Search Results

Search found 28325 results on 1133 pages for 'test cases'.

Page 150/1133 | < Previous Page | 146 147 148 149 150 151 152 153 154 155 156 157  | Next Page >

  • The Business case for Big Data

    - by jasonw
    The Business Case for Big Data Part 1 What's the Big Deal Okay, so a new buzz word is emerging. It's gone beyond just a buzzword now, and I think it is going to change the landscape of retail, financial services, healthcare....everything. Let me spend a moment to talk about what i'm going to talk about. Massive amounts of data are being collected every second, more than ever imaginable, and the size of this data is more than can be practically managed by today’s current strategies and technologies. There is a revolution at hand centering on this groundswell of data and it will change how we execute our businesses through greater efficiencies, new revenue discovery and even enable innovation. It is the revolution of Big Data. This is more than just a new buzzword is being tossed around technology circles.This blog series for Big Data will explain this new wave of technology and provide a roadmap for businesses to take advantage of this growing trend. Cases for Big Data There is a growing list of use cases for big data. We naturally think of Marketing as the low hanging fruit. Many projects look to analyze twitter feeds to find new ways to do marketing. I think of a great example from a TED speech that I recently saw on data visualization from Facebook from my masters studies at University of Virginia. We can see when the most likely time for breaks-ups occurs by looking at status changes and updates on users Walls. This is the intersection of Big Data, Analytics and traditional structured data. Ted Video Marketers can use this to sell more stuff. I really like the following piece on looking at twitter feeds to measure mood. The following company was bought by a hedge fund. They could predict how the S&P was going to do within three days at an 85% accuracy. Link to the article Here we see a convergence of predictive analytics and Big Data. So, we'll look at a lot of these business cases and start talking about what this means for the business. It's more than just finding ways to use Hadoop + NoSql and we'll talk about that too. How do I start in Big Data? That's what is coming next post.

    Read the article

  • Play Framework: Error getting sequence nextval using H2 in-memory database

    - by alexhanschke
    As the title suggests, I get an error running Play 2.0.1 Tests using a FakeApplication w/ H2 in memory. I set up a basic unit test: public class ModelTest { @Test public void checkThatIndustriesExist() { running(fakeApplication(inMemoryDatabase()), new Runnable() { public void run() { Industry industry = new Industry(); industry.name = "Some name"; industry.shortname = "some-name"; industry.save(); assertThat(Industry.find.all()).hasSize(1); } }); } Which yields the following exception: [info] test.ModelTest [error] Test test.ModelTest.checkThatIndustriesExist failed: Error getting sequence nextval [error] at com.avaje.ebean.config.dbplatform.SequenceIdGenerator.getMoreIds(SequenceIdGenerator.java:213) [error] at com.avaje.ebean.config.dbplatform.SequenceIdGenerator.loadMoreIds(SequenceIdGenerator.java:163) [error] at com.avaje.ebean.config.dbplatform.SequenceIdGenerator.nextId(SequenceIdGenerator.java:118) [error] at com.avaje.ebeaninternal.server.deploy.BeanDescriptor.nextId(BeanDescriptor.java:1218) [error] at com.avaje.ebeaninternal.server.persist.DefaultPersister.setIdGenValue(DefaultPersister.java:1304) [error] at com.avaje.ebeaninternal.server.persist.DefaultPersister.insert(DefaultPersister.java:403) [error] at com.avaje.ebeaninternal.server.persist.DefaultPersister.saveEnhanced(DefaultPersister.java:345) [error] at com.avaje.ebeaninternal.server.persist.DefaultPersister.saveRecurse(DefaultPersister.java:315) [error] at com.avaje.ebeaninternal.server.persist.DefaultPersister.save(DefaultPersister.java:282) [error] at com.avaje.ebeaninternal.server.core.DefaultServer.save(DefaultServer.java:1577) [error] at com.avaje.ebeaninternal.server.core.DefaultServer.save(DefaultServer.java:1567) [error] at com.avaje.ebean.Ebean.save(Ebean.java:538) [error] at play.db.ebean.Model.save(Model.java:76) [error] at test.ModelTest$1.run(ModelTest.java:24) [error] at play.test.Helpers.running(Helpers.java:277) [error] at test.ModelTest.checkThatIndustriesExist(ModelTest.java:21) [error] ... [error] Caused by: org.h2.jdbc.JdbcSQLException: Syntax Fehler in SQL Befehl "SELECT INDUSTRY_SEQ.NEXTVAL UNION[*] SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL "; erwartet "identifier" [error] Syntax error in SQL statement "SELECT INDUSTRY_SEQ.NEXTVAL UNION[*] SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL UNION SELECT INDUSTRY_SEQ.NEXTVAL "; expected "identifier"; SQL statement: [error] select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval union select industry_seq.nextval [42001-158] [error] at org.h2.message.DbException.getJdbcSQLException(DbException.java:329) [error] at org.h2.message.DbException.get(DbException.java:169) [error] at org.h2.message.DbException.getSyntaxError(DbException.java:194) [error] at org.h2.command.Parser.readColumnIdentifier(Parser.java:2777) [error] at org.h2.command.Parser.readTermObjectDot(Parser.java:2336) [error] at org.h2.command.Parser.readTerm(Parser.java:2453) [error] at org.h2.command.Parser.readFactor(Parser.java:2035) [error] at org.h2.command.Parser.readSum(Parser.java:2022) [error] at org.h2.command.Parser.readConcat(Parser.java:1995) [error] at org.h2.command.Parser.readCondition(Parser.java:1860) [error] at org.h2.command.Parser.readAnd(Parser.java:1841) [error] at org.h2.command.Parser.readExpression(Parser.java:1833) [error] at org.h2.command.Parser.parseSelectSimpleSelectPart(Parser.java:1746) [error] at org.h2.command.Parser.parseSelectSimple(Parser.java:1778) [error] at org.h2.command.Parser.parseSelectSub(Parser.java:1673) [error] at org.h2.command.Parser.parseSelectUnion(Parser.java:1518) [error] at org.h2.command.Parser.parseSelect(Parser.java:1506) [error] at org.h2.command.Parser.parsePrepared(Parser.java:405) [error] at org.h2.command.Parser.parse(Parser.java:279) [error] at org.h2.command.Parser.parse(Parser.java:251) [error] at org.h2.command.Parser.prepareCommand(Parser.java:217) [error] at org.h2.engine.Session.prepareLocal(Session.java:415) [error] at org.h2.engine.Session.prepareCommand(Session.java:364) [error] at org.h2.jdbc.JdbcConnection.prepareCommand(JdbcConnection.java:1119) [error] at org.h2.jdbc.JdbcPreparedStatement.<init>(JdbcPreparedStatement.java:71) [error] at org.h2.jdbc.JdbcConnection.prepareStatement(JdbcConnection.java:267) [error] at com.jolbox.bonecp.ConnectionHandle.prepareStatement(ConnectionHandle.java:820) [error] at com.avaje.ebean.config.dbplatform.SequenceIdGenerator.getMoreIds(SequenceIdGenerator.java:193) [error] ... 80 more My model looks like this: @Entity @Table(name = "industry") public class Industry extends Model { @Id public Long id; public String name; public String shortname; // called in the view to trigger lazy-loading public String getName() { return name; } public static Finder<Long, Industry> find = new Finder<Long, Industry>(Long.class, Industry.class); } ... and finally the relevant part from my initial evolution: create table industry ( id bigint not null, name varchar(255), shortname varchar(255), constraint pk_industry primary key (id) } create sequence industry_seq start with 1000; Everything works fine running on my PostgreSQL DB, and from my point of view the code is not any different from the Play2.0 Computer Database Sample. I am happy for any help - thanks! Regards, Alex

    Read the article

  • The ':' character, hexadecimal value 0x3A, cannot be included in a name

    - by coure06
    I have an xml file that contains its element like <ab:test>Str</ab:test> When i am trying to access it using the code XElement tempElement = doc.Descendants(XName.Get("ab:test")).FirstOrDefault(); Its giving me error System.Web.Services.Protocols.SoapException: Server was unable to process request. --- System.Xml.XmlException: The ':' character, hexadecimal value 0x3A, cannot be included in a name. How shld i access it?

    Read the article

  • About unit testing a function in the zend framework and unit testing in general

    - by sanders
    Hello people, I am diving into the world of unit testing. And i am sort of lost. I learned today that unit testing is testing if a function works. I wanted to test the following function: public function getEventById($id) { return $this->getResource('Event')->getEventById($id); } So i wanted to test this function as follows: public function test_Event_Get_Event_By_Id_Returns_Event_Item() { $p = $this->_model->getEventById(42); $this->assertEquals(42, EventManager_Resource_Event_Item_Interface); $this->assertType('EventManager_Resource_Event_Item_Interface', $p); } But then I got the error: 1) EventTest::test_Event_Get_Event_By_Id_Returns_Event_Item Zend_Db_Table_Exception: No adapter found for EventManager_Resource_Event /home/user/Public/ZendFramework-1.10.1/library/SF/Model/Abstract.php:101 /var/www/nrka2/application/modules/eventManager/models/Event.php:25 But then someone told me that i am currently unit testing and not doing an integration test. So i figured that i have to test the function getEventById on a different way. But I don't understand how. What this function does it just cals a resource and returns the event by id.

    Read the article

  • How to generate .sln/.vcproj using qmake

    - by stas
    Hi! I have main.cpp in c:\test folder and do the following: qmake -project qmake -tp vc test.pro The answer is: WARNING: Unable to generate output for: C:/test//Makefile.Debug [TEMPLATE vcapp] WARNING: Unable to generate output for: C:/test//Makefile.Release [TEMPLATE vcapp] But, I don't need make files. I need .vcproj! Environment: Windows XP Pro SP3, MSVC 7.1 and 8.0. Qt is installed in C:\Qt\2010.02 (LGPL version). Commands are run from Qt Command Prompt. What's wrong with it? How to generate .sln/.vcproj? May I generate them for MSVC 7.1 and 8.0?

    Read the article

  • Using WebView setHttpAuthUsernamePassword?

    - by user246114
    Hi, I'm trying to do basic authentication to view a protected url. I want to access the protected url which looks like this: http://api.test.com/userinfo/vid?=1234 So I do the following with a WebView: mWebView.setHttpAuthUsernamePassword("api.test.com", "", "john", "password123"); mWebView.loadUrl("http://api.test.com/userinfo/vid?=1234"); but the authentication doesn't seem to work, I'm just getting an output error page. Am I using the WebView method correctly here? Thanks

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • PHP - Alternatives to runkit for intercepting method calls

    - by Radu
    I have some very test-unfriendly code (to say the least) that I need to test. Refactoring unfortunately is not an option. I have to test the code as it is, without the possibility of changing it. To do that, I was thinking of intercepting function calls and dynamically change what they do so I can run my tests, as I need some functions and methods to return known values, and I need others that make requests, connect to the database, etc, to stop doing that and return what I need them to return. Is there any way to do this without runkit_method_redefine(), which is preferably not "EXPERIMENTAL" and still maintained? Maybe an alternative to runkit? Maybe a better way? Edit: will use PHPUnit's test doubles and PHP 5.3.2's features for making private methods accessible, if I need that functionality.

    Read the article

  • perl and sed how to combine if and unless in perl

    - by yael
    I have the two perl command perl -pe "s/\b$a\b/$b/g if m/param1 /" test and perl -pe "s/\b$a\b/$b/g unless /^#/" test how to use combine the if m/somthing/ and the unless /something/ for example [root@localhost tmp]# perl -pe "s/\b$a\b/$b/g if m/param1/ unless /^#/" test syntax error at -e line 1, near "m/param1/ unless" but its now work THX

    Read the article

  • Windows Server 2008 R2 + IIS 7.5 + ASP.NET 4.0 = HTTP Error 500.0

    - by Dave
    I am having an impossible time getting asp.net 4.0 to work in any fashion at all. In fact, I completely wiped my server, reinstalled with Server 2008 R2 Standard (running on a VMWare ESXi box, not that it should matter), and cannot even get a test .aspx page to work. Here is exactly what I did: Installed 2008 R2 Standard Activated windows and enabled Remote Desktop Installed the Web Server Role with the necessary role services(common http, asp.net, logging, tracing, management service and FTP) Enabled the management service Installed .Net Framework 4.0 via web executable Added FTP publishing to the default web site Switched default web site application pool to asp.net 4.0 (integrated) Added a 'test.aspx' file to the inetpub\wwwroot folder (contents below) Opened a browser to http://localhost/test.aspx and received a 500.0 error (also below) What am I missing? I haven't touched IIS in a while (3+ years), so it could be something stupid/trvial. Please point it out, call me a noob; my ego can take it. Thanks, Dave test.aspx <% @Page language="C# %> <html> <head> <title>Test.aspx</title> </head> <body> <asp:label runat="server" text="This is an asp.net 4.0 label" /> </body> </html> Error page: Module AspNetInitClrHostFailureModule Notification BeginRequest Handler PageHandlerFactory-Integrated-4.0 Error Code 0x80070002 Requested URL http://localhost:80/test.aspx Physical Path C:\inetpub\wwwroot\test.aspx Logon Method Not yet determined Logon User Not yet determined Trace: And in my trace file I get: 96. view trace Warning -SET_RESPONSE_ERROR_DESCRIPTION ErrorDescription An error message detailing the cause of this specific request failure can be found in the application event log of the web server. Please review this log entry to discover what caused this error to occur. 97. view trace Warning -MODULE_SET_RESPONSE_ERROR_STATUS ModuleName AspNetInitClrHostFailureModule Notification 1 HttpStatus 500 HttpReason Internal Server Error HttpSubStatus 0 ErrorCode 2147942402 ConfigExceptionInfo Notification BEGIN_REQUEST ErrorCode The system cannot find the file specified. (0x80070002) The application error log shows: Log Name: Application Source: Microsoft-Windows-IIS-W3SVC-WP Date: 5/28/2010 2:08:10 PM Event ID: 2299 Task Category: None Level: Error Keywords: Classic User: N/A Computer: win-ltfkdo1dnfp Description: An application has reported as being unhealthy. The worker process will now request a recycle. Reason given: An error message detailing the cause of this specific request failure can be found in the application event log of the web server. Please review this log entry to discover what caused this error to occur. The data is the error. Event Xml: <Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"> <System> <Provider Name="Microsoft-Windows-IIS-W3SVC-WP" Guid="{670080D9-742A-4187-8D16-41143D1290BD}" EventSourceName="W3SVC-WP" /> <EventID Qualifiers="49152">2299</EventID> <Version>0</Version> <Level>2</Level> <Task>0</Task> <Opcode>0</Opcode> <Keywords>0x80000000000000</Keywords> <TimeCreated SystemTime="2010-05-28T21:08:10.000000000Z" /> <EventRecordID>1663</EventRecordID> <Correlation /> <Execution ProcessID="0" ThreadID="0" /> <Channel>Application</Channel> <Computer>win-ltfkdo1dnfp</Computer> <Security /> </System> <EventData> <Data Name="Reason">An error message detailing the cause of this specific request failure can be found in the application event log of the web server. Please review this log entry to discover what caused this error to occur. </Data> <Binary>02000780</Binary> </EventData> </Event>

    Read the article

  • Option Trading: Getting the most out of the event session options

    - by extended_events
    You can control different aspects of how an event session behaves by setting the event session options as part of the CREATE EVENT SESSION DDL. The default settings for the event session options are designed to handle most of the common event collection situations so I generally recommend that you just use the defaults. Like everything in the real world though, there are going to be a handful of “special cases” that require something different. This post focuses on identifying the special cases and the correct use of the options to accommodate those cases. There is a reason it’s called Default The default session options specify a total event buffer size of 4 MB with a 30 second latency. Translating this into human terms; this means that our default behavior is that the system will start processing events from the event buffer when we reach about 1.3 MB of events or after 30 seconds, which ever comes first. Aside: What’s up with the 1.3 MB, I thought you said the buffer was 4 MB?The Extended Events engine takes the total buffer size specified by MAX_MEMORY (4MB by default) and divides it into 3 equally sized buffers. This is done so that a session can be publishing events to one buffer while other buffers are being processed. There are always at least three buffers; how to get more than three is covered later. Using this configuration, the Extended Events engine can “keep up” with most event sessions on standard workloads. Why is this? The fact is that most events are small, really small; on the order of a couple hundred bytes. Even when you start considering events that carry dynamically sized data (eg. binary, text, etc.) or adding actions that collect additional data, the total size of the event is still likely to be pretty small. This means that each buffer can likely hold thousands of events before it has to be processed. When the event buffers are finally processed there is an economy of scale achieved since most targets support bulk processing of the events so they are processed at the buffer level rather than the individual event level. When all this is working together it’s more likely that a full buffer will be processed and put back into the ready queue before the remaining buffers (remember, there are at least three) are full. I know what you’re going to say: “My server is exceptional! My workload is so massive it defies categorization!” OK, maybe you weren’t going to say that exactly, but you were probably thinking it. The point is that there are situations that won’t be covered by the Default, but that’s a good place to start and this post assumes you’ve started there so that you have something to look at in order to determine if you do have a special case that needs different settings. So let’s get to the special cases… What event just fired?! How about now?! Now?! If you believe the commercial adage from Heinz Ketchup (Heinz Slow Good Ketchup ad on You Tube), some things are worth the wait. This is not a belief held by most DBAs, particularly DBAs who are looking for an answer to a troubleshooting question fast. If you’re one of these anxious DBAs, or maybe just a Program Manager doing a demo, then 30 seconds might be longer than you’re comfortable waiting. If you find yourself in this situation then consider changing the MAX_DISPATCH_LATENCY option for your event session. This option will force the event buffers to be processed based on your time schedule. This option only makes sense for the asynchronous targets since those are the ones where we allow events to build up in the event buffer – if you’re using one of the synchronous targets this option isn’t relevant. Avoid forgotten events by increasing your memory Have you ever had one of those days where you keep forgetting things? That can happen in Extended Events too; we call it dropped events. In order to optimizes for server performance and help ensure that the Extended Events doesn’t block the server if to drop events that can’t be published to a buffer because the buffer is full. You can determine if events are being dropped from a session by querying the dm_xe_sessions DMV and looking at the dropped_event_count field. Aside: Should you care if you’re dropping events?Maybe not – think about why you’re collecting data in the first place and whether you’re really going to miss a few dropped events. For example, if you’re collecting query duration stats over thousands of executions of a query it won’t make a huge difference to miss a couple executions. Use your best judgment. If you find that your session is dropping events it means that the event buffer is not large enough to handle the volume of events that are being published. There are two ways to address this problem. First, you could collect fewer events – examine you session to see if you are over collecting. Do you need all the actions you’ve specified? Could you apply a predicate to be more specific about when you fire the event? Assuming the session is defined correctly, the next option is to change the MAX_MEMORY option to a larger number. Picking the right event buffer size might take some trial and error, but a good place to start is with the number of dropped events compared to the number you’ve collected. Aside: There are three different behaviors for dropping events that you specify using the EVENT_RETENTION_MODE option. The default is to allow single event loss and you should stick with this setting since it is the best choice for keeping the impact on server performance low.You’ll be tempted to use the setting to not lose any events (NO_EVENT_LOSS) – resist this urge since it can result in blocking on the server. If you’re worried that you’re losing events you should be increasing your event buffer memory as described in this section. Some events are too big to fail A less common reason for dropping an event is when an event is so large that it can’t fit into the event buffer. Even though most events are going to be small, you might find a condition that occasionally generates a very large event. You can determine if your session is dropping large events by looking at the dm_xe_sessions DMV once again, this time check the largest_event_dropped_size. If this value is larger than the size of your event buffer [remember, the size of your event buffer, by default, is max_memory / 3] then you need a large event buffer. To specify a large event buffer you set the MAX_EVENT_SIZE option to a value large enough to fit the largest event dropped based on data from the DMV. When you set this option the Extended Events engine will create two buffers of this size to accommodate these large events. As an added bonus (no extra charge) the large event buffer will also be used to store normal events in the cases where the normal event buffers are all full and waiting to be processed. (Note: This is just a side-effect, not the intended use. If you’re dropping many normal events then you should increase your normal event buffer size.) Partitioning: moving your events to a sub-division Earlier I alluded to the fact that you can configure your event session to use more than the standard three event buffers – this is called partitioning and is controlled by the MEMORY_PARTITION_MODE option. The result of setting this option is fairly easy to explain, but knowing when to use it is a bit more art than science. First the science… You can configure partitioning in three ways: None, Per NUMA Node & Per CPU. This specifies the location where sets of event buffers are created with fairly obvious implication. There are rules we follow for sub-dividing the total memory (specified by MAX_MEMORY) between all the event buffers that are specific to the mode used: None: 3 buffers (fixed)Node: 3 * number_of_nodesCPU: 2.5 * number_of_cpus Here are some examples of what this means for different Node/CPU counts: Configuration None Node CPU 2 CPUs, 1 Node 3 buffers 3 buffers 5 buffers 6 CPUs, 2 Node 3 buffers 6 buffers 15 buffers 40 CPUs, 5 Nodes 3 buffers 15 buffers 100 buffers   Aside: Buffer size on multi-processor computersAs the number of Nodes or CPUs increases, the size of the event buffer gets smaller because the total memory is sub-divided into more pieces. The defaults will hold up to this for a while since each buffer set is holding events only from the Node or CPU that it is associated with, but at some point the buffers will get too small and you’ll either see events being dropped or you’ll get an error when you create your session because you’re below the minimum buffer size. Increase the MAX_MEMORY setting to an appropriate number for the configuration. The most likely reason to start partitioning is going to be related to performance. If you notice that running an event session is impacting the performance of your server beyond a reasonably expected level [Yes, there is a reasonably expected level of work required to collect events.] then partitioning might be an answer. Before you partition you might want to check a few other things: Is your event retention set to NO_EVENT_LOSS and causing blocking? (I told you not to do this.) Consider changing your event loss mode or increasing memory. Are you over collecting and causing more work than necessary? Consider adding predicates to events or removing unnecessary events and actions from your session. Are you writing the file target to the same slow disk that you use for TempDB and your other high activity databases? <kidding> <not really> It’s always worth considering the end to end picture – if you’re writing events to a file you can be impacted by I/O, network; all the usual stuff. Assuming you’ve ruled out the obvious (and not so obvious) issues, there are performance conditions that will be addressed by partitioning. For example, it’s possible to have a successful event session (eg. no dropped events) but still see a performance impact because you have many CPUs all attempting to write to the same free buffer and having to wait in line to finish their work. This is a case where partitioning would relieve the contention between the different CPUs and likely reduce the performance impact cause by the event session. There is no DMV you can check to find these conditions – sorry – that’s where the art comes in. This is  largely a matter of experimentation. On the bright side you probably won’t need to to worry about this level of detail all that often. The performance impact of Extended Events is significantly lower than what you may be used to with SQL Trace. You will likely only care about the impact if you are trying to set up a long running event session that will be part of your everyday workload – sessions used for short term troubleshooting will likely fall into the “reasonably expected impact” category. Hey buddy – I think you forgot something OK, there are two options I didn’t cover: STARTUP_STATE & TRACK_CAUSALITY. If you want your event sessions to start automatically when the server starts, set the STARTUP_STATE option to ON. (Now there is only one option I didn’t cover.) I’m going to leave causality for another post since it’s not really related to session behavior, it’s more about event analysis. - Mike Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Advantages of SQL Backup Pro

    - by Grant Fritchey
    Getting backups of your databases in place is a fundamental issue for protection of the business. Yes, I said business, not data, not databases, but business. Because of a lack of good, tested, backups, companies have gone completely out of business or suffered traumatic financial loss. That’s just a simple fact (outlined with a few examples here). So you want to get backups right. That’s a big part of why we make Red Gate SQL Backup Pro work the way it does. Yes, you could just use native backups, but you’ll be missing a few advantages that we provide over and above what you get out of the box from Microsoft. Let’s talk about them. Guidance If you’re a hard-core DBA with 20+ years of experience on every version of SQL Server and several other data platforms besides, you may already know what you need in order to get a set of tested backups in place. But, if you’re not, maybe a little help would be a good thing. To set up backups for your servers, we supply a wizard that will step you through the entire process. It will also act to guide you down good paths. For example, if your databases are in Full Recovery, you should set up transaction log backups to run on a regular basis. When you choose a transaction log backup from the Backup Type you’ll see that only those databases that are in Full Recovery will be listed: This makes it very easy to be sure you have a log backup set up for all the databases you should and none of the databases where you won’t be able to. There are other examples of guidance throughout the product. If you have the responsibility of managing backups but very little knowledge or time, we can help you out. Throughout the software you’ll notice little green question marks. You can see two in the screen above and more in each of the screens in other topics below this one. Clicking on these will open a window with additional information about the topic in question which should help to guide you through some of the tougher decisions you may have to make while setting up your backup jobs. Here’s an example: Backup Copies As a part of the wizard you can choose to make a copy of your backup on your network. This process runs as part of the Red Gate SQL Backup engine. It will copy your backup, after completing the backup so it doesn’t cause any additional blocking or resource use within the backup process, to the network location you define. Creating a copy acts as a mechanism of protection for your backups. You can then backup that copy or do other things with it, all without affecting the original backup file. This requires either an additional backup or additional scripting to get it done within the native Microsoft backup engine. Offsite Storage Red Gate offers you the ability to immediately copy your backup to the cloud as a further, off-site, protection of your backups. It’s a service we provide and expose through the Backup wizard. Your backup will complete first, just like with the network backup copy, then an asynchronous process will copy that backup to cloud storage. Again, this is built right into the wizard or even the command line calls to SQL Backup, so it’s part a single process within your system. With native backup you would need to write additional scripts, possibly outside of T-SQL, to make this happen. Before you can use this with your backups you’ll need to do a little setup, but it’s built right into the product to get this done. You’ll be directed to the web site for our hosted storage where you can set up an account. Compression If you have SQL Server 2008 Enterprise, or you’re on SQL Server 2008R2 or greater and you have a Standard or Enterprise license, then you have backup compression. It’s built right in and works well. But, if you need even more compression then you might want to consider Red Gate SQL Backup Pro. We offer four levels of compression within the product. This means you can get a little compression faster, or you can just sacrifice some CPU time and get even more compression. You decide. For just a simple example I backed up AdventureWorks2012 using both methods of compression. The resulting file from native was 53mb. Our file was 33mb. That’s a file that is smaller by 38%, not a small number when we start talking gigabytes. We even provide guidance here to help you determine which level of compression would be right for you and your system: So for this test, if you wanted maximum compression with minimum CPU use you’d probably want to go with Level 2 which gets you almost as much compression as Level 3 but will use fewer resources. And that compression is still better than the native one by 10%. Restore Testing Backups are vital. But, a backup is just a file until you restore it. How do you know that you can restore that backup? Of course, you’ll use CHECKSUM to validate that what was read from disk during the backup process is what gets written to the backup file. You’ll also use VERIFYONLY to check that the backup header and the checksums on the backup file are valid. But, this doesn’t do a complete test of the backup. The only complete test is a restore. So, what you really need is a process that tests your backups. This is something you’ll have to schedule separately from your backups, but we provide a couple of mechanisms to help you out here. First, when you create a backup schedule, all done through our wizard which gives you as much guidance as you get when running backups, you get the option of creating a reminder to create a job to test your restores. You can enable this or disable it as you choose when creating your scheduled backups. Once you’re ready to schedule test restores for your databases, we have a wizard for this as well. After you choose the databases and restores you want to test, all configurable for automation, you get to decide if you’re going to restore to a specified copy or to the original database: If you’re doing your tests on a new server (probably the best choice) you can just overwrite the original database if it’s there. If not, you may want to create a new database each time you test your restores. Another part of validating your backups is ensuring that they can pass consistency checks. So we have DBCC built right into the process. You can even decide how you want DBCC run, which error messages to include, limit or add to the checks being run. With this you could offload some DBCC checks from your production system so that you only run the physical checks on your production box, but run the full check on this backup. That makes backup testing not just a general safety process, but a performance enhancer as well: Finally, assuming the tests pass, you can delete the database, leave it in place, or delete it regardless of the tests passing. All this is automated and scheduled through the SQL Agent job on your servers. Running your databases through this process will ensure that you don’t just have backups, but that you have tested backups. Single Point of Management If you have more than one server to maintain, getting backups setup could be a tedious process. But, with Red Gate SQL Backup Pro you can connect to multiple servers and then manage all your databases and all your servers backups from a single location. You’ll be able to see what is scheduled, what has run successfully and what has failed, all from a single interface without having to connect to different servers. Log Shipping Wizard If you want to set up log shipping as part of a disaster recovery process, it can frequently be a pain to get configured correctly. We supply a wizard that will walk you through every step of the process including setting up alerts so you’ll know should your log shipping fail. Summary You want to get your backups right. As outlined above, Red Gate SQL Backup Pro will absolutely help you there. We supply a number of processes and functionalities above and beyond what you get with SQL Server native. Plus, with our guidance, hints and reminders, you will get your backups set up in a way that protects your business.

    Read the article

  • iPhone StoreKit - invalid product id's

    - by Achim
    I'm trying to test the in App purchase within the sandbox environment. In order to test the code I a) created a In App Purchase Test User account under 'Manage Users' in iTunes Connect b) created some in app purchase products under 'Manage Your In App Purchases'. I used numeric values and alpha-numeric values for the Product ID's. c) Loaded the app onto the iPhone, went to Settings-Store and logged out of the regular store and into the under a) created test account d) set a breakpoint in the (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:(SKProductsResponse *)response callback All the submitted Product ID's are in the response.invalidProductIdentifiers category. When submitting the request I use either the Product ID's used under b) directly or I tried to prefix them with the Bundle ID: NSString *id2 = @"com.super.duper.8"; NSSet *productList = [NSSet setWithObjects:id2, @"8", nil]; SKProductsRequest *request= [[SKProductsRequest alloc] initWithProductIdentifiers:productList]; Am I missing something obvious? Any help is appreciated. Achim

    Read the article

  • Encoding Special Characters For Outlook HTML Email

    - by n0chi
    I have an asp.net / C# page which takes a comment, and then emails that comment. Sometimes when the user enters "&" in the comment, the comment is being truncated. So for example if the comment is "test & test" the email only sends out "test ". I have tried HttpUtility.HtmlEncode - but it looks like the issue is on the outlook side and not on the C# side.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Development process for an embedded project with significant hardware changes

    - by pierr
    I have a good idea about Agile development process but it seems it does not fit well with a embedded project with significant hardware changes. I will describe below what we are currently doing (Ad-hoc way, no defined process yet). The changes are divided into three categories and different processes are used for each of them: complete hardware change example : use a different video codec IP a) Study the new IP b) RTL/FPGA simulation c) Implement the legacy interface - go to b) d) Wait until hardware (tape out) is ready f) Test on the real hardware hardware improvement example : enhance the image display quality by improving the underlying algorithm a) RTL/FPGA simulation b) Wait until hardware and test on the hardware Minor change example : only change hardware register mapping a) Wait until hardware and test on the hardware The worry is it seems we don't have too much control and confidence about software maturity for the hardware changes as the bring-up schedule is always very tight and the customer desired a seamless change when updating to a new version of hardware. How did you manage this kind of hardware change? Did you solve that by a Hardware Abstraction Layer (HAL)? Did you have a automatic test for the HAL layer? How did you test when the hardware platform is not even ready? Do you have well-documented processes for this kind of change?

    Read the article

  • Making Ninject Interceptors work with async methods

    - by captncraig
    I am starting to work with ninject interceptors to wrap some of my async code with various behaviors and am having some trouble getting everything working. Here is an interceptor I am working with: public class MyInterceptor : IInterceptor { public async void Intercept(IInvocation invocation) { try { invocation.Proceed(); //check that method indeed returns Task await (Task) invocation.ReturnValue; RecordSuccess(); } catch (Exception) { RecordError(); invocation.ReturnValue = _defaultValue; throw; } } This appears to run properly in most normal cases. I am not sure if this will do what I expect. Although it appears to return control flow to the caller asynchronously, I am still a bit worried about the possibility that the proxy is unintentionally blocking a thread or something. That aside, I cannot get the exception handling working. For this test case: [Test] public void ExceptionThrown() { try { var interceptor = new MyInterceptor(DefaultValue); var invocation = new Mock<IInvocation>(); invocation.Setup(x => x.Proceed()).Throws<InvalidOperationException>(); interceptor.Intercept(invocation.Object); } catch (Exception e) { } } I can see in the interceptor that the catch block is hit, but the catch block in my test is never hit from the rethrow. I am more confused because there is no proxy or anything here, just pretty simple mocks and objects. I also tried something like Task.Run(() => interceptor.Intercept(invocation.Object)).Wait(); in my test, and still no change. The test passes happily, but the nUnit output does have the exception message. I imagine I am messing something up, and I don't quite understand what is going on as much as I think I do. Is there a better way to intercept an async method? What am I doing wrong with regards to exception handling?

    Read the article

  • In Rails, how to speed up machinist tests?

    - by Bryan Shen
    I'm replacing test fixtures with Machinist. But using Machinist to set up test data is very slow, because whenever a test method is run some new data are made by Machinist and saved to database. Is there any way to cache the data in memory so that using Machinist isn't so slow? Thanks, Bryan

    Read the article

  • Why are ASP.Net MVC2 area controller actions callable without including the area in the url path?

    - by Nathan Ridley
    I've just installed Visual Studio 2010 and have created a new MVC2 project so that I can learn about the changes and updates and have discovered an issue with areas that I'm not sure what to make of. I created a new EMPTY MVC2 project I right clicked the project and, from the context menu, added a new area called "Test" In the new test area, I added a controller called "Data". The code is: public class DataController : Controller { // // GET: /Test/Data/ public ActionResult Index() { Response.Write("Hi"); return new EmptyResult(); } } Now, I compile and call this address: http://localhost/mytest/test/data and get the output: Hi All good. Now I call this: http://localhost/mytest/data and get the same response! I thought routing was supposed to take care of this? Am I overlooking something? Or has the default project setup for MVC2 overlooked something?

    Read the article

  • RCov started analyzing loaded libs (including Rdoc itself) – when using rvm (Ruby Version Manager)

    - by phvalues
    Context rcov 0.9.8 2010-02-28 ruby 1.8.7 (2009-06-12 patchlevel 174) [i686-darwin10.3.0] rvm 0.1.38 by Wayne E. Seguin ([email protected]) [http://rvm.beginrescueend.com/] System Ruby (rvm use system): ruby 1.8.7 (2010-01-10 patchlevel 249) [i686-darwin10] Files The test setup is a 'lib' folder containing a single file which defines a class, the folders 'test' and 'test/sub_test', with 'sub_test' containing the single 'test_example_lib.rb' and a Rakefile like this: require 'rcov/rcovtask' task :default = [:rcov] desc "RCov" Rcov::RcovTask.new do | t | t.test_files = FileList[ 'test/**/test_*.rb' ] end Result #rake (in /Users/stephan/tmp/rcov_example) rm -r coverage Loaded suite /Users/stephan/.rvm/gems/ruby-1.8.7-p174/bin/rcov Started . Finished in 0.000508 seconds. 1 tests, 2 assertions, 0 failures, 0 errors +----------------------------------------------------+-------+-------+--------+ | File | Lines | LOC | COV | +----------------------------------------------------+-------+-------+--------+ |...ms/rcov-0.9.8/lib/rcov/code_coverage_analyzer.rb | 271 | 156 | 5.1% | |...ems/rcov-0.9.8/lib/rcov/differential_analyzer.rb | 116 | 82 | 9.8% | |lib/example_lib.rb | 16 | 11 | 72.7% | +----------------------------------------------------+-------+-------+--------+ |Total | 403 | 249 | 9.6% | +----------------------------------------------------+-------+-------+--------+ 9.6% 3 file(s) 403 Lines 249 LOC Question Why is RCov itself analysed here? I'd expect that (and it doesn't happen when using 'rvm use system'). In fact it seems to be due to me using a Ruby installed via rvm.

    Read the article

  • Slow query with unexpected index scan

    - by zerkms
    Hello I have this query: SELECT * FROM sample INNER JOIN test ON sample.sample_number = test.sample_number INNER JOIN result ON test.test_number = result.test_number WHERE sampled_date BETWEEN '2010-03-17 09:00' AND '2010-03-17 12:00' the biggest table here is RESULT, contains 11.1M records. The left 2 tables about 1M. this query works slowly (more than 10 minutes) and returns about 800 records. executing plan shows clustered index scan (over it's PRIMARY KEY (result.result_number, which actually doesn't take part in query)) over all 11M records. RESULT.TEST_NUMBER is a clustered primary key. if I change 2010-03-17 09:00 to 2010-03-17 10:00 - i get about 40 records. it executes for 300ms. and plan shows index seek (over result.test_number index) if i replace * in SELECT clause to result.test_number (covered with index) - then all become fast in first case too. this points to hdd IO issues, but doesn't clarifies changing plan. so, any ideas? UPDATE: sampled_date is in table sample and covered by index. other fields from this query: test.sample_number is covered by index and result.test_number too. UPDATE 2: obviously than sql server in any reasons don't want to use index. i did a small experiment: i remove INNER JOIN with result, select all test.test_number and after that do SELECT * FROM RESULT WHERE TEST_NUMBER IN (...) this, of course, works fast. but i cannot get what is the difference and why query optimizer choose such inappropriate way to select data in 1st case.

    Read the article

  • firefox: How to enable local javascript to read/write files on my PC?

    - by Nok Imchen
    well, since greasemonkey cant read/write files from local hard disk. I've heard people suggesting Google gears but i've no idea obout gears :( So, what i've decided is to add a script type="text/javascript" src="file:///c:/test.js"/script Now, this test will use FileSystemObject to read/write file. Since, the "file:///c:/test.js" is a javascript file from local hard disk, so it should probable be able to read/write file on my local hard disk. I tried it but firefox prevented the "file:///c:/test.js" script to read/write files from local diak :( What i want to know is: Is there any setting in firefox about:config where we can specify to let a particular script, say from localfile or xyz.com, to have read/write permission on my local disk files??

    Read the article

  • How do I get autotest (ZenTest) to see my namespaced stuff?

    - by Blaine LaFreniere
    Autotest is supposed to map my tests to a class, I believe. When I have class Foo and class FooTest, autotest should see FooTest and say, "Hey, this test corresponds to the unit Foo, so I'll look for changes there and re-run tests when changes occur." And that works, however... When I have Foo::Bar and Foo::BarTest, autotest doesn't seem to make the connection, and whenever I edit Foo::Bar, autotest does not re-run Foo::BarTest Am I doing something wrong? EDIT: File structure might be helpful. Here it is: Module and class files: lib/foo.rb lib/foo/bar.rb lib/foo/baz.rb Test files: test/unit/foo/bar.rb test/unit/baz.rb I would think that autotest is able to make the connection between Foo::Bar and Foo::BarTest, but apparently it doesn't.

    Read the article

  • Option Trading: Getting the most out of the event session options

    - by extended_events
    You can control different aspects of how an event session behaves by setting the event session options as part of the CREATE EVENT SESSION DDL. The default settings for the event session options are designed to handle most of the common event collection situations so I generally recommend that you just use the defaults. Like everything in the real world though, there are going to be a handful of “special cases” that require something different. This post focuses on identifying the special cases and the correct use of the options to accommodate those cases. There is a reason it’s called Default The default session options specify a total event buffer size of 4 MB with a 30 second latency. Translating this into human terms; this means that our default behavior is that the system will start processing events from the event buffer when we reach about 1.3 MB of events or after 30 seconds, which ever comes first. Aside: What’s up with the 1.3 MB, I thought you said the buffer was 4 MB?The Extended Events engine takes the total buffer size specified by MAX_MEMORY (4MB by default) and divides it into 3 equally sized buffers. This is done so that a session can be publishing events to one buffer while other buffers are being processed. There are always at least three buffers; how to get more than three is covered later. Using this configuration, the Extended Events engine can “keep up” with most event sessions on standard workloads. Why is this? The fact is that most events are small, really small; on the order of a couple hundred bytes. Even when you start considering events that carry dynamically sized data (eg. binary, text, etc.) or adding actions that collect additional data, the total size of the event is still likely to be pretty small. This means that each buffer can likely hold thousands of events before it has to be processed. When the event buffers are finally processed there is an economy of scale achieved since most targets support bulk processing of the events so they are processed at the buffer level rather than the individual event level. When all this is working together it’s more likely that a full buffer will be processed and put back into the ready queue before the remaining buffers (remember, there are at least three) are full. I know what you’re going to say: “My server is exceptional! My workload is so massive it defies categorization!” OK, maybe you weren’t going to say that exactly, but you were probably thinking it. The point is that there are situations that won’t be covered by the Default, but that’s a good place to start and this post assumes you’ve started there so that you have something to look at in order to determine if you do have a special case that needs different settings. So let’s get to the special cases… What event just fired?! How about now?! Now?! If you believe the commercial adage from Heinz Ketchup (Heinz Slow Good Ketchup ad on You Tube), some things are worth the wait. This is not a belief held by most DBAs, particularly DBAs who are looking for an answer to a troubleshooting question fast. If you’re one of these anxious DBAs, or maybe just a Program Manager doing a demo, then 30 seconds might be longer than you’re comfortable waiting. If you find yourself in this situation then consider changing the MAX_DISPATCH_LATENCY option for your event session. This option will force the event buffers to be processed based on your time schedule. This option only makes sense for the asynchronous targets since those are the ones where we allow events to build up in the event buffer – if you’re using one of the synchronous targets this option isn’t relevant. Avoid forgotten events by increasing your memory Have you ever had one of those days where you keep forgetting things? That can happen in Extended Events too; we call it dropped events. In order to optimizes for server performance and help ensure that the Extended Events doesn’t block the server if to drop events that can’t be published to a buffer because the buffer is full. You can determine if events are being dropped from a session by querying the dm_xe_sessions DMV and looking at the dropped_event_count field. Aside: Should you care if you’re dropping events?Maybe not – think about why you’re collecting data in the first place and whether you’re really going to miss a few dropped events. For example, if you’re collecting query duration stats over thousands of executions of a query it won’t make a huge difference to miss a couple executions. Use your best judgment. If you find that your session is dropping events it means that the event buffer is not large enough to handle the volume of events that are being published. There are two ways to address this problem. First, you could collect fewer events – examine you session to see if you are over collecting. Do you need all the actions you’ve specified? Could you apply a predicate to be more specific about when you fire the event? Assuming the session is defined correctly, the next option is to change the MAX_MEMORY option to a larger number. Picking the right event buffer size might take some trial and error, but a good place to start is with the number of dropped events compared to the number you’ve collected. Aside: There are three different behaviors for dropping events that you specify using the EVENT_RETENTION_MODE option. The default is to allow single event loss and you should stick with this setting since it is the best choice for keeping the impact on server performance low.You’ll be tempted to use the setting to not lose any events (NO_EVENT_LOSS) – resist this urge since it can result in blocking on the server. If you’re worried that you’re losing events you should be increasing your event buffer memory as described in this section. Some events are too big to fail A less common reason for dropping an event is when an event is so large that it can’t fit into the event buffer. Even though most events are going to be small, you might find a condition that occasionally generates a very large event. You can determine if your session is dropping large events by looking at the dm_xe_sessions DMV once again, this time check the largest_event_dropped_size. If this value is larger than the size of your event buffer [remember, the size of your event buffer, by default, is max_memory / 3] then you need a large event buffer. To specify a large event buffer you set the MAX_EVENT_SIZE option to a value large enough to fit the largest event dropped based on data from the DMV. When you set this option the Extended Events engine will create two buffers of this size to accommodate these large events. As an added bonus (no extra charge) the large event buffer will also be used to store normal events in the cases where the normal event buffers are all full and waiting to be processed. (Note: This is just a side-effect, not the intended use. If you’re dropping many normal events then you should increase your normal event buffer size.) Partitioning: moving your events to a sub-division Earlier I alluded to the fact that you can configure your event session to use more than the standard three event buffers – this is called partitioning and is controlled by the MEMORY_PARTITION_MODE option. The result of setting this option is fairly easy to explain, but knowing when to use it is a bit more art than science. First the science… You can configure partitioning in three ways: None, Per NUMA Node & Per CPU. This specifies the location where sets of event buffers are created with fairly obvious implication. There are rules we follow for sub-dividing the total memory (specified by MAX_MEMORY) between all the event buffers that are specific to the mode used: None: 3 buffers (fixed)Node: 3 * number_of_nodesCPU: 2.5 * number_of_cpus Here are some examples of what this means for different Node/CPU counts: Configuration None Node CPU 2 CPUs, 1 Node 3 buffers 3 buffers 5 buffers 6 CPUs, 2 Node 3 buffers 6 buffers 15 buffers 40 CPUs, 5 Nodes 3 buffers 15 buffers 100 buffers   Aside: Buffer size on multi-processor computersAs the number of Nodes or CPUs increases, the size of the event buffer gets smaller because the total memory is sub-divided into more pieces. The defaults will hold up to this for a while since each buffer set is holding events only from the Node or CPU that it is associated with, but at some point the buffers will get too small and you’ll either see events being dropped or you’ll get an error when you create your session because you’re below the minimum buffer size. Increase the MAX_MEMORY setting to an appropriate number for the configuration. The most likely reason to start partitioning is going to be related to performance. If you notice that running an event session is impacting the performance of your server beyond a reasonably expected level [Yes, there is a reasonably expected level of work required to collect events.] then partitioning might be an answer. Before you partition you might want to check a few other things: Is your event retention set to NO_EVENT_LOSS and causing blocking? (I told you not to do this.) Consider changing your event loss mode or increasing memory. Are you over collecting and causing more work than necessary? Consider adding predicates to events or removing unnecessary events and actions from your session. Are you writing the file target to the same slow disk that you use for TempDB and your other high activity databases? <kidding> <not really> It’s always worth considering the end to end picture – if you’re writing events to a file you can be impacted by I/O, network; all the usual stuff. Assuming you’ve ruled out the obvious (and not so obvious) issues, there are performance conditions that will be addressed by partitioning. For example, it’s possible to have a successful event session (eg. no dropped events) but still see a performance impact because you have many CPUs all attempting to write to the same free buffer and having to wait in line to finish their work. This is a case where partitioning would relieve the contention between the different CPUs and likely reduce the performance impact cause by the event session. There is no DMV you can check to find these conditions – sorry – that’s where the art comes in. This is  largely a matter of experimentation. On the bright side you probably won’t need to to worry about this level of detail all that often. The performance impact of Extended Events is significantly lower than what you may be used to with SQL Trace. You will likely only care about the impact if you are trying to set up a long running event session that will be part of your everyday workload – sessions used for short term troubleshooting will likely fall into the “reasonably expected impact” category. Hey buddy – I think you forgot something OK, there are two options I didn’t cover: STARTUP_STATE & TRACK_CAUSALITY. If you want your event sessions to start automatically when the server starts, set the STARTUP_STATE option to ON. (Now there is only one option I didn’t cover.) I’m going to leave causality for another post since it’s not really related to session behavior, it’s more about event analysis. - Mike Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • SecurityException: Permission Denial requires null

    - by Matroska
    Hi all, I would like to launch the market from a preference screen but when I try to do this I obain a java.lang.SecurityException: Permission Denial: starting Intent { cmp=com.action.test/.ui.activities.Test } from ProcessRecord{44db1300 3697:com.pippo.pluto/10067} (pid=3697, uid=10067) requires null. This is my code: startActivity(new Intent(Intent.ACTION_VIEW,Uri.parse("market://search?q=pname:com.action.test"))); what am I doing wrong? Thanks in advance Tobia

    Read the article

< Previous Page | 146 147 148 149 150 151 152 153 154 155 156 157  | Next Page >