Search Results

Search found 13675 results on 547 pages for 'concurrent programming'.

Page 151/547 | < Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >

  • What common programming problems are best solved by using prototypes and closures?

    - by vemv
    As much as I understand both concepts, I can't see how can I take advantage of JavaScript's closures and prototypes aside from using them for creating instantiable and/or encapsulated class-like blocks (which seems more of a workaround than an asset to me) Other JS features such as functions-as-values or logical evaluation of non-booleans are much easier to fall in love with... What common programming problems are best solved by using propotypal inheritance and closures?

    Read the article

  • what is the task of a coach in acm programming contests?

    - by Layla
    In the university that I am working they have decided to participate in the ACM regionals for the first time, they would like to appoint me like a coach. I have never been into that situation before and have not found so much information about it, so what is the real work of a coach in those contests? Sometimes I have found experienced programmers like coaches, but others are just people with no so good programming skills; so what is all about?

    Read the article

  • Is there a quick and practical (hands on) way to learn another programming language?

    - by Tamsin
    Due to rather strange circumstances, I only have until Monday to learn (at least) the basics of PHP and .NET programming. I'm already fairly competent (though there is a lot of room for improvement) in C++ so I feel I have some of the concepts nailed already, but I need to get into the two languages in a bit more depth in a very short time frame. Unfortunately I won't have time to get any books so will need to exclusively use online resources, I'm more of a 'do-er' so any way to test my skills in a practical way would be a huge bonus :-)

    Read the article

  • How to add correct cancellation when downloading a file with the example in the samples of the new P

    - by Mike
    Hello everybody, I have downloaded the last samples of the Parallel Programming team, and I don't succeed in adding correctly the possibility to cancel the download of a file. Here is the code I ended to have: var wreq = (HttpWebRequest)WebRequest.Create(uri); // Fire start event DownloadStarted(this, new DownloadStartedEventArgs(remoteFilePath)); long totalBytes = 0; wreq.DownloadDataInFileAsync(tmpLocalFile, cancellationTokenSource.Token, allowResume, totalBytesAction => { totalBytes = totalBytesAction; }, readBytes => { Log.Debug("Progression : {0} / {1} => {2}%", readBytes, totalBytes, 100 * (double)readBytes / totalBytes); DownloadProgress(this, new DownloadProgressEventArgs(remoteFilePath, readBytes, totalBytes, (int)(100 * readBytes / totalBytes))); }) .ContinueWith( (antecedent ) => { if (antecedent.IsFaulted) Log.Debug(antecedent.Exception.Message); //Fire end event SetEndDownload(antecedent.IsCanceled, antecedent.Exception, tmpLocalFile, 0); }, cancellationTokenSource.Token); I want to fire an end event after the download is finished, hence the ContinueWith. I slightly changed the code of the samples to add the CancellationToken and the 2 delegates to get the size of the file to download, and the progression of the download: return webRequest.GetResponseAsync() .ContinueWith(response => { if (totalBytesAction != null) totalBytesAction(response.Result.ContentLength); response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); }, ct); I had to add the call to the Wait function, because if I don't, the method exits and the end event is fired too early. Here are the modified method extensions (lot of code, apologies :p) public static Task WriteAllBytesAsync(this Stream stream, string filePath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (stream == null) throw new ArgumentNullException("stream"); // Copy from the source stream to the memory stream and return the copied data return stream.CopyStreamToFileAsync(filePath, ct, resumeDownload, progressAction); } public static Task CopyStreamToFileAsync(this Stream source, string destinationPath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destinationPath == null) throw new ArgumentNullException("destinationPath"); // Open the output file for writing var destinationStream = FileAsync.OpenWrite(destinationPath); // Copy the source to the destination stream, then close the output file. return CopyStreamToStreamAsync(source, destinationStream, ct, progressAction).ContinueWith(t => { var e = t.Exception; destinationStream.Close(); if (e != null) throw e; }, ct, TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Current); } public static Task CopyStreamToStreamAsync(this Stream source, Stream destination, CancellationToken ct, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destination == null) throw new ArgumentNullException("destination"); return Task.Factory.Iterate(CopyStreamIterator(source, destination, ct, progressAction)); } private static IEnumerable<Task> CopyStreamIterator(Stream input, Stream output, CancellationToken ct, Action<long> progressAction = null) { // Create two buffers. One will be used for the current read operation and one for the current // write operation. We'll continually swap back and forth between them. byte[][] buffers = new byte[2][] { new byte[BUFFER_SIZE], new byte[BUFFER_SIZE] }; int filledBufferNum = 0; Task writeTask = null; int readBytes = 0; // Until there's no more data to be read or cancellation while (true) { ct.ThrowIfCancellationRequested(); // Read from the input asynchronously var readTask = input.ReadAsync(buffers[filledBufferNum], 0, buffers[filledBufferNum].Length); // If we have no pending write operations, just yield until the read operation has // completed. If we have both a pending read and a pending write, yield until both the read // and the write have completed. yield return writeTask == null ? readTask : Task.Factory.ContinueWhenAll(new[] { readTask, writeTask }, tasks => tasks.PropagateExceptions()); // If no data was read, nothing more to do. if (readTask.Result <= 0) break; readBytes += readTask.Result; if (progressAction != null) progressAction(readBytes); // Otherwise, write the written data out to the file writeTask = output.WriteAsync(buffers[filledBufferNum], 0, readTask.Result); // Swap buffers filledBufferNum ^= 1; } } So basically, at the end of the chain of called methods, I let the CancellationToken throw an OperationCanceledException if a Cancel has been requested. What I hoped was to get IsFaulted == true in the appealing code and to fire the end event with the canceled flags and the correct exception. But what I get is an unhandled exception on the line response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); telling me that I don't catch an AggregateException. I've tried various things, but I don't succeed to make the whole thing work properly. Does anyone of you have played enough with that library and may help me? Thanks in advance Mike

    Read the article

  • How would you go about tackling this problem? [SOLVED in C++]

    - by incrediman
    Intro: EDIT: See solution at the bottom of this question (c++) I have a programming contest coming up in about half a week, and I've been prepping :) I found a bunch of questions from this canadian competition, they're great practice: http://cemc.math.uwaterloo.ca/contests/computing/2009/stage2/day1.pdf I'm looking at problem B ("Dinner"). Any idea where to start? I can't really think of anything besides the naive approach (ie. trying all permutations) which would take too long to be a valid answer. Btw, the language there says c++ and pascal I think, but i don't care what language you use - I mean really all I want is a hint as to the direction I should proceed in, and perhpas a short explanation to go along with it. It feels like I'm missing something obvious... Of course extended speculation is more than welcome, but I just wanted to clarify that I'm not looking for a full solution here :) Short version of the question: You have a binary string N of length 1-100 (in the question they use H's and G's instead of one's and 0's). You must remove all of the digits from it, in the least number of steps possible. In each step you may remove any number of adjacent digits so long as they are the same. That is, in each step you can remove any number of adjacent G's, or any number of adjacent H's, but you can't remove H's and G's in one step. Example: HHHGHHGHH Solution to the example: 1. HHGGHH (remove middle Hs) 2. HHHH (remove middle Gs) 3. Done (remove Hs) -->Would return '3' as the answer. Note that there can also be a limit placed on how large adjacent groups have to be when you remove them. For example it might say '2', and then you can't remove single digits (you'd have to remove pairs or larger groups at a time). Solution I took Mark Harrison's main algorithm, and Paradigm's grouping idea and used them to create the solution below. You can try it out on the official test cases if you want. //B.cpp //include debug messages? #define DEBUG false #include <iostream> #include <stdio.h> #include <vector> using namespace std; #define FOR(i,n) for (int i=0;i<n;i++) #define FROM(i,s,n) for (int i=s;i<n;i++) #define H 'H' #define G 'G' class String{ public: int num; char type; String(){ type=H; num=0; } String(char type){ this->type=type; num=1; } }; //n is the number of bits originally in the line //k is the minimum number of people you can remove at a time //moves is the counter used to determine how many moves we've made so far int n, k, moves; int main(){ /*Input from File*/ scanf("%d %d",&n,&k); char * buffer = new char[200]; scanf("%s",buffer); /*Process input into a vector*/ //the 'line' is a vector of 'String's (essentially contigious groups of identical 'bits') vector<String> line; line.push_back(String()); FOR(i,n){ //if the last String is of the correct type, simply increment its count if (line.back().type==buffer[i]) line.back().num++; //if the last String is of the wrong type but has a 0 count, correct its type and set its count to 1 else if (line.back().num==0){ line.back().type=buffer[i]; line.back().num=1; } //otherwise this is the beginning of a new group, so create the new group at the back with the correct type, and a count of 1 else{ line.push_back(String(buffer[i])); } } /*Geedily remove groups until there are at most two groups left*/ moves=0; int I;//the position of the best group to remove int bestNum;//the size of the newly connected group the removal of group I will create while (line.size()>2){ /*START DEBUG*/ if (DEBUG){ cout<<"\n"<<moves<<"\n----\n"; FOR(i,line.size()) printf("%d %c \n",line[i].num,line[i].type); cout<<"----\n"; } /*END DEBUG*/ I=1; bestNum=-1; FROM(i,1,line.size()-1){ if (line[i-1].num+line[i+1].num>bestNum && line[i].num>=k){ bestNum=line[i-1].num+line[i+1].num; I=i; } } //remove the chosen group, thus merging the two adjacent groups line[I-1].num+=line[I+1].num; line.erase(line.begin()+I);line.erase(line.begin()+I); moves++; } /*START DEBUG*/ if (DEBUG){ cout<<"\n"<<moves<<"\n----\n"; FOR(i,line.size()) printf("%d %c \n",line[i].num,line[i].type); cout<<"----\n"; cout<<"\n\nFinal Answer: "; } /*END DEBUG*/ /*Attempt the removal of the last two groups, and output the final result*/ if (line.size()==2 && line[0].num>=k && line[1].num>=k) cout<<moves+2;//success else if (line.size()==1 && line[0].num>=k) cout<<moves+1;//success else cout<<-1;//not everyone could dine. /*START DEBUG*/ if (DEBUG){ cout<<" moves."; } /*END DEBUG*/ }

    Read the article

  • [C++] A minimalistic smart array (container) class template

    - by legends2k
    I've written a (array) container class template (lets call it smart array) for using it in the BREW platform (which doesn't allow many C++ constructs like STD library, exceptions, etc. It has a very minimal C++ runtime support); while writing this my friend said that something like this already exists in Boost called MultiArray, I tried it but the ARM compiler (RVCT) cries with 100s of errors. I've not seen Boost.MultiArray's source, I've just started learning template only lately; template meta programming interests me a lot, although am not sure if this is strictly one, which can be categorised thus. So I want all my fellow C++ aficionados to review it ~ point out flaws, potential bugs, suggestions, optimisations, etc.; somthing like "you've not written your own Big Three which might lead to...". Possibly any criticism that'll help me improve this class and thereby my C++ skills. smart_array.h #include <vector> using std::vector; template <typename T, size_t N> class smart_array { vector < smart_array<T, N - 1> > vec; public: explicit smart_array(vector <size_t> &dimensions) { assert(N == dimensions.size()); vector <size_t>::iterator it = ++dimensions.begin(); vector <size_t> dimensions_remaining(it, dimensions.end()); smart_array <T, N - 1> temp_smart_array(dimensions_remaining); vec.assign(dimensions[0], temp_smart_array); } explicit smart_array(size_t dimension_1 = 1, ...) { static_assert(N > 0, "Error: smart_array expects 1 or more dimension(s)"); assert(dimension_1 > 1); va_list dim_list; vector <size_t> dimensions_remaining(N - 1); va_start(dim_list, dimension_1); for(size_t i = 0; i < N - 1; ++i) { size_t dimension_n = va_arg(dim_list, size_t); assert(dimension_n > 0); dimensions_remaining[i] = dimension_n; } va_end(dim_list); smart_array <T, N - 1> temp_smart_array(dimensions_remaining); vec.assign(dimension_1, temp_smart_array); } smart_array<T, N - 1>& operator[](size_t index) { assert(index < vec.size() && index >= 0); return vec[index]; } size_t length() const { return vec.size(); } }; template<typename T> class smart_array<T, 1> { vector <T> vec; public: explicit smart_array(vector <size_t> &dimension) : vec(dimension[0]) { assert(dimension[0] > 0); } explicit smart_array(size_t dimension_1 = 1) : vec(dimension_1) { assert(dimension_1 > 0); } T& operator[](size_t index) { assert(index < vec.size() && index >= 0); return vec[index]; } size_t length() { return vec.size(); } }; Sample Usage: #include <iostream> using std::cout; using std::endl; int main() { // testing 1 dimension smart_array <int, 1> x(3); x[0] = 0, x[1] = 1, x[2] = 2; cout << "x.length(): " << x.length() << endl; // testing 2 dimensions smart_array <float, 2> y(2, 3); y[0][0] = y[0][1] = y[0][2] = 0; y[1][0] = y[1][1] = y[1][2] = 1; cout << "y.length(): " << y.length() << endl; cout << "y[0].length(): " << y[0].length() << endl; // testing 3 dimensions smart_array <char, 3> z(2, 4, 5); cout << "z.length(): " << z.length() << endl; cout << "z[0].length(): " << z[0].length() << endl; cout << "z[0][0].length(): " << z[0][0].length() << endl; z[0][0][4] = 'c'; cout << z[0][0][4] << endl; // testing 4 dimensions smart_array <bool, 4> r(2, 3, 4, 5); cout << "z.length(): " << r.length() << endl; cout << "z[0].length(): " << r[0].length() << endl; cout << "z[0][0].length(): " << r[0][0].length() << endl; cout << "z[0][0][0].length(): " << r[0][0][0].length() << endl; // testing copy constructor smart_array <float, 2> copy_y(y); cout << "copy_y.length(): " << copy_y.length() << endl; cout << "copy_x[0].length(): " << copy_y[0].length() << endl; cout << copy_y[0][0] << "\t" << copy_y[1][0] << "\t" << copy_y[0][1] << "\t" << copy_y[1][1] << "\t" << copy_y[0][2] << "\t" << copy_y[1][2] << endl; return 0; }

    Read the article

  • A minimalistic smart array (container) class template

    - by legends2k
    I've written a (array) container class template (lets call it smart array) for using it in the BREW platform (which doesn't allow many C++ constructs like STD library, exceptions, etc. It has a very minimal C++ runtime support); while writing this my friend said that something like this already exists in Boost called MultiArray, I tried it but the ARM compiler (RVCT) cries with 100s of errors. I've not seen Boost.MultiArray's source, I've started learning templates only lately; template meta programming interests me a lot, although am not sure if this is strictly one that can be categorized thus. So I want all my fellow C++ aficionados to review it ~ point out flaws, potential bugs, suggestions, optimizations, etc.; something like "you've not written your own Big Three which might lead to...". Possibly any criticism that will help me improve this class and thereby my C++ skills. Edit: I've used std::vector since it's easily understood, later it will be replaced by a custom written vector class template made to work in the BREW platform. Also C++0x related syntax like static_assert will also be removed in the final code. smart_array.h #include <vector> #include <cassert> #include <cstdarg> using std::vector; template <typename T, size_t N> class smart_array { vector < smart_array<T, N - 1> > vec; public: explicit smart_array(vector <size_t> &dimensions) { assert(N == dimensions.size()); vector <size_t>::iterator it = ++dimensions.begin(); vector <size_t> dimensions_remaining(it, dimensions.end()); smart_array <T, N - 1> temp_smart_array(dimensions_remaining); vec.assign(dimensions[0], temp_smart_array); } explicit smart_array(size_t dimension_1 = 1, ...) { static_assert(N > 0, "Error: smart_array expects 1 or more dimension(s)"); assert(dimension_1 > 1); va_list dim_list; vector <size_t> dimensions_remaining(N - 1); va_start(dim_list, dimension_1); for(size_t i = 0; i < N - 1; ++i) { size_t dimension_n = va_arg(dim_list, size_t); assert(dimension_n > 0); dimensions_remaining[i] = dimension_n; } va_end(dim_list); smart_array <T, N - 1> temp_smart_array(dimensions_remaining); vec.assign(dimension_1, temp_smart_array); } smart_array<T, N - 1>& operator[](size_t index) { assert(index < vec.size() && index >= 0); return vec[index]; } size_t length() const { return vec.size(); } }; template<typename T> class smart_array<T, 1> { vector <T> vec; public: explicit smart_array(vector <size_t> &dimension) : vec(dimension[0]) { assert(dimension[0] > 0); } explicit smart_array(size_t dimension_1 = 1) : vec(dimension_1) { assert(dimension_1 > 0); } T& operator[](size_t index) { assert(index < vec.size() && index >= 0); return vec[index]; } size_t length() { return vec.size(); } }; Sample Usage: #include "smart_array.h" #include <iostream> using std::cout; using std::endl; int main() { // testing 1 dimension smart_array <int, 1> x(3); x[0] = 0, x[1] = 1, x[2] = 2; cout << "x.length(): " << x.length() << endl; // testing 2 dimensions smart_array <float, 2> y(2, 3); y[0][0] = y[0][1] = y[0][2] = 0; y[1][0] = y[1][1] = y[1][2] = 1; cout << "y.length(): " << y.length() << endl; cout << "y[0].length(): " << y[0].length() << endl; // testing 3 dimensions smart_array <char, 3> z(2, 4, 5); cout << "z.length(): " << z.length() << endl; cout << "z[0].length(): " << z[0].length() << endl; cout << "z[0][0].length(): " << z[0][0].length() << endl; z[0][0][4] = 'c'; cout << z[0][0][4] << endl; // testing 4 dimensions smart_array <bool, 4> r(2, 3, 4, 5); cout << "z.length(): " << r.length() << endl; cout << "z[0].length(): " << r[0].length() << endl; cout << "z[0][0].length(): " << r[0][0].length() << endl; cout << "z[0][0][0].length(): " << r[0][0][0].length() << endl; // testing copy constructor smart_array <float, 2> copy_y(y); cout << "copy_y.length(): " << copy_y.length() << endl; cout << "copy_x[0].length(): " << copy_y[0].length() << endl; cout << copy_y[0][0] << "\t" << copy_y[1][0] << "\t" << copy_y[0][1] << "\t" << copy_y[1][1] << "\t" << copy_y[0][2] << "\t" << copy_y[1][2] << endl; return 0; }

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • How do we, as a community, help encourage programming in public schools? (Or state Schools for the U

    - by NoMoreZealots
    PRIMARY MOTIVATION My office gets involved with the "First Robotics" competitions and one thing that lingers year to year is the students typically have no preparation for doing even simple programming as part of the public schools system. While the science classes provide some basic grasp of mechanical and electrical concepts, by in large computer programming gets no coverage from the curriculum. (This my be different in other areas of the country/world.) What makes it worse is there is only a short period of time you have to prepare the student's and help them design the robot. Talking to some professors from local colleges, it's a problem because you can't assume even the most basic understanding for freshman CS majors. Languages like Python, Lua and BASIC are simple enough for at least high school level students, if not younger. SCOPE So how do you get public schools to support a programming, at least to the level of "Try it in BASIC" examples that used to be at the end of a chapter in my Algebra book? At least enough to prepare them for event's such as the FIRST Robotic competitions. Which the primary objectives are to teach problem solving and team work, and to possible foster an interest in Math, Science and Engineering in general. (Not force feed to them, as some people her seem to be implying.) Edit: Why teach kids: (Since 2000 CS enrollment in US colleges has decreased by 70% while college enrollment has increased, this is a PROBLEM.) Saying there is no value in teaching someone programming in Jr./High school because they might think "they know programming." Is like saying there's no value in teaching High school science and physics, because they might decide they "know physics." Leading to abuse like: "I passed a high school physics class, I'm going to develop a Unified Quantum Gravitational Theory." Better Prepared students are better students. Instead it would allows college programs to raise the bar on the entry level courses, allowing students to be weeded out based on their understanding of more advanced material. Plus people who did poorly in that in topic in High school aren't as likely to say "I think there's money in computer's so I'll computer science." Plus if people take it in high school and decide THEN that it's not for them, it's better than them wasting their money to PAY a college to figure that out. The result is that people who take the degree are more likely to succeed and be there for the RIGHT reasons. (i.e. It's what they REALLY want to do. And that's REALLY the key to being good at anything.) Programming is like anything else, the more practice and genuine interest you have the better you get. If you start them later, they get less practice. The earlier give them the opportunity to start, the more practice they will get. All other things equal, the more practice the better the programmer.

    Read the article

  • What are the best programming websites on the web?

    - by lajoo
    Ok,lets have a big list here,write about the best programming websites you have approached and a description of them and they'll be added here.i'll write some websites for now: UVA Online Judge a bunch of useful programming problems are there that you could use to improve your programming. Prgrammers Heven Resources for different programming languages. SourceForge This site Has lots of open source programs available for download,it's a must-go site for a programmer. W3Schools This Websites has all you need to learn about Web-designing Languages like Java Script,Css,PHP,HTML,.... Note:This is not an advertising topic,it's just a guide for programmers to find what they need.

    Read the article

  • What features would you like to see added to your favorite programming language?

    - by George Edison
    Are there any features you would like to see added to a programming language? Maybe... A programming construct An extra operator A built-in function you think would be useful I realize questions like this are frowned upon, but I think this one is a genuine programming question that can be answered and the answers will spawn valuable discussion. (And it's community wiki.) Here is one of mine: How come C++ has no exponent operator, like Python's **?

    Read the article

  • What effects has working in rotating shifts on programming teams?

    - by eKek0
    I work in a bank, and the boss now want's that we, the programming team, work on rotating shifts. He wants that sometimes we work from 7am to 3pm, and sometimes on 11.30am to 7.30pm. He says that we will be more productive working this way, because he has worked with teams just like that and he just knows that. Nobody of the team wants this change, but we don't know how to effectively reject this new rule. I was trying to find some empirical (or almost) evidence about how rotating shifts affects performance of programming teams, and I couldn't. I had read something about rotating shifts, but not exactly about the effect of this on programming teams. Do you know any research about rotating shifts on programming teams? Did you have any experience with this kind of work? EDIT: Other teams of the company, like the database administrators team, the help desk team, the communication team or the network administrators team are already working in rotating shifts, and they don't like this but they do it anyway. I think the boss want that we work on rotating shifts too because of them, but since only we do programming I think the effects of rotating shifts could be, at least, different for us.

    Read the article

  • Is it possible to have an inconsistent branch/tag with SVN due to concurrent commit action?

    - by maraspin
    I'm trying to understand whether subversion has its own mechanisms for regulating concurrent user activities on the trunk (IE a branch/tag action and a commit action happening at the same time) or if it's up to the users to sync between themselves before acting on the trunk. I've been trying to find documentation about this on the net but haven't been able to come up with something, so I appreciate if someone can enlighten me on the topic. Thank you in advance!

    Read the article

  • Should uni provide "correct answer" after programming assignment is due?

    - by Michael Mao
    Hi all: This is my very first subjective question. And I think it is programming related - the assignment is to be written in a programming language. I am not for "getting the full marks out of a subject". I am actually not for a "correct answer", but for a "better solution", so that I can compare, and can improve. I reckon it is good that I practice programming first and check the solution later to pick up the things I've done wrong/bad. Without a "benchmark" to against, this would be much harder. Unfortunately as far as I know, not all programming subjects taught in uni would kindly provide the students with a "correct answer" in the end, after the assignment is due. One bad metaphor for this is like someone asks you a question which they don't have a clear answer themselves and hope to take advantage of your answer as the basis for their answer. Personally, I feel having a assignment solution provided by the academic staff is essential to students. I do appreciate this, and I feel I might not be the only one. I am a very proactive student in uni. I learn more, I practice more, an assignment for me is more like a challenge to achieve "the best solution I can come up with", not something "I have to pass"... The cause of this question is that for the past few days I have crafted 500+ lines of Perl code, for a tiny assignment. I feel pain when I look at my solution(not finished yet) and I feel like I am an idiot doing some crap code. I know there must be a much better solution. And I reckon it is better for the lecturer in this subject to get me one, rather than asking for an answer here, even I would shamelessly add the link to my solution apart from the assignment requirements. I know in SO, there are a lot of tutors/lecturers for programming subjects/courses. I'd like to hear your words on this question.

    Read the article

  • what do i need to do now that I want to take programming hobby to next level ?

    - by hohog
    i've always wanted to make games but did not start actively learning programming by myself until 1st year of university. i kept going throughout university learning new languages, showing off things i had made, while neglecting my major in Biology. Anyways, i've ended up with an Economics degree, with a portfolio of SaaS and web apps i had created so i could eat during my final year. So far, I'm getting a few interviews here and there in web programming positions. When I get a logic pretest, I fail miserably. or job requires comp sci degree. I mean I can easily design and code an entire app which I emphasize through my portfolio.... but i dont know why I am so slow at logic puzzles on prescreening interview... So what should I do now ? get certificates in languages ? go back to school and learn CS ? is it too late to get into windows programming jobs than web programming ?

    Read the article

  • I love programming but i also want to learn hardware. [closed]

    - by user167082
    I like programming so much, i did it since i was 10, and i believe that studying computer science will make a lot of money as well as i love it. However I also want to learn hardware. I don't only want to do programming all the time without knowing the architecture of device that i program. I asked my teacher, and she said that if I get into computer science, i won't learn anything about hardware, is it true?(She graduated from u-dub) In the other hand, my math teacher told me to get into electrical engineering, since it also contain programming. The thing is that i want to emphasize my study to programming while learning some about hardware. What is major that suits me the best? Can i take some hardware courses if I get into computer science major? Thanks a lot.

    Read the article

  • "Introduction to Computer Science and Programming" for a beginner.

    - by Richard
    Hi everyone! Im new here and also new to developing software and programming, and with new I mean 0 experience or schooling for it. As Im currently studying medicine via internet and I use a computer on an average of about 8-9 hours a day, this has lead me to get very interested in programming. I got a link from a fellow Redditor and I got some questions before I dive into this project. http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-00Fall-2008/CourseHome/index.htm Is this too much/hard for a beginner? Is Python™ programming language the way to go or would I be better off learning some other kind of language to begin with? What other ways of learning basic programming by myself is there? Are there any better ways for a complete beginner to start off? Thank you for your time!

    Read the article

  • Spring.Net how does WebApplicationContext.GetObject handle concurrent requests?

    - by Alfamale
    Apologies if I have missed something obvious here but having gone through the documentation, forums and googled for a number of hours, I just can't find a definitive answer to the following questions: How does the WebApplicationContext.GetObject() method handle concurrent requests? Are the requests serialized or executed in parallel? Is there any performance data available to demonstrate how it behaves under load? Thanks in advance for your help, Andrew

    Read the article

  • What things can I teach a group of children about programming in one day?

    - by Rich Bradshaw
    I'm running a day for 30 kids aged 11-18 about computer game programming. They have all opted to do it, but they have no experience at all of programming. My main aim is for them to learn a few things: programming is hard/challenging programming is something they can learn to do being a computer games programmer != playing games all day a little more insight into how games actually work I'd thought of splitting them into two groups, of younger/less experience and older/more experience, then doing slightly different things. I'd considered showing them Scratch, Game Maker, before showing them the basics of Python and getting them to write a simple text based game (perhaps something like, computer picks a random number, you have to guess it in as few guesses as possible, computer says higher/lower for each guess). Does anyone have any ideas of things to do/show them/ways to teach them?

    Read the article

  • Is embedded programming closer to electrical engineering or software development?

    - by Jeremy Heiler
    I am being approached with a job for writing embedded C on micro controllers. At first I would have thought that embedding programming is to low on the software stack for me, but maybe I am thinking about it wrong. Normally I would have shrugged off an opportunity to write embedded code, as I don't consider myself an electrical engineer. Is this a bad assumption? Am I able to write interesting and useful software for embedded systems, or will I kick myself for dropping too low on the software stack? I went to school for computer science and really enjoyed writing a compiler, managing concurrent algorithms, designing data structures, and developing frameworks. However, I am currently employed as a Flex developer, which doesn't scream the interesting things I just described. (I currently deal with issues like: "this check box needs to be 4 pixels to the left" and "this date is formatted wrong".) I appreciate everyone's input. I know I have to make the decision for myself, I just would like some clarification on what it means to be a embedded programmer, and if it fits what I find to be interesting.

    Read the article

  • Outside of a web browser, does the Javascript programming language do anything? [closed]

    - by Stom
    I often hear people talking about Javascript in conjunction with web browser programming/web page programming and such, and/or form logic, etc. However, outside of a browser, can Javascript source be written and compiled to work outside of a browser, much like C/C++ can work in a terminal window/GUI window with a library? Can I write "Hello World" in Javascript in a console terminal on a modern OS GUI and such like C?

    Read the article

< Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >