Search Results

Search found 40567 results on 1623 pages for 'database performance'.

Page 153/1623 | < Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >

  • Can I commit changes to actual database while debugging C# in Visual Studio?

    - by nathant23
    I am creating a C# application using Visual Studio that uses an SQLExpress database. When I hit f5 to debug the application and make changes to the database I believe what is happening is there is a copy of the database in the bin/debug folder that changes are being made to. However, when I stop the debugging and then hit f5 the next time a new copy of the database is being put in the bin/debug folder so that all the changes made the last time are gone. My question is: Is there a way that when I am debugging the application I can have it make changes to the actual database and those changes are actually saved or will it only make changes to the copy in the bin/debug folder (if that is what is actually happening)? I've seen similar questions, but I couldn't find an answer that said if it's possible to make those changes persistent in the actual .mdf file. The reason I ask is because as I build this application I am continuously adding pieces and testing to make sure they all work together. When I put in test data I am using actual data that I would like to stay in the database. This would just help me not have to reenter the data later. Thanks in advance for any help or information that could help me better understand the process.

    Read the article

  • Fetching database query through function

    - by Shubham Maurya
    I am sick of connecting database in each script i need a more OOP approach to fetching database results. ex like wordpress use wpdb class to fetch results. This what wordpress does to get data <?php $posts = $wpdb->get_results("SELECT ID, post_title FROM $wpdb->posts WHERE post_status = 'publish' AND post_type='post' ORDER BY comment_count DESC LIMIT 0,4") ?> How can i create the same feature too using any class or function and use it in my script Thank you

    Read the article

  • An Unstoppable Force!

    - by TammyBednar
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Building a high-availability database platform presents unique challenges. Combining servers, storage, networking, OS, firmware, and database is complicated and raises important concerns: Will coordination between multiple SME’s delay deployment? Will it be reliable? Will it scale? Will routine maintenance consume precious IT-staff time? Ultimately, will it work? Enter the Oracle Database Appliance, a complete package of software, server, storage, and networking that’s engineered for simplicity. It saves time and money by simplifying deployment, maintenance, and support of database workloads. Plus, it’s based on Intel Xeon processors to ensure a high level of performance and scalability. Take a look at this video to compare Heather and Ted’s approach to building a server for their Oracle database! http://www.youtube.com/watch?v=os4RDVclWS8 If you missed the “Compare Database Platforms: Build vs. Buy” webcast or want to listen again to find out how Jeff Schulte - Vice President at Yodlee uses Oracle Database Appliance.

    Read the article

  • TechEd 2010 Day Three: The Database Designer (Isn't)

    - by BuckWoody
    Yesterday at TechEd 2010 here in New Orleans I worked the front-booth, answering general SQL Server questions for the masses. I was actually a little surprised to find most of the questions I got were from folks that wanted to know more about Stream Insight and Master Data Services. In past conferences I've been asked a lot of "free consulting" questions, about problems folks have had from older products. I don't mind that a bit - in fact, I'm always happy to help in any way I can. But this time people are really interested in the new features in the product, and I like that they are thinking ahead, not just having to solve problems in production. My presentation was on "Database Design in an Hour". We had the usual fun, and SideShow Bob made an appearance - I kid you not. The guy in the back of the room looked just like Sideshow Bob, so I quickly held a "bes thair" contest, and he won. Duing the presentation, I explain the tools you can use to design databases. I also explain that the "Database Designer" tool in SQL Server Management Studio (SSMS) isn't truly a desinger - it uses non-standard notation, doesn't have a meta-data dictionary, and worst of all, it works at the physical level. In other words, whatever you do in SSMS will automatically change the field/table/relationship structures in the database. We fixed this in SSMS 2008 and higher by adding an option to block that, but the tool is not a good design function nonetheless. To be fair, no one I know of at Microsoft recommends that it is - but I was shocked to hear so many developers in the room defending it as a good tool. I think the main issue for someone who doesn't have to work with Relational Systems a great deal is that it can be difficult to figure out Foreign Keys. The syntax makes them look "backwards", so it's just easier to grab a field and place it on the table you want to point to. There are options. You can download a couple of free tools (CA has a community edition of ER-WIN, Quest has one, and Embarcadero also has one) and if you design more than one or two databases a year, it may be worth buying a true design tool. For years I used Visio, but we changed it so that it doesn't forward-engineer (create the DDL) any more, so it isn't a true design tool either. So investigate those free and not-so-free tools. You'll find they help you in your job - but stay away from the Database Designer in SSMS. Or I'll send Sideshow Bob over there to straighten you out. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Database Delivery Patterns and Practices

    The articles collected here will help you understand the theories and methodologies behind every stage of the database delivery pipeline, starting when database changes are checked in, and ending when they're deployed to production. 12 must-have SQL Server toolsThe award-winning SQL Developer Bundle contains 12 tools for faster, simpler SQL Server development. Download a free trial.

    Read the article

  • How do I rescue a small portion of data from a SQL Server database backup?

    - by Greg
    I have a live database that had some data deleted from it and I need that data back. I have a very recent copy of that database that has already been restored on another machine. Unrelated changes have been made to the live database since the backup, so I do not want to wipe out the live database with a full restore. The data I need is small - just a dozen rows - but those dozen rows each have a couple rows from other tables with foreign keys to it, and those couple rows have god knows how many rows with foreign keys pointing to them, so it would be complicated to restore by hand. Ideally I'd be able to tell the backup copy of the database to select the dozen rows I need, and the transitive closure of everything that they depend on, and everything that depends on them, and export just that data, which I can then import into the live database without touching anything else. What's the best approach to take here? Thanks. Everyone has mentioned sp_generate_inserts. When using this, how do you prevent Identity columns from messing everything up? Do you just turn IDENTITY INSERT on?

    Read the article

  • The Database Recovery Advisor in SQL Server 2012

    The Database Recovery Advisor in SQL Server 2012 will aid the ability of DBAs to recover their databases to a point in time in a crisis. Read about this new feature and how it can speed the process of recovery. What are your servers really trying to tell you? Find out with new SQL Monitor 3.0, an easy-to-use tool built for no-nonsense database professionals.For effortless insights into SQL Server, download a free trial today.

    Read the article

  • Steps to Rename a Subscriber Database for SQL Server Transactional Replication

    I have transactional replication configured in production. The business team has a requirement to rename the subscription database. Is it possible to rename the subscription database and ensure that transactional replication will continue to function as before? If so, how could we achieve this? Get smart with SQL Backup ProPowerful centralised management, encryption and more.SQL Backup Pro was the smartest kid at school. Discover why.

    Read the article

  • Database Insider - April 2012 issue

    - by Javier Puerta
    INFORMATION INDEPTH NEWSLETTER Database Insider Edition The  April issue of the Database Insider newsletter is now available.Includes, among many other: Oracle Advanced Analytics for Big Data Best Practices for Workload Management of a Data Warehouse on Oracle Exadata Best Practices for Implementing a Data Warehouse on Oracle Exadata

    Read the article

  • Database Deployment: The Bits - Getting Data In

    Quite often, the database developer or tester is faced with having to load data into a newly created database. What could be simpler? Quite a lot of things, it seems. SQL Backup Pro wins Gold Community Choice AwardFind out why the SQL Server Community voted SQL Backup Pro 'Best Backup and Recovery Product 2012'. Get faster, smaller, fully verified backups. Download a free trial now.

    Read the article

  • New SQL Monitor Custom Metric: Database Autogrowth

    This metric for Red Gate SQL Monitor measures the number of database autogrowth events (data file or log file) in the last hour. Too many autogrowth events causes disk fragmentation which requires a change in the autogrowth settings of a database. ‘Disturbing Development’Grant Fritchey & the DBA Team present the latest installment of the Top 5 hard-earned lessons of a DBA – read it now

    Read the article

  • How security of the systems might be improved using database procedures?

    - by Centurion
    The usage of Oracle PL/SQL procedures for controlling access to data often emphasized in PL/SQL books and other sources as being more secure approach. I'v seen several systems where all business logic related with data is performed through packages, procedures and functions, so application code becomes quite "dumb" and is only responsible for visualization part. I even heard some devs call such approaches and driving architects as database nazi :) because all logic code resides in database. I do know about DB procedure performance benefits, but now I'm interested in a "better security" when using thick client model. I assume such design mostly used when Oracle (and maybe MS SQL Server) databases are used. I do agree such approach improves security but only if there are not much users and every system user has a database account, so we might control and monitor data access through standard database user security. However, how such approach could increase the security for an average web system where thick clients are used: for example one database user with DML grants on all tables, and other users are handled using "users" and"user_rights" tables? We could use DB procedures, save usernames into context use that for filtering but vulnerability resides at the root - if the main database account is compromised than nothing will help. Of course in a real system we might consider at least several main users (for example frontend_db_user, backend_db_user).

    Read the article

  • Database Activity Monitoring Part 1 - An Introduction

    We are inundated with new technologies and products designed to help make our organisations safe from hackers and other malcontents. One technology that has gained ground over the past few years is database activity monitoring. It makes sense to protect valuable databases, and by adding an intelligent monitor capable of sniffing out threats an additional level of protection can be gained. But what is database activity monitoring and why should you care?

    Read the article

  • Recovering SQL Server Database From Error: 5171

    MS SQL Server is the most preferred relational database management system by database users all over the world. It provides several benefits such as enhanced productivity, scalability, efficiency, av... [Author: Mark Willium - Computers and Internet - May 14, 2010]

    Read the article

  • Free eBook: Defensive Database Programming

    Resilient T-SQL code is code that is designed to last, and to be safely reused by others. The goal of defensive database programming, the goal of this book, is to help you to produce resilient T-SQL code that robustly and gracefully handles cases of unintended use, and is resilient to common changes to the database environment. 12 must-have SQL Server toolsThe award-winning SQL Developer Bundle contains 12 tools for faster, simpler SQL Server development. Download a free trial.

    Read the article

  • ???????/???Oracle Database Core Tech Seminar Oracle Data Guard,Oracle Recovery Manager(RMAN),Flashback

    - by user788995
    ????? ??:2012/05/14 ??:??????/?? Oracle Database????????????????Core Tech Seminar? ????????????????????????????????????Oracle Data Guard?Oracle Recovery Manager?Oracle Flashback Technology????????????·?????????? Active Data GuardRecovery Manager(RMAN)Flashback?????? ????????? ????????????????? http://otndnld.oracle.co.jp/ondemand/otn-seminar/movie/D3-22.wmv http://otndnld.oracle.co.jp/ondemand/otn-seminar/movie/mp4/D3-22.mp4 http://www.oracle.com/technetwork/jp/ondemand/database/db-new/d3-22-dl-1626591-ja.pdf

    Read the article

  • Accidently overwrote system.dbf - What now?

    - by Filip Ekberg
    I accidentally overwrote system.dbf in /usr/lib/oracle/xe/oradata/XE/system.dbf Well I did not actually do it accidentally, however I overwrote it because of other failures in the database. And when I try running the following: SQL> shutdown ORA-01109: database not open Database dismounted. ORACLE instance shut down. SQL> startup ORACLE instance started. Total System Global Area 289406976 bytes Fixed Size 1258488 bytes Variable Size 92277768 bytes Database Buffers 192937984 bytes Redo Buffers 2932736 bytes Database mounted. ORA-01589: must use RESETLOGS or NORESETLOGS option for database open Now I want to try to Recover the database because starting it in mounted or standard surely doesn't work. SQL> recover database using backup controlfile; ORA-00283: recovery session canceled due to errors ORA-01110: data file 1: '/usr/lib/oracle/xe/oradata/XE/system.dbf' ORA-01122: database file 1 failed verification check ORA-01110: data file 1: '/usr/lib/oracle/xe/oradata/XE/system.dbf' ORA-01206: file is not part of this database - wrong database id How do I solve this? Is it even possible? My "real" problem was that I ran the /etc/init.d/oracle-xe configure and it overwrote my old configuration and probably removed passwords and such so my tables were gone, however I found the mytablespace.dbf so I hope that it is possible to recover? Please shed some light on this.

    Read the article

  • Performance tweaks and upgrades for VMWare Server 2

    - by sjohnston
    Our software department has a server running VMWare Server 2. We typically have 8-10 VMs running as test environments (Win XP and Server 08) for various versions of our software, and one VM that is used as a build server (Win XP). The host is running Server 2003 R2. It has 32GB RAM, 8 core Xeon 3.16GHz CPU, one disk for host OS and two raid disks for VMs. The majority of the time, this setup behaves very well and there are no complaints. Other times, the VMs can be very laggy. This is sometimes, but not always, correlated to heavy load on the build server. I'm a software developer, not an IT pro, but it seems to me that this machine should be beefy enough to handle this many VMs. Is this occasional performance hit likely just because we're hitting the limits of the hardware, or should I be looking for another culprit? From what I've read, I'm guessing if there's a bottleneck, it's probably disk I/O with all these VMs running off two disks (especially the build server). Would spreading the VMs over more disks, and/or switching to SSDs give us a significant performance boost? Other things I've read may increase performance: single virtual processor per VM removing/disabling unused virtual hardware preallocated disk space not using snapshots setting a reserved memory limit on the host and disabling VM memory swapping Can anyone confirm or deny if any of these improve performance? What other good tweaks have I missed?

    Read the article

  • Performance data collection for short-running, ephemeral servers

    - by ErikA
    We're building a medical image processing software stack, currently hosted on various AWS resources. As part of this application, we have a handful of long-running servers (database, load balancers, web application, etc.). Collecting performance data on those servers is quite simple - my go-to- recipe of Nagios (for monitoring/notifications) and Munin (for collection of performance data and displaying trends) will work just fine. However - as part of this application, we are constantly starting up and terminating compute instances on EC2. In typical usage, these compute instances start up, configure themselves, receive a job from a message queue, and then get to work processing that job, which takes anywhere from 15 minutes to over 8 hours. After job completion, these instances get terminated, never to be heard from again. What is a decent strategy for collecting performance data on these short-lived instances? I don't necessarily need monitoring on them - if they fail for whatever reason, our application will detect this and handle re-starting the job on another instance or raising the flag so an administrator can take a look at things. However, it still would be useful to collect information like CPU (user, idle, iowait, etc.), memory usage, network traffic, disk read/write data, etc. In our internal database, we track the instance ID of the machine that runs each job, and it would be quite helpful to be able to look up performance data for a specific instance ID for troubleshooting and profiling. Munin doesn't seem like a great candidate, as it requires maintaining a list of munin nodes in a text file - far from ideal for an environment with a high amount of churn, and for the short amount of time each node will be running, I'd rather keep the full-resolution data indefinitely than have RRD water down the data over time. In the end, my guess is that this will require a monitoring engine that: uses a database (MySQL, SQLite, etc.) for configuration and data storage exposes an API for adding/removing hosts and services Are there other things I should be thinking about when evaluating options? Perhaps I'm over-thinking this, though, and just ought to run sar at 1-minute intervals on these short-lived instances and collect the sar db files prior to termination.

    Read the article

  • SQL SERVER – Concurrency Basics – Guest Post by Vinod Kumar

    - by pinaldave
    This guest post is by Vinod Kumar. Vinod Kumar has worked with SQL Server extensively since joining the industry over a decade ago. Working on various versions from SQL Server 7.0, Oracle 7.3 and other database technologies – he now works with the Microsoft Technology Center (MTC) as a Technology Architect. Let us read the blog post in Vinod’s own voice. Learning is always fun when it comes to SQL Server and learning the basics again can be more fun. I did write about Transaction Logs and recovery over my blogs and the concept of simplifying the basics is a challenge. In the real world we always see checks and queues for a process – say railway reservation, banks, customer supports etc there is a process of line and queue to facilitate everyone. Shorter the queue higher is the efficiency of system (a.k.a higher is the concurrency). Every database does implement this using checks like locking, blocking mechanisms and they implement the standards in a way to facilitate higher concurrency. In this post, let us talk about the topic of Concurrency and what are the various aspects that one needs to know about concurrency inside SQL Server. Let us learn the concepts as one-liners: Concurrency can be defined as the ability of multiple processes to access or change shared data at the same time. The greater the number of concurrent user processes that can be active without interfering with each other, the greater the concurrency of the database system. Concurrency is reduced when a process that is changing data prevents other processes from reading that data or when a process that is reading data prevents other processes from changing that data. Concurrency is also affected when multiple processes are attempting to change the same data simultaneously. Two approaches to managing concurrent data access: Optimistic Concurrency Model Pessimistic Concurrency Model Concurrency Models Pessimistic Concurrency Default behavior: acquire locks to block access to data that another process is using. Assumes that enough data modification operations are in the system that any given read operation is likely affected by a data modification made by another user (assumes conflicts will occur). Avoids conflicts by acquiring a lock on data being read so no other processes can modify that data. Also acquires locks on data being modified so no other processes can access the data for either reading or modifying. Readers block writer, writers block readers and writers. Optimistic Concurrency Assumes that there are sufficiently few conflicting data modification operations in the system that any single transaction is unlikely to modify data that another transaction is modifying. Default behavior of optimistic concurrency is to use row versioning to allow data readers to see the state of the data before the modification occurs. Older versions of the data are saved so a process reading data can see the data as it was when the process started reading and not affected by any changes being made to that data. Processes modifying the data is unaffected by processes reading the data because the reader is accessing a saved version of the data rows. Readers do not block writers and writers do not block readers, but, writers can and will block writers. Transaction Processing A transaction is the basic unit of work in SQL Server. Transaction consists of SQL commands that read and update the database but the update is not considered final until a COMMIT command is issued (at least for an explicit transaction: marked with a BEGIN TRAN and the end is marked by a COMMIT TRAN or ROLLBACK TRAN). Transactions must exhibit all the ACID properties of a transaction. ACID Properties Transaction processing must guarantee the consistency and recoverability of SQL Server databases. Ensures all transactions are performed as a single unit of work regardless of hardware or system failure. A – Atomicity C – Consistency I – Isolation D- Durability Atomicity: Each transaction is treated as all or nothing – it either commits or aborts. Consistency: ensures that a transaction won’t allow the system to arrive at an incorrect logical state – the data must always be logically correct.  Consistency is honored even in the event of a system failure. Isolation: separates concurrent transactions from the updates of other incomplete transactions. SQL Server accomplishes isolation among transactions by locking data or creating row versions. Durability: After a transaction commits, the durability property ensures that the effects of the transaction persist even if a system failure occurs. If a system failure occurs while a transaction is in progress, the transaction is completely undone, leaving no partial effects on data. Transaction Dependencies In addition to supporting all four ACID properties, a transaction might exhibit few other behaviors (known as dependency problems or consistency problems). Lost Updates: Occur when two processes read the same data and both manipulate the data, changing its value and then both try to update the original data to the new value. The second process might overwrite the first update completely. Dirty Reads: Occurs when a process reads uncommitted data. If one process has changed data but not yet committed the change, another process reading the data will read it in an inconsistent state. Non-repeatable Reads: A read is non-repeatable if a process might get different values when reading the same data in two reads within the same transaction. This can happen when another process changes the data in between the reads that the first process is doing. Phantoms: Occurs when membership in a set changes. It occurs if two SELECT operations using the same predicate in the same transaction return a different number of rows. Isolation Levels SQL Server supports 5 isolation levels that control the behavior of read operations. Read Uncommitted All behaviors except for lost updates are possible. Implemented by allowing the read operations to not take any locks, and because of this, it won’t be blocked by conflicting locks acquired by other processes. The process can read data that another process has modified but not yet committed. When using the read uncommitted isolation level and scanning an entire table, SQL Server can decide to do an allocation order scan (in page-number order) instead of a logical order scan (following page pointers). If another process doing concurrent operations changes data and move rows to a new location in the table, the allocation order scan can end up reading the same row twice. Also can happen if you have read a row before it is updated and then an update moves the row to a higher page number than your scan encounters later. Performing an allocation order scan under Read Uncommitted can cause you to miss a row completely – can happen when a row on a high page number that hasn’t been read yet is updated and moved to a lower page number that has already been read. Read Committed Two varieties of read committed isolation: optimistic and pessimistic (default). Ensures that a read never reads data that another application hasn’t committed. If another transaction is updating data and has exclusive locks on data, your transaction will have to wait for the locks to be released. Your transaction must put share locks on data that are visited, which means that data might be unavailable for others to use. A share lock doesn’t prevent others from reading but prevents them from updating. Read committed (snapshot) ensures that an operation never reads uncommitted data, but not by forcing other processes to wait. SQL Server generates a version of the changed row with its previous committed values. Data being changed is still locked but other processes can see the previous versions of the data as it was before the update operation began. Repeatable Read This is a Pessimistic isolation level. Ensures that if a transaction revisits data or a query is reissued the data doesn’t change. That is, issuing the same query twice within a transaction cannot pickup any changes to data values made by another user’s transaction because no changes can be made by other transactions. However, this does allow phantom rows to appear. Preventing non-repeatable read is a desirable safeguard but cost is that all shared locks in a transaction must be held until the completion of the transaction. Snapshot Snapshot Isolation (SI) is an optimistic isolation level. Allows for processes to read older versions of committed data if the current version is locked. Difference between snapshot and read committed has to do with how old the older versions have to be. It’s possible to have two transactions executing simultaneously that give us a result that is not possible in any serial execution. Serializable This is the strongest of the pessimistic isolation level. Adds to repeatable read isolation level by ensuring that if a query is reissued rows were not added in the interim, i.e, phantoms do not appear. Preventing phantoms is another desirable safeguard, but cost of this extra safeguard is similar to that of repeatable read – all shared locks in a transaction must be held until the transaction completes. In addition serializable isolation level requires that you lock data that has been read but also data that doesn’t exist. Ex: if a SELECT returned no rows, you want it to return no. rows when the query is reissued. This is implemented in SQL Server by a special kind of lock called the key-range lock. Key-range locks require that there be an index on the column that defines the range of values. If there is no index on the column, serializable isolation requires a table lock. Gets its name from the fact that running multiple serializable transactions at the same time is equivalent of running them one at a time. Now that we understand the basics of what concurrency is, the subsequent blog posts will try to bring out the basics around locking, blocking, deadlocks because they are the fundamental blocks that make concurrency possible. Now if you are with me – let us continue learning for SQL Server Locking Basics. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Concurrency

    Read the article

  • Imperative vs. LINQ Performance on WP7

    - by Bil Simser
    Jesse Liberty had a nice post presenting the concepts around imperative, LINQ and fluent programming to populate a listbox. Check out the post as it’s a great example of some foundational things every .NET programmer should know. I was more interested in what the IL code that would be generated from imperative vs. LINQ was like and what the performance numbers are and how they differ. The code at the instruction level is interesting but not surprising. The imperative example with it’s creating lists and loops weighs in at about 60 instructions. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void ImperativeMethod() cil managed 2: { 3: .maxstack 3 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.List`1<int32> inLoop, 7: [2] int32 n, 8: [3] class [mscorlib]System.Collections.Generic.IEnumerator`1<int32> CS$5$0000, 9: [4] bool CS$4$0001) 10: L_0000: nop 11: L_0001: ldc.i4.1 12: L_0002: ldc.i4.s 50 13: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 14: L_0009: stloc.0 15: L_000a: newobj instance void [mscorlib]System.Collections.Generic.List`1<int32>::.ctor() 16: L_000f: stloc.1 17: L_0010: nop 18: L_0011: ldloc.0 19: L_0012: callvirt instance class [mscorlib]System.Collections.Generic.IEnumerator`1<!0> [mscorlib]System.Collections.Generic.IEnumerable`1<int32>::GetEnumerator() 20: L_0017: stloc.3 21: L_0018: br.s L_003a 22: L_001a: ldloc.3 23: L_001b: callvirt instance !0 [mscorlib]System.Collections.Generic.IEnumerator`1<int32>::get_Current() 24: L_0020: stloc.2 25: L_0021: nop 26: L_0022: ldloc.2 27: L_0023: ldc.i4.5 28: L_0024: cgt 29: L_0026: ldc.i4.0 30: L_0027: ceq 31: L_0029: stloc.s CS$4$0001 32: L_002b: ldloc.s CS$4$0001 33: L_002d: brtrue.s L_0039 34: L_002f: ldloc.1 35: L_0030: ldloc.2 36: L_0031: ldloc.2 37: L_0032: mul 38: L_0033: callvirt instance void [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0) 39: L_0038: nop 40: L_0039: nop 41: L_003a: ldloc.3 42: L_003b: callvirt instance bool [mscorlib]System.Collections.IEnumerator::MoveNext() 43: L_0040: stloc.s CS$4$0001 44: L_0042: ldloc.s CS$4$0001 45: L_0044: brtrue.s L_001a 46: L_0046: leave.s L_005a 47: L_0048: ldloc.3 48: L_0049: ldnull 49: L_004a: ceq 50: L_004c: stloc.s CS$4$0001 51: L_004e: ldloc.s CS$4$0001 52: L_0050: brtrue.s L_0059 53: L_0052: ldloc.3 54: L_0053: callvirt instance void [mscorlib]System.IDisposable::Dispose() 55: L_0058: nop 56: L_0059: endfinally 57: L_005a: nop 58: L_005b: ldarg.0 59: L_005c: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB1 60: L_0061: ldloc.1 61: L_0062: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 62: L_0067: nop 63: L_0068: ret 64: .try L_0018 to L_0048 finally handler L_0048 to L_005a 65: } 66:   67: Compare that to the IL generated for the LINQ version which has about half of the instructions and just gets the job done, no fluff. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void LINQMethod() cil managed 2: { 3: .maxstack 4 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> queryResult) 7: L_0000: nop 8: L_0001: ldc.i4.1 9: L_0002: ldc.i4.s 50 10: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 11: L_0009: stloc.0 12: L_000a: ldloc.0 13: L_000b: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 14: L_0010: brtrue.s L_0025 15: L_0012: ldnull 16: L_0013: ldftn bool PerfTest.MainPage::<LINQProgramming>b__4(int32) 17: L_0019: newobj instance void [System.Core]System.Func`2<int32, bool>::.ctor(object, native int) 18: L_001e: stsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 19: L_0023: br.s L_0025 20: L_0025: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 21: L_002a: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0> [System.Core]System.Linq.Enumerable::Where<int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, bool>) 22: L_002f: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 23: L_0034: brtrue.s L_0049 24: L_0036: ldnull 25: L_0037: ldftn int32 PerfTest.MainPage::<LINQProgramming>b__5(int32) 26: L_003d: newobj instance void [System.Core]System.Func`2<int32, int32>::.ctor(object, native int) 27: L_0042: stsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 28: L_0047: br.s L_0049 29: L_0049: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 30: L_004e: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!1> [System.Core]System.Linq.Enumerable::Select<int32, int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, !!1>) 31: L_0053: stloc.1 32: L_0054: ldarg.0 33: L_0055: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB2 34: L_005a: ldloc.1 35: L_005b: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 36: L_0060: nop 37: L_0061: ret 38: } Again, not surprising here but a good indicator that you should consider using LINQ where possible. In fact if you have ReSharper installed you’ll see a squiggly (technical term) in the imperative code that says “Hey Dude, I can convert this to LINQ if you want to be c00L!” (or something like that, it’s the 2010 geek version of Clippy). What about the fluent version? As Jon correctly pointed out in the comments, when you compare the IL for the LINQ code and the IL for the fluent code it’s the same. LINQ and the fluent interface are just syntactical sugar so you decide what you’re most comfortable with. At the end of the day they’re both the same. Now onto the numbers. Again I expected the imperative version to be better performing than the LINQ version (before I saw the IL that was generated). Call it womanly instinct. A gut feel. Whatever. Some of the numbers are interesting though. For Jesse’s example of 50 items, the numbers were interesting. The imperative sample clocked in at 7ms while the LINQ version completed in 4. As the number of items went up, the elapsed time didn’t necessarily climb exponentially. At 500 items they were pretty much the same and the results were similar up to about 50,000 items. After that I tried 500,000 items where the gap widened but not by much (2.2 seconds for imperative, 2.3 for LINQ). It wasn’t until I tried 5,000,000 items where things were noticeable. Imperative filled the list in 20 seconds while LINQ took 8 seconds longer (although personally I wouldn’t suggest you put 5 million items in a list unless you want your users showing up at your door with torches and pitchforks). Here’s the table with the full results. Method/Items 50 500 5,000 50,000 500,000 5,000,000 Imperative 7ms 7ms 38ms 223ms 2230ms 20974ms LINQ/Fluent 4ms 6ms 41ms 240ms 2310ms 28731ms Like I said, at the end of the day it’s not a huge difference and you really don’t want your users waiting around for 30 seconds on a mobile device filling lists. In fact if Windows Phone 7 detects you’re taking more than 10 seconds to do any one thing, it considers the app hung and shuts it down. The results here are for Windows Phone 7 but frankly they're the same for desktop and web apps so feel free to apply it generally. From a programming perspective, choose what you like. Some LINQ statements can get pretty hairy so I usually fall back with my simple mind and write it imperatively. If you really want to impress your friends, write it old school then let ReSharper do the hard work for! Happy programming!

    Read the article

  • Where is a good place to start to learn about custom caching in .Net

    - by John
    I'm looking to make some performance enhancements to our site, but I'm not sure exactly where to begin. We have some custom object caching, but I think that we can do better. Our Business We aggregate news stories on a news type of web site. We get approximately 500-1000 new stories per week. We have index pages that show various lists of the items and details pages that show the individual stories. Our Current Use case: Getting an Individual Story User makes a request The Data Access Layer(DAL) checks to see if the item is in cache and if item is fresh (15 minutes). If the item is not in cache or is not fresh, retrieve the item from SQL Server, save to cache and return to user. Problems with this approach The pull nature of caching means that users have to pay the waiting cost every time that the cache is refreshed. Once a story is published, it changes infrequently and I think that we should replace the pull model with something better. My initial thoughts My initial thought is that stories should ALL be stored locally in some type of dictionary. (Cache or is there another, better way?). If the story is not found, then make a trip to the database, update the local dictionary and send the item back. Since there may be occasional updates to stories, this should be an entirely process from the user. I watched a video by Brent Ozar, How StackOverflow Scales SQL Server, in which Brent states "the fastest database query is the one that you don't make". Where do I start? At this point, I don't know exactly what the solution is. Is it caching? Is there a better way of using local storage? Do I use a Dictionary, OrderedDictionary, List ? It seems daunting and I'm just looking for some good starting points to learn more about how to do this type of optimization.

    Read the article

< Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >