="{$k1}" id="@{$k1}"> <xsl:for-each select="current-group()"> <node type="{$k2}" id="@{$k2}" value="{@value}"/> </xsl:for-each> </node> </xsl:for-each-group> </xsl:template> Any help appreciated..

    Read the article

  • JAVA-SQL- Data Migration - ResultSets comparing Failing JUnit test

    - by user1865053
    I CANNOT get this JUnit Test to pass for the life of me. Can somebody point out where this has gone wrong. I am doing a data migration(MSSQL SERVER 2005), but I have the sourceDBUrl and the targetDCUrl the same URL so to narrow it down to syntax errors. So that is what I have, a syntax error. I am comparing the results of a table for the query SELECT programmeapproval, resourceapproval FROM tr_timesheet WHERE timesheetid = ? and the test always fails, but passes for other junit tests I have developed. I created 3 diffemt resultSetsEqual methods and none work. Yet, some other JUnit tests I have developed have PASSED. THE QUERY: SELECT timesheetid, programmeapproval, resourceapproval FROM tr_timesheet Returns three columns timesheetid (PK,int, not null) (populated with a range of numbers 2240 - 2282) programmeapproval (smallint,not null) (populated with the number 1 in every field) resourceapproval (smallint, not null) (populated with a number 1 in every field) When I run the query that is embedded in the code it only returns one row with the programmeapproval and resourceapproval columns and both field populated with the number 1. I have all jdbc drivers correctly installed and tested for connectivity. The JUnit Test is failing at this point according to the IDE. assertTrue(helper.resultSetsEqual2(sourceVal,targetVal)); This is the code: /*THIS IS A JUNIT CLASS****? package a7.unittests.dao; import static org.junit.Assert.assertTrue; import java.sql.Connection; import java.sql.PreparedStatement; import java.sql.ResultSet; import java.sql.Types; import org.junit.Test; import artemispm.tritonalerts.TimesheetAlert; public class UnitTestTimesheetAlert { @Test public void testQUERY_CHECKALERT() throws Exception{ UnitTestHelper helper = new UnitTestHelper(); Connection con = helper.getConnection(helper.sourceDBUrl); Connection conTarget = helper.getConnection(helper.targetDBUrl); PreparedStatement stmt = con.prepareStatement("select programmeapproval, resourceapproval from tr_timesheet where timesheetid = ?"); stmt.setInt(1, 2240); ResultSet sourceVal = stmt.executeQuery(); stmt = conTarget.prepareStatement("select programmeapproval, resourceapproval from tr_timesheet where timesheetid = ?"); stmt.setInt(1,2240); ResultSet targetVal = stmt.executeQuery(); assertTrue(helper.resultSetsEqual2(sourceVal,targetVal)); }} /*END**/ /*THIS IS A REGULAR CLASS**/ package a7.unittests.dao; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.ResultSetMetaData; import java.sql.SQLException; public class UnitTestHelper { static String sourceDBUrl = "jdbc:sqlserver://127.0.0.1:1433;databaseName=a7itm;user=a7user;password=a7user"; static String targetDBUrl = "jdbc:sqlserver://127.0.0.1:1433;databaseName=a7itm;user=a7user;password=a7user"; public Connection getConnection(String url)throws Exception{ return DriverManager.getConnection(url); } public boolean resultSetsEqual3 (ResultSet rs1, ResultSet rs2) throws SQLException { int col = 1; //ResultSetMetaData metadata = rs1.getMetaData(); //int count = metadata.getColumnCount(); while (rs1.next() && rs2.next()) { final Object res1 = rs1.getObject(col); final Object res2 = rs2.getObject(col); // Check values if (!res1.equals(res2)) { throw new RuntimeException(String.format("%s and %s aren't equal at common position %d", res1, res2, col)); } // rs1 and rs2 must reach last row in the same iteration if ((rs1.isLast() != rs2.isLast())) { throw new RuntimeException("The two ResultSets contains different number of columns!"); } } return true; } public boolean resultSetsEqual (ResultSet source, ResultSet target) throws SQLException{ while(source.next()) { target.next(); ResultSetMetaData metadata = source.getMetaData(); int count = metadata.getColumnCount(); for (int i =1; i<=count; i++) { if(source.getObject(i) != target.getObject(i)) { return false; } } } return true; } public boolean resultSetsEqual2 (ResultSet source, ResultSet target) throws SQLException{ while(source.next()) { target.next(); ResultSetMetaData metadata = source.getMetaData(); int count = metadata.getColumnCount(); for (int i =1; i<=count; i++) { if(source.getObject(i).equals(target.getObject(i))) { return false; } } } return true; } } /END***/ /*PASTED NEW CLASS - THIS IS A JUNIT TEST CLASS*/ package a7.unittests.dao; import static org.junit.Assert.*; import java.sql.Connection; import java.sql.DriverManager; import org.junit.Test; public class TestDatabaseConnection { @Test public void testConnection() throws Exception{ UnitTestHelper helper = new UnitTestHelper(); Connection con = helper.getConnection(helper.sourceDBUrl); Connection conTarget = helper.getConnection(helper.targetDBUrl); assertTrue(con != null && conTarget != null); } } /**END***/

    Read the article

  • How to optimize method's that track metrics in 3rd party application?

    - by WulfgarPro
    Hi, I have two listboxes that keep updated lists of various objects roaming in a 3rd party application. When a user selects an object from a listbox, an event handler is fired, calling a method that gathers various metrics belonging to that object from the 3rd party application for displaying in a set of textboxes. This is slow! I am not sure how to optimize this functionality to facilitate greater speeds.. private void lsbUavs_SelectedIndexChanged(object sender, EventArgs e) { if (_ourSelectedUavFromListBox != null) { UtilStkScenario.ChangeUavColourOnScenario(_ourSelectedUavFromListBox.UavName, false); } if (lsbUavs.SelectedItem != null) { Uav ourUav = UtilStkScenario.FindUavFromScenarioBasedOnName(lsbUavs.SelectedItem.ToString()); hsbThrottle.Value = (int)ourUav.ThrottleValue; UtilStkScenario.ChangeUavColourOnScenario(ourUav.UavName, true); _ourSelectedUavFromListBox = ourUav; // we don't want this thread spawning many times if (tUpdateMetricInformationInTabControl != null) { if (tUpdateMetricInformationInTabControl.IsAlive) { tUpdateMetricInformationInTabControl.Abort(); } } tUpdateMetricInformationInTabControl = new Thread(UpdateMetricInformationInTabControl); tUpdateMetricInformationInTabControl.Name = "UpdateMetricInformationInTabControlUavs"; tUpdateMetricInformationInTabControl.IsBackground = true; tUpdateMetricInformationInTabControl.Start(lsbUavs); } } delegate string GetNameOfListItem(ListBox listboxId); delegate void SetTextBoxValue(TextBox textBoxId, string valueToSet); private void UpdateMetricInformationInTabControl(object listBoxToUpdate) { ListBox theListBoxToUpdate = (ListBox)listBoxToUpdate; GetNameOfListItem dGetNameOfListItem = new GetNameOfListItem(GetNameOfSelectedListItem); SetTextBoxValue dSetTextBoxValue = new SetTextBoxValue(SetNamedTextBoxValue); try { foreach (KeyValuePair<string, IAgStkObject> entity in UtilStkScenario._totalListOfAllStkObjects) { if (entity.Key.ToString() == (string)theListBoxToUpdate.Invoke(dGetNameOfListItem, theListBoxToUpdate)) { while ((string)theListBoxToUpdate.Invoke(dGetNameOfListItem, theListBoxToUpdate) == entity.Key.ToString()) { if (theListBoxToUpdate.Name == "lsbEntities") { double[] latLonAndAltOfEntity = UtilStkScenario.FindMetricsOfStkObjectOnScenario(UtilStkScenario._stkObjectRoot.CurrentTime, entity.Value); SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "Entity", entity.Key, "", "", "", "", latLonAndAltOfEntity[4].ToString(), latLonAndAltOfEntity[3].ToString()); } else if (theListBoxToUpdate.Name == "lsbUavs") { double[] latLonAndAltOfEntity = UtilStkScenario.FindMetricsOfStkObjectOnScenario(UtilStkScenario._stkObjectRoot.CurrentTime, entity.Value); SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "UAV", entity.Key, entity.Value.ClassName.ToString(), latLonAndAltOfEntity[0].ToString(), latLonAndAltOfEntity[1].ToString(), latLonAndAltOfEntity[2].ToString(), latLonAndAltOfEntity[4].ToString(), latLonAndAltOfEntity[3].ToString()); } } } } } catch (Exception e) { // selected entity was deleted(end-of-life) in STK - remove LLA information from GUI if (theListBoxToUpdate.Name == "lsbEntities") { SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "Entity", "", "", "", "", "", "", ""); UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "UpdateMetricInformationInTabControl", UtilLog.logWriter); } else if (theListBoxToUpdate.Name == "lsbUavs") { SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "UAV", "", "", "", "", "", "", ""); UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "UpdateMetricInformationInTabControl", UtilLog.logWriter); } } } internal static double[] FindMetricsOfStkObjectOnScenario(object timeToFindMetricState, IAgStkObject stkObject) { double[] stkObjectMetrics = null; try { stkObjectMetrics = new double[5]; object latOfStkObject, lonOfStkObject; double altOfStkObject, headingOfStkObject, velocityOfStkObject; IAgProvideSpatialInfo spatial = stkObject as IAgProvideSpatialInfo; IAgVeSpatialInfo spatialInfo = spatial.GetSpatialInfo(false); IAgSpatialState spatialState = spatialInfo.GetState(timeToFindMetricState); spatialState.FixedPosition.QueryPlanetodetic(out latOfStkObject, out lonOfStkObject, out altOfStkObject); double[] stkObjectheadingAndVelocity = FindHeadingAndVelocityOfStkObjectFromScenario(stkObject.InstanceName); headingOfStkObject = stkObjectheadingAndVelocity[0]; velocityOfStkObject = stkObjectheadingAndVelocity[1]; stkObjectMetrics[0] = (double)latOfStkObject; stkObjectMetrics[1] = (double)lonOfStkObject; stkObjectMetrics[2] = altOfStkObject; stkObjectMetrics[3] = headingOfStkObject; stkObjectMetrics[4] = velocityOfStkObject; } catch (Exception e) { UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "FindMetricsOfStkObjectOnScenario", UtilLog.logWriter); } return stkObjectMetrics; } private static double[] FindHeadingAndVelocityOfStkObjectFromScenario(string stkObjectName) { double[] stkObjectHeadingAndVelocity = new double[2]; IAgStkObject stkUavObject = null; try { string typeOfObject = CheckIfStkObjectIsEntityOrUav(stkObjectName); if (typeOfObject == "UAV") { stkUavObject = _stkObjectRootToIsolateForUavs.CurrentScenario.Children[stkObjectName]; IAgDataProviderGroup group = (IAgDataProviderGroup)stkUavObject.DataProviders["Heading"]; IAgDataProvider provider = (IAgDataProvider)group.Group["Fixed"]; IAgDrResult result = ((IAgDataPrvTimeVar)provider).ExecSingle(_stkObjectRootToIsolateForUavs.CurrentTime); stkObjectHeadingAndVelocity[0] = (double)result.DataSets[1].GetValues().GetValue(0); stkObjectHeadingAndVelocity[1] = (double)result.DataSets[4].GetValues().GetValue(0); } else if (typeOfObject == "Entity") { IAgStkObject stkEntityObject = _stkObjectRootToIsolateForEntities.CurrentScenario.Children[stkObjectName]; IAgDataProviderGroup group = (IAgDataProviderGroup)stkEntityObject.DataProviders["Heading"]; IAgDataProvider provider = (IAgDataProvider)group.Group["Fixed"]; IAgDrResult result = ((IAgDataPrvTimeVar)provider).ExecSingle(_stkObjectRootToIsolateForEntities.CurrentTime); stkObjectHeadingAndVelocity[0] = (double)result.DataSets[1].GetValues().GetValue(0); stkObjectHeadingAndVelocity[1] = (double)result.DataSets[4].GetValues().GetValue(0); } } catch (Exception e) { UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "FindHeadingAndVelocityOfStkObjectFromScenario", UtilLog.logWriter); } return stkObjectHeadingAndVelocity; } Any help would be really appreciated. From my knowledge, I cant really see any issues with the C#. Maybe it has to do with the methodology I'm using.. maybe some kind of caching mechanism is required - this is not natively available. WulfgarPro

    Read the article

  • qemu-kvm virtual machine virtio network freeze under load

    - by Rick Koshi
    I'm having a problem with my virtual machines, where the network will freeze under heavy load. I'm using CentOS 6.2 as both host and guest, not using libvirt, just running qemu-kvm directly as follows: /usr/libexec/qemu-kvm \ -drive file=/data2/vm/rb-dev2-www1-vm.img,index=0,media=disk,cache=none,if=virtio \ -boot order=c \ -m 2G \ -smp cores=1,threads=2 \ -vga std \ -name rb-dev2-www1-vm \ -vnc :84,password \ -net nic,vlan=0,macaddr=52:54:20:00:00:54,model=virtio \ -net tap,vlan=0,ifname=tap84,script=/etc/qemu-ifup \ -monitor unix:/var/run/vm/rb-dev2-www1-vm.mon,server,nowait \ -rtc base=utc \ -device piix3-usb-uhci \ -device usb-tablet /etc/qemu-ifup (used by the above command) is a very simple script, containing the following: #!/bin/sh sudo /sbin/ifconfig $1 0.0.0.0 promisc up sudo /usr/sbin/brctl addif br0 $1 sleep 2 And here's the info on br0 and other interfaces: avl-host3 14# brctl show bridge name bridge id STP enabled interfaces br0 8000.180373f5521a no bond0 tap84 virbr0 8000.525400858961 yes virbr0-nic avl-host3 15# ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: em1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 3: em2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 4: em3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:1e brd ff:ff:ff:ff:ff:ff 5: em4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:20 brd ff:ff:ff:ff:ff:ff 6: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 7: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet 172.16.1.46/24 brd 172.16.1.255 scope global br0 inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 8: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0 9: virbr0-nic: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 500 link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff 12: tap84: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 500 link/ether ba:e8:9b:2a:ff:48 brd ff:ff:ff:ff:ff:ff inet6 fe80::b8e8:9bff:fe2a:ff48/64 scope link valid_lft forever preferred_lft forever bond0 is a bond of em1 and em2. virbr0 and virbr0-nic are vestigial interfaces left over from CentOS's default installation. They are unused (as far as I know). The guest runs perfectly until I run a large 'rsync', when the network will freeze after some seemingly-random time (usually under a minute). When it freezes, there is no network activity in or out of the guest. I can still connect to the guest's console via vnc, but it is unable to speak out its network interface. Any attempt to 'ping' from the guest gives a "Destination Host Unreachable" error for 3/4 packets and no reply for every fourth packet. Sometimes (perhaps two thirds of the time), I can bring the interface back to life by doing a "service network restart" from the guest's console. If this works (and if I do it before the rsync times out), the rsync will resume. Usually it will freeze again within a minute or two. If I repeat, the rsync will eventually finish, and I presume the machine goes back to waiting for another period of heavy load. Throughout the whole process, there are no console errors or relevant (that I can see) syslog messages on either guest or host machine. If the "service network restart" doesn't work the first time, trying again (and again and again) never seems to work. The command completes normally, with normal output, but the interface stays frozen. However, a soft reboot of the guest machine (without restarting qemu-kvm) always seems to bring it back. I am aware of the "lowest mac address" assignment problem, where the bridge takes on the mac address of the slave interface with the lowest mac address. This causes temporary network freezes, but is definitely not what's happening for me. My freezes are permanent until manual intervention, and you can see from the 'ip addr show' output above that the mac address being used by br0 is that of the physical ethernet. There are no other virtual machines running on the host. I've verified that each virtual machine on the subnet has its own unique mac address. I have rebuilt the guest machine several times, and I have tried this on three different host machines (identical hardware, built identically). Oddly, I do have one virtual host (the second of this series) which never seemed to have a problem. It never had its network freeze when it was running the same rsync during its build. It's particularly odd because it was the second build. The first, on a different host, did have the freezing problem, but the second did not. I assumed at the time that I had done something wrong with the first build, and that the problem was resolved. Unfortunately, the problem reappeared when I built the third VM. Also unfortunately, I can't do many tests with the working VM, as it's now in production use, and I'm hoping I can find the cause of this issue before that machine starts having problems. It's possible that I just got really lucky while running the rsync on the working machine, and that one time it didn't freeze. Of course it's possible that I somehow changed the build scripts without realizing it and re-broke something, but I can't find any such thing. In any case, I'm hoping someone has some idea what could cause this. Addendum: Preliminary tests suggest that I don't have the problem if I substitute e1000 for virtio in the first -net flag to qemu-kvm. I don't consider this a solution, but it is suitable for a stopgap. Has anyone else had (or better yet, solved) this problem with the virtio network driver?

    Read the article

  • Cisco ASA: Allowing and Denying VPN Access based on membership to an AD group

    - by milkandtang
    I have a Cisco ASA 5505 connecting to an Active Directory server for VPN authentication. Usually we'd restrict this to a particular OU, but in this case users which need access are spread across multiple OUs. So, I'd like to use a group to specify which users have remote access. I've created the group and added the users, but I'm having trouble figuring out how to deny users which aren't in that group. Right now, if someone connects they get assigned the correct group policy "companynamera" if they are in that group, so the LDAP mapping is working. However, users who are not in that group still authenticate fine, and their group policy becomes the LDAP path of their first group, i.e. CN=Domain Users,CN=Users,DC=example,DC=com, and then are still allowed access. How do I add a filter so that I can map everything that isn't "companynamera" to no access? Config I'm using (with some stuff such as ACLs and mappings removed, since they are just noise here): gateway# show run : Saved : ASA Version 8.2(1) ! hostname gateway domain-name corp.company-name.com enable password gDZcqZ.aUC9ML0jK encrypted passwd gDZcqZ.aUC9ML0jK encrypted names name 192.168.0.2 dc5 description FTP Server name 192.168.0.5 dc2 description Everything server name 192.168.0.6 dc4 description File Server name 192.168.0.7 ts1 description Light Use Terminal Server name 192.168.0.8 ts2 description Heavy Use Terminal Server name 4.4.4.82 primary-frontier name 5.5.5.26 primary-eschelon name 172.21.18.5 dmz1 description Kerio Mail Server and FTP Server name 4.4.4.84 ts-frontier name 4.4.4.85 vpn-frontier name 5.5.5.28 ts-eschelon name 5.5.5.29 vpn-eschelon name 5.5.5.27 email-eschelon name 4.4.4.83 guest-frontier name 4.4.4.86 email-frontier dns-guard ! interface Vlan1 nameif inside security-level 100 ip address 192.168.0.254 255.255.255.0 ! interface Vlan2 description Frontier FiOS nameif outside security-level 0 ip address primary-frontier 255.255.255.0 ! interface Vlan3 description Eschelon T1 nameif backup security-level 0 ip address primary-eschelon 255.255.255.248 ! interface Vlan4 nameif dmz security-level 50 ip address 172.21.18.254 255.255.255.0 ! interface Vlan5 nameif guest security-level 25 ip address 172.21.19.254 255.255.255.0 ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 switchport access vlan 3 ! interface Ethernet0/2 switchport access vlan 4 ! interface Ethernet0/3 switchport access vlan 5 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! ftp mode passive clock timezone PST -8 clock summer-time PDT recurring dns domain-lookup inside dns server-group DefaultDNS name-server dc2 domain-name corp.company-name.com same-security-traffic permit intra-interface access-list companyname_splitTunnelAcl standard permit 192.168.0.0 255.255.255.0 access-list companyname_splitTunnelAcl standard permit 172.21.18.0 255.255.255.0 access-list inside_nat0_outbound extended permit ip any 172.21.20.0 255.255.255.0 access-list inside_nat0_outbound extended permit ip any 172.21.18.0 255.255.255.0 access-list bypassingnat_dmz extended permit ip 172.21.18.0 255.255.255.0 192.168.0.0 255.255.255.0 pager lines 24 logging enable logging buffer-size 12288 logging buffered warnings logging asdm notifications mtu inside 1500 mtu outside 1500 mtu backup 1500 mtu dmz 1500 mtu guest 1500 ip local pool VPNpool 172.21.20.50-172.21.20.59 mask 255.255.255.0 no failover icmp unreachable rate-limit 1 burst-size 1 no asdm history enable arp timeout 14400 global (outside) 1 interface global (outside) 2 email-frontier global (outside) 3 guest-frontier global (backup) 1 interface global (dmz) 1 interface nat (inside) 0 access-list inside_nat0_outbound nat (inside) 2 dc5 255.255.255.255 nat (inside) 1 192.168.0.0 255.255.255.0 nat (dmz) 0 access-list bypassingnat_dmz nat (dmz) 2 dmz1 255.255.255.255 nat (dmz) 1 172.21.18.0 255.255.255.0 access-group outside_access_in in interface outside access-group dmz_access_in in interface dmz route outside 0.0.0.0 0.0.0.0 4.4.4.1 1 track 1 route backup 0.0.0.0 0.0.0.0 5.5.5.25 254 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 ldap attribute-map RemoteAccessMap map-name memberOf IETF-Radius-Class map-value memberOf CN=RemoteAccess,CN=Users,DC=corp,DC=company-name,DC=com companynamera dynamic-access-policy-record DfltAccessPolicy aaa-server ActiveDirectory protocol ldap aaa-server ActiveDirectory (inside) host dc2 ldap-base-dn dc=corp,dc=company-name,dc=com ldap-scope subtree ldap-login-password * ldap-login-dn cn=administrator,ou=Admins,dc=corp,dc=company-name,dc=com server-type microsoft aaa-server ADRemoteAccess protocol ldap aaa-server ADRemoteAccess (inside) host dc2 ldap-base-dn dc=corp,dc=company-name,dc=com ldap-scope subtree ldap-login-password * ldap-login-dn cn=administrator,ou=Admins,dc=corp,dc=company-name,dc=com server-type microsoft ldap-attribute-map RemoteAccessMap aaa authentication enable console LOCAL aaa authentication ssh console LOCAL http server enable http 192.168.0.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart sla monitor 123 type echo protocol ipIcmpEcho 4.4.4.1 interface outside num-packets 3 frequency 10 sla monitor schedule 123 life forever start-time now crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 crypto dynamic-map outside_dyn_map 20 set pfs crypto dynamic-map outside_dyn_map 20 set transform-set ESP-3DES-SHA crypto map outside_map 65535 ipsec-isakmp dynamic outside_dyn_map crypto map outside_map interface outside crypto isakmp enable outside crypto isakmp policy 10 authentication pre-share encryption 3des hash sha group 2 lifetime 86400 ! track 1 rtr 123 reachability telnet timeout 5 ssh 192.168.0.0 255.255.255.0 inside ssh timeout 5 ssh version 2 console timeout 0 management-access inside dhcpd auto_config outside ! threat-detection basic-threat threat-detection statistics access-list no threat-detection statistics tcp-intercept webvpn group-policy companynamera internal group-policy companynamera attributes wins-server value 192.168.0.5 dns-server value 192.168.0.5 vpn-tunnel-protocol IPSec password-storage enable split-tunnel-policy tunnelspecified split-tunnel-network-list value companyname_splitTunnelAcl default-domain value corp.company-name.com split-dns value corp.company-name.com group-policy companyname internal group-policy companyname attributes wins-server value 192.168.0.5 dns-server value 192.168.0.5 vpn-tunnel-protocol IPSec password-storage enable split-tunnel-policy tunnelspecified split-tunnel-network-list value companyname_splitTunnelAcl default-domain value corp.company-name.com split-dns value corp.company-name.com username admin password IhpSqtN210ZsNaH. encrypted privilege 15 tunnel-group companyname type remote-access tunnel-group companyname general-attributes address-pool VPNpool authentication-server-group ActiveDirectory LOCAL default-group-policy companyname tunnel-group companyname ipsec-attributes pre-shared-key * tunnel-group companynamera type remote-access tunnel-group companynamera general-attributes address-pool VPNpool authentication-server-group ADRemoteAccess LOCAL default-group-policy companynamera tunnel-group companynamera ipsec-attributes pre-shared-key * ! class-map type inspect ftp match-all ftp-inspection-map class-map inspection_default match default-inspection-traffic ! ! policy-map type inspect ftp ftp-inspection-map parameters class ftp-inspection-map policy-map type inspect dns migrated_dns_map_1 parameters message-length maximum 512 policy-map global_policy class inspection_default inspect dns migrated_dns_map_1 inspect ftp inspect h323 h225 inspect h323 ras inspect http inspect ils inspect netbios inspect rsh inspect rtsp inspect skinny inspect sqlnet inspect sunrpc inspect tftp inspect sip inspect xdmcp inspect icmp inspect icmp error inspect esmtp inspect pptp ! service-policy global_policy global prompt hostname context Cryptochecksum:487525494a81c8176046fec475d17efe : end gateway# Thanks so much!

    Read the article

  • Network throughput issue (ARP-related)

    - by Joel Coel
    The small college where I work is having some very strange network issues. I'm looking for any advice or ideas here. We were fine over the summer, but the trouble began few days after students returned to campus in force for the fall term. Symptoms The main symptom is that internet access will work, but it's very slow... often to the point of timeouts. As an example, a typical result from Speedtest.net will return .4Mbps download, but allow 3 to 8 Mbps upload speed. Lesser symptoms may include severely limited performance transferring data to and from our file server, or even in some cases the inability to log in to the computer (cannot reach the domain controller). The issue crosses multiple vlans, and has effected devices on nearly every vlan we operate. The issue does not impact all machines on the network. An unaffected machine will typically see at least 11Mbps download from speedtest.net, and perhaps much more depending on larger campus traffic patterns at the time. There is one variation on the larger issue. We have one vlan where users were unable to log into nearly all of the machines at all. IT staff would log in using a local administrator account (or in some cases cached credentials), and from there a release/renew or pinging the gateway would allow the machine to work... for a while. Complicating this issue is that this vlan covers our computer labs, which use software called Deep Freeze to completely reset the hard drives after a reboot. It could just the same issue manifesting differently because of stale data on machines that have not permanently altered low-level info for weeks. We were able to solve this, however, by creating a new vlan and moving the labs over to the new vlan wholesale. Instigations Eventually we noticed that the effected machines all had recent dhcp leases. We can predict when a machine will become "slow" by watching when a dhcp lease comes up for renewal. We played with setting the lease time very short for a test vlan, but all that did was remove our ability to predict when the machine would become slow. Machines with static IPs have pretty much always worked normally. Manually releasing/renewing an address will never cause a machine to become slow. In fact, in some cases this process has fixed a machine in that state. Most of the time, though, it doesn't help. We also noticed that mobile machines like laptops are likely to become slow when they cross to new vlans. Wireless on campus is divided up into "zones", where each zone maps to a small set of buildings. Moving to a new building can place you in a zone, thereby causing you to get a new address. A machine resuming from sleep mode is also very likely to be slow. Mitigations Sometimes, but not always, clearing the arp cache on an effected machine will allow it to work normally again. As already mentioned, releasing/renewing a local machine's IP address can fix that machine, but it's not guaranteed. Pinging the default gateway can also sometimes help with a slow machine. What seems to help most to mitigate the issue is clearing the arp cache on our core layer-3 switch. This switch is used for our dhcp system as the default gateway on all vlans, and it handles inter-vlan routing. The model is a 3Com 4900SX. To try to mitigate the issue, we have the cache timeout set on the switch all the way down to the lowest possible time, but it hasn't helped. I also put together a script that runs every few minutes to automatically connect to the switch and reset the cache. Unfortunately, this does not always work, and can even cause some machines to end up in the slow state for a short time (though these seem to correct themselves after a few minutes). We currently have a scheduled job that runs every 10 minutes to force the core switch to clear it's ARP cache, but this is far from perfect or desirable. Reproduction We now have a test machine that we can force into the slow state at will. It is connected to a switch with ports set up for each of our vlans. We make the machine slow by connecting to different vlans, and after a new connection or two it will be slow. It's also worth noting in this section that this has happened before at the start of prior terms, but in the past the problem has gone away on it's own after a few days. It solved itself before we had a chance to do much diagnostic work... hence why we've allowed it to drag so long into the term this time 'round; the expectation was this would be a short-lived situation. Other Factors It's worth mentioning that we have had about half a dozen switches just outright fail over the last year. These are mainly 2003/2004-era 3Coms (mostly 4200's) that were all put in at about the same time. They should still be covered under warranty, buy HP has made getting service somewhat difficult. Mostly in power supplies that have failed, but in a couple cases we have used a power supply from a switch with a failed mainboard to bring a switch with a failed power supply back to life. We do have UPS devices on all but three of four switches now, but that was not the case when I started two and a half years ago. Severe budget constraints (we were on the Dept. of Ed's financially challenged institutions list a couple years back) have forced me to look to the likes of Netgear and TrendNet for replacements, but so far these low-end models seem to be holding their own. It's also worth mentioning that the big change on our network this summer was migrating from a single cross-campus wireless SSID to the zoned approach mentioned earlier. I don't think this is the source of the issue, as like I've said: we've seen this before. However, it's possible this is exacerbating the issue, and may be much of the reason it's been so hard to isolate. Diagnosis At first it seemed clear to us, given the timing and persistent nature of the problem, that the source of the issue was an infected (or malicious) student machine doing ARP cache poisoning. However, repeated attempts to isolate the source have failed. Those attempts include numerous wireshark packet traces, and even taking entire buildings offline for brief periods. We have not been able even to find a smoking gun bad ARP entry. My current best guess is an overloaded or failing core switch, but I'm not sure on how to test for this, and the cost of replacing it blindly is steep. Again, any ideas appreciated.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Setting up a local AI server - easy with Solaris 11

    - by Stefan Hinker
    Many things are new in Solaris 11, Autoinstall is one of them.  If, like me, you've known Jumpstart for the last 2 centuries or so, you'll have to start from scratch.  Well, almost, as the concepts are similar, and it's not all that difficult.  Just new. I wanted to have an AI server that I could use for demo purposes, on the train if need be.  That answers the question of hardware requirements: portable.  But let's start at the beginning. First, you need an OS image, of course.  In the new world of Solaris 11, it is now called a repository.  The original can be downloaded from the Solaris 11 page at Oracle.   What you want is the "Oracle Solaris 11 11/11 Repository Image", which comes in two parts that can be combined using cat.  MD5 checksums for these (and all other downloads from that page) are available closer to the top of the page. With that, building the repository is quick and simple: # zfs create -o mountpoint=/export/repo rpool/ai/repo # zfs create rpool/ai/repo/s11 # mount -o ro -F hsfs /tmp/sol-11-1111-repo-full.iso /mnt # rsync -aP /mnt/repo /export/repo/s11 # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@fcs # pkgrepo info -s /export/repo/sol11/repo PUBLISHER PACKAGES STATUS UPDATED solaris 4292 online 2012-03-12T20:47:15.378639Z That's all there's to it.  Let's make a snapshot, just to be on the safe side.  You never know when one will come in handy.  To use this repository, you could just add it as a file-based publisher: # pkg set-publisher -g file:///export/repo/sol11/repo solaris In case I'd want to access this repository through a (virtual) network, i'll now quickly activate the repository-service: # svccfg -s application/pkg/server \ setprop pkg/inst_root=/export/repo/sol11/repo # svccfg -s application/pkg/server setprop pkg/readonly=true # svcadm refresh application/pkg/server # svcadm enable application/pkg/server That's all you need - now point your browser to http://localhost/ to view your beautiful repository-server. Step 1 is done.  All of this, by the way, is nicely documented in the README file that's contained in the repository image. Of course, we already have updates to the original release.  You can find them in MOS in the Oracle Solaris 11 Support Repository Updates (SRU) Index.  You can simply add these to your existing repository or create separate repositories for each SRU.  The individual SRUs are self-sufficient and incremental - SRU4 includes all updates from SRU2 and SRU3.  With ZFS, you can also get both: A full repository with all updates and at the same time incremental ones up to each of the updates: # mount -o ro -F hsfs /tmp/sol-11-1111-sru4-05-incr-repo.iso /mnt # pkgrecv -s /mnt/repo -d /export/repo/sol11/repo '*' # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@sru4 # zfs set snapdir=visible rpool/ai/repo/sol11 # svcadm restart svc:/application/pkg/server:default The normal repository is now updated to SRU4.  Thanks to the ZFS snapshots, there is also a valid repository of Solaris 11 11/11 without the update located at /export/repo/sol11/.zfs/snapshot/fcs . If you like, you can also create another repository service for each update, running on a separate port. But now lets continue with the AI server.  Just a little bit of reading in the dokumentation makes it clear that we will need to run a DHCP server for this.  Since I already have one active (for my SunRay installation) and since it's a good idea to have these kinds of services separate anyway, I decided to create this in a Zone.  So, let's create one first: # zfs create -o mountpoint=/export/install rpool/ai/install # zfs create -o mountpoint=/zones rpool/zones # zonecfg -z ai-server zonecfg:ai-server> create create: Using system default template 'SYSdefault' zonecfg:ai-server> set zonepath=/zones/ai-server zonecfg:ai-server> add dataset zonecfg:ai-server:dataset> set name=rpool/ai/install zonecfg:ai-server:dataset> set alias=install zonecfg:ai-server:dataset> end zonecfg:ai-server> commit zonecfg:ai-server> exit # zoneadm -z ai-server install # zoneadm -z ai-server boot ; zlogin -C ai-server Give it a hostname and IP address at first boot, and there's the Zone.  For a publisher for Solaris packages, it will be bound to the "System Publisher" from the Global Zone.  The /export/install filesystem, of course, is intended to be used by the AI server.  Let's configure it now: #zlogin ai-server root@ai-server:~# pkg install install/installadm root@ai-server:~# installadm create-service -n x86-fcs -a i386 \ -s pkg://solaris/install-image/[email protected],5.11-0.175.0.0.0.2.1482 \ -d /export/install/fcs -i 192.168.2.20 -c 3 With that, the core AI server is already done.  What happened here?  First, I installed the AI server software.  IPS makes that nice and easy.  If necessary, it'll also pull in the required DHCP-Server and anything else that might be missing.  Watch out for that DHCP server software.  In Solaris 11, there are two different versions.  There's the one you might know from Solaris 10 and earlier, and then there's a new one from ISC.  The latter is the one we need for AI.  The SMF service names of both are very similar.  The "old" one is "svc:/network/dhcp-server:default". The ISC-server comes with several SMF-services. We at least need "svc:/network/dhcp/server:ipv4".  The command "installadm create-service" creates the installation-service. It's called "x86-fcs", serves the "i386" architecture and gets its boot image from the repository of the system publisher, using version 5.11,5.11-0.175.0.0.0.2.1482, which is Solaris 11 11/11.  (The option "-a i386" in this example is optional, since the installserver itself runs on a x86 machine.) The boot-environment for clients is created in /export/install/fcs and the DHCP-server is configured for 3 IP-addresses starting at 192.168.2.20.  This configuration is stored in a very human readable form in /etc/inet/dhcpd4.conf.  An AI-service for SPARC systems could be created in the very same way, using "-a sparc" as the architecture option. Now we would be ready to register and install the first client.  It would be installed with the default "solaris-large-server" using the publisher "http://pkg.oracle.com/solaris/release" and would query it's configuration interactively at first boot.  This makes it very clear that an AI-server is really only a boot-server.  The true source of packets to install can be different.  Since I don't like these defaults for my demo setup, I did some extra config work for my clients. The configuration of a client is controlled by manifests and profiles.  The manifest controls which packets are installed and how the filesystems are layed out.  In that, it's very much like the old "rules.ok" file in Jumpstart.  Profiles contain additional configuration like root passwords, primary user account, IP addresses, keyboard layout etc.  Hence, profiles are very similar to the old sysid.cfg file. The easiest way to get your hands on a manifest is to ask the AI server we just created to give us it's default one.  Then modify that to our liking and give it back to the installserver to use: root@ai-server:~# mkdir -p /export/install/configs/manifests root@ai-server:~# cd /export/install/configs/manifests root@ai-server:~# installadm export -n x86-fcs -m orig_default \ -o orig_default.xml root@ai-server:~# cp orig_default.xml s11-fcs.small.local.xml root@ai-server:~# vi s11-fcs.small.local.xml root@ai-server:~# more s11-fcs.small.local.xml <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install> <ai_instance name="S11 Small fcs local"> <target> <logical> <zpool name="rpool" is_root="true"> <filesystem name="export" mountpoint="/export"/> <filesystem name="export/home"/> <be name="solaris"/> </zpool> </logical> </target> <software type="IPS"> <destination> <image> <!-- Specify locales to install --> <facet set="false">facet.locale.*</facet> <facet set="true">facet.locale.de</facet> <facet set="true">facet.locale.de_DE</facet> <facet set="true">facet.locale.en</facet> <facet set="true">facet.locale.en_US</facet> </image> </destination> <source> <publisher name="solaris"> <origin name="http://192.168.2.12/"/> </publisher> </source> <!-- By default the latest build available, in the specified IPS repository, is installed. If another build is required, the build number has to be appended to the 'entire' package in the following form: <name>pkg:/[email protected]#</name> --> <software_data action="install"> <name>pkg:/[email protected],5.11-0.175.0.0.0.2.0</name> <name>pkg:/group/system/solaris-small-server</name> </software_data> </software> </ai_instance> </auto_install> root@ai-server:~# installadm create-manifest -n x86-fcs -d \ -f ./s11-fcs.small.local.xml root@ai-server:~# installadm list -m -n x86-fcs Manifest Status Criteria -------- ------ -------- S11 Small fcs local Default None orig_default Inactive None The major points in this new manifest are: Install "solaris-small-server" Install a few locales less than the default.  I'm not that fluid in French or Japanese... Use my own package service as publisher, running on IP address 192.168.2.12 Install the initial release of Solaris 11:  pkg:/[email protected],5.11-0.175.0.0.0.2.0 Using a similar approach, I'll create a default profile interactively and use it as a template for a few customized building blocks, each defining a part of the overall system configuration.  The modular approach makes it easy to configure numerous clients later on: root@ai-server:~# mkdir -p /export/install/configs/profiles root@ai-server:~# cd /export/install/configs/profiles root@ai-server:~# sysconfig create-profile -o default.xml root@ai-server:~# cp default.xml general.xml; cp default.xml mars.xml root@ai-server:~# cp default.xml user.xml root@ai-server:~# vi general.xml mars.xml user.xml root@ai-server:~# more general.xml mars.xml user.xml :::::::::::::: general.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/timezone"> <instance enabled="true" name="default"> <property_group type="application" name="timezone"> <propval type="astring" name="localtime" value="Europe/Berlin"/> </property_group> </instance> </service> <service version="1" type="service" name="system/environment"> <instance enabled="true" name="init"> <property_group type="application" name="environment"> <propval type="astring" name="LANG" value="C"/> </property_group> </instance> </service> <service version="1" type="service" name="system/keymap"> <instance enabled="true" name="default"> <property_group type="system" name="keymap"> <propval type="astring" name="layout" value="US-English"/> </property_group> </instance> </service> <service version="1" type="service" name="system/console-login"> <instance enabled="true" name="default"> <property_group type="application" name="ttymon"> <propval type="astring" name="terminal_type" value="vt100"/> </property_group> </instance> </service> <service version="1" type="service" name="network/physical"> <instance enabled="true" name="default"> <property_group type="application" name="netcfg"> <propval type="astring" name="active_ncp" value="DefaultFixed"/> </property_group> </instance> </service> <service version="1" type="service" name="system/name-service/switch"> <property_group type="application" name="config"> <propval type="astring" name="default" value="files"/> <propval type="astring" name="host" value="files dns"/> <propval type="astring" name="printer" value="user files"/> </property_group> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="system/name-service/cache"> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="network/dns/client"> <property_group type="application" name="config"> <property type="net_address" name="nameserver"> <net_address_list> <value_node value="192.168.2.1"/> </net_address_list> </property> </property_group> <instance enabled="true" name="default"/> </service> </service_bundle> :::::::::::::: mars.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="network/install"> <instance enabled="true" name="default"> <property_group type="application" name="install_ipv4_interface"> <propval type="astring" name="address_type" value="static"/> <propval type="net_address_v4" name="static_address" value="192.168.2.100/24"/> <propval type="astring" name="name" value="net0/v4"/> <propval type="net_address_v4" name="default_route" value="192.168.2.1"/> </property_group> <property_group type="application" name="install_ipv6_interface"> <propval type="astring" name="stateful" value="yes"/> <propval type="astring" name="stateless" value="yes"/> <propval type="astring" name="address_type" value="addrconf"/> <propval type="astring" name="name" value="net0/v6"/> </property_group> </instance> </service> <service version="1" type="service" name="system/identity"> <instance enabled="true" name="node"> <property_group type="application" name="config"> <propval type="astring" name="nodename" value="mars"/> </property_group> </instance> </service> </service_bundle> :::::::::::::: user.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/config-user"> <instance enabled="true" name="default"> <property_group type="application" name="root_account"> <propval type="astring" name="login" value="root"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="role"/> </property_group> <property_group type="application" name="user_account"> <propval type="astring" name="login" value="stefan"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="normal"/> <propval type="astring" name="description" value="Stefan Hinker"/> <propval type="count" name="uid" value="12345"/> <propval type="count" name="gid" value="10"/> <propval type="astring" name="shell" value="/usr/bin/bash"/> <propval type="astring" name="roles" value="root"/> <propval type="astring" name="profiles" value="System Administrator"/> <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/> </property_group> </instance> </service> </service_bundle> root@ai-server:~# installadm create-profile -n x86-fcs -f general.xml root@ai-server:~# installadm create-profile -n x86-fcs -f user.xml root@ai-server:~# installadm create-profile -n x86-fcs -f mars.xml \ -c ipv4=192.168.2.100 root@ai-server:~# installadm list -p Service Name Profile ------------ ------- x86-fcs general.xml mars.xml user.xml root@ai-server:~# installadm list -n x86-fcs -p Profile Criteria ------- -------- general.xml None mars.xml ipv4 = 192.168.2.100 user.xml None Here's the idea behind these files: "general.xml" contains settings valid for all my clients.  Stuff like DNS servers, for example, which in my case will always be the same. "user.xml" only contains user definitions.  That is, a root password and a primary user.Both of these profiles will be valid for all clients (for now). "mars.xml" defines network settings for an individual client.  This profile is associated with an IP-Address.  For this to work, I'll have to tweak the DHCP-settings in the next step: root@ai-server:~# installadm create-client -e 08:00:27:AA:3D:B1 -n x86-fcs root@ai-server:~# vi /etc/inet/dhcpd4.conf root@ai-server:~# tail -5 /etc/inet/dhcpd4.conf host 080027AA3DB1 { hardware ethernet 08:00:27:AA:3D:B1; fixed-address 192.168.2.100; filename "01080027AA3DB1"; } This completes the client preparations.  I manually added the IP-Address for mars to /etc/inet/dhcpd4.conf.  This is needed for the "mars.xml" profile.  Disabling arbitrary DHCP-replies will shut up this DHCP server, making my life in a shared environment a lot more peaceful ;-)Now, I of course want this installation to be completely hands-off.  For this to work, I'll need to modify the grub boot menu for this client slightly.  You can find it in /etc/netboot.  "installadm create-client" will create a new boot menu for every client, identified by the client's MAC address.  The template for this can be found in a subdirectory with the name of the install service, /etc/netboot/x86-fcs in our case.  If you don't want to change this manually for every client, modify that template to your liking instead. root@ai-server:~# cd /etc/netboot root@ai-server:~# cp menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org root@ai-server:~# vi menu.lst.01080027AA3DB1 root@ai-server:~# diff menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org 1,2c1,2 < default=1 < timeout=10 --- > default=0 > timeout=30 root@ai-server:~# more menu.lst.01080027AA3DB1 default=1 timeout=10 min_mem64=0 title Oracle Solaris 11 11/11 Text Installer and command line kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install_media=htt p://$serverIP:5555//export/install/fcs,install_service=x86-fcs,install_svc_addre ss=$serverIP:5555 module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive title Oracle Solaris 11 11/11 Automated Install kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install=true,inst all_media=http://$serverIP:5555//export/install/fcs,install_service=x86-fcs,inst all_svc_address=$serverIP:5555,livemode=text module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive Now just boot the client off the network using PXE-boot.  For my demo purposes, that's a client from VirtualBox, of course.  That's all there's to it.  And despite the fact that this blog entry is a little longer - that wasn't that hard now, was it?

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

< Previous Page | 146 147 148 149 150 151 152  | Next Page >