Search Results

Search found 12107 results on 485 pages for 'pinned objects'.

Page 154/485 | < Previous Page | 150 151 152 153 154 155 156 157 158 159 160 161  | Next Page >

  • Performance issues with visibility detection and object transparency

    - by maul
    I'm working on a 3d game that has a view similar to classic isometric games (diablo, etc.). One of the things I'm trying to implement is the effect of turning walls transparent when the player walks behind them. By itself this is not a huge issue, but I'm having trouble determining which walls should be transparent exactly. I can't use a circle or square mask. There are a lot of cases where the wall piece at the same (relative) position has different visibility depending on the surrounding area. With the help of a friend I came up with this algorithm: Create a grid around the player that contains a lot of "visibility points" (my game is semi tile-based so I create one point for every tile on the grid) - the size of the square's side is close to the radius where I make objects transparent. I found 6x6 to be a good value, so that's 36 visibility points total. For every visibility point on the grid, check if that point is in the player's line of sight. For every visibility point that is in the LOS, cast a ray from the camera to that point and mark all objects the ray hits as transparent. This algorithm works - not perfectly, but only requires some tuning - however this is very slow. As you can see, it requries 36 ray casts minimum, but most of the time 60-70 depending on the position. That's simply too much for the CPU. Is there a better way to do this? I'm using Unity 3D but I'm not looking for an engine-specific solution.

    Read the article

  • LibGdx efficient data saving/loading?

    - by grimrader22
    Currently, my LibGDX game consists of a 512 x 512 map of Tiles and entities such as players and monsters. I am wondering how to efficiently save and load the data of my levels. At the moment I am using JSON serialization for each class I want to save. I implement the Json.Serializable interface for all of these classes and write only the variables that are necessary. So my map consists of 512 x 512 tiles, that's 260,000 tiles. Each tile on the map consists of a Tile object, which points to some final Tile object like a GRASS_TILE or a STONE_TILE. When I serialize each level tile, the final Tile that it points to is re-serialized over and over again, so if I have 100 Tiles all pointing to GRASS_TILE, the data of GRASS_TILE is written 100 times over. When I go to load/deserialize my objects, 100 GrassTile objects are created, but they are each their own object. They no longer point to the final tile object. I feel like this reading/writing files very slow. If I were to abandon JSON serialization, to my knowledge my next best option would be saving the level data to a sql database. Unless there is a way to speed up serializing/deserializing 260,000 tiles I may have to do this. Is this a good idea? Could I really write that many tiles to the database efficiently? To sum all this up, I am trying to save my levels using JSON serialization, but it is VERY slow. What other options do I have for saving the data of so many tiles. I also must note that the JSON serialization is not slow on a PC, it is only VERY slow on a mobile device. Since file writing/reading is so slow on mobile devices, what can I do?

    Read the article

  • Purpose of "new" keyword

    - by Channel72
    The new keyword in languages like Java, Javascript, and C# creates a new instance of a class. This syntax seems to have been inherited from C++, where new is used specifically to allocate a new instance of a class on the heap, and return a pointer to the new instance. In C++, this is not the only way to construct an object. You can also construct an object on the stack, without using new - and in fact, this way of constructing objects is much more common in C++. So, coming from a C++ background, the new keyword in languages like Java, Javascript, and C# seemed natural and obvious to me. Then I started to learn Python, which doesn't have the new keyword. In Python, an instance is constructed simply by calling the constructor, like: f = Foo() At first, this seemed a bit off to me, until it occurred to me that there's no reason for Python to have new, because everything is an object so there's no need to disambiguate between various constructor syntaxes. But then I thought - what's really the point of new in Java? Why should we say Object o = new Object();? Why not just Object o = Object();? In C++ there's definitely a need for new, since we need to distinguish between allocating on the heap and allocating on the stack, but in Java all objects are constructed on the heap, so why even have the new keyword? The same question could be asked for Javascript. In C#, which I'm much less familiar with, I think new may have some purpose in terms of distinguishing between object types and value types, but I'm not sure. Regardless, it seems to me that many languages which came after C++ simply "inherited" the new keyword - without really needing it. It's almost like a vestigial keyword. We don't seem to need it for any reason, and yet it's there. Question: Am I correct about this? Or is there some compelling reason that new needs to be in C++-inspired memory-managed languages like Java, Javascript and C#?

    Read the article

  • Refactoring this code that produces a reverse-lookup hash from another hash

    - by Frank Joseph Mattia
    This code is based on the idea of a Form Object http://blog.codeclimate.com/blog/2012/10/17/7-ways-to-decompose-fat-activerecord-models/ (see #3 if unfamiliar with the concept). My actual code in question may be found here: https://gist.github.com/frankjmattia/82a9945f30bde29eba88 The code takes a hash of objects/attributes and creates a reverse lookup hash to keep track of their delegations to do this. delegate :first_name, :email, to: :user, prefix: true But I am manually creating the delegations from a hash like this: DELEGATIONS = { user: [ :first_name, :email ] } At runtime when I want to look up the translated attribute names for the objects, all I have to go on are the delegated/prefixed (have to use a prefix to avoid naming collisions) attribute names like :user_first_name which aren't in sync with the rails i18n way of doing it: en: activerecord: attributes: user: email: 'Email Address' The code I have take the above delegations hash and turns it into a lookup table so when I override human_attribute_name I can get back the original attribute name and its class. Then I send #human_attribute_name to the original class with the original attribute name as its argument. The code I've come up with works but it is ugly to say the least. I've never really used #inject so this was a crash course for me and am quite unsure if this code effective way of solving my problem. Could someone recommend a simpler solution that does not require a reverse lookup table or does that seem like the right way to go? Thanks, - FJM

    Read the article

  • Bullet Physic: Transform body after adding

    - by Mathias Hölzl
    I would like to transform a rigidbody after adding it to the btDiscreteDynamicsWorld. When I use the CF_KINEMATIC_OBJECT flag I am able to transform it but it's static (no collision response/gravity). When I don't use the CF_KINEMATIC_OBJECT flag the transform doesn't gets applied. So how to I transform non-static objects in bullet? DemoCode: btBoxShape* colShape = new btBoxShape(btVector3(SCALING*1,SCALING*1,SCALING*1)); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); body->setCollisionFlags(body->getCollisionFlags()|btCollisionObject::CF_KINEMATIC_OBJECT); body->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addRigidBody(body); startTransform.setOrigin(SCALING*btVector3( btScalar(0), btScalar(20), btScalar(0) )); body->getMotionState()->setWorldTransform(startTransform);

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Understanding Visitor Pattern

    - by Nezreli
    I have a hierarchy of classes that represents GUI controls. Something like this: Control-ContainerControl-Form I have to implement a series of algoritms that work with objects doing various stuff and I'm thinking that Visitor pattern would be the cleanest solution. Let take for example an algorithm which creates a Xml representaion of a hierarchy of objects. Using 'classic' approach I would do this: public abstract class Control { public virtual XmlElement ToXML(XmlDocument document) { XmlElement xml = document.CreateElement(this.GetType().Name); // Create element, fill it with attributes declared with control return xml; } } public abstract class ContainerControl : Control { public override XmlElement ToXML(XmlDocument document) { XmlElement xml = base.ToXML(document); // Use forech to fill XmlElement with child XmlElements return xml; } } public class Form : ContainerControl { public override XmlElement ToXML(XmlDocument document) { XmlElement xml = base.ToXML(document); // Fill remaining elements declared in Form class return xml; } } But I'm not sure how to do this with visitor pattern. This is the basic implementation: public class ToXmlVisitor : IVisitor { public void Visit(Form form) { } } Since even the abstract classes help with implementation I'm not sure how to do that properly in ToXmlVisitor. Perhaps there is a better solution to this problem. The reason that I'm considering Visitor pattern is that some algorithms will need references not available in project where the classes are implemented and there is a number of different algorithms so I'm avoiding large classes. Any thoughts are welcome.

    Read the article

  • Scale a game object to Bounds

    - by Spikeh
    I'm trying to scale a lot of dynamically created game objects in Unity3D to the bounds of a sphere collider, based on the size of their current mesh. Each object has a different scale and mesh size. Some are bigger than the AABB of the collider, and some are smaller. Here's the script I've written so far: private void ScaleToCollider(GameObject objectToScale, SphereCollider sphere) { var currentScale = objectToScale.transform.localScale; var currentSize = objectToScale.GetMeshHierarchyBounds().size; var targetSize = (sphere.radius * 2); var newScale = new Vector3 { x = targetSize * currentScale.x / currentSize.x, y = targetSize * currentScale.y / currentSize.y, z = targetSize * currentScale.z / currentSize.z }; Debug.Log("{0} Current scale: {1}, targetSize: {2}, currentSize: {3}, newScale: {4}, currentScale.x: {5}, currentSize.x: {6}", objectToScale.name, currentScale, targetSize, currentSize, newScale, currentScale.x, currentSize.x); //DoorDevice_meshBase Current scale: (0.1, 4.0, 3.0), targetSize: 5, currentSize: (2.9, 4.0, 1.1), newScale: (0.2, 5.0, 13.4), currentScale.x: 0.125, currentSize.x: 2.869114 //RedControlPanelForAirlock_meshBase Current scale: (1.0, 1.0, 1.0), targetSize: 5, currentSize: (0.0, 0.3, 0.2), newScale: (147.1, 16.7, 25.0), currentScale.x: 1, currentSize.x: 0.03400017 objectToScale.transform.localScale = newScale; } And the supporting extension method: public static Bounds GetMeshHierarchyBounds(this GameObject go) { var bounds = new Bounds(); // Not used, but a struct needs to be instantiated if (go.renderer != null) { bounds = go.renderer.bounds; // Make sure the parent is included Debug.Log("Found parent bounds: " + bounds); //bounds.Encapsulate(go.renderer.bounds); } foreach (var c in go.GetComponentsInChildren<MeshRenderer>()) { Debug.Log("Found {0} bounds are {1}", c.name, c.bounds); if (bounds.size == Vector3.zero) { bounds = c.bounds; } else { bounds.Encapsulate(c.bounds); } } return bounds; } After the re-scale, there doesn't seem to be any consistency to the results - some objects with completely uniform scales (x,y,z) seem to resize correctly, but others don't :| Its one of those things I've been trying to fix for so long I've lost all grasp on any of the logic :| Any help would be appreciated!

    Read the article

  • Partial upgrade on 12.04, how to stop nagging after locking to a working NVIDIA & xorg

    - by alsk
    How to stop the upgrade manager from offering updates and upgrades that potentially would harm my working 2D and 3D graphics? Finally, I got 12.04 working as it should: with nvidia-173 drivers by downgrading xorg and locking the version: On my 32-bit system on Athlon64, with (Albatron) NVIDIA GeForce FX5700XT, locked (/pinned) to xorg 1:7.6-7ubuntu7, xserver-xorg-core 2:11.1-0obuntu10.07, nvidia-173 173.14.35-0ubuntu0.2? An annoying thing left is that every time the updates are checked, I get warning of partial updates, and ambiguous options of "partial update" and "close". Ambiguous in that sense that if I click close, I will get option to update a few packages, which has been OK, while "partial update" would like to update my kernel to 3.2, alter xorg, remove nvidia-173 etc., and update mesa etc. This is not what I call appropriate, after locking XORG and NVIDIA drivers to working ones. One may say according to package management logic it may be correct, but to me as an user it makes little sense. Last Ubuntu that worked without big mess for me was 10.10, hence I will not put 12.10 to my "production" system, until I can be sure it will not trash the system again. P.S. Is there a recommended way to keep NVIDIA GeForce FX working with 3D on Ubuntu... in future?

    Read the article

  • Advantages of Singleton Class over Static Class?

    Point 1) Singleton We can get the object of singleton and then pass to other methods. Static Class We can not pass static class to other methods as we pass objects Point 2) Singleton In future, it is easy to change the logic of of creating objects to some pooling mechanism. Static Class Very difficult to implement some pooling logic in case of static class. We would need to make that class as non-static and then make all the methods non-static methods, So entire your code needs to be changed. Point3:) Singleton Can Singletone class be inherited to subclass? Singleton class does not say any restriction of Inheritence. So we should be able to do this as long as subclass is also inheritence.There's nothing fundamentally wrong with subclassing a class that is intended to be a singleton. There are many reasons you might want to do it. and there are many ways to accomplish it. It depends on language you use. Static Class We can not inherit Static class to another Static class in C#. Think about it this way: you access static members via type name, like this: MyStaticType.MyStaticMember(); Were you to inherit from that class, you would have to access it via the new type name: MyNewType.MyStaticMember(); Thus, the new item bears no relationships to the original when used in code. There would be no way to take advantage of any inheritance relationship for things like polymorphism. span.fullpost {display:none;}

    Read the article

  • Meaning of offset in pygame Mask.overlap methods

    - by Alan
    I have a situation in which two rectangles collide, and I have to detect how much did they collide so so I can redraw the objects in a way that they are only touching each others edges. It's a situation in which a moving ball should hit a completely unmovable wall and instantly stop moving. Since the ball sometimes moves multiple pixels per screen refresh, it it possible that it enters the wall with more that half its surface when the collision is detected, in which case i want to shift it position back to the point where it only touches the edges of the wall. Here is the conceptual image it: I decided to implement this with masks, and thought that i could supply the masks of both objects (wall and ball) and get the surface (as a square) of their intersection. However, there is also the offset parameter which i don't understand. Here are the docs for the method: Mask.overlap Returns the point of intersection if the masks overlap with the given offset - or None if it does not overlap. Mask.overlap(othermask, offset) -> x,y The overlap tests uses the following offsets (which may be negative): +----+----------.. |A | yoffset | +-+----------.. +--|B |xoffset | | : :

    Read the article

  • Do you tend to write your own name or your company name in your code?

    - by Connell Watkins
    I've been working on various projects at home and at work, and over the years I've developed two main APIs that I use in almost all AJAX based websites. I've compiled both of these into DLLs and called the namespaces Connell.Database and Connell.Json. My boss recently saw these namespaces in a software documentation for a project for the company and said I shouldn't be using my own name in the code. (But it's my code!) One thing to bear in mind is that we're not a software company. We're an IT support company, and I'm the only full-time software developer here, so there's not really any procedures on how we should write software in the company. Another thing to bear in mind is that I do intend on one day releasing these DLLs as open-source projects. How do other developers group their namespaces within their company? Does anyone use the same class libraries in personal and in work projects? Also does this work the other way round? If I write a class library entirely at work, who owns that code? If I've seen the library through from start to finish, designed it and programmed it. Can I use that for another project at home? Thanks, Update I've spoken to my boss about this issue and he agrees that they're my objects and he's fine for me to open-source them. Before this conversation I started changing the objects anyway, which was actually quite productive and the code now suits this specific project more-so than it did previously. But thank you to everyone involved for a very interesting debate. I hope all this text isn't wasted and someone learns from it. I certainly did. Cheers,

    Read the article

  • OOP concept: is it possible to update the class of an instantiated object?

    - by Federico
    I am trying to write a simple program that should allow a user to save and display sets of heterogeneous, but somehow related data. For clarity sake, I will use a representative example of vehicles. The program flow is like this: The program creates a Garage object, which is basically a class that can contain a list of vehicles objects Then the users creates Vehicles objects, these Vehicles each have a property, lets say License Plate Nr. Once created, the Vehicle object get added to a list within the Garage object --Later on--, the user can specify that a given Vehicle object is in fact a Car object or a Truck object (thus giving access to some specific attributes such as Number of seats for the Car, or Cargo weight for the truck) At first sight, this might look like an OOP textbook question involving a base class and inheritance, but the problem is more subtle because at the object creation time (and until the user decides to give more info), the computer doesn't know the exact Vehicle type. Hence my question: how would you proceed to implement this program flow? Is OOP the way to go? Just to give an initial answer, here is what I've came up until now. There is only one Vehicle class and the various properties/values are handled by the main program (not the class) through a dictionary. However, I'm pretty sure that there must be a more elegant solution (I'm developing using VB.net): Public Class Garage Public GarageAdress As String Private _ListGarageVehicles As New List(Of Vehicles) Public Sub AddVehicle(Vehicle As Vehicles) _ListGarageVehicles.Add(Vehicle) End Sub End Class Public Class Vehicles Public LicensePlateNumber As String Public Enum VehicleTypes Generic = 0 Car = 1 Truck = 2 End Enum Public VehicleType As VehicleTypes Public DictVehicleProperties As New Dictionary(Of String, String) End Class NOTE that in the example above the public/private modifiers do not necessarily reflect the original code

    Read the article

  • New features for Expression Blend 4 Release Candidate

    - by kaleidoscope
    With Microsoft Expression Blend 4, you can create websites and applications based on Microsoft Silverlight 3 and Microsoft Silverlight 4, and desktop applications based on Windows Presentation Foundation (WPF) 3.5 with Service Pack 1 (SP1) and WPF4. Expression Blend provides new support for prototyping, interactivity through behaviors, special Silverlight functionality, and on-the-fly sample data generation. Expression Blend includes new behaviors that are quickly and easily configured Expression Blend offers new sample data, behaviors, and features of project templates to support the Model-View-ViewModel (MVVM) pattern The MVVM pattern is a way to structure a Silverlight or WPF application so that user interface (UI) objects are as decoupled as possible from the application's data and behavior. This makes it easier for design tasks and development tasks to be performed independently and without breaking each other. Essentially, your UI is the View. You bind objects in the View to properties and commands of the ViewModel, and the View can also call methods on the ViewModel. Compatible with Silverlight 3 and WPF 3.5 with Service Pack 1 (SP1) Interoperate able with Visual Studio. Included New Shapes: The Assets panel in Expression Blend contains a new Shapes category, including presets for the easy creation of arcs, arrows, callouts, and polygons. New Controls: Expression Blend has tooling support for the RichTextBox control in Silverlight. XAML cleanliness :Expression Blend generates less XAML with respect to animations and animation-related properties. MVVM project template: Expression Blend includes a new project template that offers a basic starting point for Model-View-ViewModel pattern applications. Run project with CTRL+F5:To improve consistency with Visual Studio, you can now invoke the Run Project command by pressing either CTRL+F5 or F5 Technorati Tags: Rituraj,Features of Expression Blend4 RC

    Read the article

  • Object behaviour or separate class?

    - by Andrew Stephens
    When it comes to OO database access you see two common approaches - the first is to provide a class (say "Customer") with methods such as Retrieve(), Update(), Delete(), etc. The other is to keep the Customer class fairly lightweight (essentially just properties) and perform the database access elsewhere, e.g. using a repository. This choice of approaches doesn't just apply to database access, it can crop up in many different OOD scenarios. So I was wondering if one way is preferable over the other (although I suspect the answer will be "it depends")! Another dev on our team argues that to be truly OO the class should be "self-contained", i.e. providing all the methods necessary to manipulate and interact with that object. I personally prefer the repository approach - I don't like bloating the Customer class with all that functionality, and I feel it results in cleaner code having it elsewhere, but I can't help thinking I'm seriously violating core OO concepts! And what about memory implications? If I retrieve thousands of Customer objects I'm assuming those with the data access methods will take up a lot more memory than the property-only objects?

    Read the article

  • EBS Seed Data Comparison Reports Now Available

    - by Steven Chan (Oracle Development)
    Earlier this year we released a reporting tool that reports on the differences in E-Business Suite database objects between one release and another.  That's a very useful reference, but EBS defaults are delivered as seed data within the database objects themselves. What about the differences in this seed data between one release and another? I'm pleased to announce the availability of a new tool that provides comparison reports of E-Business Suite seed data between EBS 11.5.10.2, 12.0.4, 12.0.6, 12.1.1, and 12.1.3.  This new tool complements the information in the data model comparison tool.  You can download the new seed data comparison tool here: EBS ATG Seed Data Comparison Report (Note 1327399.1) The EBS ATG Seed Data Comparison Report provides report on the changes between different EBS releases based upon the seed data changes delivered by the product data loader files (.ldt extension) based on EBS ATG loader control (.lct extension) files.  You can use this new tool to report on the differences in the following types of seed data: Concurrent Program definitions Descriptive Flexfield entity definitions Application Object Library profile option definitions Application Object Library (AOL) key flexfield, function, lookups, value set definitions Application Object Library (AOL) menu and responsibility definitions Application Object Library messages Application Object Library request set definitions Application Object Library printer styles definitions Report Manager / WebADI component and integrator entity definitions Business Intelligence Publisher (BI Publisher) entity definitions BIS Request Set Generator entity definitions ... and more Your feedback is welcomeThis new tool was produced by our hard-working EBS Release Management team, and they're actively seeking your feedback.  Please feel free to share your experiences with it by posting a comment here.  You can also request enhancements to this tool via the distribution list address included in Note 1327399.1.Related Articles Oracle E-Business Suite Release 12.1.3 Now Available New Whitepaper: Upgrading EBS 11i Forms + OA Framework Personalizations to EBS 12 EBS 12.0 Minimum Requirements for Extended Support Finalized Five Key Resources for Upgrading to E-Business Suite Release 12 E-Business Suite Release 12.1.1 Consolidated Upgrade Patch 1 Now Available New Whitepaper: Planning Your E-Business Suite Upgrade from Release 11i to 12.1

    Read the article

  • Capitalizing on JavaScript's prototypal inheritance

    - by keithjgrant
    JavaScript has a class-free object system in which objects inherit properties directly from other objects. This is really powerful, but it is unfamiliar to classically trained programmers. If you attempt to apply classical design patterns directly to JavaScript, you will be frustrated. But if you learn to work with JavaScript's prototypal nature, your efforts will be rewarded. ... It is Lisp in C's clothing. -Douglas Crockford What does this mean for a game developer working with canvas and HTML5? I've been looking over this question on useful design patterns in gaming, but prototypal inheritance is very different than classical inheritance, and there are surely differences in the best way to apply some of these common patterns. For example, classical inheritance allows us to create a moveableEntity class, and extend that with any classes that move in our game world (player, monster, bullet, etc.). Sure, you can strongarm JavaScript to work that way, but in doing so, you are kind of fighting against its nature. Is there a better approach to this sort of problem when we have prototypal inheritance at our fingertips?

    Read the article

  • Making a perfect map (not tile-based)

    - by Sri Harsha Chilakapati
    I would like to make a map system as in the GameMaker and the latest code is here. I've searched a lot in google and all of them resulted in tutorials about tile-maps. As tile maps do not fit for every type of game and GameMaker uses tiles for a different purpose, I want to make a "Sprite Based" map. The major problem I had experienced was collision detection being slow for large maps. So I wrote a QuadTree class here and the collision detection is fine upto 50000 objects in the map without PixelPerfect collision detection and 30000 objects with PixelPerferct collisions enabled. Now I need to implement the method "isObjectCollisionFree(float x, float y, boolean solid, GObject obj)". The existing implementation is becoming slow in Platformer games and I need suggestions on improvement. The current Implementation: /** * Checks if a specific position is collision free in the map. * * @param x The x-position of the object * @param y The y-position of the object * @param solid Whether to check only for solid object * @param object The object ( used for width and height ) * @return True if no-collision and false if it collides. */ public static boolean isObjectCollisionFree(float x, float y, boolean solid, GObject object){ boolean bool = true; Rectangle bounds = new Rectangle(Math.round(x), Math.round(y), object.getWidth(), object.getHeight()); ArrayList<GObject> collidables = quad.retrieve(bounds); for (int i=0; i<collidables.size(); i++){ GObject obj = collidables.get(i); if (obj.isSolid()==solid && obj != object){ if (obj.isAlive()){ if (bounds.intersects(obj.getBounds())){ bool = false; if (Global.USE_PIXELPERFECT_COLLISION){ bool = !GUtil.isPixelPerfectCollision(x, y, object.getAnimation().getBufferedImage(), obj.getX(), obj.getY(), obj.getAnimation().getBufferedImage()); } break; } } } } return bool; } Thanks.

    Read the article

  • Search in Projects API

    - by Geertjan
    Today I got some help from Jaroslav Havlin, the creator of the new "Search in Projects API". Below are the steps to create a search provider that finds recently modified files, via a new tab in the "Find in Projects" dialog: Here's how to get to the above result. Create a new NetBeans module project named "RecentlyModifiedFilesSearch". Then set dependencies on these libraries: Search in Projects API Lookup API Utilities API Dialogs API Datasystems API File System API Nodes API Create and register an implementation of "SearchProvider". This class tells the application the name of the provider and how it can be used. It should be registered via the @ServiceProvider annotation.Methods to implement: Method createPresenter creates a new object that is added to the "Find in Projects" dialog when it is opened. Method isReplaceSupported should return true if this provider support replacing, not only searching. If you want to disable the search provider (e.g., there aren't required external tools available in the OS), return false from isEnabled. Method getTitle returns a string that will be shown in the tab in the "Find in Projects" dialog. It can be localizable. Example file "org.netbeans.example.search.ExampleSearchProvider": package org.netbeans.example.search; import org.netbeans.spi.search.provider.SearchProvider; import org.netbeans.spi.search.provider.SearchProvider.Presenter; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = SearchProvider.class) public class ExampleSearchProvider extends SearchProvider { @Override public Presenter createPresenter(boolean replaceMode) { return new ExampleSearchPresenter(this); } @Override public boolean isReplaceSupported() { return false; } @Override public boolean isEnabled() { return true; } @Override public String getTitle() { return "Recent Files Search"; } } Next, we need to create a SearchProvider.Presenter. This is an object that is passed to the "Find in Projects" dialog and contains a visual component to show in the dialog, together with some methods to interact with it.Methods to implement: Method getForm returns a JComponent that should contain controls for various search criteria. In the example below, we have controls for a file name pattern, search scope, and the age of files. Method isUsable is called by the dialog to check whether the Find button should be enabled or not. You can use NotificationLineSupport passed as its argument to set a display error, warning, or info message. Method composeSearch is used to apply the settings and prepare a search task. It returns a SearchComposition object, as shown below. Please note that the example uses ComponentUtils.adjustComboForFileName (and similar methods), that modifies a JComboBox component to act as a combo box for selection of file name pattern. These methods were designed to make working with components created in a GUI Builder comfortable. Remember to call fireChange whenever the value of any criteria changes. Example file "org.netbeans.example.search.ExampleSearchPresenter": package org.netbeans.example.search; import java.awt.FlowLayout; import javax.swing.BoxLayout; import javax.swing.JComboBox; import javax.swing.JComponent; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.JSlider; import javax.swing.event.ChangeEvent; import javax.swing.event.ChangeListener; import org.netbeans.api.search.SearchScopeOptions; import org.netbeans.api.search.ui.ComponentUtils; import org.netbeans.api.search.ui.FileNameController; import org.netbeans.api.search.ui.ScopeController; import org.netbeans.api.search.ui.ScopeOptionsController; import org.netbeans.spi.search.provider.SearchComposition; import org.netbeans.spi.search.provider.SearchProvider; import org.openide.NotificationLineSupport; import org.openide.util.HelpCtx; public class ExampleSearchPresenter extends SearchProvider.Presenter { private JPanel panel = null; ScopeOptionsController scopeSettingsPanel; FileNameController fileNameComboBox; ScopeController scopeComboBox; ChangeListener changeListener; JSlider slider; public ExampleSearchPresenter(SearchProvider searchProvider) { super(searchProvider, false); } /** * Get UI component that can be added to the search dialog. */ @Override public synchronized JComponent getForm() { if (panel == null) { panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.PAGE_AXIS)); JPanel row1 = new JPanel(new FlowLayout(FlowLayout.LEADING)); JPanel row2 = new JPanel(new FlowLayout(FlowLayout.LEADING)); JPanel row3 = new JPanel(new FlowLayout(FlowLayout.LEADING)); row1.add(new JLabel("Age in hours: ")); slider = new JSlider(1, 72); row1.add(slider); final JLabel hoursLabel = new JLabel(String.valueOf(slider.getValue())); row1.add(hoursLabel); row2.add(new JLabel("File name: ")); fileNameComboBox = ComponentUtils.adjustComboForFileName(new JComboBox()); row2.add(fileNameComboBox.getComponent()); scopeSettingsPanel = ComponentUtils.adjustPanelForOptions(new JPanel(), false, fileNameComboBox); row3.add(new JLabel("Scope: ")); scopeComboBox = ComponentUtils.adjustComboForScope(new JComboBox(), null); row3.add(scopeComboBox.getComponent()); panel.add(row1); panel.add(row3); panel.add(row2); panel.add(scopeSettingsPanel.getComponent()); initChangeListener(); slider.addChangeListener(new ChangeListener() { @Override public void stateChanged(ChangeEvent e) { hoursLabel.setText(String.valueOf(slider.getValue())); } }); } return panel; } private void initChangeListener() { this.changeListener = new ChangeListener() { @Override public void stateChanged(ChangeEvent e) { fireChange(); } }; fileNameComboBox.addChangeListener(changeListener); scopeSettingsPanel.addChangeListener(changeListener); slider.addChangeListener(changeListener); } @Override public HelpCtx getHelpCtx() { return null; // Some help should be provided, omitted for simplicity. } /** * Create search composition for criteria specified in the form. */ @Override public SearchComposition<?> composeSearch() { SearchScopeOptions sso = scopeSettingsPanel.getSearchScopeOptions(); return new ExampleSearchComposition(sso, scopeComboBox.getSearchInfo(), slider.getValue(), this); } /** * Here we return always true, but could return false e.g. if file name * pattern is empty. */ @Override public boolean isUsable(NotificationLineSupport notifySupport) { return true; } } The last part of our search provider is the implementation of SearchComposition. This is a composition of various search parameters, the actual search algorithm, and the displayer that presents the results.Methods to implement: The most important method here is start, which performs the actual search. In this case, SearchInfo and SearchScopeOptions objects are used for traversing. These objects were provided by controllers of GUI components (in the presenter). When something interesting is found, it should be displayed (with SearchResultsDisplayer.addMatchingObject). Method getSearchResultsDisplayer should return the displayer associated with this composition. The displayer can be created by subclassing SearchResultsDisplayer class or simply by using the SearchResultsDisplayer.createDefault. Then you only need a helper object that can create nodes for found objects. Example file "org.netbeans.example.search.ExampleSearchComposition": package org.netbeans.example.search; public class ExampleSearchComposition extends SearchComposition<DataObject> { SearchScopeOptions searchScopeOptions; SearchInfo searchInfo; int oldInHours; SearchResultsDisplayer<DataObject> resultsDisplayer; private final Presenter presenter; AtomicBoolean terminated = new AtomicBoolean(false); public ExampleSearchComposition(SearchScopeOptions searchScopeOptions, SearchInfo searchInfo, int oldInHours, Presenter presenter) { this.searchScopeOptions = searchScopeOptions; this.searchInfo = searchInfo; this.oldInHours = oldInHours; this.presenter = presenter; } @Override public void start(SearchListener listener) { for (FileObject fo : searchInfo.getFilesToSearch( searchScopeOptions, listener, terminated)) { if (ageInHours(fo) < oldInHours) { try { DataObject dob = DataObject.find(fo); getSearchResultsDisplayer().addMatchingObject(dob); } catch (DataObjectNotFoundException ex) { listener.fileContentMatchingError(fo.getPath(), ex); } } } } @Override public void terminate() { terminated.set(true); } @Override public boolean isTerminated() { return terminated.get(); } /** * Use default displayer to show search results. */ @Override public synchronized SearchResultsDisplayer<DataObject> getSearchResultsDisplayer() { if (resultsDisplayer == null) { resultsDisplayer = createResultsDisplayer(); } return resultsDisplayer; } private SearchResultsDisplayer<DataObject> createResultsDisplayer() { /** * Object to transform matching objects to nodes. */ SearchResultsDisplayer.NodeDisplayer<DataObject> nd = new SearchResultsDisplayer.NodeDisplayer<DataObject>() { @Override public org.openide.nodes.Node matchToNode( final DataObject match) { return new FilterNode(match.getNodeDelegate()) { @Override public String getDisplayName() { return super.getDisplayName() + " (" + ageInMinutes(match.getPrimaryFile()) + " minutes old)"; } }; } }; return SearchResultsDisplayer.createDefault(nd, this, presenter, "less than " + oldInHours + " hours old"); } private static long ageInMinutes(FileObject fo) { long fileDate = fo.lastModified().getTime(); long now = System.currentTimeMillis(); return (now - fileDate) / 60000; } private static long ageInHours(FileObject fo) { return ageInMinutes(fo) / 60; } } Run the module, select a node in the Projects window, press Ctrl-F, and you'll see the "Find in Projects" dialog has two tabs, the second is the one you provided above:

    Read the article

  • Mutating Programming Language?

    - by MattiasK
    For fun I was thinking about how one could build a programming language that differs from OOP and came up with this concept. I don't have a strong foundation in computer science so it might be common place without me knowing it (more likely it's just a stupid idea :) I apologize in advance for this somewhat rambling question :) Anyways here goes: In normal OOP methods and classes are variant only upon parameters, meaning if two different classes/methods call the same method they get the same output. My, perhaps crazy idea, is that the calling method and class could be an "invisible" part of it's signature and the response could vary depending on who call's an method. Say that we have a Window object with a Break() method, now anyone (who has access) could call this method on Window with the same result. Now say that we have two different objects, Hammer and SledgeHammer. If Break need to produce different results based on these we'd pass them as parameters Break(IBluntObject bluntObject) With a mutating programming language (mpl) the operating objects on the method would be visible to the Break Method without begin explicitly defined and it could adopt itself based on them). So if SledgeHammer calls Window.Break() it would generate vastly different results than if Hammer did so. If OOP classes are black boxes then MPL are black boxes that knows who's (trying) to push it's buttons and can adapt accordingly. You could also have different permission sets on methods depending who's calling them rather than having absolute permissions like public and private. Does this have any advantage over OOP? Or perhaps I should say, would it add anything to it since you should be able to simply add this aspect to methods (just give access to a CallingMethod and CallingClass variable in context) I'm not sure, might be to hard to wrap one's head around, it would be kinda interesting to have classes that adopted themselves to who uses them though. Still it's an interesting concept, what do you think, is it viable?

    Read the article

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • What to Return with Async CRUD methods

    - by RualStorge
    While there is a similar question focused on Java, I've been in debates with utilizing Task objects. What's the best way to handle returns on CRUD methods (and similar)? Common returns we've seen over the years are: Void (no return unless there is an exception) Boolean (True on Success, False on Failure, exception on unhandled failure) Int or GUID (Return the newly created objects Id, 0 or null on failure, exception on unhandled failure) The updated Object (exception on failure) Result Object (Object that houses the manipulated object's ID, Boolean or status field to with success or failure indicated, Exception information if there was one, etc) The concern comes into play as we've started moving over to utilizing C# 5's Async functionality, and this brought the question up of how we should handle CRUD returns large-scale. In our systems we have a little of everything in regards to what we return, we want to make these returns standardized... Now the question is what is the recommended standard? Is there even a recommended standard yet? (I realize we need to decide our standard, but typically we do so by looking at best practices, see if it makes sense for us and go from there, but here we're not finding much to work with)

    Read the article

  • More Tables or More Databases?

    - by BuckWoody
    I got an e-mail from someone that has an interesting situation. He has 15,000 customers, and he asks if he should have a database for their data per customer. Without a LOT more data it’s impossible to say, of course, but there are some general concepts to keep in mind. Whenever you’re segmenting data, it’s all about boundary choices. You have not only boundaries around how big the data will get, but things like how many objects (tables, stored procedures and so on) that will be involved, if there are any cross-sections of data (do they share location or product information) and – very important – what are the security requirements? From the answer to these types of questions, you now have the choice of making multiple tables in a single database, or using multiple databases. A database carries some overhead – it needs a certain amount of memory for locking and so on. But it has a very clean boundary – everything from objects to security can be kept apart. Having multiple users in the same database is possible as well, using things like a Schema. But keeping 15,000 schemas can be challenging as well. My recommendation in complex situations like this is similar to a post on decisions that I did earlier – I lay out the choices on a spreadsheet in rows, and then my requirements at the top in the columns. I  give each choice a number based on how well it meets each requirement. At the end, the highest number wins. And many times it’s a mix – perhaps this person could segment customers into larger regions or districts or products, in a database. Within that database might be multiple schemas for the customers. Of course, he needs to query across all customers, that becomes another requirement. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Z-order with Alpha blending in a 3D world

    - by user41765
    I'm working on a game in a 3D world with 2D sprites only (like Don't Starve game). (OpenGL ES2 with C++) Currently, I'm ordering elements back to front before drawing them without batch (so 1 element = 1 drawcall). I would like to implement batching in my framework to decrease draw calls. Here is what I've got for the moment: Order all elements of my scene back to front. Send order list of elements to the Renderer. Renderer look in his batch manager if a batch exist for the given element with his Material. Batch didn't exist: create a new one. Batch exist for element with this Material: Add sprite to the batch. Compute big mesh with all sprite for each batch (1 material type = 1 batch). When all batches are ok, the batch manager compute draw commands for the renderer. Renderer process draw commands (bind shader, bind textures, bind buffers, draw element) Image with my problem here: Explication here But I've got some problems because objects can be behind another objects inside another batch. How can I do something like that? Thanks!

    Read the article

  • How to present a stable data model in a public API that allows internal data structures to be changed without breaking the public view of the data?

    - by Max Palmer
    I am in the process of developing an application that allows users to write C# scripts. These scripts allow users to call selected methods and to access and manipulate data in a document. This works well, however, in the development version, scripts access the document's (internal) data structures directly. This means that if we were to change the internal data model/structure, there is a good chance that someone's script will no longer compile. We obviously want to prevent this breaking change from happening, but still want to allow the user to write sensible C# code (whilst not restricting how we develop our internal data model as a result). We therefore need to decouple our scripting API and its data structures from our internal methods and data structures. We've a few ideas as to how we might allow the user to access a what is effectively a stable public version of the document's internal data*, but I wanted to throw the question out there to someone who might have some real experience of this problem. NB our internal document's data structure is quite complex and it could be quite difficult to wrap. We know we want to expose as little as possible in our public API, especially as once it's out there, it's out there for good. Can anyone help? How do scripting languages / APIs decouple their public API and data structures from their internal data structures? Is there no real alternative to having to write a complex interaction layer? If we need to do this, what's a good approach or pattern for wrapping complex data structures that include nested objects, including collections? I've looked at the API facade pattern, which looks like it's trying to address these kinds of issues, but are there alternatives? *One idea is to build a data facade that is kept stable across versions of our application. The facade exposes a set of facade data objects that are used in the script code. These maintain backwards compatibility and wrap access to our internal document's data model.

    Read the article

< Previous Page | 150 151 152 153 154 155 156 157 158 159 160 161  | Next Page >