Search Results

Search found 37074 results on 1483 pages for 'define method'.

Page 153/1483 | < Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >

  • LINQ to SQL, how to write a method which checks if a row exists when we have multiple tables

    - by Beles
    Hi, I'm trying to write a method in C# which can take as parameter a tabletype, column and a columnvalue and check if the got a row with a with value the method looks like: public object GetRecordFromDatabase(Type tabletype, string columnname, string columnvalue) I'm using LINQ to SQL and need to to this in a generic way so I don't need to write each table I got in the DB. I have been doing this so far for each table, but with more than 70 of these it becomes cumbersome and boring to do. Is there a way to generate the following code dynamically, And swap out the hardcoded tablenames with the values from the parameterlist? In this example I have a table in the DB named tbl_nation, which the DataContext pluralizes to tbl_nations, and I'm checking the column for the value if (DB.tbl_nations.Count(c => c.code.Equals(columnvalue)) == 1) { return DB.tbl_nations.Single(c => c.code.Equals(columnvalue)); }

    Read the article

  • Delegate Method only Firing after 5 or so Button Presses?

    - by CoDEFRo
    I'm having the most bizarre problem which I'm not even close to figuring out. I have a button which fires a delegate method. Once upon a time it was working fine, but after making some changes to my code, now the delegate method only fires after I push the button x amount of times (the changes I made to the code had nothing to do with the infrastructure that connects the delegate together). It varies, it can be 5 times to 10 times. I used the analyzer to check for memory leaks and there aren't any. There is too much code for me to paste here (I don't even know where to start or where the problem could be), but I'm wondering if anyone has experienced this problem before, or what could be causing it? This is very odd and have no clue what could be causing it.

    Read the article

  • C# 4 Named Parameters for Overload Resolution

    - by Steve Michelotti
    C# 4 is getting a new feature called named parameters. Although this is a stand-alone feature, it is often used in conjunction with optional parameters. Last week when I was giving a presentation on C# 4, I got a question on a scenario regarding overload resolution that I had not considered before which yielded interesting results. Before I describe the scenario, a little background first. Named parameters is a well documented feature that works like this: suppose you have a method defined like this: 1: void DoWork(int num, string message = "Hello") 2: { 3: Console.WriteLine("Inside DoWork() - num: {0}, message: {1}", num, message); 4: } This enables you to call the method with any of these: 1: DoWork(21); 2: DoWork(num: 21); 3: DoWork(21, "abc"); 4: DoWork(num: 21, message: "abc"); and the corresponding results will be: Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc This is all pretty straight forward and well-documented. What is slightly more interesting is how resolution is handled with method overloads. Suppose we had a second overload for DoWork() that looked like this: 1: void DoWork(object num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } The first rule applied for method overload resolution in this case is that it looks for the most strongly-type match first.  Hence, since the second overload has System.Object as the parameter rather than Int32, this second overload will never be called for any of the 4 method calls above.  But suppose the method overload looked like this: 1: void DoWork(int num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } In this case, both overloads have the first parameter as Int32 so they both fulfill the first rule equally.  In this case the overload with the optional parameters will be ignored if the parameters are not specified. Therefore, the same 4 method calls from above would result in: Inside second overload: 21 Inside second overload: 21 Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc Even all this is pretty well documented. However, we can now consider the very interesting scenario I was presented with. The question was what happens if you change the parameter name in one of the overloads.  For example, what happens if you change the parameter *name* for the second overload like this: 1: void DoWork(int num2) 2: { 3: Console.WriteLine("Inside second overload: " + num2); 4: } In this case, the first 2 method calls will yield *different* results: 1: DoWork(21); 2: DoWork(num: 21); results in: Inside second overload: 21 Inside DoWork() - num: 21, message: Hello We know the first method call will go to the second overload because of normal method overload resolution rules which ignore the optional parameters.  But for the second call, even though all the same rules apply, the compiler will allow you to specify a named parameter which, in effect, overrides the typical rules and directs the call to the first overload. Keep in mind this would only work if the method overloads had different parameter names for the same types (which in itself is weird). But it is a situation I had not considered before and it is one in which you should be aware of the rules that the C# 4 compiler applies.

    Read the article

  • Anatomy of a .NET Assembly - Signature encodings

    - by Simon Cooper
    If you've just joined this series, I highly recommend you read the previous posts in this series, starting here, or at least these posts, covering the CLR metadata tables. Before we look at custom attribute encoding, we first need to have a brief look at how signatures are encoded in an assembly in general. Signature types There are several types of signatures in an assembly, all of which share a common base representation, and are all stored as binary blobs in the #Blob heap, referenced by an offset from various metadata tables. The types of signatures are: Method definition and method reference signatures. Field signatures Property signatures Method local variables. These are referenced from the StandAloneSig table, which is then referenced by method body headers. Generic type specifications. These represent a particular instantiation of a generic type. Generic method specifications. Similarly, these represent a particular instantiation of a generic method. All these signatures share the same underlying mechanism to represent a type Representing a type All metadata signatures are based around the ELEMENT_TYPE structure. This assigns a number to each 'built-in' type in the framework; for example, Uint16 is 0x07, String is 0x0e, and Object is 0x1c. Byte codes are also used to indicate SzArrays, multi-dimensional arrays, custom types, and generic type and method variables. However, these require some further information. Firstly, custom types (ie not one of the built-in types). These require you to specify the 4-byte TypeDefOrRef coded token after the CLASS (0x12) or VALUETYPE (0x11) element type. This 4-byte value is stored in a compressed format before being written out to disk (for more excruciating details, you can refer to the CLI specification). SzArrays simply have the array item type after the SZARRAY byte (0x1d). Multidimensional arrays follow the ARRAY element type with a series of compressed integers indicating the number of dimensions, and the size and lower bound of each dimension. Generic variables are simply followed by the index of the generic variable they refer to. There are other additions as well, for example, a specific byte value indicates a method parameter passed by reference (BYREF), and other values indicating custom modifiers. Some examples... To demonstrate, here's a few examples and what the resulting blobs in the #Blob heap will look like. Each name in capitals corresponds to a particular byte value in the ELEMENT_TYPE or CALLCONV structure, and coded tokens to custom types are represented by the type name in curly brackets. A simple field: int intField; FIELD I4 A field of an array of a generic type parameter (assuming T is the first generic parameter of the containing type): T[] genArrayField FIELD SZARRAY VAR 0 An instance method signature (note how the number of parameters does not include the return type): instance string MyMethod(MyType, int&, bool[][]); HASTHIS DEFAULT 3 STRING CLASS {MyType} BYREF I4 SZARRAY SZARRAY BOOLEAN A generic type instantiation: MyGenericType<MyType, MyStruct> GENERICINST CLASS {MyGenericType} 2 CLASS {MyType} VALUETYPE {MyStruct} For more complicated examples, in the following C# type declaration: GenericType<T> : GenericBaseType<object[], T, GenericType<T>> { ... } the Extends field of the TypeDef for GenericType will point to a TypeSpec with the following blob: GENERICINST CLASS {GenericBaseType} 3 SZARRAY OBJECT VAR 0 GENERICINST CLASS {GenericType} 1 VAR 0 And a static generic method signature (generic parameters on types are referenced using VAR, generic parameters on methods using MVAR): TResult[] GenericMethod<TInput, TResult>( TInput, System.Converter<TInput, TOutput>); GENERIC 2 2 SZARRAY MVAR 1 MVAR 0 GENERICINST CLASS {System.Converter} 2 MVAR 0 MVAR 1 As you can see, complicated signatures are recursively built up out of quite simple building blocks to represent all the possible variations in a .NET assembly. Now we've looked at the basics of normal method signatures, in my next post I'll look at custom attribute application signatures, and how they are different to normal signatures.

    Read the article

  • How can I enable PHP5 for a site? Having problems with every single method.

    - by John Stephens
    I'm working on a client site that is hosted on someone's DIY Debian Linux server [Apache/1.3.33 (Debian GNU/Linux)], and I'm trying to install a script that requires PHP5. By default, the server parses .php files with PHP 4.3.10-22, which is configured at /etc/php4/apache/php.ini, according to phpinfo(). On the server I can see a config directory for PHP5 adjacent to the PHP4 directory: /etc/php5.0/apache2/php.ini. I have tried multiple methods to enable PHP5 for the document root where the site's files are hosted, including all available methods mentioned here. By far, the most common suggestion I've found is to add one or both of the following lines to the site's .htaccess file: AddHandler application/x-httpd-php5 .php AddType application/x-httpd-php5 .php Trouble is, when either or both of those lines are present, the site forces my browser to download any .php files requested, without parsing the PHP at all. All of the other methods mentioned in the above article cause a 500 Internal Server Error. There is no hosting control panel I can access in a browser to enable PHP5 for the site, but I do have shell access. When I asked the server administrator about this issue, he encouraged me to search for the answer on Google. Where could I begin to troubleshoot this issue? Are there ways to test or verify the server's specific PHP5 installation and configuration, using the command line or some other method? Do you have other suggestions to enable PHP5?

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

  • Delegates in .NET: how are they constructed ?

    - by Saulius
    While inspecting delegates in C# and .NET in general, I noticed some interesting facts: Creating a delegate in C# creates a class derived from MulticastDelegate with a constructor: .method public hidebysig specialname rtspecialname instance void .ctor(object 'object', native int 'method') runtime managed { } Meaning that it expects the instance and a pointer to the method. Yet the syntax of constructing a delegate in C# suggests that it has a constructor new MyDelegate(int () target) where I can recognise int () as a function instance (int *target() would be a function pointer in C++). So obviously the C# compiler picks out the correct method from the method group defined by the function name and constructs the delegate. So the first question would be, where does the C# compiler (or Visual Studio, to be precise) pick this constructor signature from ? I did not notice any special attributes or something that would make a distinction. Is this some sort of compiler/visualstudio magic ? If not, is the T (args) target construction valid in C# ? I did not manage to get anything with it to compile, e.g.: int () target = MyMethod; is invalid, so is doing anything with MyMetod, e.g. calling .ToString() on it (well this does make some sense, since that is technically a method group, but I imagine it should be possible to explicitly pick out a method by casting, e.g. (int())MyFunction. So is all of this purely compiler magic ? Looking at the construction through reflector reveals yet another syntax: Func CS$1$0000 = new Func(null, (IntPtr) Foo); This is consistent with the disassembled constructor signature, yet this does not compile! One final interesting note is that the classes Delegate and MulticastDelegate have yet another sets of constructors: .method family hidebysig specialname rtspecialname instance void .ctor(class System.Type target, string 'method') cil managed Where does the transition from an instance and method pointer to a type and a string method name occur ? Can this be explained by the runtime managed keywords in the custom delegate constructor signature, i.e. does the runtime do it's job here ?

    Read the article

  • Conflicting PACKAGE_NAME and other macros when using autotools.

    - by baol
    When using autotools (with a config.h file) for both a library and a software built on that library the compiler complains about a redefinition of some macros (PACKAGE_NAME, PACKAGE_TARNAME and so on). How can I prevent this? The config.h file is needed in the library to propagate it's setting to the software that use it. Right now I have a wrapper script library_config.h that includes the original config.h and provides defaults when the user is not using autotools, but even undefining the macros in that package I get the redefinition warning from gcc. #ifndef LIB_CONFIG_H #define LIB_CONFIG_H #ifdef HAVE_CONFIG_H # include "config.h" # undef PACKAGE # undef PACKAGE_BUGREPORT # undef PACKAGE_NAME # undef PACKAGE_STRING # undef PACKAGE_TARNAME # undef PACKAGE_VERSION # undef VERSION #else # if defined (WIN32) # define HAVE_UNORDERED_MAP 1 # define TR1_MIXED_NAMESPACE 1 # elif defined (__GXX_EXPERIMENTAL_CXX0X__) # define HAVE_UNORDERED_MAP 1 # else # define HAVE_TR1_UNORDERED_MAP 1 # endif #endif #endif I believe the best option would be to have a library without that macros: How can I avoid the definition of PACKAGE, PACKAGE_NAME and so on in the library when using autotools?

    Read the article

  • Which OpenGL version is installed?

    - by René Nyffenegger
    I recently tried to lay my hands on OpenGL. Trying to grasp the API, I learned (or was given the advice) that I shouldn't use glBegin and glEnd anymore, since those are deprecated, but should start with OpenGL 3.1, instead. As I didn't know that the version used makes such a difference, I didn't pay much attention as to which version I actually have installed on my computer. And, as far as I can see, there is no glVersion or similar call that I could use to determine that version. I am using MinGW and I found the following lines in c:\MinGW\include\GL\gl.h: /* * Mesa 3-D graphics library * Version: 4.0 [more lines] */ [more lines] #define GL_VERSION_1_1 1 #if !defined(__WIN32__) #define GL_VERSION_1_2 1 #define GL_VERSION_1_3 1 #define GL_ARB_imaging 1 #endif [more lines] #define GL_VERSION 0x1F02 which, to me, indicates, that the installed version is as low as 1.3. Is this the case or how could I verify my suspicion? Also, where would I find a later version if I have 1.3 only?

    Read the article

  • PLT Scheme URL dispatch

    - by Inaimathi
    I'm trying to hook up URL dispatch with PLT Scheme. I've taken a look at the tutorial and the server documentation. I can figure out how to route requests to the same servlets. Specific example: (define (start request) (blog-dispatch request)) (define-values (blog-dispatch blog-url) (dispatch-rules (("") list-posts) (("posts" (string-arg)) review-post) (("archive" (integer-arg) (integer-arg)) review-archive) (else list-posts))) (define (list-posts req) `(list-posts)) (define (review-post req p) `(review-post ,p)) (define (review-archive req y m) `(review-archive ,y ,m)) Assuming the above code running on a server listening 8080, localhost:8080/ goes to a page that says "list-posts". Going to localhost:8080/posts/test goes to a PLT "file not found" page (with the above code, I'd expect it to go to a page that says "review-post test"). It feels like I'm missing something small and obvious. Can anyone give me a hint?

    Read the article

  • Can one .PHP file edit another?

    - by Ole Jak
    So I have a file for constants. I want to let user define them and then edit my .php filr with that global constants (not xml - real PHP file ) With such code for example <?php // Database Constants define("DB_SERVER", "localhost"); define("DB_USER", "root"); define("DB_PASS", "000000"); define("DB_NAME", "cms"); ?> How to edit this .php file from another PHP file? Is it possible? Btw in future I want to implement not only constants redefining but some smart code that will be able to modify itself.

    Read the article

  • What is prefered method to set consistence font-size and line height for website using em?

    - by metal-gear-solid
    What is the best method to set cross-browser consistence typography (font-size and line height) for whole site using em for Fixed width {Width:970px}, centered website? I usually get design from client with multiple font size and line heights at various places in design. for some good reason i still use em without getting nested element problem and font-size inconsistencies in IE and others. then after setting how to manage and update easily ,and how to calculate ems I want to set easily manageable font sizes and I want to set Line height manually (because it can be different for various places in design. And for which things we should define line-height or for which not? How to set font-size and line-height to get consistent result. and if i'm using em for font-sizing then should i also use bottom-margin of h1, p, li etc in em? HTML {} BODY {} P {} a {} ul li a {} ul li ul li a {} p img {float:left} td,th { }

    Read the article

  • Objective-C Custom extend

    - by ryanjm.mp
    I have a couple classes that have nearly identical code. Only a string or two is different between them. What I would like to do is to make them from another class that defines those functions and then uses constants or something else to define those strings that are different. I'm not sure if "___" is inheritance or extending or what. That is what I need help with. For example: objectA.m: -(void)helloWorld { NSLog("Hello %@",child.name); } objectBob.m: #define name @"Bob" objectJoe.m #define name @"Joe" (I'm not sure if it's legal to define strings, but this gets the point across) It would be ideal if objectBob.m and objectJoe.m didn't have to even define the methods, just their relationship to objectA.m. Is there any way to do something like this? If all else fails I'll just make objectA.m: -(void)helloWorld:(NSString *name) { NSLog("Hello %@",name); } And have the other files call that function (and just #import objectA.m).

    Read the article

  • how to solve nested list programs [closed]

    - by riya
    write a function to get most popular car that accepts a car detail as input and returns the most popular car name along with its average rating .Each element of car details list is a sublist that provides the below information about a car (a)name of a car(b)car price (c) list of ratings obtained by car from various agencies.Incase two cars have the same average rating then the car with the lesser price qualifies as most popular car? here's my solution-: (define-struct cardetails ("name" price list of '(ratings)) (define car1 (make-cardetails "toyota" 123 '( 1 2 3))) (define car2 (make-cardetails "santro" 321 '( 2 2 3))) (define car3 (make-cardetails "toyota" 100 '( 1 2 3))) (define cardetailslist(list(car1) (car2)(car 3))) (let loop ((count 0)) (let (len (length cardetailslist)) (if(< count len) (string-ref (string-ref n)0) now please tell me how to find maximum average and display car name.it's not a homework question tomorrow is my test and we have not been taught this concept in class although it is very important from test point of view

    Read the article

  • Including C header file with lots of global variables

    - by Costi
    I have an include file with 100+ global variables. It's being used in a library, but some programs that I'm linking the lib to also need to access the globals. The way it was built: // In one library .c file #define Extern // In the programs that use the globals #define Extern extern // In the .h file Extern int a,b,c; I had a hard time understanding why the original programmer did that so I removed that define Extern stuff. Now I think I understand the thing about TU with the help of stackoverflow: 1, 2, 3. Now I understand that I should define the global variables in one .c file in the library and use extern in the .h file. The problem is that I don't want to duplicate code. Should I go back to that #define Extern voodoo?

    Read the article

  • Speed up executable program Linux. Bit Toggling

    - by AK_47
    I have a ZyBo circuit board which has a ArmV7 processor. I wrote a C program to output a clock and a corresponding data sequence on a PMOD. The PMOD has a switching speed of up to 50MHz. However, my program's created clock only has a max frequency of 115 Hz. I need this program to output as fast as possible because the PMOD I'm using is capable of 50MHz. I compiled my program with the following code line: gcc -ofast (c_program) Here is some sample code: #include <stdio.h> #include <stdlib.h> #define ARRAYSIZE 511 //________________________________________ //macro for the SIGNAL PMOD //________________________________________ //DATA //ZYBO Use Pin JE1 #define INIT_SIGNAL system("echo 54 > /sys/class/gpio/export"); system("echo out > /sys/class/gpio/gpio54/direction"); #define SIGNAL_ON system("echo 1 > /sys/class/gpio/gpio54/value"); #define SIGNAL_OFF system("echo 0 > /sys/class/gpio/gpio54/value"); //________________________________________ //macro for the "CLOCK" PMOD //________________________________________ //CLOCK //ZYBO Use Pin JE4 #define INIT_MYCLOCK system("echo 57 > /sys/class/gpio/export"); system("echo out > /sys/class/gpio/gpio57/direction"); #define MYCLOCK_ON system("echo 1 > /sys/class/gpio/gpio57/value"); #define MYCLOCK_OFF system("echo 0 > /sys/class/gpio/gpio57/value"); int main(void){ int myarray[ARRAYSIZE] = {//hard coded array for signal data 1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,0,0,1,0,0,1,1,1,0,0,1,1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,0,0,1,0,1,0,0,1,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,0,1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,1,0,0,1,1,1,0,0,1,1,0,1,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,1,1,1,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,1,1,0,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,1,0,1,1,0,1,1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0 }; INIT_SIGNAL INIT_MYCLOCK; //infinite loop int i; do{ i = 0; do{ /* 1020 is chosen because it is twice the size needed allowing for the changes in the clock. (511= 0-510, 510*2= 1020 ==> 0-1020 needed, so 1021 it is) */ if((i%2)==0) { MYCLOCK_ON; if(myarray[i/2] == 1){ SIGNAL_ON; }else{ SIGNAL_OFF; } } else if((i%2)==1) { MYCLOCK_OFF; //dont need to change the signal since it will just stay at whatever it was. } ++i; } while(i < 1021); } while(1); return 0; } I'm using the 'system' call to tell the system to output 1 volt or 0 volts onto a pin on the board (to represent the data signal and clock signal. One pin for the data and another for the clock). That was the only way I knew to tell the system to output a voltage. What can I do to make my executable program output to be at least in the magnitude of MegaHertz?

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

  • Is base method able to use derived base data members?

    - by iTayb
    Lets assume we have the following code: abstract class Base1 { protected int num; } class Der1:Base1 { protected Color color; protected string name; } class Der2:Base1 { protected DateTime dthen; } and so on. An array of base1 type exists and includes many objects created out of classes that are derived from base1. Is it possible to define the toString() method in the base class only? something like: public override string toString() { if (this is Der1) return "num = " + this.num + "color = " + this.color.toString() + " name = " this.name; if (this is Der2) return "num = " + this.num + "dthen = " + this.dthen.toString(); // and so on ... } Thank you very much :) P.S. This is not an homework question. I've just wondered about.

    Read the article

  • Rails 3 namespacing requires model to be defined twice?

    - by RSG
    I'm pulling my hair out trying to understand namespacing in Rails 3. I've tried following a few different tutorials, and the only way I can get my models to work is if I define my model in both the base directory and my namespace directory. If I only define the model in the namespace directory it expects it to define both Model and Namespace::Model, as below: LoadError (Expected .../app/models/plugins/chat.rb to define Chat): or LoadError (Expected .../app/models/plugins/chat.rb to define Plugins::Chat): I'm sure I'm missing something obvious, but I could really use a pointer in the right direction. Here are the relevant excerpts. /models/plugins/chat.rb class Plugins::Chat include ActiveModel::Validations include ActiveModel::Conversion extend ActiveModel::Naming ... end /controllers/plugins/chats_controller.rb class Plugins::ChatsController < Plugins::ApplicationController load_and_authorize_resource ... end /config/routes.rb namespace :plugins do resources :chats end /config/application.rb config.autoload_paths += Dir["#{config.root}/app/models/**/"]

    Read the article

  • How can I get class, property, and method data from files without executing their code, similar to R

    - by Chris
    I have a bunch of PHP files with classes, in them (although I can't be 100% sure that they won't have code outside of classes in them too), and I need to parse these files to get information about the classes, such as the names of the classes, the methods, the properties, whether they are private/public/static, etc. I looked at PHP's reflection classes and this is very close to what I want but the reflection doesn't seem to use external files and it appears to need to define the classes first. I need to make sure that none of the code is executed and I will be editing the files so I can't guarantee that they will even be error-free. Any suggestions? Thanks.

    Read the article

  • Is it possible in Scala to force the caller to specify a type parameter for a polymorphic method ?

    - by Alex Kravets
    //API class Node class Person extends Node object Finder { def find[T <: Node](name: String): T = doFind(name).asInstanceOf[T] } //Call site (correct) val person = find[Person]("joe") //Call site (dies with a ClassCast inside b/c inferred type is Nothing) val person = find("joe") In the code above the client site "forgot" to specify the type parameter, as the API writer I want that to mean "just return Node". Is there any way to define a generic method (not a class) to achieve this (or equivalent). Note: using a manifest inside the implementation to do the cast if (manifest != scala.reflect.Manifest.Nothing) won't compile ... I have a nagging feeling that some Scala Wizard knows how to use Predef.<:< for this :-) Ideas ?

    Read the article

  • Extra line breaks inserted in MrEd text%

    - by Jesse Millikan
    In a DrScheme project, I'm using a MrEd editor-canvas% with text% and inserting a string from a literal in a Scheme file. This results in an extra blank line in the editor for each line of text I'm trying to insert. Is this a Windows vs. Unix linebreak problem? I can't find anything about text% treats line breaks in the documentation. ; Inside a class definition: (define/public (edit-pattern p j b d h) (send input-beat set-value (number->string b)) (send input-dwell set-value (number->string d)) (send hold-beats set-value (number->string h)) (send juggler-t erase) ; Why do these add extra newlines (send juggler-t insert j) (send pattern-t erase) (send pattern-t insert p)) (define juggler-ec (new editor-canvas% [parent this] [line-count 12])) (define juggler-t (new text%)) (send juggler-ec set-editor juggler-t) (define pattern-ec (new editor-canvas% [parent this] [line-count 20])) (define pattern-t (new text%)) (send pattern-ec set-editor pattern-t) ; Lots of other stuff...

    Read the article

< Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >