Search Results

Search found 33012 results on 1321 pages for 'method injection'.

Page 155/1321 | < Previous Page | 151 152 153 154 155 156 157 158 159 160 161 162  | Next Page >

  • How can I enable PHP5 for a site? Having problems with every single method.

    - by John Stephens
    I'm working on a client site that is hosted on someone's DIY Debian Linux server [Apache/1.3.33 (Debian GNU/Linux)], and I'm trying to install a script that requires PHP5. By default, the server parses .php files with PHP 4.3.10-22, which is configured at /etc/php4/apache/php.ini, according to phpinfo(). On the server I can see a config directory for PHP5 adjacent to the PHP4 directory: /etc/php5.0/apache2/php.ini. I have tried multiple methods to enable PHP5 for the document root where the site's files are hosted, including all available methods mentioned here. By far, the most common suggestion I've found is to add one or both of the following lines to the site's .htaccess file: AddHandler application/x-httpd-php5 .php AddType application/x-httpd-php5 .php Trouble is, when either or both of those lines are present, the site forces my browser to download any .php files requested, without parsing the PHP at all. All of the other methods mentioned in the above article cause a 500 Internal Server Error. There is no hosting control panel I can access in a browser to enable PHP5 for the site, but I do have shell access. When I asked the server administrator about this issue, he encouraged me to search for the answer on Google. Where could I begin to troubleshoot this issue? Are there ways to test or verify the server's specific PHP5 installation and configuration, using the command line or some other method? Do you have other suggestions to enable PHP5?

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

  • Delegates in .NET: how are they constructed ?

    - by Saulius
    While inspecting delegates in C# and .NET in general, I noticed some interesting facts: Creating a delegate in C# creates a class derived from MulticastDelegate with a constructor: .method public hidebysig specialname rtspecialname instance void .ctor(object 'object', native int 'method') runtime managed { } Meaning that it expects the instance and a pointer to the method. Yet the syntax of constructing a delegate in C# suggests that it has a constructor new MyDelegate(int () target) where I can recognise int () as a function instance (int *target() would be a function pointer in C++). So obviously the C# compiler picks out the correct method from the method group defined by the function name and constructs the delegate. So the first question would be, where does the C# compiler (or Visual Studio, to be precise) pick this constructor signature from ? I did not notice any special attributes or something that would make a distinction. Is this some sort of compiler/visualstudio magic ? If not, is the T (args) target construction valid in C# ? I did not manage to get anything with it to compile, e.g.: int () target = MyMethod; is invalid, so is doing anything with MyMetod, e.g. calling .ToString() on it (well this does make some sense, since that is technically a method group, but I imagine it should be possible to explicitly pick out a method by casting, e.g. (int())MyFunction. So is all of this purely compiler magic ? Looking at the construction through reflector reveals yet another syntax: Func CS$1$0000 = new Func(null, (IntPtr) Foo); This is consistent with the disassembled constructor signature, yet this does not compile! One final interesting note is that the classes Delegate and MulticastDelegate have yet another sets of constructors: .method family hidebysig specialname rtspecialname instance void .ctor(class System.Type target, string 'method') cil managed Where does the transition from an instance and method pointer to a type and a string method name occur ? Can this be explained by the runtime managed keywords in the custom delegate constructor signature, i.e. does the runtime do it's job here ?

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

  • Developing Spring Portlet for use inside Weblogic Portal / Webcenter Portal

    - by Murali Veligeti
    We need to understand the main difference between portlet workflow and servlet workflow.The main difference between portlet workflow and servlet workflow is that, the request to the portlet can have two distinct phases: 1) Action phase 2) Render phase. The Action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The Render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user.The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly re-running the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.The Spring Portlet Framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the Spring Web Framework does.  Developing portlet.xml Let's start the sample development by creating the portlet.xml file in the /WebContent/WEB-INF/ folder as shown below: <?xml version="1.0" encoding="UTF-8"?> <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <portlet> <portlet-name>SpringPortletName</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>SpringPortlet</title> </portlet-info> </portlet> </portlet-app> DispatcherPortlet is responsible for handling every client request. When it receives a request, it finds out which Controller class should be used for handling this request, and then it calls its handleActionRequest() or handleRenderRequest() method based on the request processing phase. The Controller class executes business logic and returns a View name that should be used for rendering markup to the user. The DispatcherPortlet then forwards control to that View for actual markup generation. As you can see, DispatcherPortlet is the central dispatcher for use within Spring Portlet MVC Framework. Note that your portlet application can define more than one DispatcherPortlet. If it does so, then each of these portlets operates its own namespace, loading its application context and handler mapping. The DispatcherPortlet is also responsible for loading application context (Spring configuration file) for this portlet. First, it tries to check the value of the configLocation portlet initialization parameter. If that parameter is not specified, it takes the portlet name (that is, the value of the <portlet-name> element), appends "-portlet.xml" to it, and tries to load that file from the /WEB-INF folder. In the portlet.xml file, we did not specify the configLocation initialization parameter, so let's create SpringPortletName-portlet.xml file in the next section. Developing SpringPortletName-portlet.xml Create the SpringPortletName-portlet.xml file in the /WebContent/WEB-INF folder of your application as shown below: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="pointManager" class="com.wlp.spring.bo.internal.PointManagerImpl"> <property name="users"> <list> <ref bean="point1"/> <ref bean="point2"/> <ref bean="point3"/> <ref bean="point4"/> </list> </property> </bean> <bean id="point1" class="com.wlp.spring.bean.User"> <property name="name" value="Murali"/> <property name="points" value="6"/> </bean> <bean id="point2" class="com.wlp.spring.bean.User"> <property name="name" value="Sai"/> <property name="points" value="13"/> </bean> <bean id="point3" class="com.wlp.spring.bean.User"> <property name="name" value="Rama"/> <property name="points" value="43"/> </bean> <bean id="point4" class="com.wlp.spring.bean.User"> <property name="name" value="Krishna"/> <property name="points" value="23"/> </bean> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="messages"/> </bean> <bean name="/users.htm" id="userController" class="com.wlp.spring.controller.UserController"> <property name="pointManager" ref="pointManager"/> </bean> <bean name="/pointincrease.htm" id="pointIncreaseController" class="com.wlp.spring.controller.IncreasePointsFormController"> <property name="sessionForm" value="true"/> <property name="pointManager" ref="pointManager"/> <property name="commandName" value="pointIncrease"/> <property name="commandClass" value="com.wlp.spring.bean.PointIncrease"/> <property name="formView" value="pointincrease"/> <property name="successView" value="users"/> </bean> <bean id="parameterMappingInterceptor" class="org.springframework.web.portlet.handler.ParameterMappingInterceptor" /> <bean id="portletModeParameterHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="order" value="1" /> <property name="interceptors"> <list> <ref bean="parameterMappingInterceptor" /> </list> </property> <property name="portletModeParameterMap"> <map> <entry key="view"> <map> <entry key="pointincrease"> <ref bean="pointIncreaseController" /> </entry> <entry key="users"> <ref bean="userController" /> </entry> </map> </entry> </map> </property> </bean> <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="order" value="2" /> <property name="portletModeMap"> <map> <entry key="view"> <ref bean="userController" /> </entry> </map> </property> </bean> </beans> The SpringPortletName-portlet.xml file is an application context file for your MVC portlet. It has a couple of bean definitions: viewController. At this point, remember that the viewController bean definition points to the com.ibm.developerworks.springmvc.ViewController.java class. portletModeHandlerMapping. As we discussed in the last section, whenever DispatcherPortlet gets a client request, it tries to find a suitable Controller class for handling that request. That is where PortletModeHandlerMapping comes into the picture. The PortletModeHandlerMapping class is a simple implementation of the HandlerMapping interface and is used by DispatcherPortlet to find a suitable Controller for every request. The PortletModeHandlerMapping class uses Portlet mode for the current request to find a suitable Controller class to use for handling the request. The portletModeMap property of portletModeHandlerMapping bean is the place where we map the Portlet mode name against the Controller class. In the sample code, we show that viewController is responsible for handling View mode requests. Developing UserController.java In the preceding section, you learned that the viewController bean is responsible for handling all the View mode requests. Your next step is to create the UserController.java class as shown below: public class UserController extends AbstractController { private PointManager pointManager; public void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception { } public ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws ServletException, IOException { String now = (new java.util.Date()).toString(); Map<String, Object> myModel = new HashMap<String, Object>(); myModel.put("now", now); myModel.put("users", this.pointManager.getUsers()); return new ModelAndView("users", "model", myModel); } public void setPointManager(PointManager pointManager) { this.pointManager = pointManager; } } Every controller class in Spring Portlet MVC Framework must implement the org.springframework.web. portlet.mvc.Controller interface directly or indirectly. To make things easier, Spring Framework provides AbstractController class, which is the default implementation of the Controller interface. As a developer, you should always extend your controller from either AbstractController or one of its more specific subclasses. Any implementation of the Controller class should be reusable, thread-safe, and capable of handling multiple requests throughout the lifecycle of the portlet. In the sample code, we create the ViewController class by extending it from AbstractController. Because we don't want to do any action processing in the HelloSpringPortletMVC portlet, we override only the handleRenderRequest() method of AbstractController. Now, the only thing that HelloWorldPortletMVC should do is render the markup of View.jsp to the user when it receives a user request to do so. To do that, return the object of ModelAndView with a value of view equal to View. Developing web.xml According to Portlet Specification 1.0, every portlet application is also a Servlet Specification 2.3-compliant Web application, and it needs a Web application deployment descriptor (that is, web.xml). Let’s create the web.xml file in the /WEB-INF/ folder as shown in listing 4. Follow these steps: Open the existing web.xml file located at /WebContent/WEB-INF/web.xml. Replace the contents of this file with the code as shown below: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> The web.xml file for the sample portlet declares two things: ViewRendererServlet. The ViewRendererServlet is the bridge servlet for portlet support. During the render phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to ViewRendererServlet for actual rendering. This process allows Spring Portlet MVC Framework to use the same View infrastructure as that of its servlet version, that is, Spring Web MVC Framework. ContextLoaderListener. The ContextLoaderListener class takes care of loading Web application context at the time of the Web application startup. The Web application context is shared by all the portlets in the portlet application. In case of duplicate bean definition, the bean definition in the portlet application context takes precedence over the Web application context. The ContextLoader class tries to read the value of the contextConfigLocation Web context parameter to find out the location of the context file. If the contextConfigLocation parameter is not set, then it uses the default value, which is /WEB-INF/applicationContext.xml, to load the context file. The Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. How rendering works As you know, when the user tries to access a page with PointSystemPortletMVC portlet on it or when the user performs some action on any other portlet on that page or tries to refresh that page, a render request is sent to the PointSystemPortletMVC portlet. In the sample code, because DispatcherPortlet is the main portlet class, Weblogic Portal / Webcenter Portal calls its render() method and then the following sequence of events occurs: The render() method of DispatcherPortlet calls the doDispatch() method, which in turn calls the doRender() method. After the doRenderService() method gets control, first it tries to find out the locale of the request by calling the PortletRequest.getLocale() method. This locale is used while making all the locale-related decisions for choices such as which resource bundle should be loaded or which JSP should be displayed to the user based on the locale. After that, the doRenderService() method starts iterating through all the HandlerMapping classes configured for this portlet, calling their getHandler() method to identify the appropriate Controller for handling this request. In the sample code, we have configured only PortletModeHandlerMapping as a HandlerMapping class. The PortletModeHandlerMapping class reads the value of the current portlet mode, and based on that, it finds out, the Controller class that should be used to handle this request. In the sample code, ViewController is configured to handle the View mode request so that the PortletModeHandlerMapping class returns the object of ViewController. After the object of ViewController is returned, the doRenderService() method calls its handleRenderRequestInternal() method. Implementation of the handleRenderRequestInternal() method in ViewController.java is very simple. It logs a message saying that it got control, and then it creates an instance of ModelAndView with a value equal to View and returns it to DispatcherPortlet. After control returns to doRenderService(), the next task is to figure out how to render View. For that, DispatcherPortlet starts iterating through all the ViewResolvers configured in your portlet application, calling their resolveViewName() method. In the sample code we have configured only one ViewResolver, InternalResourceViewResolver. When its resolveViewName() method is called with viewName, it tries to add /WEB-INF/jsp as a prefix to the view name and to add JSP as a suffix. And it checks if /WEB-INF/jsp/View.jsp exists. If it does exist, it returns the object of JstlView wrapping View.jsp. After control is returned to the doRenderService() method, it creates the object PortletRequestDispatcher, which points to /WEB-INF/servlet/view – that is, ViewRendererServlet. Then it sets the object of JstlView in the request and dispatches the request to ViewRendererServlet. After ViewRendererServlet gets control, it reads the JstlView object from the request attribute and creates another RequestDispatcher pointing to the /WEB-INF/jsp/View.jsp URL and passes control to it for actual markup generation. The markup generated by View.jsp is returned to user. At this point, you may question the need for ViewRendererServlet. Why can't DispatcherPortlet directly forward control to View.jsp? Adding ViewRendererServlet in between allows Spring Portlet MVC Framework to reuse the existing View infrastructure. You may appreciate this more when we discuss how easy it is to integrate Apache Tiles Framework with your Spring Portlet MVC Framework. The attached project SpringPortlet.zip should be used to import the project in to your OEPE Workspace. SpringPortlet_Jars.zip contains jar files required for the application. Project is written on Spring 2.5.  The same JSR 168 portlet should work on Webcenter Portal as well.  Downloads: Download WeblogicPotal Project which consists of Spring Portlet. Download Spring Jars In-addition to above you need to download Spring.jar (Spring2.5)

    Read the article

  • Get and Set property accessors are ‘actually’ methods

    - by nmarun
    Well, they are ‘special’ methods, but they indeed are methods. See the class below: 1: public class Person 2: { 3: private string _name; 4:  5: public string Name 6: { 7: get 8: { 9: return _name; 10: } 11: set 12: { 13: if (value == "aaa") 14: { 15: throw new ArgumentException("Invalid Name"); 16: } 17: _name = value; 18: } 19: } 20:  21: public void Save() 22: { 23: Console.WriteLine("Saving..."); 24: } 25: } Ok, so a class with a field, a property with the get and set accessors and a method. Now my calling code says: 1: static void Main() 2: { 3: try 4: { 5: Person person1 = new Person 6: { 7: Name = "aaa", 8: }; 9:  10: } 11: catch (Exception ex) 12: { 13: Console.WriteLine(ex.Message); 14: Console.WriteLine(ex.StackTrace); 15: Console.WriteLine("--------------------"); 16: } 17: } When the code is run, you’ll get the following exception message displayed: Now, you see the first line of the stack trace where it says that the exception was thrown in the method set_Name(String value). Wait a minute, we have not declared any method with that name in our Person class. Oh no, we actually have. When you create a property, this is what happens behind the screen. The CLR creates two methods for each get and set property accessor. Let’s look at the signature once again: set_Name(String value) This also tells you where the ‘value’ keyword comes from in our set property accessor. You’re actually wiring up a method parameter to a field. 1: set 2: { 3: if (value == "aaa") 4: { 5: throw new ArgumentException("Invalid Name"); 6: } 7: _name = value; 8: } Digging deeper on this, I ran the ILDasm tool and this is what I see: We see the ‘free’ constructor (named .ctor) that the compiler gives us, the _name field, the Name property and the Save method. We also see the get_Name and set_Name methods. In order to compare the Save and the set_Name methods, I double-clicked on the two methods and this is what I see: The ‘.method’ keyword tells that both Save and set_Name are both methods (no guessing there!). Seeing the set_Name method as a public method did kinda surprise me. So I said, why can’t I do a person1.set_Name(“abc”) since it is declared as public. This cannot be done because the get_Name and set_Name methods have an extra attribute called ‘specialname’. This attribute is used to identify an IL (Intermediate Language) token that can be treated with special care by the .net language. So the thumb-rule is that any method with the ‘specialname’ attribute cannot be generally called / invoked by the user (a simple test using intellisense proves this). Their functionality is exposed through other ways. In our case, this is done through the property itself. The same concept gets extended to constructors as well making them special methods too. These so-called ‘special’ methods can be identified through reflection. 1: static void ReflectOnPerson() 2: { 3: Type personType = typeof(Person); 4:  5: MethodInfo[] methods = personType.GetMethods(); 6:  7: for (int i = 0; i < methods.Length; i++) 8: { 9: Console.Write("Method: {0}", methods[i].Name); 10: // Determine whether or not each method is a special name. 11: if (methods[i].IsSpecialName) 12: { 13: Console.Write(" has 'SpecialName' attribute"); 14: } 15: Console.WriteLine(); 16: } 17: } Line 11 shows the ‘IsSpecialName’ boolean property. So a method with a ‘specialname’ attribute gets mapped to the IsSpecialName property. The output is displayed as: Wuhuuu! There they are.. our special guests / methods. Verdict: Getting to know the internals… helps!

    Read the article

  • Is inline SQL still classed as bad practice now that we have Micro ORMs?

    - by Grofit
    This is a bit of an open ended question but I wanted some opinions, as I grew up in a world where inline SQL scripts were the norm, then we were all made very aware of SQL injection based issues, and how fragile the sql was when doing string manipulations all over the place. Then came the dawn of the ORM where you were explaining the query to the ORM and letting it generate its own SQL, which in a lot of cases was not optimal but was safe and easy. Another good thing about ORMs or database abstraction layers were that the SQL was generated with its database engine in mind, so I could use Hibernate/Nhibernate with MSSQL, MYSQL and my code never changed it was just a configuration detail. Now fast forward to current day, where Micro ORMs seem to be winning over more developers I was wondering why we have seemingly taken a U-Turn on the whole in-line sql subject. I must admit I do like the idea of no ORM config files and being able to write my query in a more optimal manner but it feels like I am opening myself back up to the old vulnerabilities such as SQL injection and I am also tying myself to one database engine so if I want my software to support multiple database engines I would need to do some more string hackery which seems to then start to make code unreadable and more fragile. (Just before someone mentions it I know you can use parameter based arguments with most micro orms which offers protection in most cases from sql injection) So what are peoples opinions on this sort of thing? I am using Dapper as my Micro ORM in this instance and NHibernate as my regular ORM in this scenario, however most in each field are quite similar. What I term as inline sql is SQL strings within source code. There used to be design debates over SQL strings in source code detracting from the fundamental intent of the logic, which is why statically typed linq style queries became so popular its still just 1 language, but with lets say C# and Sql in one page you have 2 languages intermingled in your raw source code now. Just to clarify, the SQL injection is just one of the known issues with using sql strings, I already mention you can stop this from happening with parameter based queries, however I highlight other issues with having SQL queries ingrained in your source code, such as the lack of DB Vendor abstraction as well as losing any level of compile time error capturing on string based queries, these are all issues which we managed to side step with the dawn of ORMs with their higher level querying functionality, such as HQL or LINQ etc (not all of the issues but most of them). So I am less focused on the individual highlighted issues and more the bigger picture of is it now becoming more acceptable to have SQL strings directly in your source code again, as most Micro ORMs use this mechanism. Here is a similar question which has a few different view points, although is more about the inline sql without the micro orm context: http://stackoverflow.com/questions/5303746/is-inline-sql-hard-coding

    Read the article

  • Functional Adaptation

    - by Charles Courchaine
    In real life and OO programming we’re often faced with using adapters, DVI to VGA, 1/4” to 1/8” audio connections, 110V to 220V, wrapping an incompatible interface with a new one, and so on.  Where the adapter pattern is generally considered for interfaces and classes a similar technique can be applied to method signatures.  To be fair, this adaptation is generally used to reduce the number of parameters but I’m sure there are other clever possibilities to be had.  As Jan questioned in the last post, how can we use a common method to execute an action if the action has a differing number of parameters, going back to the greeting example it was suggested having an AddName method that takes a first and last name as parameters.  This is exactly what we’ll address in this post. Let’s set the stage with some review and some code changes.  First, our method that handles the setup/tear-down infrastructure for our WCF service: 1: private static TResult ExecuteGreetingFunc<TResult>(Func<IGreeting, TResult> theGreetingFunc) 2: { 3: IGreeting aGreetingService = null; 4: try 5: { 6: aGreetingService = GetGreetingChannel(); 7: return theGreetingFunc(aGreetingService); 8: } 9: finally 10: { 11: CloseWCFChannel((IChannel)aGreetingService); 12: } 13: } Our original AddName method: 1: private static string AddName(string theName) 2: { 3: return ExecuteGreetingFunc<string>(theGreetingService => theGreetingService.AddName(theName)); 4: } Our new AddName method: 1: private static int AddName(string firstName, string lastName) 2: { 3: return ExecuteGreetingFunc<int>(theGreetingService => theGreetingService.AddName(firstName, lastName)); 4: } Let’s change the AddName method, just a little bit more for this example and have it take the greeting service as a parameter. 1: private static int AddName(IGreeting greetingService, string firstName, string lastName) 2: { 3: return greetingService.AddName(firstName, lastName); 4: } The new signature of AddName using the Func delegate is now Func<IGreeting, string, string, int>, which can’t be used with ExecuteGreetingFunc as is because it expects Func<IGreeting, TResult>.  Somehow we have to eliminate the two string parameters before we can use this with our existing method.  This is where we need to adapt AddName to match what ExecuteGreetingFunc expects, and we’ll do so in the following progression. 1: Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 2: Func<IGreeting, string, int> -> Func<IGreeting, int>   For the first step, we’ll create a method using the lambda syntax that will “eliminate” the last name parameter: 1: string lastNameToAdd = "Smith"; 2: //Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 3: Func<IGreeting, string, int> addName = (greetingService, firstName) => AddName(greetingService, firstName, lastNameToAdd); The new addName method gets us one step close to the signature we need.  Let’s say we’re going to call this in a loop to add several names, we’ll take the final step from Func<IGreeting, string, int> -> Func<IGreeting, int> in line as a lambda passed to ExecuteGreetingFunc like so: 1: List<string> firstNames = new List<string>() { "Bob", "John" }; 2: int aID; 3: foreach (string firstName in firstNames) 4: { 5: //Func<IGreeting, string, int> -> Func<IGreeting, int> 6: aID = ExecuteGreetingFunc<int>(greetingService => addName(greetingService, firstName)); 7: Console.WriteLine(GetGreeting(aID)); 8: } If for some reason you needed to break out the lambda on line 6 you could replace it with 1: aID = ExecuteGreetingFunc<int>(ApplyAddName(addName, firstName)); and use this method: 1: private static Func<IGreeting, int> ApplyAddName(Func<IGreeting, string, int> addName, string lastName) 2: { 3: return greetingService => addName(greetingService, lastName); 4: } Splitting out a lambda into its own method is useful both in this style of coding as well as LINQ queries to improve the debugging experience.  It is not strictly necessary to break apart the steps & functions as was shown above; the lambda in line 6 (of the foreach example) could include both the last name and first name instead of being composed of two functions.  The process demonstrated above is one of partially applying functions, this could have also been done with Currying (also see Dustin Campbell’s excellent post on Currying for the canonical curried add example).  Matthew Podwysocki also has some good posts explaining both Currying and partial application and a follow up post that further clarifies the difference between Currying and partial application.  In either technique the ultimate goal is to reduce the number of parameters passed to a function.  Currying makes it a single parameter passed at each step, where partial application allows one to use multiple parameters at a time as we’ve done here.  This technique isn’t for everyone or every problem, but can be extremely handy when you need to adapt a call to something you don’t control.

    Read the article

  • Code review recommendations and Code Smells

    - by Michael Freidgeim
    Some time ago Twitter told that I am similar to Boris Lipschitz . Indeed he is also .Net programmer from Russia living in Australia. I‘ve read his list of Code Review points and found them quite comprehensive. A few points  were not clear for me, and it forced me for a further reading.In particular the statement “Exception should not be used to return a status or an error code.” wasn’t fully clear for me, because sometimes we store an exception as an object with all error details and I believe it’s a valid approach. However I agree that throwing exceptions should be avoided, if you expect to return error as a part of a normal flow. Related link: http://codeutopia.net/blog/2010/03/11/should-a-failed-function-return-a-value-or-throw-an-exception/ Another point slightly puzzled me“If Thread.Sleep() is used, can it be replaced with something else, ei Timer, AutoResetEvent, etc” . I believe, that there are very rare cases, when anyone using Thread.Sleep in any production code. Usually it is used in mocks and prototypes.I had to look further to clarify “Dependency injection is used instead of Service Location pattern”.Even most of articles has some preferences to Dependency injection, there are also advantages to use Service Location. E.g see http://geekswithblogs.net/KyleBurns/archive/2012/04/27/dependency-injection-vs.-service-locator.aspx. http://www.cookcomputing.com/blog/archives/000587.html  refers to Concluding Thoughts of Martin Fowler The choice between Service Locator and Dependency Injection is less important than the principle of separating service configuration from the use of services within an applicationThe post had a link to excellent article Code Smells of Jeff Atwood, but the statement, that “code should not pass a review if it violates any of the  code smells” sound too strict for my environment. In particular, I disagree with “Dead Code” recommendation “Ruthlessly delete code that isn't being used. That's why we have source control systems!”. If there is a chance that not used code will be required in a future, it is convenient to keep it as commented or #if/#endif blocks with appropriate explanation, why it could be required in the future. TFS is a good source control system, but context search in source code of current solution is much easier than finding something in the previous versions of the code.I also found a link to a good book “Clean Code.A.Handbook.of.Agile.Software”

    Read the article

  • Unauthorized response from Server with API upload

    - by Ethan Shafer
    I'm writing a library in C# to help me develop a Windows application. The library uses the Ubuntu One API. I am able to authenticate and can even make requests to get the Quota (access to Account Admin API) and Volumes (so I know I have access to the Files API at least) Here's what I have as my Upload code: public static void UploadFile(string filename, string filepath) { FileStream file = File.OpenRead(filepath); byte[] bytes = new byte[file.Length]; file.Read(bytes, 0, (int)file.Length); RestClient client = UbuntuOneClients.FilesClient(); RestRequest request = UbuntuOneRequests.BaseRequest(Method.PUT); request.Resource = "/content/~/Ubuntu One/" + filename; request.AddHeader("Content-Length", bytes.Length.ToString()); request.AddParameter("body", bytes, ParameterType.RequestBody); client.ExecuteAsync(request, webResponse => UploadComplete(webResponse)); } Every time I send the request I get an "Unauthorized" response from the server. For now the "/content/~/Ubuntu One/" is hardcoded, but I checked and it is the location of my root volume. Is there anything that I'm missing? UbuntuOneClients.FilesClient() starts the url with "https://files.one.ubuntu.com" UbuntuOneRequests.BaseRequest(Method.{}) is the same requests that I use to send my Quota and Volumes requests, basically just provides all of the parameters needed to authenticate. EDIT:: Here's the BaseRequest() method: public static RestRequest BaseRequest(Method method) { RestRequest request = new RestRequest(method); request.OnBeforeDeserialization = resp => { resp.ContentType = "application/json"; }; request.AddParameter("realm", ""); request.AddParameter("oauth_version", "1.0"); request.AddParameter("oauth_nonce", Guid.NewGuid().ToString()); request.AddParameter("oauth_timestamp", DateTime.Now.ToString()); request.AddParameter("oauth_consumer_key", UbuntuOneRefreshInfo.UbuntuOneInfo.ConsumerKey); request.AddParameter("oauth_token", UbuntuOneRefreshInfo.UbuntuOneInfo.Token); request.AddParameter("oauth_signature_method", "PLAINTEXT"); request.AddParameter("oauth_signature", UbuntuOneRefreshInfo.UbuntuOneInfo.Signature); //request.AddParameter("method", method.ToString()); return request; } and the FilesClient() method: public static RestClient FilesClient() { return (new RestClient("https://files.one.ubuntu.com")); }

    Read the article

  • Multiple vulnerabilities in Wireshark

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2012-4048 Improper Control of Generation of Code ('Code Injection') vulnerability 3.3 Wireshark Solaris 11 11/11 SRU 11.4 CVE-2012-4049 Improper Control of Generation of Code ('Code Injection') vulnerability 2.9 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • iPhone: how to use performSelector:onThread:withObject:waitUntilDone: method?

    - by Michael Kessler
    Hi all, I am trying to use a separate thread for working with some API. The problem is that I am not able to use performSelector:onThread:withObject:waitUntilDone: method with a thread that I' instantiated for this. My code: @interface MyObject : NSObject { NSThread *_myThread; } @property(nonatomic, retain) NSThread *myThread; @end @implementation MyObject @synthesize myThread = _myThread; - (NSThread *)myThread { if (_myThread == nil) { NSThread *myThreadTemp = [[NSThread alloc] init]; [myThreadTemp start]; self. myThread = myThreadTemp; [myThreadTemp release]; } return _myThread; } - (id)init { if (self = [super init]) { [self performSelector:@selector(privateInit:) onThread:[self myThread] withObject:nil waitUntilDone:NO]; } return self; } - (void)privateInit:(id)object { NSLog(@"MyObject - privateInit start"); } - (void)dealloc { [_myThread release]; _myThread = nil; [super dealloc]; } @end "MyObject - privateInit start" is never printed. What am I missing? I tried to instantiate the thread with target and selector, tried to wait for method execution completion (waitUntilDone:YES). Nothing helps. UPDATE: I don't need this multithreading for separating costly operations to another thread. In this case I could use the performSelectorInBackground as mentioned in few answers. The main reason for this separate thread is the need to perform all the actions in the API (TTS by Loquendo) from one single thread. Meaning that I have to create an instance of the TTS object and call methods on that object from the same thread all the time.

    Read the article

  • C#: How to force "calling" a method from the main thread by signaling in some way from another thread

    - by Fire-Dragon-DoL
    Sorry for long title, I don't know even the way on how to express the question I'm using a library which run a callback from a different context from the main thread (is a C Library), I created the callback in C# and when gets called I would like to just raise an event. However because I don't know what will be inside the event, I would like to find a way to invoke the method without the problem of locks and so on (otherwise the third party user will have to handle this inside the event, very ugly) Are there any way to do this? I can be totally on the wrong way but I'm thinking about winforms way to handle different threads (the .Invoke thing) Otherwise I can send a message to the message loop of the window, but I don't know a lot about message passing and if I can send "custom" messages like this Example: private uint lgLcdOnConfigureCB(int connection, System.IntPtr pContext) { OnConfigure(EventArgs.Empty); return 0U; } this callback is called from another program which I don't have control over, I would like to run OnConfigure method in the main thread (the one that handles my winform), how to do it? Or in other words, I would like to run OnConfigure without the need of thinking about locks

    Read the article

  • UIAlertViewDelegate method didDismissWithButtonIndex gets called while the phone is sleeping/locked.

    - by Rob
    I have a UIAlertView who's didDismissWithButtonIndex delegate method calls pops the view controller (same class, it's the alertview delegate and the viewcontroller) to return the user to the previous screen. The issue is that when you lock the phone before the [alert show]; is called, something is calling didDismissWithButtonIndex while the phone is locked. Since the response to that is to pop the view controller, which releases and deallocs it, I crash on the callback. What is causing this phantom button press? Seems like a framework bug, but I hate jumping to that conclusion. I'm definitely not hitting the button, because I hit a breakpoint in my code right before it's displayed. Then I lock the phone. Then I continue. I see it do the show, return to the event loop, and then, while the phone is still locked, hit my breakpoint in didDismissWithButtonIndex. There are a few internet/forum postings about similar spurious delegate calls, but no concrete answers. This is on the simulator, and the device, both OS 2.2 and OS 3.0. I'm assuming I'm missing something, but what? Update: Yeah, I created a simple project with just two view controllers, where when the 2nd view controller displays it creates the alert, and shows it. Then I NSLog in the delegate method, and when the phone is locked, it fires once while locked, and then again when it's unlocked and the button is clicked...2 log messages. But when not locked, there's only one. I guess I'll open an issue, but it seems awfully obvious to have survived this long without anyone complaining. :-) I'm going to try and work around it by making an isActive flag value when the willResignActive/didBecomeActive notifications arrive, and if the app isn't active skipping the delegate body. Update I went ahead in July after I posted this and created radar 7097363 for this issue. There's been no response. The workaround in practice works quite well, checking the active status when processing the delegate, and skipping the action if the the app is inactive.

    Read the article

  • When I use a form to call a method on the controller, I want the page to refresh, and the url to sho

    - by MedicineMan
    Using ASP MVC, I have set up a webpage for localhost/Dinner/100 to show the dinner details for dinner with ID = 100. On the page, there is a dropdown that shows Dinner 1, Dinner 2, etc. The user should select the dinner of interest (Dinner 2, ID = 102) off the form and press submit. The page should refresh and show the url: localhost/Dinner/102, and show the details of dinner 2. My code is working except for the url. During this, my url shows localhost/Dinner/100 even though it is correctly displaying the details of Dinner 2 (ID = 102). My controller method is pretty simple: public ActionResult Index(string id) { int Id = 0; if (!IsValidFacilityId(id) || !int.TryParse(id, out Id)) { return Redirect("/"); } return View(CreateViewModel(Id)); } can you help me figure out how to get this all working? p.s. I did create a custom route for the method: routes.MapRoute( "DinnerDefault", // Route name "Dinner/{id}", // URL with parameters new { controller = "Dinner", action = "Index", id = "" } // Parameter defaults );

    Read the article

  • How do I securely authenticate the calling assembly of a WCF service method?

    - by Tim
    The current situation is as follows: We have an production .net 3.5 WCF service, used by several applications throughout the organization, over wsHttpBinding or netTcpBinding. User authentication is being done on the Transport level, using Windows integrated security. This service has a method Foo(string parameter), which can only be called by members of given AD groups. The string parameter is obligatory. A new client application has come into play (.net 3.5, C# console app), which eliminates the necessity of the string parameter. However, only calls from this particular application should be allowed to omit the string parameter. The identity of the caller of the client application should still be known by the server because the AD group limitation still applies (ruling out impersonation on the client side). I found a way to pass on the "evidence" of the calling (strong-named) assembly in the message headers, but this method is clearly not secure because the "evidence" can easily be spoofed. Also, CAS (code access security) seems like a possible solution, but I can't seem to figure out how to make use of CAS in this particular scenario. Does anyone have a suggestion on how to solve this issue? Edit: I found another thread on this subject; apparently the conclusion there is that it is simply impossible to implement in a secure fashion.

    Read the article

  • Is there a better way to create a generic convert string to enum method or enum extension?

    - by Kelsey
    I have the following methods in an enum helper class (I have simplified it for the purpose of the question): static class EnumHelper { public enum EnumType1 : int { Unknown = 0, Yes = 1, No = 2 } public enum EnumType2 : int { Unknown = 0, Dog = 1, Cat = 2, Bird = 3 } public enum EnumType3 : int { Unknown = 0, iPhone = 1, Andriod = 2, WindowsPhone7 = 3, Palm = 4 } public static EnumType1 ConvertToEnumType1(string value) { return (string.IsNullOrEmpty(value)) ? EnumType1.Unknown : (EnumType1)(Enum.Parse(typeof(EnumType1), value, true)); } public static EnumType2 ConvertToEnumType2(string value) { return (string.IsNullOrEmpty(value)) ? EnumType2.Unknown : (EnumType2)(Enum.Parse(typeof(EnumType2), value, true)); } public static EnumType3 ConvertToEnumType3(string value) { return (string.IsNullOrEmpty(value)) ? EnumType3.Unknown : (EnumType3)(Enum.Parse(typeof(EnumType3), value, true)); } } So the question here is, can I trim this down to an Enum extension method or maybe some type of single method that can handle any type. I have found some examples to do so with basic enums but the difference in my example is all the enums have the Unknown item that I need returned if the string is null or empty (if no match is found I want it to fail). Looking for something like the following maybe: EnumType1 value = EnumType1.Convert("Yes"); // or EnumType1 value = EnumHelper.Convert(EnumType1, "Yes"); One function to do it all... how to handle the Unknown element is the part that I am hung up on.

    Read the article

  • Why can I run JUnit tests for my Spring project, but not a main method?

    - by FarmBoy
    I am using JDBC to connect to MySQL for a small application. In order to test without altering the real database, I'm using HSQL in memory for JUnit tests. I'm using Spring for DI and DAOs. Here is how I'm configuring my HSQL DataSource <bean id="mockDataSource" class="org.springframework.jdbc.datasource.SingleConnectionDataSource"> <property name="driverClassName" value="org.hsqldb.jdbcDriver"/> <property name="url" value="jdbc:hsqldb:mem:mockSeo"/> <property name="username" value="sa"/> </bean> This works fine for my JUnit tests which use the mock DB. But when I try to run a main method, I find the following error: Error creating bean with name 'mockDataSource' defined in class path resource [beans.xml]: Error setting property values; nested exception is org.springframework.beans.PropertyBatchUpdateException; nested PropertyAccessExceptions (1) are: PropertyAccessException 1: org.springframework.beans.MethodInvocationException: Property 'driverClassName' threw exception; nested exception is java.lang.IllegalStateException: Could not load JDBC driver class [org.hsqldb.jdbcDriver] I'm running from Eclipse, and I'm using the Maven plugin. Is there a reason why this would work as a Test, but not as a main()? I know that the main method itself is not the problem, because it works if I remove all references to the HSQL DataSource from my Spring Configuration file.

    Read the article

  • How to get the path of a derived class from an inherited method?

    - by Jacco
    How to get the path of the current class, from an inherited method? I have the following: <?php // file: /parentDir/class.php class Parent { protected function getDir() { return dirname(__FILE__); } } ?> and <?php // file: /childDir/class.php class Child extends Parent { public function __construct() { echo $this->getDir(); } } $tmp = new Child(); // output: '/parentDir' ?> The __FILE__ constant always points to the source-file of the file it is in, regardless of inheritance. I would like to get the name of the path for the derived class. Is there any elegant way of doing this? I could do something along the lines of $this->getDir(__FILE__); but that would mean that I have to repeat myself quite often. I'm looking for a method that puts all the logic in the parent class, if possible. Update: Accepted solution (by Palantir): <?php // file: /parentDir/class.php class Parent { protected function getDir() { $reflector = new ReflectionClass(get_class($this)); return dirname($reflector->getFileName()); } } ?>

    Read the article

  • How do you unit test a method containing a LINQ expression?

    - by Phil.Wheeler
    I'm struggling to get my head around how to accommodate a mocked method that only accepts a Linq expression as its argument. Specifically, the repository I'm using has a First() method that looks like this: public T First(Expression<Func<T, bool>> expression) { return All().Where(expression).FirstOrDefault(); } The difficulty I'm encountering is with my MSpec tests, where I'm (probably incorrectly) trying to mock that call: public abstract class with_userprofile_repository { protected static Mock<IRepository<UserProfile>> repository; Establish context = () => { repository = new Mock<IRepository<UserProfile>>(); repository.Setup<UserProfile>(x => x.First(up => up.OpenID == @"http://testuser.myopenid.com")).Returns(GetDummyUser()); }; protected static UserProfile GetDummyUser() { UserProfile p = new UserProfile(); p.OpenID = @"http://testuser.myopenid.com"; p.FirstName = "Joe"; p.LastLogin = DateTime.Now.Date.AddDays(-7); p.LastName = "Bloggs"; p.Email = "[email protected]"; return p; } } I run into trouble because it's not enjoying the Linq expression: System.NotSupportedException: Expression up = (up.OpenID = "http://testuser.myopenid.com") is not supported. So how does one test these sorts of scenarios?

    Read the article

  • How to call a .NET COM method with an array from delphi using PSafeArray?

    - by Sebastian Godelet
    Hello. I have an .NET (4.0) interface which is implemented with a ServicedComponent COM+ class: interface DotNetIface { void MethodRef(var System.Guid guid); void MethodArray(System.Guid[] guids, params object[] parameters); void MethodCStyle([MarshalAs(UnmanagedType.LPArray, ArraySubType=UnmanagedType.Struct, SizeConst=5)]System.Guid[] guids); } Now I used the Delphi 2007 import wizard to import the type library, and as expected I get the following signatures: procedure MethodRef(var guid : TGuid); procedure MethodArray(guids : PSafeArray); procedure MethodCStyle(var guids : ClrGuid /* from mscorlib_TLB */); If i now call the "ref" method like this it works fine: procedure CallByRef(guid : TGuid); var test : TGuid; begin test := ... comRef.MethodRef(guid); end; Now I also need the array method procedure CallArray(); var localGuid : TGuid; arrayVariant : OleVariant; begin arrayVariant := VarArrayCreate([0,4], varVariant /* dont know here */); arrayVariant[0] := localGuid; /* compile error, cannot cast implicitly */ comRef.MethodArray(PSafeArray(TVarData(arrayVariant.VArray)), /* here this object... PSafeArray works actually*/); end; Now lastly i tried with a c array procedure CallCStyle(); var localGuid : TGuid; arrayOfGuid : array [0..4] of ClrGuid; begin arrayOfGuid[0] := ClrGuid(localGuid); comRef.MethodCStyle(PSafeArray(/* now i dont know put it*/, /* here this object... PSafeArray works actually*/); end; I seriously dont know how to make this work. I hope someone has more experience with COM marshalling thx Side node: I found VT_CLSID which i think can be passed for SafeArrayCreate, but I am not sure how to sue that

    Read the article

  • In ParallelPython, a method of an object ( object.func() ) fails to manipulate a variable of an object ( object.value )

    - by mehmet.ali.anil
    With parallelpython, I am trying to convert my old serial code to parallel, which heavily relies on objects that have methods that change that object's variables. A stripped example in which I omit the syntax in favor of simplicity: class Network: self.adjacency_matrix = [ ... ] self.state = [ ... ] self.equilibria = [ ... ] ... def populate_equilibria(self): # this function takes every possible value that self.state can be in # runs the boolean dynamical system # and writes an integer within self.equilibria for each self.state # doesn't return anything I call this method as: Code: j1 = jobserver.submit(net2.populate_equilibria,(),(),("numpy as num")) The job is sumbitted, and I know that a long computation takes place, so I speculate that my code is ran. The problem is, i am new to parallelpython , I was expecting that, when the method is called, the variable net2.equilibria would be written accordingly, and I would get a revised object (net2) . That is how my code works, independent objects with methods that act upon the object's variables. Rather, though the computation is apparent, and reasonably timed, the variable net2.equilibria remains unchanged. As if PP only takes the function and the object, computes it elsewhere, but never returns the object, so I am left with the old one. What do I miss? Thanks in advance.

    Read the article

  • Why a "private static" is not seen in a method?

    - by Roman
    I have a class with the following declaration of the fields: public class Game { private static String outputFileName; .... } I set the value of the outputFileName in the main method of the class. I also have a write method in the class which use the outputFileName. I always call write after main sets value for outputFileName. But write still does not see the value of the outputFileName. It say that it's equal to null. Could anybody, pleas, tell me what I am doing wrong? ADDED As it is requested I post more code: In the main: String outputFileName = userName + "_" + year + "_" + month + "_" + day + "_" + hour + "_" + minute + "_" + second + "_" + millis + ".txt"; f=new File(outputFileName); if(!f.exists()){ try { f.createNewFile(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } System.out.println("IN THE MAIN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"); System.out.println("------>" + outputFileName + "<------"); This line outputs me the name of the file. Than in the write I have: public static void write(String output) { // Open a file for appending. System.out.println("==========>" + outputFileName + "<============"); ...... } And it outputs null.

    Read the article

  • With PascalMock how do I mock a method with an untyped out parameter and an open array parameter?

    - by Oliver Giesen
    I'm currently in the process of getting started with unit testing and mocking for good and I stumbled over the following method that I can't seem to fabricate a working mock implementation for: function GetInstance(const AIID: TGUID; out AInstance; const AArgs: array of const; const AContextID: TImplContextID = CID_DEFAULT): Boolean; (TImplContextID is just an alias for Integer) I thought it would have to look something like this: function TImplementationProviderMock.GetInstance( const AIID: TGUID; out AInstance; const AArgs: array of const; const AContextID: TImplContextID): Boolean; begin Result := AddCall('GetInstance') .WithParams([@AIID, AContextID]) .ReturnsOutParams([AInstance]) .ReturnValue; end; But the compiler complains about the .ReturnsOutParams([AInstance]) saying "Bad argument type in variable type array constructor.". Also I haven't found a way to specify the open array parameter AArgs at all. Also, is using the @-notation for the TGUID-typed parameter the right way to go? Is it possible to mock this method with the current version of PascalMock at all?

    Read the article

  • Is it possible from Spring to inject the result of calling a method on a ref bean?

    - by Alex Worden
    Hi, Is it possible from Spring to inject the result of calling a method on a ref bean? I'm trying to refactor some cut/pasted code from two separate projects into a common class. In one of the projects, the code lives in a class I'll call "MyClient" that is being instantiated from Spring. It is injected with another spring-instantiated class "MyRegistry", then the MyClient class uses that class to look up an endpoint. All I really need is the endpoint String in my refactored class, which can be initialized via a Setter. I really cannot have a dependency on MyRegistry from MyClient in the refactored code. So, my question is this... is there a way I can inject the endpoint String from spring that was looked up in the MyRegistry class. So, I currently have: <bean id="registryService" class="foo.MyRegistry"> ...properties set etc... </bean> <bean id="MyClient" class="foo.MyClient"> <property name="registry" ref="registryService"/> </bean> But I'd like to have (and I know this is imaginary Spring syntax) <bean id="MyClient" class="foo.MyClient"> <property name="endPoint" value="registryService.getEndPoint('bar')"/> </bean> where MyRegistry will have a method getEndPoint(Stirng endPointName) Hope that makes sense from a the standpoint of what I'm trying to achieve. Please let me know if something like this is possible in Spring!

    Read the article

< Previous Page | 151 152 153 154 155 156 157 158 159 160 161 162  | Next Page >