Search Results

Search found 11048 results on 442 pages for 'concrete syntax tree'.

Page 151/442 | < Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >

  • Excellent C Tutorials

    - by nebffa
    I've looked high and low for C tutorials that have lots of exercises to do along the way, but in my experience all the guides I've found have mostly explanation with a bit of code pre-written, lacking exercises for you to do. I started learning Python using Learn Python the Hard Way, and for almost all other standard languages there are good sites to learn and grapple with the syntax - for example codecademy.com, programr.com. Is there any site like any of the above for C?

    Read the article

  • Mimicking Network Databases in SQL

    Unlike the hierarchical database model, which created a tree structure in which to store data, the network model formed a generalized 'graph' structure that describes the relationships between the nodes. Nowadays, the relational model is used to solve the problems for which the network model was created, but the old 'network' solutions are still being implemented by programmers, even when they are less effective.

    Read the article

  • Is FFmpeg missing from the official repositories in 14.04?

    - by user254877
    I tried to install ffmpeg in trusty/Ubuntu 14.04 and got the following message: $sudo apt-get install ffmpeg Reading package lists... Done Building dependency tree Reading state information... Done Package ffmpeg is not available, but is referred to by another package. This may mean that the package is missing, has been obsoleted, or is only available from another source E: Package 'ffmpeg' has no installation candidate Why isn't the package available?

    Read the article

  • Understanding the Role of Search Engines

    Have you ever thought of trying to rank your website in the search engines as climbing a mountain, constantly trying to reach the top? I know I have, but this would be an inaccurate depiction. Instead, think of the search engines more as an ever-growing tree, branching off into other markets but always needing a well establish root system to hold it in place. This root system is RELEVANCE.

    Read the article

  • Problem in searching String array [on hold]

    - by user2573607
    I'm working on a bank interface project, where I have to search an array of string when the user types in his username. The array has 10 strings, but only the first string is recognized as a valid username...I'm positive that the syntax of the search technique(Linear Search) is correct, but I cannot seem to find the problem. The code however compiles properly. Any answer will be appreciated, TIA! Aparna

    Read the article

  • Stairway to SQL Dialects Level 3: MySQL

    As part of the LAMP stack, MySQL is incredibly important for providing a reliable and platform-agnostic database platform for web development. This level looks at the syntax of MySQL and how to best port SQL code to a MySQL environment. NEW! The easiest way to deploy .NET codeDeploy ASP.NET applications fast, frequently, and without fuss, using Deployment Manager, the new tool from Red Gate. Try it now.

    Read the article

  • Followup: Python 2.6, 3 abstract base class misunderstanding

    - by Aaron
    I asked a question at Python 2.6, 3 abstract base class misunderstanding. My problem was that python abstract base classes didn't work quite the way I expected them to. There was some discussion in the comments about why I would want to use ABCs at all, and Alex Martelli provided an excellent answer on why my use didn't work and how to accomplish what I wanted. Here I'd like to address why one might want to use ABCs, and show my test code implementation based on Alex's answer. tl;dr: Code after the 16th paragraph. In the discussion on the original post, statements were made along the lines that you don't need ABCs in Python, and that ABCs don't do anything and are therefore not real classes; they're merely interface definitions. An abstract base class is just a tool in your tool box. It's a design tool that's been around for many years, and a programming tool that is explicitly available in many programming languages. It can be implemented manually in languages that don't provide it. An ABC is always a real class, even when it doesn't do anything but define an interface, because specifying the interface is what an ABC does. If that was all an ABC could do, that would be enough reason to have it in your toolbox, but in Python and some other languages they can do more. The basic reason to use an ABC is when you have a number of classes that all do the same thing (have the same interface) but do it differently, and you want to guarantee that that complete interface is implemented in all objects. A user of your classes can rely on the interface being completely implemented in all classes. You can maintain this guarantee manually. Over time you may succeed. Or you might forget something. Before Python had ABCs you could guarantee it semi-manually, by throwing NotImplementedError in all the base class's interface methods; you must implement these methods in derived classes. This is only a partial solution, because you can still instantiate such a base class. A more complete solution is to use ABCs as provided in Python 2.6 and above. Template methods and other wrinkles and patterns are ideas whose implementation can be made easier with full-citizen ABCs. Another idea in the comments was that Python doesn't need ABCs (understood as a class that only defines an interface) because it has multiple inheritance. The implied reference there seems to be Java and its single inheritance. In Java you "get around" single inheritance by inheriting from one or more interfaces. Java uses the word "interface" in two ways. A "Java interface" is a class with method signatures but no implementations. The methods are the interface's "interface" in the more general, non-Java sense of the word. Yes, Python has multiple inheritance, so you don't need Java-like "interfaces" (ABCs) merely to provide sets of interface methods to a class. But that's not the only reason in software development to use ABCs. Most generally, you use an ABC to specify an interface (set of methods) that will likely be implemented differently in different derived classes, yet that all derived classes must have. Additionally, there may be no sensible default implementation for the base class to provide. Finally, even an ABC with almost no interface is still useful. We use something like it when we have multiple except clauses for a try. Many exceptions have exactly the same interface, with only two differences: the exception's string value, and the actual class of the exception. In many exception clauses we use nothing about the exception except its class to decide what to do; catching one type of exception we do one thing, and another except clause catching a different exception does another thing. According to the exception module's doc page, BaseException is not intended to be derived by any user defined exceptions. If ABCs had been a first class Python concept from the beginning, it's easy to imagine BaseException being specified as an ABC. But enough of that. Here's some 2.6 code that demonstrates how to use ABCs, and how to specify a list-like ABC. Examples are run in ipython, which I like much better than the python shell for day to day work; I only wish it was available for python3. Your basic 2.6 ABC: from abc import ABCMeta, abstractmethod class Super(): __metaclass__ = ABCMeta @abstractmethod def method1(self): pass Test it (in ipython, python shell would be similar): In [2]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods method1 Notice the end of the last line, where the TypeError exception tells us that method1 has not been implemented ("abstract methods method1"). That was the method designated as @abstractmethod in the preceding code. Create a subclass that inherits Super, implement method1 in the subclass and you're done. My problem, which caused me to ask the original question, was how to specify an ABC that itself defines a list interface. My naive solution was to make an ABC as above, and in the inheritance parentheses say (list). My assumption was that the class would still be abstract (can't instantiate it), and would be a list. That was wrong; inheriting from list made the class concrete, despite the abstract bits in the class definition. Alex suggested inheriting from collections.MutableSequence, which is abstract (and so doesn't make the class concrete) and list-like. I used collections.Sequence, which is also abstract but has a shorter interface and so was quicker to implement. First, Super derived from Sequence, with nothing extra: from abc import abstractmethod from collections import Sequence class Super(Sequence): pass Test it: In [6]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods __getitem__, __len__ We can't instantiate it. A list-like full-citizen ABC; yea! Again, notice in the last line that TypeError tells us why we can't instantiate it: __getitem__ and __len__ are abstract methods. They come from collections.Sequence. But, I want a bunch of subclasses that all act like immutable lists (which collections.Sequence essentially is), and that have their own implementations of my added interface methods. In particular, I don't want to implement my own list code, Python already did that for me. So first, let's implement the missing Sequence methods, in terms of Python's list type, so that all subclasses act as lists (Sequences). First let's see the signatures of the missing abstract methods: In [12]: help(Sequence.__getitem__) Help on method __getitem__ in module _abcoll: __getitem__(self, index) unbound _abcoll.Sequence method (END) In [14]: help(Sequence.__len__) Help on method __len__ in module _abcoll: __len__(self) unbound _abcoll.Sequence method (END) __getitem__ takes an index, and __len__ takes nothing. And the implementation (so far) is: from abc import abstractmethod from collections import Sequence class Super(Sequence): # Gives us a list member for ABC methods to use. def __init__(self): self._list = [] # Abstract method in Sequence, implemented in terms of list. def __getitem__(self, index): return self._list.__getitem__(index) # Abstract method in Sequence, implemented in terms of list. def __len__(self): return self._list.__len__() # Not required. Makes printing behave like a list. def __repr__(self): return self._list.__repr__() Test it: In [34]: a = Super() In [35]: a Out[35]: [] In [36]: print a [] In [37]: len(a) Out[37]: 0 In [38]: a[0] --------------------------------------------------------------------------- IndexError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() /home/aaron/projects/test/test.py in __getitem__(self, index) 10 # Abstract method in Sequence, implemented in terms of list. 11 def __getitem__(self, index): ---> 12 return self._list.__getitem__(index) 13 14 # Abstract method in Sequence, implemented in terms of list. IndexError: list index out of range Just like a list. It's not abstract (for the moment) because we implemented both of Sequence's abstract methods. Now I want to add my bit of interface, which will be abstract in Super and therefore required to implement in any subclasses. And we'll cut to the chase and add subclasses that inherit from our ABC Super. from abc import abstractmethod from collections import Sequence class Super(Sequence): # Gives us a list member for ABC methods to use. def __init__(self): self._list = [] # Abstract method in Sequence, implemented in terms of list. def __getitem__(self, index): return self._list.__getitem__(index) # Abstract method in Sequence, implemented in terms of list. def __len__(self): return self._list.__len__() # Not required. Makes printing behave like a list. def __repr__(self): return self._list.__repr__() @abstractmethod def method1(): pass class Sub0(Super): pass class Sub1(Super): def __init__(self): self._list = [1, 2, 3] def method1(self): return [x**2 for x in self._list] def method2(self): return [x/2.0 for x in self._list] class Sub2(Super): def __init__(self): self._list = [10, 20, 30, 40] def method1(self): return [x+2 for x in self._list] We've added a new abstract method to Super, method1. This makes Super abstract again. A new class Sub0 which inherits from Super but does not implement method1, so it's also an ABC. Two new classes Sub1 and Sub2, which both inherit from Super. They both implement method1 from Super, so they're not abstract. Both implementations of method1 are different. Sub1 and Sub2 also both initialize themselves differently; in real life they might initialize themselves wildly differently. So you have two subclasses which both "is a" Super (they both implement Super's required interface) although their implementations are different. Also remember that Super, although an ABC, provides four non-abstract methods. So Super provides two things to subclasses: an implementation of collections.Sequence, and an additional abstract interface (the one abstract method) that subclasses must implement. Also, class Sub1 implements an additional method, method2, which is not part of Super's interface. Sub1 "is a" Super, but it also has additional capabilities. Test it: In [52]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods method1 In [53]: a = Sub0() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Sub0 with abstract methods method1 In [54]: a = Sub1() In [55]: a Out[55]: [1, 2, 3] In [56]: b = Sub2() In [57]: b Out[57]: [10, 20, 30, 40] In [58]: print a, b [1, 2, 3] [10, 20, 30, 40] In [59]: a, b Out[59]: ([1, 2, 3], [10, 20, 30, 40]) In [60]: a.method1() Out[60]: [1, 4, 9] In [61]: b.method1() Out[61]: [12, 22, 32, 42] In [62]: a.method2() Out[62]: [0.5, 1.0, 1.5] [63]: a[:2] Out[63]: [1, 2] In [64]: a[0] = 5 --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: 'Sub1' object does not support item assignment Super and Sub0 are abstract and can't be instantiated (lines 52 and 53). Sub1 and Sub2 are concrete and have an immutable Sequence interface (54 through 59). Sub1 and Sub2 are instantiated differently, and their method1 implementations are different (60, 61). Sub1 includes an additional method2, beyond what's required by Super (62). Any concrete Super acts like a list/Sequence (63). A collections.Sequence is immutable (64). Finally, a wart: In [65]: a._list Out[65]: [1, 2, 3] In [66]: a._list = [] In [67]: a Out[67]: [] Super._list is spelled with a single underscore. Double underscore would have protected it from this last bit, but would have broken the implementation of methods in subclasses. Not sure why; I think because double underscore is private, and private means private. So ultimately this whole scheme relies on a gentleman's agreement not to reach in and muck with Super._list directly, as in line 65 above. Would love to know if there's a safer way to do that.

    Read the article

  • SYSLINUX 4.07 EDD 2013-07-25 Copyright (C) 1994-2013 H. Peter Anvin et al [duplicate]

    - by Aniel Arias
    This question already has an answer here: Not booting from USB or CD (SYSLINUX Message) 10 answers this what is happening, i downloaded (ubuntu-gnome-14.04.1-desktop) and (elementaryos-unstable-amd64.20140810) to try out in my laptop and i have use (unetbootin-windows-608) and (Universal-USB-Installer-1.9.5.5) but i get this message every time i try to boot from the usb (SYSLINUX 4.07 EDD 2013-07-25 Copyright (C) 1994-2013 H. Peter Anvin et al) however i tried in an old desktop that i have and it works although the installer gets stuck on most of the time at the part of reading partitions/hard drives so please i really need help with this. note: i did installed os x long time ago and i broke windows installation then fix it following some online tutorials just for FYI thanks please can somebody help to fix this problem, i have been looking on google but haven't found anything in concrete. please help

    Read the article

  • Best practise for Progress Bar in Python's PyGTK

    - by Matthew Walker
    I would like to get feedback on others' opinions of best practice for how to implement a progress bar in Python's PyGTK. The work that the progress bar was to represent was very significant computationally. Therefore, I wanted the work to be done in a separate process (thus giving the operating system the possibility to run it on a different core). I wanted to be able to start the work, and then continue to use the GUI for other tasks while waiting for the results. I have seen many people asking this question indirectly, but I have not seen any concrete expert advice. I hope that by asking this question we will see a community's combined expertise. I have read the FAQ and I hope that "Programmers" is the right place to ask.

    Read the article

  • 15 Oracle customers are 'Winners' at Progressive Mfgs 100 Awards

    - by [email protected]
    This year, 15 Oracle customers will receive awards at the Managing Automation's PM100 Event  for their outstanding accomplishments in a number of supply chain applications innovation categories. The event will be held at the Breakers Hotel in Palm Beach Fl from May 3-6, 2010. Award winners include: Arvin Meritor, Ball Aerospace, US Dept. of Treasury/Engraving, Doosan Infracore, Freescale Semi, Ingersoll-Rand, JDS Uniphase, L&L Products, Masco Builders, Mercury Marine Sanmina-SCI, Siemens Water TEch, US Concrete, VirTex Assy Services. Details of the event and Oracle's sponsorship can be found at: http://www.managingautomation.com/awards/ or contact Stephen Slade at [email protected]      

    Read the article

  • Google I/O 2010 - SEO site advice from the experts

    Google I/O 2010 - SEO site advice from the experts Google I/O 2010 - SEO site advice from the experts Tech Talks Matt Cutts, Greg Grothaus, Evan Roseman A perfect opportunity to get your website reviewed by the experts in the Google Search Quality team. Attendees can get concrete search engine optimization (SEO) feedback on their own sites. We'll also answer real-life questions that affect developers when it comes to optimizing their websites for search. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 308 12 ratings Time: 01:00:38 More in Science & Technology

    Read the article

  • O&rsquo;Reilly E-Book of the Day 15/Aug/2014 - Advanced Quantitative Finance with C++

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/08/15/orsquoreilly-e-book-of-the-day-15aug2014---advanced-quantitative-finance.aspxToday’s half-price book of the Day offer from O’Reilly at http://shop.oreilly.com/product/9781782167228.do?code=MSDEAL is Advanced Quantitative Finance with C++. “This book will introduce you to the key mathematical models used to price financial derivatives, as well as the implementation of main numerical models used to solve them. In particular, equity, currency, interest rates, and credit derivatives are discussed. In the first part of the book, the main mathematical models used in the world of financial derivatives are discussed. Next, the numerical methods used to solve the mathematical models are presented. Finally, both the mathematical models and the numerical methods are used to solve some concrete problems in equity, forex, interest rate, and credit derivatives.”

    Read the article

  • Getting Started with Prism (aka Composite Application Guidance for WPF and Silverlight)

    - by dotneteer
    Overview Prism is a framework from the Microsoft Patterns and Practice team that allow you to create WPF and Silverlight in a modular way. It is especially valuable for larger projects in which a large number of developers can develop in parallel. Prism achieves its goal by supplying several services: · Dependency Injection (DI) and Inversion of control (IoC): By using DI, Prism takes away the responsibility of instantiating and managing the life time of dependency objects from individual components to a container. Prism relies on containers to discover, manage and compose large number of objects. By varying the configuration, the container can also inject mock objects for unit testing. Out of the box, Prism supports Unity and MEF as container although it is possible to use other containers by subclassing the Bootstrapper class. · Modularity and Region: Prism supplies the framework to split application into modules from the application shell. Each module is a library project that contains both UI and code and is responsible to initialize itself when loaded by the shell. Each window can be further divided into regions. A region is a user control with associated model. · Model, view and view-model (MVVM) pattern: Prism promotes the user MVVM. The use of DI container makes it much easier to inject model into view. WPF already has excellent data binding and commanding mechanism. To be productive with Prism, it is important to understand WPF data binding and commanding well. · Event-aggregation: Prism promotes loosely coupled components. Prism discourages for components from different modules to communicate each other, thus leading to dependency. Instead, Prism supplies an event-aggregation mechanism that allows components to publish and subscribe events without knowing each other. Architecture In the following, I will go into a little more detail on the services provided by Prism. Bootstrapper In a typical WPF application, application start-up is controls by App.xaml and its code behind. The main window of the application is typically specified in the App.xaml file. In a Prism application, we start a bootstrapper in the App class and delegate the duty of main window to the bootstrapper. The bootstrapper will start a dependency-injection container so all future object instantiations are managed by the container. Out of box, Prism provides the UnityBootstrapper and MefUnityBootstrapper abstract classes. All application needs to either provide a concrete implementation of one of these bootstrappers, or alternatively, subclass the Bootstrapper class with another DI container. A concrete bootstrapper class must implement the CreateShell method. Its responsibility is to resolve and create the Shell object through the DI container to serve as the main window for the application. The other important method to override is ConfigureModuleCatalog. The bootstrapper can register modules for the application. In a more advance scenario, an application does not have to know all its modules at compile time. Modules can be discovered at run time. Readers to refer to one of the Open Modularity Quick Starts for more information. Modules Once modules are registered with or discovered by Prism, they are instantiated by the DI container and their Initialize method is called. The DI container can inject into a module a region registry that implements IRegionViewRegistry interface. The module, in its Initialize method, can then call RegisterViewWithRegion method of the registry to register its regions. Regions Regions, once registered, are managed by the RegionManager. The shell can then load regions either through the RegionManager.RegionName attached property or dynamically through code. When a view is created by the region manager, the DI container can inject view model and other services into the view. The view then has a reference to the view model through which it can interact with backend services. Service locator Although it is possible to inject services into dependent classes through a DI container, an alternative way is to use the ServiceLocator to retrieve a service on demard. Prism supplies a service locator implementation and it is possible to get an instance of the service by calling: ServiceLocator.Current.GetInstance<IServiceType>() Event aggregator Prism supplies an IEventAggregator interface and implementation that can be injected into any class that needs to communicate with each other in a loosely-coupled fashion. The event aggregator uses a publisher/subscriber model. A class can publishes an event by calling eventAggregator.GetEvent<EventType>().Publish(parameter) to raise an event. Other classes can subscribe the event by calling eventAggregator.GetEvent<EventType>().Subscribe(EventHandler, other options). Getting started The easiest way to get started with Prism is to go through the Prism Hands-On labs and look at the Hello World QuickStart. The Hello World QuickStart shows how bootstrapper, modules and region works. Next, I would recommend you to look at the Stock Trader Reference Implementation. It is a more in depth example that resemble we want to set up an application. Several other QuickStarts cover individual Prism services. Some scenarios, such as dynamic module discovery, are more advanced. Apart from the official prism document, you can get an overview by reading Glen Block’s MSDN Magazine article. I have found the best free training material is from the Boise Code Camp. To be effective with Prism, it is important to understands key concepts of WPF well first, such as the DependencyProperty system, data binding, resource, theme and ICommand. It is also important to know your DI container of choice well. I will try to explorer these subjects in depth in the future. Testimony Recently, I worked on a desktop WPF application using Prism. I had a wonderful experience with Prism. The Prism is flexible enough even in the presence of third party controls such as Telerik WPF controls. We have never encountered any significant obstacle.

    Read the article

  • What functionality does dynamic typing allow?

    - by Justin984
    I've been using python for a few days now and I think I understand the difference between dynamic and static typing. What I don't understand is under what circumstances it would be preferred. It is flexible and readable, but at the expense of more runtime checks and additional required unit testing. Aside from non-functional criteria like flexibility and readability, what reasons are there to choose dynamic typing? What can I do with dynamic typing that isn't possible otherwise? What specific code example can you think of that illustrates a concrete advantage of dynamic typing?

    Read the article

  • Does Ubuntu generally post timely security updates?

    - by Jo Liss
    Concrete issue: The Oneiric nginx package is at version 1.0.5-1, released in July 2011 according to the changelog. The recent memory-disclosure vulnerability (advisory page, CVE-2012-1180, DSA-2434-1) isn't fixed in 1.0.5-1. If I'm not misreading the Ubuntu CVE page, all Ubuntu versions seem to ship a vulnerable nginx. Is this true? If so: I though there was a security team at Canonical that's actively working on issues like this, so I expected to get a security update within a short timeframe (hours or days) through apt-get update. Is this expectation -- that keeping my packages up-to-date is enough to stop my server from having known vulnerabilities -- generally wrong? If so: What should I do to keep it secure? Reading the Ubuntu security notices wouldn't have helped in this case, as the nginx vulnerability was never posted there.

    Read the article

  • Microsoft Generation 4 Datacenter using ITPACs

    - by Eric Nelson
    Microsoft is continuing to make significant investments in Datacenter technology and is focused on solving issues such as long lead times, significant up-front costs and over capacity. Enter the world of modular Datacenters and ITPACs – IT Pre-Assembled Components. In simple terms – air handling and IT units which are pre-assembled (looking somewhat like a container) and then installed on concrete bases. Each unit can hold  between 400 and 2500 servers (which means many more virtual machines depending on your density) Kevin Timmons’, manager of the datacenter operations team, just posted a great post digging into the detail One Small Step for Microsoft’s Cloud, Another Big Step for Sustainability which includes a short video on how we build one of these ITPACs. You might also want to check out this video from the PDC:

    Read the article

  • Central Exception Handler

    - by J-unior
    Recently I've been thinking about a general ExceptionHandler, that I could initialize once in my app context and inject it everywhere. The idea that it will have quite simple interface with just public void handle(Exception ex), and then according to exception type it should decide what to do, maybe just log it, or show an alert message to the user, or maybe kill the whole app. The question is, what is the prettiest way to write such handler without lots of instanceofs? Unfortunately googling gives me only the default exception handler for RuntimeException that was introduced in Java 5. My first idea is to create an enum, that will have Class field for exception type and it will return the appropriate execution point, for example a concrete exception handler that also implements the interface public void handle(Exception ex), but with the required casting already.

    Read the article

  • Any idea for a master thesis in software engineering

    - by medusa
    Hi! I have to choose a thesis for my master degree. Time is limited to about 6 months. Do you have any idea? Any personal thesis that was successful? After searching around for some time now, i see the most famous topics are related to artificial intelligence, but i don't want something like that, because most of it would be just theory and boring. A lot of students present these kind of studies because those are the most difficult. I would prefer something that does not necessary include that mathematical complexity but which is an everyday-life topic, and gives concrete ideas, hypothesis, or solutions to some actual problems. Hope i gave my whole idea: i am looking for something that is different from the majority of what all students do, and able to impress the audience... :) I would really really appreciate any your suggestion, Thank you!

    Read the article

  • What can I do with the twitter API?

    - by aditya menon
    I've tried googling for this but could not find concrete developer examples. When building mundane daily web applications like Classified websites, Job boards or Intranet targeted Document Management Systems, how can the twitter API help me do more things. May I please have some examples on how developers have used twitter to make their apps better? Other than the obvious use for promotional and search engine optimization purpose (yay there's a new job post on our site), what can I do with it? Also, am I late to the party? I hear a lot of upset on the internet about how twitter is apparently slowly betraying developers (I don't understand the specifics), so should I even look at the system or consider alternatives?

    Read the article

  • ASP.NET Web Forms Extensibility: Handler Factories

    - by Ricardo Peres
    An handler factory is the class that implements IHttpHandlerFactory and is responsible for instantiating an handler (IHttpHandler) that will process the current request. This is true for all kinds of web requests, whether they are for ASPX pages, ASMX/SVC web services, ASHX/AXD handlers, or any other kind of file. Also used for restricting access for certain file types, such as Config, Csproj, etc. Handler factories are registered on the global Web.config file, normally located at %WINDIR%\Microsoft.NET\Framework<x64>\vXXXX\Config for a given path and request type (GET, POST, HEAD, etc). This goes on section <httpHandlers>. You would create a custom handler factory for a number of reasons, let me list just two: A centralized place for using dependency injection; Also a centralized place for invoking custom methods or performing some kind of validation on all pages. Let’s see an example using Unity for injecting dependencies into a page, suppose we have this on Global.asax.cs: 1: public class Global : HttpApplication 2: { 3: internal static readonly IUnityContainer Unity = new UnityContainer(); 4: 5: void Application_Start(Object sender, EventArgs e) 6: { 7: Unity.RegisterType<IFunctionality, ConcreteFunctionality>(); 8: } 9: } We instantiate Unity and register a concrete implementation for an interface, this could/should probably go in the Web.config file. Forget about its actual definition, it’s not important. Then, we create a custom handler factory: 1: public class UnityPageHandlerFactory : PageHandlerFactory 2: { 3: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 4: { 5: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 6: 7: //one scenario: inject dependencies 8: Global.Unity.BuildUp(handler.GetType(), handler, String.Empty); 9:  10: return (handler); 11: } 12: } It inherits from PageHandlerFactory, which is .NET’s included factory for building regular ASPX pages. We override the GetHandler method and issue a call to the BuildUp method, which will inject required dependencies, if any exist. An example page with dependencies might be: 1: public class SomePage : Page 2: { 3: [Dependency] 4: public IFunctionality Functionality 5: { 6: get; 7: set; 8: } 9: } Notice the DependencyAttribute, it is used by Unity to identify properties that require dependency injection. When BuildUp is called, the Functionality property (or any other properties with the DependencyAttribute attribute) will receive the concrete implementation associated with it’s type, as registered on Unity. Another example, checking a page for authorization. Let’s define an interface first: 1: public interface IRestricted 2: { 3: Boolean Check(HttpContext ctx); 4: } An a page implementing that interface: 1: public class RestrictedPage : Page, IRestricted 2: { 3: public Boolean Check(HttpContext ctx) 4: { 5: //check the context and return a value 6: return ...; 7: } 8: } For this, we would use an handler factory such as this: 1: public class RestrictedPageHandlerFactory : PageHandlerFactory 2: { 3: private static readonly IHttpHandler forbidden = new UnauthorizedHandler(); 4:  5: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 6: { 7: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 8: 9: if (handler is IRestricted) 10: { 11: if ((handler as IRestricted).Check(context) == false) 12: { 13: return (forbidden); 14: } 15: } 16:  17: return (handler); 18: } 19: } 20:  21: public class UnauthorizedHandler : IHttpHandler 22: { 23: #region IHttpHandler Members 24:  25: public Boolean IsReusable 26: { 27: get { return (true); } 28: } 29:  30: public void ProcessRequest(HttpContext context) 31: { 32: context.Response.StatusCode = (Int32) HttpStatusCode.Unauthorized; 33: context.Response.ContentType = "text/plain"; 34: context.Response.Write(context.Response.Status); 35: context.Response.Flush(); 36: context.Response.Close(); 37: context.ApplicationInstance.CompleteRequest(); 38: } 39:  40: #endregion 41: } The UnauthorizedHandler is an example of an IHttpHandler that merely returns an error code to the client, but does not cause redirection to the login page, it is included merely as an example. One thing we must keep in mind is, there can be only one handler factory registered for a given path/request type (verb) tuple. A typical registration would be: 1: <httpHandlers> 2: <remove path="*.aspx" verb="*"/> 3: <add path="*.aspx" verb="*" type="MyNamespace.MyHandlerFactory, MyAssembly"/> 4: </httpHandlers> First we remove the previous registration for ASPX files, and then we register our own. And that’s it. A very useful mechanism which I use lots of times.

    Read the article

  • What are the best resources for learning about concurrency and multi-threaded applications?

    - by Zepee
    I realised I have a massive knowledge gap when it comes to multi-threaded applications and concurrent programming. I've covered some basics in the past, but most of it seems to be gone from my mind, and it is definitely a field that I want, and need, to be more knowledgeable about. What are the best resources for learning about building concurrent applications? I'm a very practical oriented person, so if said book contains concrete examples the better, but I'm open to suggestions. I personally prefer to work in pseudocode or C++, and a slant toward game development would be best, but not required.

    Read the article

  • What's wrong with JavaScript

    - by ts01
    There is a lot of buzz around Dart recently, often questioning Google motivations and utility of Dart as replacement for JavaScript. I was searching for rationale of creating Dart rather than investing more effort in ECMAScript. In well known leaked mail its author is saying that Javascript has historical baggage that cannot be solved without a clean break. But there is only one concrete example given (apart of performance concerns) of "fundamental language problems", which is an existence of a single Number primitive So, my questions are: How an existence of a single Number primitive can be a "fundamental problem"? Are there other known "fundamental problems" in JavaScript?

    Read the article

  • Scala factory pattern returns unusable abstract type

    - by GGGforce
    Please let me know how to make the following bit of code work as intended. The problem is that the Scala compiler doesn't understand that my factory is returning a concrete class, so my object can't be used later. Can TypeTags or type parameters help? Or do I need to refactor the code some other way? I'm (obviously) new to Scala. trait Animal trait DomesticatedAnimal extends Animal trait Pet extends DomesticatedAnimal {var name: String = _} class Wolf extends Animal class Cow extends DomesticatedAnimal class Dog extends Pet object Animal { def apply(aType: String) = { aType match { case "wolf" => new Wolf case "cow" => new Cow case "dog" => new Dog } } } def name(a: Pet, name: String) { a.name = name println(a +"'s name is: " + a.name) } val d = Animal("dog") name(d, "fred") The last line of code fails because the compiler thinks d is an Animal, not a Dog.

    Read the article

< Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >