Search Results

Search found 7490 results on 300 pages for 'algorithm analysis'.

Page 151/300 | < Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >

  • How can I rank teams based off of head to head wins/losses

    - by TMP
    I'm trying to write an algorithm (specifically in Ruby) that will rank teams based on their record against each other. If a team A and team B have won the same amount of games against each other, then it goes down to point differentials. Here's an example: A beat B two times B beats C one time A beats D three times C bests D two times D beats C one time B beats A one time Which sort of reduces to A[B] = 2 B[C] = 1 A[D] = 3 C[D] = 2 D[C] = 1 B[A] = 1 Which sort of reduces to A[B] = 1 B[C] = 1 A[D] = 3 C[D] = 1 D[C] = -1 B[A] = -1 Which is about how far I've got I think the results of this specific algorithm would be: A, B, C, D But I'm stuck on how to transition from my nested hash-like structure to the results. My psuedo-code is as follows (I can post my ruby code too if someone wants): For each game(g): hash[g.winner][g.loser] += 1 That leaves hash as the first reduction above hash2 = clone of hash For each key(winner), value(losers hash) in hash: For each key(loser), value(losses against winner): hash2[loser][winner] -= losses Which leaves hash2 as the second reduction Feel free to as me question or edit this to be more clear, I'm not sure of how to put it in a very eloquent way. Thanks!

    Read the article

  • Graduated transition from Green - Yellow - Red

    - by GoldBishop
    I have am having algorithm mental block in designing a way to transition from Green to Red, as smoothly as possible with a, potentially, unknown length of time to transition. For testing purposes, i will be using 300 as my model timespan but the methodology algorithm design needs to be flexible enough to account for larger or even smaller timespans. Figured using RGB would probably be the best to transition with, but open to other color creation types, assuming its native to .Net (VB/C#). Currently i have: t = 300 x = t/2 z = 0 low = Green (0, 255, 0) mid = Yellow (255, 255, 0) high = Red (255, 0, 0) Lastly, sort of an optional piece, is to account for the possibility of the low, mid, and high color's to be flexible as well. I assume that there would need to be a check to make sure that someone isnt putting in low = (255,0,0), mid=(254,0,0), and high=(253,0,0). Outside of this anomaly, which i will handle myself based on the best approach to evaluate a color. Question: What would be the best approach to do the transition from low to mid and then from mid to high? What would be some potential pitfalls of implementing this type of design, if any?

    Read the article

  • Sort algorithms that work on large amount of data

    - by Giorgio
    I am looking for sorting algorithms that can work on a large amount of data, i.e. that can work even when the whole data set cannot be held in main memory at once. The only candidate that I have found up to now is merge sort: you can implement the algorithm in such a way that it scans your data set at each merge without holding all the data in main memory at once. The variation of merge sort I have in mind is described in this article in section Use with tape drives. I think this is a good solution (with complexity O(n x log(n)) but I am curious to know if there are other (possibly faster) sorting algorithms that can work on large data sets that do not fit in main memory. EDIT Here are some more details, as required by the answers: The data needs to be sorted periodically, e.g. once in a month. I do not need to insert a few records and have the data sorted incrementally. My example text file is about 1 GB UTF-8 text, but I wanted to solve the problem in general, even if the file were, say, 20 GB. It is not in a database and, due to other constraints, it cannot be. The data is dumped by others as a text file, I have my own code to read this text file. The format of the data is a text file: new line characters are record separators. One possible improvement I had in mind was to split the file into files that are small enough to be sorted in memory, and finally merge all these files using the algorithm I have described above.

    Read the article

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • How to Detect Sprites in a SpriteSheet?

    - by IAE
    I'm currently writing a Sprite Sheet Unpacker such as Alferds Spritesheet Unpacker. Now, before this is sent to gamedev, this isn't necessarily about games. I would like to know how to detect a sprite within a spriitesheet, or more abstactly, a shape inside of an image. Given this sprite sheet: I want to detect and extract all individual sprites. I've followed the algorithm detailed in Alferd's Blog Post which goes like: Determine predominant color and dub it the BackgroundColor Iterate over each pixel and check ColorAtXY == BackgroundColor If false, we've found a sprite. Keep going right until we find a BackgroundColor again, backtrack one, go down and repeat until a BackgroundColor is reached. Create a box from location to ending location. Repeat this until all sprites are boxed up. Combined overlapping boxes (or within a very short distance) The resulting non-overlapping boxes should contain the sprite. This implementation is fine, especially for small sprite sheets. However, I find the performance too poor for larger sprite sheets and I would like to know what algorithms or techniques can be leveraged to increase the finding of sprites. A second implementation I considered, but have not tested yet, is to find the first pixel, then use a backtracking algorithm to find every connected pixel. This should find a contiguous sprite (breaks down if the sprite is something like an explosion where particles are no longer part of the main sprite). The cool thing is that I can immediately remove a detected sprite from the sprite sheet. Any other suggestions?

    Read the article

  • Handling extremely large numbers in a language which can't?

    - by Mallow
    I'm trying to think about how I would go about doing calculations on extremely large numbers (to infinitum - intergers no floats) if the language construct is incapable of handling numbers larger than a certain value. I am sure I am not the first nor the last to ask this question but the search terms I am using aren't giving me an algorithm to handle those situations. Rather most suggestions offer a language change or variable change, or talk about things that seem irrelevant to my search. So I need a little guideance. I would sketch out an algorithm like this: Determine the max length of the integer variable for the language. If a number is more than half the length of the max length of the variable split it in an array. (give a little play room) Array order [0] = the numbers most to the right [n-max] = numbers most to the left Ex. Num: 29392023 Array[0]:23, Array[1]: 20, array[2]: 39, array[3]:29 Since I established half the length of the variable as the mark off point I can then calculate the ones, tenths, hundredths, etc. Place via the halfway mark so that if a variable max length was 10 digits from 0 to 9999999999 then I know that by halfing that to five digits give me some play room. So if I add or multiply I can have a variable checker function that see that the sixth digit (from the right) of array[0] is the same place as the first digit (from the right) of array[1]. Dividing and subtracting have their own issues which I haven't thought about yet. I would like to know about the best implementations of supporting larger numbers than the program can.

    Read the article

  • Displaying possible movement tiles

    - by Ash Blue
    What's the fastest way to highlight all possible movement tiles for a player on a square grid? Players can only move up, down, left, right. Tiles can cost more than one movement, multiple levels are available to move, and players can be larger than one tile. Think of games like Fire Emblem, Front Mission, and XCOM. My first thought was to recursively search for connecting tiles. This quickly demonstrated many shortcomings when blockers, movement costs, and other features were added into the mix. My second thought was to use an A* pathfinding algorithm to check all tiles presumed valid. Presumed valid tiles would come from an algorithm that generates a diamond of tiles from the player's speed (see example here http://jsfiddle.net/truefreestyle/Suww8/9/). Problem is this seems a little slow and expensive. Is there a faster way? Edit: In Lua for Corona SDK, I integrated the following movement generation controller. I've linked to a Gist here because the solution is around 90 lines of code. https://gist.github.com/ashblue/5546009

    Read the article

  • What would be a good filter to create 'magnetic deformers' from a depth map?

    - by sebf
    In my project, I am creating a system for deforming a highly detailed mesh (clothing) so that it 'fits' a convex mesh. To do this I use depth maps of the item and the 'hull' to determine at what point in world space the deviation occurs and the extent. Simply transforming all occluded vertices to the depths as defined by the 'hull' is fairly effective, and has good performance, but it suffers the problem of not preserving the features of the mesh and requires extensive culling to avoid false-positives. I would like instead to generate from the depth deviation map a set of simple 'deformers' which will 'push'* all vertices of the deformed mesh outwards (in world space). This way, all features of the mesh are preserved and there is no need to have complex heuristics to cull inappropriate vertices. I am not sure how to go about generating this deformer set however. I am imagining something like an algorithm that attempts to match a spherical surface to each patch of contiguous deviations within a certain range, but do not know where to start doing this. Can anyone suggest a suitable filter or algorithm for generating deformers? Or to put it another way 'compressing' a depth map? (*Push because its fitting to a convex 'bulgy' humanoid so transforms are likely to be 'spherical' from the POV of the surface.)

    Read the article

  • Adding tolerance to a point in polygon test

    - by David Gouveia
    I've been using this method which was taken from Game Coding Complete to detect whether a point is inside of a polygon. It works in almost every case, but is failing on a few edge cases, and I can't figure out the reason. For example, given a polygon with vertices at (0,0) (0,100) and (100,100), the algorithm is returning: True for any point strictly inside the polygon False for any of the vertices False for (0, 50) which lies on one of the edges of the polygon True (?) for (50,50) which is also on one of the edges of the polygon I'd actually like to relax the algorithm so that it returns true in all of these cases. In other words, it should return true for points that are strictly inside, for the vertices themselves, and for points on the edges of the polygon. If possible I'd also like to give it enough tolerance so that it always tend towards "true" in face of floating point fluctuations. For example, I have another method, that given a line segment and a point, returns the closest location on the line segment to the given point. Currently, given any point outside the polygon and one of its edges, there are cases where the result is categorized as being inside by the method above, while other points are considered outside. I'd like to give it enough tolerance so that it always returns true in this situation. The way I've currently solved the problem is an hack, which consists of using an external library to inflate the polygon by a few pixels, and performing the tests on the inflated polygon, but I'd really like to replace this with a proper solution.

    Read the article

  • how to properly implement alpha blending in a complex 3d scene

    - by Gajet
    I know this question might sound a bit easy to answer but It's driving me crazy. There are too many possible situations that a good alpha blending mechanism should handle, and for each Algorithm I can think of there is something missing. these are the methods I've though about so far: first of I though about object sorting by depth, this one simply fails because Objects are not simple shapes, they might have curves and might loop inside each other. so I can't always tell which one is closer to camera. then I thought about sorting triangles but this one also might fail, thought I'm not sure how to implement it there is a rare case that might again cause problem, in which two triangle pass through each other. again no one can tell which one is nearer. the next thing was using depth buffer, at least the main reason we have depth buffer is because of the problems with sorting that I mentioned but now we get another problem. Since objects might be transparent, in a single pixel there might be more than one object visible. So for which Object should I store pixel depth? I then thought maybe I can only store the most front Object depth, and using that determine how should I blend next draw calls at that pixel. But again there was a problem, think about 2 semi transparent planes with a solid plane in middle of them. I was going to render the solid plane at the end, one can see the most distant plane. note that I was going to merge every two planes until there is only one color left for that pixel. Obviously I can use sorting methods too because of the same reasons I've explained above. Finally the only thing I imagine being able to work is to render all objects into different render targets and then sort those layers and display the final output. But this time I don't know how can I implement this algorithm.

    Read the article

  • GPU based procedual terrain borders?

    - by OnePie
    I'm working on a game that preferibly should feature a combination of designed and procedually generated terrain where the designer specifies in somewhat detailed terms what type of terrain a given area will have (grasslands, forest etc...) and then a precedual algorithm takes care of the rest. I'm not talking about minecraft style biomoes, but rather the game map for a strategy game. Each 'area' will not take up that much of the screen, and thus be more akin to a tile whose texture is procedually generated. While procedually generating terrain textures on the GPU are not that difficult, the hard part is making the borders between them look good. Currently, the 'tiles' are large enough to be visible (due to memory constraints mainly, we are talking planetary sized textures for a game taking place in space and on a continental ground view with seamless transitions between them) and creating good borders between them with an algorithm that is fast enough to be useful has proven difficult. Sampling the n-surrounding pixels and using the combiened result did not yield very good borders and was fairly slow on the GPU to boot (ca 12ms for me, that is without any lighning or shading and with very simple terrain texture shaders). So are there any practical known methods to solve this problem?

    Read the article

  • Finding the shortest path through a digraph that visits all nodes

    - by Boluc Papuccuoglu
    I am trying to find the shortest possible path that visits every node through a graph (a node may be visited more than once, the solution may pick any node as the starting node.). The graph is directed, meaning that being able to travel from node A to node B does not mean one can travel from node B to node A. All distances between nodes are equal. I was able to code a brute force search that found a path of only 27 nodes when I had 27 nodes and each node had a connection to 2 or 1 other node. However, the actual problem that I am trying to solve consists of 256 nodes, with each node connecting to either 4 or 3 other nodes. The brute force algorithm that solved the 27 node graph can produce a 415 node solution (not optimal) within a few seconds, but using the processing power I have at my disposal takes about 6 hours to arrive at a 402 node solution. What approach should I use to arrive at a solution that I can be certain is the optimal one? For example, use an optimizer algorithm to shorten a non-optimal solution? Or somehow adopt a brute force search that discards paths that are not optimal? EDIT: (Copying a comment to an answer here to better clarify the question) To clarify, I am not saying that there is a Hamiltonian path and I need to find it, I am trying to find the shortest path in the 256 node graph that visits each node AT LEAST once. With the 27 node run, I was able to find a Hamiltonian path, which assured me that it was an optimal solution. I want to find a solution for the 256 node graph which is the shortest.

    Read the article

  • Android 2D terrain scrolling

    - by Nikola Ninkovic
    I want to make infinite 2D terrain based on my algorithm.Then I want to move it along Y axis (to the left) This is how I did it : public class Terrain { Queue<Integer> _bottom; Paint _paint; Bitmap _texture; Point _screen; int _numberOfColumns = 100; int _columnWidth = 20; public Terrain(int screenWidth, int screenHeight, Bitmap texture) { _bottom = new LinkedList<Integer>(); _screen = new Point(screenWidth, screenHeight); _numberOfColumns = screenWidth / 6; _columnWidth = screenWidth / _numberOfColumns; for(int i=0;i<=_numberOfColumns;i++) { // Generate terrain point and put it into _bottom queue } _paint = new Paint(); _paint.setStyle(Paint.Style.FILL); _paint.setShader(new BitmapShader(texture, Shader.TileMode.REPEAT, Shader.TileMode.REPEAT)); } public void update() { _bottom.remove(); // Algorithm calculates next point _bottom.add(nextPoint); } public void draw(Canvas canvas) { Iterator<Integer> i = _bottom.iterator(); int counter = 0; Path path = new Path(); path.moveTo(0, _screen.y); while (i.hasNext()) { path.lineTo(counter, _screen.y-i.next()); counter += _columnWidth; } path.lineTo(_screen.x, _screen.y); path.lineTo(0, _screen.y); canvas.drawPath(path2, _paint); } } The problem is that the game is too 'fast', so I tried with pausing thread with Thread.sleep(50); in run() method of my game thread but then it looks too torn. Well, is there any way to slow down drawing of my terrain ?

    Read the article

  • Game engine lib and editor

    - by luke
    I would like to know the best way/best practice to handle the following situation. Suppose the project you are working on is split in two sub-projects: game engine lib editor gui. Now, you have a method bool Method( const MethodParams &params ) that will be called during game-level initialization. So it is a method belonging to the game engine lib. Now, the parameters of this method, passed as a reference the structure MethodParams can be decided via the editor, in the level design phase. Suppose the structure is the following: enum Enum1 { E1_VAL1, E1_VAL2, }; enum Enum2 { E2_VAL1, E2_VAL2, E2_VAL3, }; struct MethodParams { float value; Enum1 e1; Enum2 e2; // some other member } The editor should present a dialog that will let the user set the MethodParams struct. A text control for the field value. Furthermore, the editor needs to let the user set the fields e1 and e2 using, for example, two combo boxes (a combo box is a window control that has a list of choices). Obviously, every enum should be mapped to a string, so the user can make an informed selection (i have used E1_VAL1 etc.., but normally the enum would be more meaningful). One could even want to map every enum to a string more informative (E1_VAL1 to "Image union algorithm", E1_VAL2 to "Image intersection algorithm" and so on...). The editor will include all the relevant game egine lib files (.h etc...), but this mapping is not automatic and i am confused on how to handle it in a way that, if in future i add E1_VAL3 and E1_VAL4, the code change will be minimal.

    Read the article

  • How to perform game object smoothing in multiplayer games

    - by spaceOwl
    We're developing an infrastructure to support multiplayer games for our game engine. In simple terms, each client (player) engine sends some pieces of data regarding the relevant game objects at a given time interval. On the receiving end, we step the incoming data to current time (to compensate for latency), followed by a smoothing step (which is the subject of this question). I was wondering how smoothing should be performed ? Currently the algorithm is similar to this: Receive incoming state for an object (position, velocity, acceleration, rotation, custom data like visual properties, etc). Calculate a diff between local object position and the position we have after previous prediction steps. If diff doesn't exceed some threshold value, start a smoothing step: Mark the object's CURRENT POSITION and the TARGET POSITION. Linear interpolate between these values for 0.3 seconds. I wonder if this scheme is any good, or if there is any other common implementation or algorithm that should be used? (For example - should i only smooth out the position? or other values, such as speed, etc) any help will be appreciated.

    Read the article

  • Help with design structure choice: Using classes or library of functions

    - by roverred
    So I have GUI Class that will call another class called ImageProcessor that contains a bunch functions that will perform image processing algorithms like edgeDetection, gaussianblur, contourfinding, contour map generations, etc. The GUI passes an image to ImageProcessor, which performs one of those algorithm on it and it returns the image back to the GUI to display. So essentially ImageProcessor is a library of independent image processing functions right now. It is called in the GUI like so Image image = ImageProcessor.EdgeDetection(oldImage); Some of the algorithms procedures require many functions, and some can be done in a single function or even one line. All these functions for the algorithms jam packed into ImageProcessor can be pretty messy, and ImageProcessor doesn't sound it should be a library. So I was thinking about making every algorithm be a class with a shared interface say IAlgorithm. Then I pass the IAlgorithm interface from the GUI to the ImageProcessor. public interface IAlgorithm{ public Image Process(); } public class ImageProcessor{ public Image Process(IAlgorithm TheAlgorithm){ return IAlgorithm.Process(); } } Calling in the GUI like so Image image = ImageProcessor.Process(new EdgeDetection(oldImage)); I think it makes sense in an object point of view, but the problem is I'll end up with some classes that are just one function. What do you think is a better design, or are they both crap and you have a much better idea? Thanks!

    Read the article

  • A* PathFinding Not Consistent

    - by RedShft
    I just started trying to implement a basic A* algorithm in my 2D tile based game. All of the nodes are tiles on the map, represented by a struct. I believe I understand A* on paper, as I've gone through some pseudo code, but I'm running into problems with the actual implementation. I've double and tripled checked my node graph, and it is correct, so I believe the issue to be with my algorithm. This issue is, that with the enemy still, and the player moving around, the path finding function will write "No Path" an astounding amount of times and only every so often write "Path Found". Which seems like its inconsistent. This is the node struct for reference: struct Node { bool walkable; //Whether this node is blocked or open vect2 position; //The tile's position on the map in pixels int xIndex, yIndex; //The index values of the tile in the array Node*[4] connections; //An array of pointers to nodes this current node connects to Node* parent; int gScore; int hScore; int fScore; } Here is the rest: http://pastebin.com/cCHfqKTY This is my first attempt at A* so any help would be greatly appreciated.

    Read the article

  • Handling timeout in network application

    - by user2175831
    How can I handle timeouts in a network application. I'm implementing a provisioning system on a Linux server, the code is huge so I'm going to put the algorithm, it works as like this Read provisioning commands from file Send it to another server using TCP Save the request in hash. Receive the response then if successful response received then remove request from hash if failed response received then retry the message The problem I'm in now is when the program didn't receive the response for a timeout reason then the request will be waiting for a response forever and won't be retried. And please note that I'll be sending hundreds of commands and I have to monitor the timeout commands for all of them. I tried to use timer but that didn't help because I'll end up with so many waiting timers and I'm not sure if this is a good way of doing this. The question is how can I save the message in some data structure and check to remove or retry it later when there is no response from the other end? Please note that I'm willing to change the algorithm to anything you suggest that could deal with the timeouts.

    Read the article

  • How to obtain a random sub-datatable from another data table

    - by developerit
    Introduction In this article, I’ll show how to get a random subset of data from a DataTable. This is useful when you already have queries that are filtered correctly but returns all the rows. Analysis I came across this situation when I wanted to display a random tag cloud. I already had the query to get the keywords ordered by number of clicks and I wanted to created a tag cloud. Tags that are the most popular should have more chance to get picked and should be displayed larger than less popular ones. Implementation In this code snippet, there is everything you need. ' Min size, in pixel for the tag Private Const MIN_FONT_SIZE As Integer = 9 ' Max size, in pixel for the tag Private Const MAX_FONT_SIZE As Integer = 14 ' Basic function that retreives Tags from a DataBase Public Shared Function GetTags() As MediasTagsDataTable ' Simple call to the TableAdapter, to get the Tags ordered by number of clicks Dim dt As MediasTagsDataTable = taMediasTags.GetDataValide ' If the query returned no result, return an empty DataTable If dt Is Nothing OrElse dt.Rows.Count < 1 Then Return New MediasTagsDataTable End If ' Set the font-size of the group of data ' We are dividing our results into sub set, according to their number of clicks ' Example: 10 results -> [0,2] will get font size 9, [3,5] will get font size 10, [6,8] wil get 11, ... ' This is the number of elements in one group Dim groupLenth As Integer = CType(Math.Floor(dt.Rows.Count / (MAX_FONT_SIZE - MIN_FONT_SIZE)), Integer) ' Counter of elements in the same group Dim counter As Integer = 0 ' Counter of groups Dim groupCounter As Integer = 0 ' Loop througt the list For Each row As MediasTagsRow In dt ' Set the font-size in a custom column row.c_FontSize = MIN_FONT_SIZE + groupCounter ' Increment the counter counter += 1 ' If the group counter is less than the counter If groupLenth <= counter Then ' Start a new group counter = 0 groupCounter += 1 End If Next ' Return the new DataTable with font-size Return dt End Function ' Function that generate the random sub set Public Shared Function GetRandomSampleTags(ByVal KeyCount As Integer) As MediasTagsDataTable ' Get the data Dim dt As MediasTagsDataTable = GetTags() ' Create a new DataTable that will contains the random set Dim rep As MediasTagsDataTable = New MediasTagsDataTable ' Count the number of row in the new DataTable Dim count As Integer = 0 ' Random number generator Dim rand As New Random() While count < KeyCount Randomize() ' Pick a random row Dim r As Integer = rand.Next(0, dt.Rows.Count - 1) Dim tmpRow As MediasTagsRow = dt(r) ' Import it into the new DataTable rep.ImportRow(tmpRow) ' Remove it from the old one, to be sure not to pick it again dt.Rows.RemoveAt(r) ' Increment the counter count += 1 End While ' Return the new sub set Return rep End Function Pro’s This method is good because it doesn’t require much work to get it work fast. It is a good concept when you are working with small tables, let says less than 100 records. Con’s If you have more than 100 records, out of memory exception may occur since we are coping and duplicating rows. I would consider using a stored procedure instead.

    Read the article

  • SQL Authority News – Download Microsoft SQL Server 2014 Feature Pack and Microsoft SQL Server Developer’s Edition

    - by Pinal Dave
    Yesterday I attended the SQL Server Community Launch in Bangalore and presented on Performing an effective Presentation. It was a fun presentation and people very well received it. No matter on what subject, I present, I always end up talking about SQL. Here are two of the questions I had received during the event. Q1) I want to install SQL Server on my development server, where can we get it for free or at an economical price (I do not have MSDN)? A1) If you are not going to use your server in a production environment, you can just get SQL Server Developer’s Edition and you can read more about it over here. Here is another favorite question which I keep on receiving it during the event. Q2) I already have SQL Server installed on my machine, what are different feature pack should I install and where can I get them from. A2) Just download and install Microsoft SQL Server 2014 Service Pack. Here is the link for downloading it. The Microsoft SQL Server 2014 Feature Pack is a collection of stand-alone packages which provide additional value for Microsoft SQL Server. It includes tool and components for Microsoft SQL Server 2014 and add-on providers for Microsoft SQL Server 2014. Here is the list of component this product contains: Microsoft SQL Server Backup to Windows Azure Tool Microsoft SQL Server Cloud Adapter Microsoft Kerberos Configuration Manager for Microsoft SQL Server Microsoft SQL Server 2014 Semantic Language Statistics Microsoft SQL Server Data-Tier Application Framework Microsoft SQL Server 2014 Transact-SQL Language Service Microsoft Windows PowerShell Extensions for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Shared Management Objects Microsoft Command Line Utilities 11 for Microsoft SQL Server Microsoft ODBC Driver 11 for Microsoft SQL Server – Windows Microsoft JDBC Driver 4.0 for Microsoft SQL Server Microsoft Drivers 3.0 for PHP for Microsoft SQL Server Microsoft SQL Server 2014 Transact-SQL ScriptDom Microsoft SQL Server 2014 Transact-SQL Compiler Service Microsoft System CLR Types for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Remote Blob Store SQL RBS codeplex samples page SQL Server Remote Blob Store blogs Microsoft SQL Server Service Broker External Activator for Microsoft SQL Server 2014 Microsoft OData Source for Microsoft SQL Server 2014 Microsoft Balanced Data Distributor for Microsoft SQL Server 2014 Microsoft Change Data Capture Designer and Service for Oracle by Attunity for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Master Data Service Add-in for Microsoft Excel Microsoft SQL Server StreamInsight Microsoft Connector for SAP BW for Microsoft SQL Server 2014 Microsoft SQL Server Migration Assistant Microsoft SQL Server 2014 Upgrade Advisor Microsoft OLEDB Provider for DB2 v5.0 for Microsoft SQL Server 2014 Microsoft SQL Server 2014 PowerPivot for Microsoft SharePoint 2013 Microsoft SQL Server 2014 ADOMD.NET Microsoft Analysis Services OLE DB Provider for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Analysis Management Objects Microsoft SQL Server Report Builder for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Reporting Services Add-in for Microsoft SharePoint Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority News, T SQL

    Read the article

  • An XEvent a Day (11 of 31) – Targets Week – Using Multiple Targets to Debug Orphaned Transactions

    - by Jonathan Kehayias
    Yesterday’s blog post Targets Week – etw_classic_sync_target covered the ETW integration that is built into Extended Events and how the etw_classic_sync_target can be used in conjunction with other ETW traces to provide troubleshooting at a level previously not possible with SQL Server. In today’s post we’ll look at how to use multiple targets to simplify analysis of Event collection. Why Multiple Targets? You might ask why you would want to use multiple Targets in an Event Session with Extended...(read more)

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Integrating Data Mining into your BI Solution (Presentation)

    I recently gave a live meeting presentation to the UK User Group on Integrating Data Mining into your BI Solution.  In it I talk about and demo ways of using your data mining models inside Integration Services, Analysis Services and Reporting Services.  This is the first in a series of presentations I will be doing for the UG as I try to get the word out that Data Mining can be for the masses. You can download my deck and my line meeting recording from here.

    Read the article

  • An XEvent a Day (18 of 31) – A Look at Backup Internals and How to Track Backup and Restore Throughput (Part 2)

    - by Jonathan Kehayias
    In yesterday’s blog post A Look at Backup Internals and How to Track Backup and Restore Throughput (Part 1) , we looked at what happens when we Backup a database in SQL Server.  Today, we are going to use the information we captured to perform some analysis of the Backup information in an attempt to find ways to decrease the time it takes to backup a database.  When I began reviewing the data from the Backup in yesterdays post, I realized that I had made a mistake in the process and left...(read more)

    Read the article

  • Deciding which technology to use is a big decision when no technology is an obvious choice

    Deciding which technology to use in a new venture or project is a big decision for any company when no technology is an obvious choice. It is always best to analyze the current requirements of the project, and also evaluate the existing technology climate so that the correct technology based on the situation at the time is selected. When evaluation the requirements of a new project it is best to be open to as many technologies as possible initially so a company can be sure that the right decision gets made. Another important aspect of the technology decision is what can the current network and  hardware environment handle, and what would be needed to be adjusted if a specific technology was selected. For example if the current network operating system is Linux then VB6 would force  a huge change in the current computing environment. However if the current network operation system was windows based then very little change would be needed to allow for VB6 if any change had to be done at all. Finally and most importantly an analysis should be done regarding the current technical employees pertaining to their skills and aspirations. For example if you have a team of Java programmers then forcing them to build something in C# might not be an ideal situation. However having a team of VB.net developers who want to develop something in C# would be a better situation based on this example because they are already failure with the .Net Framework and have a desire to use the new technology. In addition to this analysis the cost associated with building and maintaining the project is also a key factor. If two languages are ideal for a project but one technology will increase the budget or timeline by 50% then it might not be the best choice in that situation. An ideal situation for developing in C# applications would be a project that is built on existing Microsoft technologies. An example of this would be a company who uses Windows 2008 Server as their network operating system, Windows XP Pro as their main operation system, Microsoft SQL Server 2008 as their primary database, and has a team of developers experience in the .net framework. In the above situation Java would be a poor technology decision based on their current computing environment and potential lack of Java development by the company’s developers. It would take the developers longer to develop the application due the fact that they would have to first learn the language and then become comfortable with the language. Although these barriers do exist, it does not mean that it is not due able if the company and developers were committed to the project.

    Read the article

< Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >