Search Results

Search found 19923 results on 797 pages for 'instance variables'.

Page 152/797 | < Previous Page | 148 149 150 151 152 153 154 155 156 157 158 159  | Next Page >

  • Debugging a Visual Studio 2020 extension or addin, always gives me LoaderLock...

    - by Inferis
    Title says it all. I'm trying to write an extension for VS2010, but I get this every time: Hit F5 to start debugging A new instance of visual studio starts up I can see a bunch of DLLs loading in the debug host while the new instance is starting It then fails with a "LoaderLock". When I continue after that, the new instance is fully functional, but there's no debugging happening at all. The same happens when creating an addin. Any clues?

    Read the article

  • Synchronization between game logic thread and rendering thread

    - by user782220
    How does one separate game logic and rendering? I know there seem to already be questions on here asking exactly that but the answers are not satisfactory to me. From what I understand so far the point of separating them into different threads is so that game logic can start running for the next tick immediately instead of waiting for the next vsync where rendering finally returns from the swapbuffer call its been blocking on. But specifically what data structures are used to prevent race conditions between the game logic thread and the rendering thread. Presumably the rendering thread needs access to various variables to figure out what to draw, but game logic could be updating these same variables. Is there a de facto standard technique for handling this problem. Maybe like copy the data needed by the rendering thread after every execution of the game logic. Whatever the solution is will the overhead of synchronization or whatever be less than just running everything single threaded?

    Read the article

  • Is it appropriate for a class to only be a collection of information with no logic?

    - by qegal
    Say I have a class Person that has instance variables age, weight, and height, and another class Fruit that has instance variables sugarContent and texture. The Person class has no methods save setters and getters, while the Fruit class has both setters and getters and logic methods like calculateSweetness. Is the Fruit class the type of class that is better practice than the Person class. What I mean by this is that the Person class seems like it doesn't have much purpose; it exists solely to organize data, while the Fruit class organizes data and actually contains methods for logic.

    Read the article

  • Why can final object be modified?

    - by Matt McCormick
    I came across the following code in a code base I am working on: public final class ConfigurationService { private static final ConfigurationService INSTANCE = new ConfigurationService(); private List providers; private ConfigurationService() { providers = new ArrayList(); } public static void addProvider(ConfigurationProvider provider) { INSTANCE.providers.add(provider); } ... INSTANCE is declared as final. Why can objects be added to INSTANCE? Shouldn't that invalidate the use of final. (It doesn't). I'm assuming the answer has to do something with pointers and memory but would like to know for sure.

    Read the article

  • The Return Of __FILE__ And __LINE__ In .NET 4.5

    - by Alois Kraus
    Good things are hard to kill. One of the most useful predefined compiler macros in C/C++ were __FILE__ and __LINE__ which do expand to the compilation units file name and line number where this value is encountered by the compiler. After 4.5 versions of .NET we are on par with C/C++ again. It is of course not a simple compiler expandable macro it is an attribute but it does serve exactly the same purpose. Now we do get CallerLineNumberAttribute  == __LINE__ CallerFilePathAttribute        == __FILE__ CallerMemberNameAttribute  == __FUNCTION__ (MSVC Extension)   The most important one is CallerMemberNameAttribute which is very useful to implement the INotifyPropertyChanged interface without the need to hard code the name of the property anymore. Now you can simply decorate your change method with the new CallerMemberName attribute and you get the property name as string directly inserted by the C# compiler at compile time.   public string UserName { get { return _userName; } set { _userName=value; RaisePropertyChanged(); // no more RaisePropertyChanged(“UserName”)! } } protected void RaisePropertyChanged([CallerMemberName] string member = "") { var copy = PropertyChanged; if(copy != null) { copy(new PropertyChangedEventArgs(this, member)); } } Nice and handy. This was obviously the prime reason to implement this feature in the C# 5.0 compiler. You can repurpose this feature for tracing to get your hands on the method name of your caller along other stuff very fast now. All infos are added during compile time which is much faster than other approaches like walking the stack. The example on MSDN shows the usage of this attribute with an example public static void TraceMessage(string message, [CallerMemberName] string memberName = "", [CallerFilePath] string sourceFilePath = "", [CallerLineNumber] int sourceLineNumber = 0) { Console.WriteLine("Hi {0} {1} {2}({3})", message, memberName, sourceFilePath, sourceLineNumber); }   When I do think of tracing I do usually want to have a API which allows me to Trace method enter and leave Trace messages with a severity like Info, Warning, Error When I do print a trace message it is very useful to print out method and type name as well. So your API must either be able to pass the method and type name as strings or extract it automatically via walking back one Stackframe and fetch the infos from there. The first glaring deficiency is that there is no CallerTypeAttribute yet because the C# compiler team was not satisfied with its performance.   A usable Trace Api might therefore look like   enum TraceTypes { None = 0, EnterLeave = 1 << 0, Info = 1 << 1, Warn = 1 << 2, Error = 1 << 3 } class Tracer : IDisposable { string Type; string Method; public Tracer(string type, string method) { Type = type; Method = method; if (IsEnabled(TraceTypes.EnterLeave,Type, Method)) { } } private bool IsEnabled(TraceTypes traceTypes, string Type, string Method) { // Do checking here if tracing is enabled return false; } public void Info(string fmt, params object[] args) { } public void Warn(string fmt, params object[] args) { } public void Error(string fmt, params object[] args) { } public static void Info(string type, string method, string fmt, params object[] args) { } public static void Warn(string type, string method, string fmt, params object[] args) { } public static void Error(string type, string method, string fmt, params object[] args) { } public void Dispose() { // trace method leave } } This minimal trace API is very fast but hard to maintain since you need to pass in the type and method name as hard coded strings which can change from time to time. But now we have at least CallerMemberName to rid of the explicit method parameter right? Not really. Since any acceptable usable trace Api should have a method signature like Tracexxx(… string fmt, params [] object args) we not able to add additional optional parameters after the args array. If we would put it before the format string we would need to make it optional as well which would mean the compiler would need to figure out what our trace message and arguments are (not likely) or we would need to specify everything explicitly just like before . There are ways around this by providing a myriad of overloads which in the end are routed to the very same method but that is ugly. I am not sure if nobody inside MS agrees that the above API is reasonable to have or (more likely) that the whole talk about you can use this feature for diagnostic purposes was not a core feature at all but a simple byproduct of making the life of INotifyPropertyChanged implementers easier. A way around this would be to allow for variable argument arrays after the params keyword another set of optional arguments which are always filled by the compiler but I do not know if this is an easy one. The thing I am missing much more is the not provided CallerType attribute. But not in the way you would think of. In the API above I did add some filtering based on method and type to stay as fast as possible for types where tracing is not enabled at all. It should be no more expensive than an additional method call and a bool variable check if tracing for this type is enabled at all. The data is tightly bound to the calling type and method and should therefore become part of the static type instance. Since extending the CLR type system for tracing is not something I do expect to happen I have come up with an alternative approach which allows me basically to attach run time data to any existing type object in super fast way. The key to success is the usage of generics.   class Tracer<T> : IDisposable { string Method; public Tracer(string method) { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public void Dispose() { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public static void Info(string fmt, params object[] args) { } /// <summary> /// Every type gets its own instance with a fresh set of variables to describe the /// current filter status. /// </summary> /// <typeparam name="T"></typeparam> internal class TraceData<UsingType> { internal static TraceData<UsingType> Instance = new TraceData<UsingType>(); public bool IsInitialized = false; // flag if we need to reinit the trace data in case of reconfigured trace settings at runtime public TraceTypes Enabled = TraceTypes.None; // Enabled trace levels for this type } } We do not need to pass the type as string or Type object to the trace Api. Instead we define a generic Api that accepts the using type as generic parameter. Then we can create a TraceData static instance which is due to the nature of generics a fresh instance for every new type parameter. My tests on my home machine have shown that this approach is as fast as a simple bool flag check. If you have an application with many types using tracing you do not want to bring the app down by simply enabling tracing for one special rarely used type. The trace filter performance for the types which are not enabled must be therefore the fasted code path. This approach has the nice side effect that if you store the TraceData instances in one global list you can reconfigure tracing at runtime safely by simply setting the IsInitialized flag to false. A similar effect can be achieved with a global static Dictionary<Type,TraceData> object but big hash tables have random memory access semantics which is bad for cache locality and you always need to pay for the lookup which involves hash code generation, equality check and an indexed array access. The generic version is wicked fast and allows you to add more features to your tracing Api with minimal perf overhead. But it is cumbersome to write the generic type argument always explicitly and worse if you do refactor code and move parts of it to other classes it might be that you cannot configure tracing correctly. I would like therefore to decorate my type with an attribute [CallerType] class Tracer<T> : IDisposable to tell the compiler to fill in the generic type argument automatically. class Program { static void Main(string[] args) { using (var t = new Tracer()) // equivalent to new Tracer<Program>() { That would be really useful and super fast since you do not need to pass any type object around but you do have full type infos at hand. This change would be breaking if another non generic type exists in the same namespace where now the generic counterpart would be preferred. But this is an acceptable risk in my opinion since you can today already get conflicts if two generic types of the same name are defined in different namespaces. This would be only a variation of this issue. When you do think about this further you can add more features like to trace the exception in your Dispose method if the method is left with an exception with that little trick I did write some time ago. You can think of tracing as a super fast and configurable switch to write data to an output destination or to execute alternative actions. With such an infrastructure you can e.g. Reconfigure tracing at run time. Take a memory dump when a specific method is left with a specific exception. Throw an exception when a specific trace statement is hit (useful for testing error conditions). Execute a passed delegate which e.g. dumps additional state when enabled. Write data to an in memory ring buffer and dump it when specific events do occur (e.g. method is left with an exception, triggered from outside). Write data to an output device. …. This stuff is really useful to have when your code is in production on a mission critical server and you need to find the root cause of sporadic crashes of your application. It could be a buggy graphics card driver which throws access violations into your application (ok with .NET 4 not anymore except if you enable a compatibility flag) where you would like to have a minidump or you have reached after two weeks of operation a state where you need a full memory dump at a specific point in time in the middle of an transaction. At my older machine I do get with this super fast approach 50 million traces/s when tracing is disabled. When I do know that tracing is enabled for this type I can walk the stack by using StackFrameHelper.GetStackFramesInternal to check further if a specific action or output device is configured for this method which is about 2-3 times faster than the regular StackTrace class. Even with one String.Format I am down to 3 million traces/s so performance is not so important anymore since I do want to do something now. The CallerMemberName feature of the C# 5 compiler is nice but I would have preferred to get direct access to the MethodHandle and not to the stringified version of it. But I really would like to see a CallerType attribute implemented to fill in the generic type argument of the call site to augment the static CLR type data with run time data.

    Read the article

  • Erlang: How to view output of io:format/2 calls in processes spawned on remote nodes.

    - by jkndrkn
    Hello, I am working on a decentralized Erlang application. I am currently working on a single PC and creating multiple nodes by initializing erl with the -sname flag. When I spawn a process using spawn/4 on its home node, I can see output generated by calls io:format/2 within that process in its home erl instance. When I spawn a process remotely by using spawn/4 in combination with register_name, output of io:format/2 is sometimes redirected back to the erl instance where the remote spawn/4 call was made, and sometimes remains completely invisible. Similarly, when I use rpc:call/4, output of io:format/2 calls is redirected back to the erl instance where the `rpc:call/4' call is made. How do you get a process to emit debugging output back to its parent erl instance?

    Read the article

  • How to implement VS 2010-like floating tabs?

    - by unclepaul84
    I'm building a tabbed WPF application. I'm planning to put MapPoint control (ActiveX) on one of the tabs. I want to have the option to float this tab just like in VS 2010. The resulting widow must contain the same instance of the MapPoint control (because each instance of the control starts up separate MapPoint instance). Any idea how to implement this?

    Read the article

  • unable to add objects to saved collection in GAE using JDO

    - by Jeffrey Chee
    I have a ClassA containing an ArrayList of another ClassB I can save a new instance of ClassA with ClassB instances also saved using JDO. However, When I retrieve the instance of Class A, I try to do like the below: ClassA instance = PMF.get().getPersistenceManager().GetObjectByID( someid ); instance.GetClassBArrayList().add( new ClassB(...) ); I get an Exception like the below: Uncaught exception from servlet com.google.appengine.api.datastore.DatastoreNeedIndexException: no matching index found.. So I was wondering, Is it possible to add a new item to the previously saved collection? Or was it something I missed out. Best Regards

    Read the article

  • Problem using FluentNHibernate, SQLite and Enums

    - by weenet
    I have a Sharp Architecture based app using Fluent NHibernate with Automapping. I have the following Enum: public enum Topics { AdditionSubtraction = 1, MultiplicationDivision = 2, DecimalsFractions = 3 } and the following Class: public class Strategy : BaseEntity { public virtual string Name { get; set; } public virtual Topics Topic { get; set; } public virtual IList Items { get; set; } } If I create an instance of the class thusly: Strategy s = new Strategy { Name = "Test", Topic = Topics.AdditionSubtraction }; it Saves correctly (thanks to this mapping convention: public class EnumConvention : IPropertyConvention, IPropertyConventionAcceptance { public void Apply(FluentNHibernate.Conventions.Instances.IPropertyInstance instance) { instance.CustomType(instance.Property.PropertyType); } public void Accept(FluentNHibernate.Conventions.AcceptanceCriteria.IAcceptanceCriteria criteria) { criteria.Expect(x = x.Property.PropertyType.IsEnum); } } However, upon retrieval, I get an error regarding an attempt to convert Int64 to Topics. This works fine in SQL Server. Any ideas for a workaround? Thanks.

    Read the article

  • Calculating instantaneous speed and acceleration for a simple Car software model

    - by Dylan
    I am trying to model a speedometer and tachometer for a simple software model of a car dashboard. I want this to be relatively simple, so for my purposes I won't likely simulate variables such as drag (or, assume that drag is a constant). But I would like to know the general formulas for: 1) Calculating the RPM, depending on a position of a graphical slider representing the accelerator. 2) Using this information to find the instantaneous speed (or, magnitude of instantaneous velocity?). I am not sure, in the case of 2), what other independent variables I need to consider. Do I need to consider the frequency of rotation of the wheels (assuming a fixed radius), in addition to the RPM? If anyone can give me a rough explanation plus relevant formulas, or alternatively direct me to other trusted resources online (I have had a hard time sifting through info and determining the accuracy), it would be much appreciated.

    Read the article

  • problem using pydoc in python

    - by rohanag
    I'm using pydoc in python 2.7.3 to generate documentation for a file called PreProcessingAPI.py which contains a class called PreProcessingAPI In PreProcessingAPI.py, I have the following import in the beginning of the file: from __future__ import division from re import * from nltk.stem import porter The problem is, in the documentation generated by pydoc, nltk.stem.porter is shown as a Module. There is also a DATA heading with all sorts of variables I do not know about. Is there a way to avoid these variables and avoid showing nltk.stem.porter in the modules? I'm running the following command to generate documentation python pydoc.py -w PreProcessingAPI.py I've put the file pydoc.py in the directory containing my file. Here is the file generated: https://www.dropbox.com/s/4rb6ut99o25mwly/PreProcessingAPI.html

    Read the article

  • Multiple values for a specif custom variable in Google Analytics

    - by Nicola Pacini
    we're trying to get rid of a this question : would it be possible to setup more than one value in a custom variable in Google Analytics, at page level ? Eg: _gaq.push(['_setCustomVar',3,'Tag','Custom Variables',3]); We'd like to track most popular tags on a web site who publishes news, articles and stuff. Contents are categorized (each content belongs to one category) and tagged (1 or more tags for each article). So, we'd like to apply this code: _gaq.push(['_setCustomVar',3,'Tag','Custom Variables',3]); _gaq.push(['_setCustomVar',3,'Tag','Google Analytics',3]); in a page that shows an article with these two tags assigned. What do you think? Honestly I didn't find anything in documentation from Google and some other example sites. Many thanks! Nicola

    Read the article

  • NHibernate mapping one table on two classes with where selection

    - by Rene Schulte
    We would like to map a single table on two classes with NHibernate. The mapping has to be dynamically depending on the value of a column. Here's a simple example to make it a bit clearer: We have a table called Person with the columns id, Name and Sex. The data from this table should be mapped either on the class Male or on the class Female depending on the value of the column Sex. In Pseudocode: create instance of Male with data from table Person where Person.Sex = 'm'; create instance of Female with data from table Person where Person.Sex = 'f'; The benefit is we have strongly typed domain models and can later avoid switch statements. Is this possible with NHibernate or do we have to map the Person table into a flat Person class first? Then afterwards we would have to use a custom factory method that takes a flat Person instance and returns a Female or Male instance. Would be good if NHibernate (or another library) can handle this.

    Read the article

  • How to delay static initialization within a property

    - by Mystagogue
    I've made a class that is a cross between a singleton (fifth version) and a (dependency injectable) factory. Call this a "Mono-Factory?" It works, and looks like this: public static class Context { public static BaseLogger LogObject = null; public static BaseLogger Log { get { return LogFactory.instance; } } class LogFactory { static LogFactory() { } internal static readonly BaseLogger instance = LogObject ?? new BaseLogger(null, null, null); } } //USAGE EXAMPLE: //Optional initialization, done once when the application launches... Context.LogObject = new ConLogger(); //Example invocation used throughout the rest of code... Context.Log.Write("hello", LogSeverity.Information); The idea is for the mono-factory could be expanded to handle more than one item (e.g. more than a logger). But I would have liked to have made the mono-factory look like this: public static class Context { private static BaseLogger LogObject = null; public static BaseLogger Log { get { return LogFactory.instance; } set { LogObject = value; } } class LogFactory { static LogFactory() { } internal static readonly BaseLogger instance = LogObject ?? new BaseLogger(null, null, null); } } The above does not work, because the moment the Log property is touched (by a setter invocation) it causes the code path related to the getter to be executed...which means the internal LogFactory "instance" data is always set to the BaseLogger (setting the "LogObject" is always too late!). So is there a decoration or other trick I can use that would cause the "get" path of the Log property to be lazy while the set path is being invoked?

    Read the article

  • Referring to the type of an inner class in Scala

    - by saucisson
    The following code tries to mimic Polymorphic Embedding of DSLs: rather than giving the behavior in Inner, it is encoded in the useInner method of its enclosing class. I added the enclosing method so that user has only to keep a reference to Inner instances, but can always get their enclosing instance. By doing this, all Inner instances from a specific Outer instance are bound to only one behavior (but it is wanted here). abstract class Outer { sealed class Inner { def enclosing = Outer.this } def useInner(x:Inner) : Boolean } def toBoolean(x:Outer#Inner) : Boolean = x.enclosing.useInner(x) It does not compile and scala 2.8 complains about: type mismatch; found: sandbox.Outer#Inner required: _81.Inner where val _81:sandbox.Outer From Programming Scala: Nested classes and A Tour of Scala: Inner Classes, it seems to me that the problem is that useInnerexpects as argument an Inner instance from a specific Outer instance. What is the true explanation and how to solve this problem ?

    Read the article

  • How to implement Xml Serialization with inherited classes in C#

    - by liorafar
    I have two classes : base class name Component and inheritd class named DBComponent [Serializable] public class Component { private string name = string.Empty; private string description = string.Empty; } [Serializable] public class DBComponent : Component { private List<string> spFiles = new List<string>(); // Storage Procedure Files [XmlArrayItem("SPFile", typeof(string))] [XmlArray("SPFiles")] public List<string> SPFiles { get { return spFiles; } set { spFiles = value; } } public DBComponent(string name, string description) : base(name, description) { } } [Serializable] public class ComponentsCollection { private static ComponentsCollection instance = null; private List<Component> components = new List<Component>(); public List<Component> Components { get { return components; } set { components = value; } } public static ComponentsCollection GetInstance() { if (ccuInstance == null) { lock (lockObject) { if (instance == null) PopulateComponents(); } } return instance; } private static void PopulateComponents() { instance = new CCUniverse(); XmlSerializer xs = new XmlSerializer(instance.GetType()); instance = xs.Deserialize(XmlReader.Create("Components.xml")) as ComponentsCollection; } } } I want read\write from a Xml file. I know that I need to implement the Serialization for DBComponent class otherwise it will not read it.But i cannot find any simple article for that. all the articles that I found were too complex for this simple scenario. The Xml file looks like this: <?xml version="1.0" encoding="utf-8" ?> <ComponentsCollection> <Components> <DBComponent Name="Tenant Historical Database" Description="Tenant Historical Database"> <SPFiles> <SPFile>Setup\TenantHistoricalSP.sql</SPFile> </SPFiles> </DBComponent> <Component Name="Agent" Description="Desktop Agent" /> </Components> </ComponentsCollection> Can someone please give me a simple example of how to read this kind of xml file and what should be implemented ? Thanks Lior

    Read the article

  • Is Java easy decompilation a factor worth considering

    - by Sandra G
    We are considering the programming language for a desktop application with extended GUI use (tables, windows) and heavy database use. We considered Java for use however the fact that it can be decompiled back very easily into source code is holding us back. There are of course many obfuscators available however they are just that: obfuscators. The only obfuscation worth doing we got was stripping function and variables names into meaningless letters and numbers so that at least stealing code and renaming it back into something meaningful is too much work and we are 100% sure it is not reversible back in any automated way. However as it concerns to protecting internals (like password hashes or sensible variables content) we found obfuscators really lacking. Is there any way to make Java applications as hard to decode as .exe counterparts? And is it a factor to consider when deciding whether to develop in Java a desktop application?

    Read the article

  • Javascript Closures - What are the negatives?

    - by vol7ron
    Question: There seem to be many benefits to Closures, but what are the negatives (memory leakage? obfuscation problems? bandwidth increasage?)? Additionally, is my understanding of Closures correct? Finally, once closures are created, can they be destroyed? I've been reading a little bit about Javascript Closures. I hope someone a little more knowledgeable will guide my assertions, correcting me where wrong. Benefits of Closures: Encapsulate the variables to a local scope, by using an internal function. The anonymity of the function is insignificant. What I've found helpful is to do some basic testing, regarding local/global scope: <script type="text/javascript"> var global_text = ""; var global_count = 0; var global_num1 = 10; var global_num2 = 20; var global_num3 = 30; function outerFunc() { var local_count = local_count || 0; alert("global_num1: " + global_num1); // global_num1: undefined var global_num1 = global_num1 || 0; alert("global_num1: " + global_num1); // global_num1: 0 alert("global_num2: " + global_num2); // global_num2: 20 global_num2 = global_num2 || 0; // (notice) no definition with 'var' alert("global_num2: " + global_num2); // global_num2: 20 global_num2 = 0; alert("local_count: " + local_count); // local_count: 0 function output() { global_num3++; alert("local_count: " + local_count + "\n" + "global_count: " + global_count + "\n" + "global_text: " + global_text ); local_count++; } local_count++; global_count++; return output; } var myFunc = outerFunc(); myFunc(); /* Outputs: ********************** * local_count: 1 * global_count: 1 * global_text: **********************/ global_text = "global"; myFunc(); /* Outputs: ********************** * local_count: 2 * global_count: 1 * global_text: global **********************/ var local_count = 100; myFunc(); /* Outputs: ********************** * local_count: 3 * global_count: 1 * global_text: global **********************/ alert("global_num1: " + global_num1); // global_num1: 10 alert("global_num2: " + global_num2); // global_num2: 0 alert("global_num3: " + global_num3); // global_num3: 33 </script> Interesting things I took out of it: The alerts in outerFunc are only called once, which is when the outerFunc call is assigned to myFunc (myFunc = outerFunc()). This assignment seems to keep the outerFunc open, in what I would like to call a persistent state. Everytime myFunc is called, the return is executed. In this case, the return is the internal function. Something really interesting is the localization that occurs when defining local variables. Notice the difference in the first alert between global_num1 and global_num2, even before the variable is trying to be created, global_num1 is considered undefined because the 'var' was used to signify a local variable to that function. -- This has been talked about before, in the order of operation for the Javascript engine, it's just nice to see this put to work. Globals can still be used, but local variables will override them. Notice before the third myFunc call, a global variable called local_count is created, but it as no effect on the internal function, which has a variable that goes by the same name. Conversely, each function call has the ability to modify global variables, as noticed by global_var3. Post Thoughts: Even though the code is straightforward, it is cluttered by alerts for you guys, so you can plug and play. I know there are other examples of closures, many of which use anonymous functions in combination with looping structures, but I think this is good for a 101-starter course to see the effects. The one thing I'm concerned with is the negative impact closures will have on memory. Because it keeps the function environment open, it is also keeping those variables stored in memory, which may/may not have performance implications, especially regarding DOM traversals and garbage collection. I'm also not sure what kind of role this will play in terms of memory leakage and I'm not sure if the closure can be removed from memory by a simple "delete myFunc;." Hope this helps someone, vol7ron

    Read the article

  • ASMLib

    - by wcoekaer
    Oracle ASMlib on Linux has been a topic of discussion a number of times since it was released way back when in 2004. There is a lot of confusion around it and certainly a lot of misinformation out there for no good reason. Let me try to give a bit of history around Oracle ASMLib. Oracle ASMLib was introduced at the time Oracle released Oracle Database 10g R1. 10gR1 introduced a very cool important new features called Oracle ASM (Automatic Storage Management). A very simplistic description would be that this is a very sophisticated volume manager for Oracle data. Give your devices directly to the ASM instance and we manage the storage for you, clustered, highly available, redundant, performance, etc, etc... We recommend using Oracle ASM for all database deployments, single instance or clustered (RAC). The ASM instance manages the storage and every Oracle server process opens and operates on the storage devices like it would open and operate on regular datafiles or raw devices. So by default since 10gR1 up to today, we do not interact differently with ASM managed block devices than we did before with a datafile being mapped to a raw device. All of this is without ASMLib, so ignore that one for now. Standard Oracle on any platform that we support (Linux, Windows, Solaris, AIX, ...) does it the exact same way. You start an ASM instance, it handles storage management, all the database instances use and open that storage and read/write from/to it. There are no extra pieces of software needed, including on Linux. ASM is fully functional and selfcontained without any other components. In order for the admin to provide a raw device to ASM or to the database, it has to have persistent device naming. If you booted up a server where a raw disk was named /dev/sdf and you give it to ASM (or even just creating a tablespace without asm on that device with datafile '/dev/sdf') and next time you boot up and that device is now /dev/sdg, you end up with an error. Just like you can't just change datafile names, you can't change device filenames without telling the database, or ASM. persistent device naming on Linux, especially back in those days ways to say it bluntly, a nightmare. In fact there were a number of issues (dating back to 2004) : Linux async IO wasn't pretty persistent device naming including permissions (had to be owned by oracle and the dba group) was very, very difficult to manage system resource usage in terms of open file descriptors So given the above, we tried to find a way to make this easier on the admins, in many ways, similar to why we started working on OCFS a few years earlier - how can we make life easier for the admins on Linux. A feature of Oracle ASM is the ability for third parties to write an extension using what's called ASMLib. It is possible for any third party OS or storage vendor to write a library using a specific Oracle defined interface that gets used by the ASM instance and by the database instance when available. This interface offered 2 components : Define an IO interface - allow any IO to the devices to go through ASMLib Define device discovery - implement an external way of discovering, labeling devices to provide to ASM and the Oracle database instance This is similar to a library that a number of companies have implemented over many years called libODM (Oracle Disk Manager). ODM was specified many years before we introduced ASM and allowed third party vendors to implement their own IO routines so that the database would use this library if installed and make use of the library open/read/write/close,.. routines instead of the standard OS interfaces. PolyServe back in the day used this to optimize their storage solution, Veritas used (and I believe still uses) this for their filesystem. It basically allowed, in particular, filesystem vendors to write libraries that could optimize access to their storage or filesystem.. so ASMLib was not something new, it was basically based on the same model. You have libodm for just database access, you have libasm for asm/database access. Since this library interface existed, we decided to do a reference implementation on Linux. We wrote an ASMLib for Linux that could be used on any Linux platform and other vendors could see how this worked and potentially implement their own solution. As I mentioned earlier, ASMLib and ODMLib are libraries for third party extensions. ASMLib for Linux, since it was a reference implementation implemented both interfaces, the storage discovery part and the IO part. There are 2 components : Oracle ASMLib - the userspace library with config tools (a shared object and some scripts) oracleasm.ko - a kernel module that implements the asm device for /dev/oracleasm/* The userspace library is a binary-only module since it links with and contains Oracle header files but is generic, we only have one asm library for the various Linux platforms. This library is opened by Oracle ASM and by Oracle database processes and this library interacts with the OS through the asm device (/dev/asm). It can install on Oracle Linux, on SuSE SLES, on Red Hat RHEL,.. The library itself doesn't actually care much about the OS version, the kernel module and device cares. The support tools are simple scripts that allow the admin to label devices and scan for disks and devices. This way you can say create an ASM disk label foo on, currently /dev/sdf... So if /dev/sdf disappears and next time is /dev/sdg, we just scan for the label foo and we discover it as /dev/sdg and life goes on without any worry. Also, when the database needs access to the device, we don't have to worry about file permissions or anything it will be taken care of. So it's a convenience thing. The kernel module oracleasm.ko is a Linux kernel module/device driver. It implements a device /dev/oracleasm/* and any and all IO goes through ASMLib - /dev/oracleasm. This kernel module is obviously a very specific Oracle related device driver but it was released under the GPL v2 so anyone could easily build it for their Linux distribution kernels. Advantages for using ASMLib : A good async IO interface for the database, the entire IO interface is based on an optimal ASYNC model for performance A single file descriptor per Oracle process, not one per device or datafile per process reducing # of open filehandles overhead Device scanning and labeling built-in so you do not have to worry about messing with udev or devlabel, permissions or the likes which can be very complex and error prone. Just like with OCFS and OCFS2, each kernel version (major or minor) has to get a new version of the device drivers. We started out building the oracleasm kernel module rpms for many distributions, SLES (in fact in the early days still even for this thing called United Linux) and RHEL. The driver didn't make sense to get pushed into upstream Linux because it's unique and specific to the Oracle database. As it takes a huge effort in terms of build infrastructure and QA and release management to build kernel modules for every architecture, every linux distribution and every major and minor version we worked with the vendors to get them to add this tiny kernel module to their infrastructure. (60k source code file). The folks at SuSE understood this was good for them and their customers and us and added it to SLES. So every build coming from SuSE for SLES contains the oracleasm.ko module. We weren't as successful with other vendors so for quite some time we continued to build it for RHEL and of course as we introduced Oracle Linux end of 2006 also for Oracle Linux. With Oracle Linux it became easy for us because we just added the code to our build system and as we churned out Oracle Linux kernels whether it was for a public release or for customers that needed a one off fix where they also used asmlib, we didn't have to do any extra work it was just all nicely integrated. With the introduction of Oracle Linux's Unbreakable Enterprise Kernel and our interest in being able to exploit ASMLib more, we started working on a very exciting project called Data Integrity. Oracle (Martin Petersen in particular) worked for many years with the T10 standards committee and storage vendors and implemented Linux kernel support for DIF/DIX, data protection in the Linux kernel, note to those that wonder, yes it's all in mainline Linux and under the GPL. This basically gave us all the features in the Linux kernel to checksum a data block, send it to the storage adapter, which can then validate that block and checksum in firmware before it sends it over the wire to the storage array, which can then do another checksum and to the actual DISK which does a final validation before writing the block to the physical media. So what was missing was the ability for a userspace application (read: Oracle RDBMS) to write a block which then has a checksum and validation all the way down to the disk. application to disk. Because we have ASMLib we had an entry into the Linux kernel and Martin added support in ASMLib (kernel driver + userspace) for this functionality. Now, this is all based on relatively current Linux kernels, the oracleasm kernel module depends on the main kernel to have support for it so we can make use of it. Thanks to UEK and us having the ability to ship a more modern, current version of the Linux kernel we were able to introduce this feature into ASMLib for Linux from Oracle. This combined with the fact that we build the asm kernel module when we build every single UEK kernel allowed us to continue improving ASMLib and provide it to our customers. So today, we (Oracle) provide Oracle ASMLib for Oracle Linux and in particular on the Unbreakable Enterprise Kernel. We did the build/testing/delivery of ASMLib for RHEL until RHEL5 but since RHEL6 decided that it was too much effort for us to also maintain all the build and test environments for RHEL and we did not have the ability to use the latest kernel features to introduce the Data Integrity features and we didn't want to end up with multiple versions of asmlib as maintained by us. SuSE SLES still builds and comes with the oracleasm module and they do all the work and RHAT it certainly welcome to do the same. They don't have to rebuild the userspace library, it's really about the kernel module. And finally to re-iterate a few important things : Oracle ASM does not in any way require ASMLib to function completely. ASMlib is a small set of extensions, in particular to make device management easier but there are no extra features exposed through Oracle ASM with ASMLib enabled or disabled. Often customers confuse ASMLib with ASM. again, ASM exists on every Oracle supported OS and on every supported Linux OS, SLES, RHEL, OL withoutASMLib Oracle ASMLib userspace is available for OTN and the kernel module is shipped along with OL/UEK for every build and by SuSE for SLES for every of their builds ASMLib kernel module was built by us for RHEL4 and RHEL5 but we do not build it for RHEL6, nor for the OL6 RHCK kernel. Only for UEK ASMLib for Linux is/was a reference implementation for any third party vendor to be able to offer, if they want to, their own version for their own OS or storage ASMLib as provided by Oracle for Linux continues to be enhanced and evolve and for the kernel module we use UEK as the base OS kernel hope this helps.

    Read the article

  • C# reflection instantiation

    - by NickLarsen
    I am currently trying to create a generic instance factory for which takes an interface as the generic parameter (enforced in the constructor) and then lets you get instantiated objects which implement that interface from all types in all loaded assemblies. The current implementation is as follows:     public class InstantiationFactory     {         protected Type Type { get; set; }         public InstantiationFactory()         {             this.Type = typeof(T);             if (!this.Type.IsInterface)             {                 // is there a more descriptive exception to throw?                 throw new ArgumentException(/* Crafty message */);             }         }         public IEnumerable GetLoadedTypes()         {             // this line of code found in other stack overflow questions             var types = AppDomain.CurrentDomain.GetAssemblies()                 .SelectMany(a = a.GetTypes())                 .Where(/* lambda to identify instantiable types which implement this interface */);             return types;         }         public IEnumerable GetImplementations(IEnumerable types)         {             var implementations = types.Where(/* lambda to identify instantiable types which implement this interface */                 .Select(x = CreateInstance(x));             return implementations;         }         public IEnumerable GetLoadedImplementations()         {             var loadedTypes = GetLoadedTypes();             var implementations = GetImplementations(loadedTypes);             return implementations;         }         private T CreateInstance(Type type)         {             T instance = default(T);             var constructor = type.GetConstructor(Type.EmptyTypes);             if (/* valid to instantiate test */)             {                 object constructed = constructor.Invoke(null);                 instance = (T)constructed;             }             return instance;         }     } It seems useful to me to have my CreateInstance(Type) function implemented as an extension method so I can reuse it later and simplify the code of my factory, but I can't figure out how to return a strongly typed value from that extension method. I realize I could just return an object:     public static class TypeExtensions     {         public object CreateInstance(this Type type)         {             var constructor = type.GetConstructor(Type.EmptyTypes);             return /* valid to instantiate test */ ? constructor.Invoke(null) : null;         }     } Is it possible to have an extension method create a signature per instance of the type it extends? My perfect code would be this, which avoids having to cast the result of the call to CreateInstance():     Type type = typeof(MyParameterlessConstructorImplementingType);     MyParameterlessConstructorImplementingType usable = type.CreateInstance();

    Read the article

  • Django: Save data from form in DB

    - by Anry
    I have a model: class Cost(models.Model): project = models.ForeignKey(Project) cost = models.FloatField() date = models.DateField() For the model I created a class form: class CostForm(ModelForm): class Meta: model = Cost fields = ['date', 'cost'] view.py: def cost(request, offset): if request.method == 'POST': #HOW save data in DB? return HttpResponseRedirect('/') else: form = CostForm() In the template file determined: <form action="/cost/{{ project }}/" method="post" accept-charset="utf-8"> <label for="date">Date:</label><input type="text" name="date" value={{ current_date }} id="date" /> <label for="cost">Cost:</label><input type="text" name="cost" value="0" id="cost" /> <p><input type="submit" value="Add"></p> </form> How save data from form in DB? P.S. offset = project name Model: class Project(models.Model): title = models.CharField(max_length=150) url = models.URLField() manager = models.ForeignKey(User) timestamp = models.DateTimeField() I tried to write: def cost(request, offset): if request.method == 'POST': form = CostForm(request.POST) if form.is_valid(): instance = form.save(commit=False) instance.project = Project.objects.filter(title=offset) instance.date = request.date instance.cost = request.cost instance.save() return HttpResponseRedirect('/') else: form = CostForm() But it does not work :(

    Read the article

  • What is required for a scope in an injection framework?

    - by johncarl
    Working with libraries like Seam, Guice and Spring I have become accustomed to dealing with variables within a scope. These libraries give you a handful of scopes and allow you to define your own. This is a very handy pattern for dealing with variable lifecycles and dependency injection. I have been trying to identify where scoping is the proper solution, or where another solution is more appropriate (context variable, singleton, etc). I have found that if the scope lifecycle is not well defined it is very difficult and often failure prone to manage injections in this way. I have searched on this topic but have found little discussion on the pattern. Is there some good articles discussing where to use scoping and what are required/suggested prerequisites for scoping? I interested in both reference discussion or your view on what is required or suggested for a proper scope implementation. Keep in mind that I am referring to scoping as a general idea, this includes things like globally scoped singletons, request or session scoped web variable, conversation scopes, and others. Edit: Some simple background on custom scopes: Google Guice custom scope Some definitions relevant to above: “scoping” - A set of requirements that define what objects get injected at what time. A simple example of this is Thread scope, based on a ThreadLocal. This scope would inject a variable based on what thread instantiated the class. Here's an example of this: “context variable” - A repository passed from one object to another holding relevant variables. Much like scoping this is a more brute force way of accessing variables based on the calling code. Example: methodOne(Context context){ methodTwo(context); } methodTwo(Context context){ ... //same context as method one, if called from method one } “globally scoped singleton” - Following the singleton pattern, there is one object per application instance. This applies to scopes because there is a basic lifecycle to this object: there is only one of these objects instantiated. Here's an example of a JSR330 Singleton scoped object: @Singleton public void SingletonExample{ ... } usage: public class One { @Inject SingeltonExample example1; } public class Two { @Inject SingeltonExample example2; } After instantiation: one.example1 == two.example2 //true;

    Read the article

  • Java dynamic proxy questions.

    - by Tony
    1.Does dynamic proxy instance subclass the target class? The java doc says the proxy instance implements "a list of interfaces", says nothing about subclassing, but through debugging, I saw that the proxy instance did inherit the target class properites.What does the "a list of interfaces " mean? Can I exclude those interfaces implemented by target class ? 2.Can I invoke target class specific methods on a proxy instance? 3. I think dynamic proxy is an interface methods invocation proxy but rather than a target class proxy, is that right (I am deeply infected by hibernate proxy object concept)?

    Read the article

  • Using clases in PHP to store function

    - by Artur
    Hello! I need some advise on my PHP code organisation. I need classes where I can store different functions, and I need access to those classes in different parts of my project. Making an object of this classes each time is too sadly, so I've found a two ways have to solve it. First is to use static methods, like class car { public static $wheels_count = 4; public static function change_wheels_count($new_count) { car::$wheels_count = $new_count; } } Second is to use singleton pattern: class Example { // Hold an instance of the class private static $instance; // The singleton method public static function singleton() { if (!isset(self::$instance)) { $c = __CLASS__; self::$instance = new $c; } return self::$instance; } } But author of the article about singletons said, that if I have too much singletons in my code I should reconstruct it. But I need a lot of such classes. Can anybody explain prons and cons of each way? Which is mostly used? Are there more beautiful ways?

    Read the article

< Previous Page | 148 149 150 151 152 153 154 155 156 157 158 159  | Next Page >