Search Results

Search found 16324 results on 653 pages for 'per thread'.

Page 155/653 | < Previous Page | 151 152 153 154 155 156 157 158 159 160 161 162  | Next Page >

  • LLBLGen Pro v3.1 released!

    - by FransBouma
    Yesterday we released LLBLGen Pro v3.1! Version 3.1 comes with new features and enhancements, which I'll describe briefly below. v3.1 is a free upgrade for v3.x licensees. What's new / changed? Designer Extensible Import system. An extensible import system has been added to the designer to import project data from external sources. Importers are plug-ins which import project meta-data (like entity definitions, mappings and relational model data) from an external source into the loaded project. In v3.1, an importer plug-in for importing project elements from existing LLBLGen Pro v3.x project files has been included. You can use this importer to create source projects from which you import parts of models to build your actual project with. Model-only relationships. In v3.1, relationships of the type 1:1, m:1 and 1:n can be marked as model-only. A model-only relationship isn't required to have a backing foreign key constraint in the relational model data. They're ideal for projects which have to work with relational databases where changes can't always be made or some relationships can't be added to (e.g. the ones which are important for the entity model, but are not allowed to be added to the relational model for some reason). Custom field ordering. Although fields in an entity definition don't really have an ordering, it can be important for some situations to have the entity fields in a given order, e.g. when you use compound primary keys. Field ordering can be defined using a pop-up dialog which can be opened through various ways, e.g. inside the project explorer, model view and entity editor. It can also be set automatically during refreshes based on new settings. Command line relational model data refresher tool, CliRefresher.exe. The command line refresh tool shipped with v2.6 is now available for v3.1 as well Navigation enhancements in various designer elements. It's now easier to find elements like entities, typed views etc. in the project explorer from editors, to navigate to related entities in the project explorer by right clicking a relationship, navigate to the super-type in the project explorer when right-clicking an entity and navigate to the sub-type in the project explorer when right-clicking a sub-type node in the project explorer. Minor visual enhancements / tweaks LLBLGen Pro Runtime Framework Entity creation is now up to 30% faster and takes 5% less memory. Creating an entity object has been optimized further by tweaks inside the framework to make instantiating an entity object up to 30% faster. It now also takes up to 5% less memory than in v3.0 Prefetch Path node merging is now up to 20-25% faster. Setting entity references required the creation of a new relationship object. As this relationship object is always used internally it could be cached (as it's used for syncing only). This increases performance by 20-25% in the merging functionality. Entity fetches are now up to 20% faster. A large number of tweaks have been applied to make entity fetches up to 20% faster than in v3.0. Full WCF RIA support. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF RIA application using the VS.NET tools for WCF RIA services. WCF RIA services is a Microsoft technology for .NET 4 and typically used within silverlight applications. SQL Server DQE compatibility level is now per instance. (Usable in Adapter). It's now possible to set the compatibility level of the SQL Server Dynamic Query Engine (DQE) per instance of the DQE instead of the global setting it was before. The global setting is still available and is used as the default value for the compatibility level per-instance. You can use this to switch between CE Desktop and normal SQL Server compatibility per DataAccessAdapter instance. Support for COUNT_BIG aggregate function (SQL Server specific). The aggregate function COUNT_BIG has been added to the list of available aggregate functions to be used in the framework. Minor changes / tweaks I'm especially pleased with the import system, as that makes working with entity models a lot easier. The import system lets you import from another LLBLGen Pro v3 project any entity definition, mapping and / or meta-data like table definitions. This way you can build repository projects where you store model fragments, e.g. the building blocks for a customer-order system, a user credential model etc., any model you can think of. In most projects, you'll recognize that some parts of your new model look familiar. In these cases it would have been easier if you would have been able to import these parts from projects you had pre-created. With LLBLGen Pro v3.1 you can. For example, say you have an Oracle schema called CRM which contains the bread 'n' butter customer-order-product kind of model. You create an entity model from that schema and save it in a project file. Now you start working on another project for another customer and you have to use SQL Server. You also start using model-first development, so develop the entity model from scratch as there's no existing database. As this customer also requires some CRM like entity model, you import the entities from your saved Oracle project into this new SQL Server targeting project. Because you don't work with Oracle this time, you don't import the relational meta-data, just the entities, their relationships and possibly their inheritance hierarchies, if any. As they're now entities in your project you can change them a bit to match the new customer's requirements. This can save you a lot of time, because you can re-use pre-fab model fragments for new projects. In the example above there are no tables yet (as you work model first) so using the forward mapping capabilities of LLBLGen Pro v3 creates the tables, PK constraints, Unique Constraints and FK constraints for you. This way you can build a nice repository of model fragments which you can re-use in new projects.

    Read the article

  • Box2D Joints in entity components system

    - by Johnmph
    I search a way to have Box2D joints in an entity component system, here is what i found : 1) Having the joints in Box2D/Body component as parameters, we have a joint array with an ID by joint and having in the other body component the same joint ID, like in this example : Entity1 - Box2D/Body component { Body => (body parameters), Joints => { Joint1 => (joint parameters), others joints... } } // Joint ID = Joint1 Entity2 - Box2D/Body component { Body => (body parameters), Joints => { Joint1 => (joint parameters), others joints... } } // Same joint ID than in Entity1 There are 3 problems with this solution : The first problem is the implementation of this solution, we must manage the joints ID to create joints and to know between which bodies they are connected. The second problem is the parameters of joint, where are they got ? on the Entity1 or Entity2 ? If they are the same parameters for the joint, there is no problem but if they are differents ? The third problem is that we can't limit number of bodies to 2 by joint (which is mandatory), a joint can only link 2 bodies, in this solution, nothing prevents to create more than 2 entities with for each a body component with the same joint ID, in this case, how we know the 2 bodies to joint and what to do with others bodies ? 2) Same solution than the first solution but by having entities ID instead of Joint ID, like in this example : Entity1 - Box2D/Body component { Body => (body parameters), Joints => { Entity2 => (joint parameters), others joints... } } Entity2 - Box2D/Body component { Body => (body parameters), Joints => { Entity1 => (joint parameters), others joints... } } With this solution, we fix the first problem of the first solution but we have always the two others problems. 3) Having a Box2D/Joint component which is inserted in the entities which contains the bodies to joint (we share the same joint component between entities with bodies to joint), like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Joint => (Joint parameters) } // Shared, same as in Entity2 Entity2 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity1 There are 2 problems with this solution : The first problem is the same problem than in solution 1 and 2 : We can't limit number of bodies to 2 by joint (which is mandatory), a joint can only link 2 bodies, in this solution, nothing prevents to create more than 2 entities with for each a body component and the shared joint component, in this case, how we know the 2 bodies to joint and what to do with others bodies ? The second problem is that we can have only one joint by body because entity components system allows to have only one component of same type in an entity. So we can't put two Joint components in the same entity. 4) Having a Box2D/Joint component which is inserted in the entity which contains the first body component to joint and which has an entity ID parameter (this entity contains the second body to joint), like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Entity2 => (Joint parameters) } // Entity2 is the entity ID which contains the other body to joint, the first body being in this entity Entity2 - Box2D/Body component { Body => (body parameters) } There are exactly the same problems that in the third solution, the only difference is that we can have two differents joints by entity instead of one (by putting one joint component in an entity and another joint component in another entity, each joint referencing to the other entity). 5) Having a Box2D/Joint component which take in parameter the two entities ID which contains the bodies to joint, this component can be inserted in any entity, like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } Entity2 - Box2D/Body component { Body => (body parameters) } Entity3 - Box2D/Joint component { Joint => (Body1 => Entity1, Body2 => Entity2, others parameters of joint) } // Entity1 is the ID of the entity which have the first body to joint and Entity2 is the ID of the entity which have the second body to joint (This component can be in any entity, that doesn't matter) With this solution, we fix the problem of the body limitation by joint, we can only have two bodies per joint, which is correct. And we are not limited by number of joints per body, because we can create an another Box2D/Joint component, referencing to Entity1 and Entity2 and put this component in a new entity. The problem of this solution is : What happens if we change the Body1 or Body2 parameter of Joint component at runtime ? We need to add code to sync the Body1/Body2 parameters changes with the real joint object. 6) Same as solution 3 but in a better way : Having a Box2D/Joint component Box2D/Joint which is inserted in the entities which contains the bodies to joint, we share the same joint component between these entities BUT the difference is that we create a new entity to link the body component with the joint component, like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity3 Entity2 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity4 Entity3 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity1 - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity4 Entity4 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity2 - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity3 With this solution, we fix the second problem of the solution 3, because we can create an Entity5 which will have the shared body component of Entity1 and an another joint component so we are no longer limited in the joint number per body. But the first problem of solution 3 remains, because we can't limit the number of entities which have the shared joint component. To resolve this problem, we can add a way to limit the number of share of a component, so for the Joint component, we limit the number of share to 2, because we can only joint 2 bodies per joint. This solution would be perfect because there is no need to add code to sync changes like in the solution 5 because we are notified by the entity components system when components / entities are added to/removed from the system. But there is a conception problem : How to know easily and quickly between which bodies the joint operates ? Because, there is no way to find easily an entity with a component instance. My question is : Which solution is the best ? Is there any other better solutions ? Sorry for the long text and my bad english.

    Read the article

  • Computer crashes on resume from standby almost every time

    - by Los Frijoles
    I am running Ubuntu 12.04 on a Core i5 2500K and ASRock Z68 Pro3-M motherboard (no graphics card, hd is a WD Green 1TB, and cd drive is some cheap lite-on drive). Since installing 12.04, my computer has been freezing after resume, but not every time. When I start to resume, it starts going normally with a blinking cursor on the screen and then sometimes it will continue on to the gnome 3 unlock screen. Most of the time, however, it will blink for a little bit and then the monitor will flip modes and shut off due to no signal. Pressing keys on the keyboard gets no response (num lock light doesn't respond, Ctrl-Alt-F1 fails to drop it into a terminal, Ctrl-Alt-Backspace doesn't work) and so I assume the computer is crashed. The worst part is, the logs look entirely normal. Here is my system log during one of these crashes and my subsequent hard poweroff and restart: Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-2, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-2, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-1, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[12419]: inotify_add_watch(6, /dev/dm-0, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-0, 10) failed: No such file or directory Jun 6 22:09:01 kcuzner-desktop CRON[9061]: (root) CMD ( [ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir fuser -s {} 2>/dev/null \; -delete) Jun 6 22:17:01 kcuzner-desktop CRON[22142]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly) Jun 6 22:39:01 kcuzner-desktop CRON[26909]: (root) CMD ( [ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir fuser -s {} 2>/dev/null \; -delete) Jun 6 22:54:21 kcuzner-desktop kernel: [57905.560822] show_signal_msg: 36 callbacks suppressed Jun 6 22:54:21 kcuzner-desktop kernel: [57905.560828] chromium-browse[9139]: segfault at 0 ip 00007f3a78efade0 sp 00007fff7e2d2c18 error 4 in chromium-browser[7f3a76604000+412b000] Jun 6 23:05:43 kcuzner-desktop kernel: [58586.415158] chromium-browse[21025]: segfault at 0 ip 00007f3a78efade0 sp 00007fff7e2d2c18 error 4 in chromium-browser[7f3a76604000+412b000] Jun 6 23:09:01 kcuzner-desktop CRON[13542]: (root) CMD ( [ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir fuser -s {} 2>/dev/null \; -delete) Jun 6 23:12:43 kcuzner-desktop kernel: [59006.317590] usb 2-1.7: USB disconnect, device number 8 Jun 6 23:12:43 kcuzner-desktop kernel: [59006.319672] sd 7:0:0:0: [sdg] Synchronizing SCSI cache Jun 6 23:12:43 kcuzner-desktop kernel: [59006.319737] sd 7:0:0:0: [sdg] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK Jun 6 23:17:01 kcuzner-desktop CRON[26580]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly) Jun 6 23:19:04 kcuzner-desktop acpid: client connected from 29925[0:0] Jun 6 23:19:04 kcuzner-desktop acpid: 1 client rule loaded Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30131 of process 30131 (n/a) owned by '104' high priority at nice level -11. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 1 threads of 1 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30162 of process 30131 (n/a) owned by '104' RT at priority 5. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 2 threads of 1 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30163 of process 30131 (n/a) owned by '104' RT at priority 5. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 3 threads of 1 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop bluetoothd[1140]: Endpoint registered: sender=:1.239 path=/MediaEndpoint/HFPAG Jun 6 23:19:07 kcuzner-desktop bluetoothd[1140]: Endpoint registered: sender=:1.239 path=/MediaEndpoint/A2DPSource Jun 6 23:19:07 kcuzner-desktop bluetoothd[1140]: Endpoint registered: sender=:1.239 path=/MediaEndpoint/A2DPSink Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30166 of process 30166 (n/a) owned by '104' high priority at nice level -11. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 4 threads of 2 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop pulseaudio[30166]: [pulseaudio] pid.c: Daemon already running. Jun 6 23:19:10 kcuzner-desktop acpid: client 2942[0:0] has disconnected Jun 6 23:19:10 kcuzner-desktop acpid: client 29925[0:0] has disconnected Jun 6 23:19:10 kcuzner-desktop acpid: client connected from 1286[0:0] Jun 6 23:19:10 kcuzner-desktop acpid: 1 client rule loaded Jun 6 23:19:31 kcuzner-desktop bluetoothd[1140]: Endpoint unregistered: sender=:1.239 path=/MediaEndpoint/HFPAG Jun 6 23:19:31 kcuzner-desktop bluetoothd[1140]: Endpoint unregistered: sender=:1.239 path=/MediaEndpoint/A2DPSource Jun 6 23:19:31 kcuzner-desktop bluetoothd[1140]: Endpoint unregistered: sender=:1.239 path=/MediaEndpoint/A2DPSink Jun 6 23:28:12 kcuzner-desktop kernel: imklog 5.8.6, log source = /proc/kmsg started. Jun 6 23:28:12 kcuzner-desktop rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="1053" x-info="http://www.rsyslog.com"] start Jun 6 23:28:12 kcuzner-desktop rsyslogd: rsyslogd's groupid changed to 103 Jun 6 23:28:12 kcuzner-desktop rsyslogd: rsyslogd's userid changed to 101 Jun 6 23:28:12 kcuzner-desktop rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ] Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Ericsson MBM Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Sierra Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Generic Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Huawei Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Linktop Jun 6 23:28:12 kcuzner-desktop bluetoothd[1072]: Failed to init gatt_example plugin Jun 6 23:28:12 kcuzner-desktop bluetoothd[1072]: Listening for HCI events on hci0 Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> NetworkManager (version 0.9.4.0) is starting... Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> Read config file /etc/NetworkManager/NetworkManager.conf Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> VPN: loaded org.freedesktop.NetworkManager.pptp Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> DNS: loaded plugin dnsmasq Jun 6 23:28:12 kcuzner-desktop kernel: [ 0.000000] Initializing cgroup subsys cpuset Jun 6 23:28:12 kcuzner-desktop kernel: [ 0.000000] Initializing cgroup subsys cpu Sorry it's so huge; the restart happens at 23:28:12 I believe and all I see is that chromium segfaulted a few times. I wouldn't think a segfault from an individual program on the computer would crash it, but could that be the issue?

    Read the article

  • Mixing inheritance mapping strategies in NHibernate

    - by MylesRip
    I have a rather large inheritance hierarchy in which some of the subclasses add very little and others add quite a bit. I don't want to map the entire hierarchy using either "table per class hierarchy" or "table per subclass" due to the size and complexity of the hierarchy. Ideally I'd like to mix mapping strategies such that portions of the hierarchy where the subclasses add very little are combined into a common table a la "table per class hierarchy" and subclasses that add a lot are broken out into a separate table. Using this approach, I would expect to have 2 or 3 tables with very little wasted space instead of either 1 table with lots of fields that don't apply to most of the objects, or 20+ tables, several of which would have only a couple of columns. In the NHibernate Reference Documentation version 2.1.0, I found section 8.1.4 "Mixing table per class hierarchy with table per subclass". This approach switches strategies partway down the hierarchy by using: ... <subclass ...> <join ...> <property ...> ... </join> </subclass> ... This is great in theory. In practice, though, I found that the schema was too restrictive in what was allowed inside the "join" element for me to be able to accomplish what I needed. Here is the related part of the schema definition: <xs:element name="join"> <xs:complexType> <xs:sequence> <xs:element ref="subselect" minOccurs="0" /> <xs:element ref="comment" minOccurs="0" /> <xs:element ref="key" /> <xs:choice minOccurs="0" maxOccurs="unbounded"> <xs:element ref="property" /> <xs:element ref="many-to-one" /> <xs:element ref="component" /> <xs:element ref="dynamic-component" /> <xs:element ref="any" /> <xs:element ref="map" /> <xs:element ref="set" /> <xs:element ref="list" /> <xs:element ref="bag" /> <xs:element ref="idbag" /> <xs:element ref="array" /> <xs:element ref="primitive-array" /> </xs:choice> <xs:element ref="sql-insert" minOccurs="0" /> <xs:element ref="sql-update" minOccurs="0" /> <xs:element ref="sql-delete" minOccurs="0" /> </xs:sequence> <xs:attribute name="table" use="required" type="xs:string" /> <xs:attribute name="schema" type="xs:string" /> <xs:attribute name="catalog" type="xs:string" /> <xs:attribute name="subselect" type="xs:string" /> <xs:attribute name="fetch" default="join"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:enumeration value="join" /> <xs:enumeration value="select" /> </xs:restriction> </xs:simpleType> </xs:attribute> <xs:attribute name="inverse" default="false" type="xs:boolean"> </xs:attribute> <xs:attribute name="optional" default="false" type="xs:boolean"> </xs:attribute> </xs:complexType> </xs:element> As you can see, this allows the use of "property" child elements or "component" child elements, but not both. It also doesn't allow for "subclass" child elements to continue the hierarchy below the point at which the strategy was changed. Is there a way to accomplish this?

    Read the article

  • Techniques for modeling a dynamic dataflow with Java concurrency API

    - by Maian
    Is there an elegant way to model a dynamic dataflow in Java? By dataflow, I mean there are various types of tasks, and these tasks can be "connected" arbitrarily, such that when a task finishes, successor tasks are executed in parallel using the finished tasks output as input, or when multiple tasks finish, their output is aggregated in a successor task (see flow-based programming). By dynamic, I mean that the type and number of successors tasks when a task finishes depends on the output of that finished task, so for example, task A may spawn task B if it has a certain output, but may spawn task C if has a different output. Another way of putting it is that each task (or set of tasks) is responsible for determining what the next tasks are. Sample dataflow for rendering a webpage: I have as task types: file downloader, HTML/CSS renderer, HTML parser/DOM builder, image renderer, JavaScript parser, JavaScript interpreter. File downloader task for HTML file HTML parser/DOM builder task File downloader task for each embedded file/link If image, image renderer If external JavaScript, JavaScript parser JavaScript interpreter Otherwise, just store in some var/field in HTML parser task JavaScript parser for each embedded script JavaScript interpreter Wait for above tasks to finish, then HTML/CSS renderer (obviously not optimal or perfectly correct, but this is simple) I'm not saying the solution needs to be some comprehensive framework (in fact, the closer to the JDK API, the better), and I absolutely don't want something as heavyweight is say Spring Web Flow or some declarative markup or other DSL. To be more specific, I'm trying to think of a good way to model this in Java with Callables, Executors, ExecutorCompletionServices, and perhaps various synchronizer classes (like Semaphore or CountDownLatch). There are a couple use cases and requirements: Don't make any assumptions on what executor(s) the tasks will run on. In fact, to simplify, just assume there's only one executor. It can be a fixed thread pool executor, so a naive implementation can result in deadlocks (e.g. imagine a task that submits another task and then blocks until that subtask is finished, and now imagine several of these tasks using up all the threads). To simplify, assume that the data is not streamed between tasks (task output-succeeding task input) - the finishing task and succeeding task won't exist together, so the input data to the succeeding task will not be changed by the preceeding task (since it's already done). There are only a couple operations that the dataflow "engine" should be able to handle: A mechanism where a task can queue more tasks A mechanism whereby a successor task is not queued until all the required input tasks are finished A mechanism whereby the main thread (or other threads not managed by the executor) blocks until the flow is finished A mechanism whereby the main thread (or other threads not managed by the executor) blocks until certain tasks have finished Since the dataflow is dynamic (depends on input/state of the task), the activation of these mechanisms should occur within the task code, e.g. the code in a Callable is itself responsible for queueing more Callables. The dataflow "internals" should not be exposed to the tasks (Callables) themselves - only the operations listed above should be available to the task. Note that the type of the data is not necessarily the same for all tasks, e.g. a file download task may accept a File as input but will output a String. If a task throws an uncaught exception (indicating some fatal error requiring all dataflow processing to stop), it must propagate up to the thread that initiated the dataflow as quickly as possible and cancel all tasks (or something fancier like a fatal error handler). Tasks should be launched as soon as possible. This along with the previous requirement should preclude simple Future polling + Thread.sleep(). As a bonus, I would like to dataflow engine itself to perform some action (like logging) every time task is finished or when no has finished in X time since last task has finished. Something like: ExecutorCompletionService<T> ecs; while (hasTasks()) { Future<T> future = ecs.poll(1 minute); some_action_like_logging(); if (future != null) { future.get() ... } ... } Are there straightforward ways to do all this with Java concurrency API? Or if it's going to complex no matter what with what's available in the JDK, is there a lightweight library that satisfies the requirements? I already have a partial solution that fits my particular use case (it cheats in a way, since I'm using two executors, and just so you know, it's not related at all to the web browser example I gave above), but I'd like to see a more general purpose and elegant solution.

    Read the article

  • What's new in Solaris 11.1?

    - by Karoly Vegh
    Solaris 11.1 is released. This is the first release update since Solaris 11 11/11, the versioning has been changed from MM/YY style to 11.1 highlighting that this is Solaris 11 Update 1.  Solaris 11 itself has been great. What's new in Solaris 11.1? Allow me to pick some new features from the What's New PDF that can be found in the official Oracle Solaris 11.1 Documentation. The updates are very numerous, I really can't include all.  I. New AI Automated Installer RBAC profiles have been introduced to enable delegation of installation tasks. II. The interactive installer now supports installing the OS to iSCSI targets. III. ASR (Auto Service Request) and OCM (Oracle Configuration Manager) have been enabled by default to proactively provide support information and create service requests to speed up support processes. This is optional and can be disabled but helps a lot in supportcases. For further information, see: http://oracle.com/goto/solarisautoreg IV. The new command svcbundle helps you to create SMF manifests without having to struggle with XML editing. (btw, do you know the interactive editprop subcommand in svccfg? The listprop/setprop subcommands are great for scripting and automating, but for an interactive property editing session try, for example, this: svccfg -s svc:/application/pkg/system-repository:default editprop )  V. pfedit: Ever wondered how to delegate editing permissions to certain files? It is well known "sudo /usr/bin/vi /etc/hosts" is not the right way, for sudo elevates the complete vi process to admin levels, and the user can "break" out of the session as root with simply starting a shell from that vi. Now, the new pfedit command provides a solution exactly to this challenge - an auditable, secure, per-user configurable editing possibility. See the pfedit man page for examples.   VI. rsyslog, the popular logging daemon (filters, SSL, formattable output, SQL collect...) has been included in Solaris 11.1 as an alternative to syslog.  VII: Zones: Solaris Zones - as a major Solaris differentiator - got lots of love in terms of new features: ZOSS - Zones on Shared Storage: Placing your zones to shared storage (FC, iSCSI) has never been this easy - via zonecfg.  parallell updates - with S11's bootenvironments updating zones was no problem and meant no downtime anyway, but still, now you can update them parallelly, a way faster update action if you are running a large number of zones. This is like parallell patching in Solaris 10, but with all the IPS/ZFS/S11 goodness.  per-zone fstype statistics: Running zones on a shared filesystems complicate the I/O debugging, since ZFS collects all the random writes and delivers them sequentially to boost performance. Now, over kstat you can find out which zone's I/O has an impact on the other ones, see the examples in the documentation: http://docs.oracle.com/cd/E26502_01/html/E29024/gmheh.html#scrolltoc Zones got RDSv3 protocol support for InfiniBand, and IPoIB support with Crossbow's anet (automatic vnic creation) feature.  NUMA I/O support for Zones: customers can now determine the NUMA I/O topology of the system from within zones.  VIII: Security got a lot of attention too:  Automated security/audit reporting, with builtin reporting templates e.g. for PCI (payment card industry) audits.  PAM is now configureable on a per-user basis instead of system wide, allowing different authentication requirements for different users  SSH in Solaris 11.1 now supports running in FIPS 140-2 mode, that is, in a U.S. government security accredited fashion.  SHA512/224 and SHA512/256 cryptographic hash functions are implemented in a FIPS-compliant way - and on a T4 implemented in silicon! That is, goverment-approved cryptography at HW-speed.  Generally, Solaris is currently under evaluation to be both FIPS and Common Criteria certified.  IX. Networking, as one of the core strengths of Solaris 11, has been extended with:  Data Center Bridging (DCB) - not only setups where network and storage share the same fabric (FCoE, anyone?) can have Quality-of-Service requirements. DCB enables peers to distinguish traffic based on priorities. Your NICs have to support DCB, see the documentation, and additional information on Wikipedia. DataLink MultiPathing, DLMP, enables link aggregation to span across multiple switches, even between those of different vendors. But there are essential differences to the good old bandwidth-aggregating LACP, see the documentation: http://docs.oracle.com/cd/E26502_01/html/E28993/gmdlu.html#scrolltoc VNIC live migration is now supported from one physical NIC to another on-the-fly  X. Data management:  FedFS, (Federated FileSystem) is new, it relies on Solaris 11's NFS referring mechanism to join separate shares of different NFS servers into a single filesystem namespace. The referring system has been there since S11 11/11, in Solaris 11.1 FedFS uses a LDAP - as the one global nameservice to bind them all.  The iSCSI initiator now uses the T4 CPU's HW-implemented CRC32 algorithm - thus improving iSCSI throughput while reducing CPU utilization on a T4 Storage locking improvements are now RAC aware, speeding up throughput with better locking-communication between nodes up to 20%!  XI: Kernel performance optimizations: The new Virtual Memory subsystem ("VM2") scales now to 100+ TB Memory ranges.  The memory predictor monitors large memory page usage, and adjust memory page sizes to applications' needs OSM, the Optimized Shared Memory allows Oracle DBs' SGA to be resized online XII: The Power Aware Dispatcher in now by default enabled, reducing power consumption of idle CPUs. Also, the LDoms' Power Management policies and the poweradm settings in Solaris 11 OS will cooperate. XIII: x86 boot: upgrade to the (Grand Unified Bootloader) GRUB2. Because grub2 differs in the configuration syntactically from grub1, one shall not edit the new grub configuration (grub.cfg) but use the new bootadm features to update it. GRUB2 adds UEFI support and also support for disks over 2TB. XIV: Improved viewing of per-CPU statistics of mpstat. This one might seem of less importance at first, but nowadays having better sorting/filtering possibilities on a periodically updated mpstat output of 256+ vCPUs can be a blessing. XV: Support for Solaris Cluster 4.1: The What's New document doesn't actually mention this one, since OSC 4.1 has not been released at the time 11.1 was. But since then it is available, and it requires Solaris 11.1. And it's only a "pkg update" away. ...aand I seriously need to stop here. There's a lot I missed, Edge Virtual Bridging, lofi tuning, ZFS sharing and crypto enhancements, USB3.0, pulseaudio, trusted extensions updates, etc - but if I mention all those then I effectively copy the What's New document. Which I recommend reading now anyway, it is a great extract of the 300+ new projects and RFE-followups in S11.1. And this blogpost is a summary of that extract.  For closing words, allow me to come back to Request For Enhancements, RFEs. Any customer can request features. Open up a Support Request, explain that this is an RFE, describe the feature you/your company desires to have in S11 implemented. The more SRs are collected for an RFE, the more chance it's got to get implemented. Feel free to provide feedback about the product, as well as about the Solaris 11.1 Documentation using the "Feedback" button there. Both the Solaris engineers and the documentation writers are eager to hear your input.Feel free to comment about this post too. Except that it's too long ;)  wbr,charlie

    Read the article

  • Listview selects mutliple items when clicked

    - by xlph
    I'm trying to make a task manager, and I only have one problem. I have a listview that gets inflated. All the elements in the listview are correct. The problem is that when I select an item, the listview will select another item away. I've heard listviews repopulate the list as it scrolls down to save memory. I think this may be some sort of problem. Here is a picture of the problem. If i had more apps loaded, then it would continue to select multiple at once. Here is the code of my adapter and activity and XML associated public class TaskAdapter extends BaseAdapter{ private Context mContext; private List<TaskInfo> mListAppInfo; private PackageManager mPack; public TaskAdapter(Context c, List<TaskInfo> list, PackageManager pack) { mContext = c; mListAppInfo = list; mPack = pack; } @Override public int getCount() { return mListAppInfo.size(); } @Override public Object getItem(int position) { return mListAppInfo.get(position); } @Override public long getItemId(int position) { return position; } @Override public View getView(final int position, View convertView, ViewGroup parent) { TaskInfo entry = mListAppInfo.get(position); if (convertView == null) { LayoutInflater inflater = LayoutInflater.from(mContext); //System.out.println("Setting LayoutInflater in TaskAdapter " +mContext +" " +R.layout.taskinfo +" " +R.id.tmbox); convertView = inflater.inflate(R.layout.taskinfo,null); } ImageView ivIcon = (ImageView)convertView.findViewById(R.id.tmImage); ivIcon.setImageDrawable(entry.getIcon()); TextView tvName = (TextView)convertView.findViewById(R.id.tmbox); tvName.setText(entry.getName()); convertView.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { final CheckBox checkBox = (CheckBox)v.findViewById(R.id.tmbox); if(v.isSelected()) { System.out.println("Listview not selected "); //CK.get(arg2).setChecked(false); checkBox.setChecked(false); v.setSelected(false); } else { System.out.println("Listview selected "); //CK.get(arg2).setChecked(true); checkBox.setChecked(true); v.setSelected(true); } } }); return convertView; public class TaskManager extends Activity implements Runnable { private ProgressDialog pd; private TextView ram; private String s; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.taskpage); setTitleColor(Color.YELLOW); Thread thread = new Thread(this); thread.start(); } @Override public void run() { //System.out.println("In Taskmanager Run() Thread"); final PackageManager pm = getPackageManager(); final ListView box = (ListView) findViewById(R.id.cBoxSpace); final List<TaskInfo> CK = populate(box, pm); runOnUiThread(new Runnable() { @Override public void run() { ram.setText(s); box.setAdapter(new TaskAdapter(TaskManager.this, CK, pm)); //System.out.println("In Taskmanager runnable Run()"); endChecked(CK); } }); handler.sendEmptyMessage(0); } Taskinfo.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="wrap_content" android:layout_height="wrap_content" android:orientation="horizontal" android:gravity="center_horizontal"> <ImageView android:id="@+id/tmImage" android:layout_width="48dp" android:layout_height="48dp" android:scaleType="centerCrop" android:adjustViewBounds="false" android:focusable="false" /> <CheckBox android:layout_width="wrap_content" android:layout_height="wrap_content" android:id="@+id/tmbox" android:lines="2"/> </LinearLayout> Taskpage.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="fill_parent" android:layout_height="fill_parent" android:orientation="vertical"> <ListView android:id="@+id/cBoxSpace" android:layout_width="wrap_content" android:layout_height="400dp" android:orientation="vertical"/> <TextView android:id="@+id/RAM" android:layout_width="wrap_content" android:layout_height="wrap_content" android:textSize="18sp" /> <Button android:id="@+id/endButton" android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="End Selected Tasks" /> </LinearLayout> Any ideas for what reason mutliple items are selected with a single click would be GREATLY appreciated. I've been messing around with different implementations and listeners and listadapters but to no avail.

    Read the article

  • Light following me around the room. Something is wrong with my shader!

    - by Robinson
    I'm trying to do a spot (Blinn) light, with falloff and attenuation. It seems to be working OK except I have a bit of a space problem. That is, whenever I move the camera the light moves to maintain the same relative position, rather than changing with the camera. This results in the light moving around, i.e. not always falling on the same surfaces. It's as if there's a flashlight attached to the camera. I'm transforming the lights beforehand into view space, so Light_Position and Light_Direction are already in eye space (I hope!). I made a little movie of what it looks like here: My camera rotating around a point inside a box. The light is fixed in the centre up and its "look at" point in a fixed position in front of it. As you can see, as the camera rotates around the origin (always looking at the centre), so don't think the box is rotating (!). The lighting follows it around. To start, some code. This is how I'm transforming the light into view space (it gets passed into the shader already in view space): // Compute eye-space light position. Math::Vector3d eyeSpacePosition = MyCamera->ViewMatrix() * MyLightPosition; MyShaderVariables->Set(MyLightPositionIndex, eyeSpacePosition); // Compute eye-space light direction vector. Math::Vector3d eyeSpaceDirection = Math::Unit(MyLightLookAt - MyLightPosition); MyCamera->ViewMatrixInverseTranspose().TransformNormal(eyeSpaceDirection); MyShaderVariables->Set(MyLightDirectionIndex, eyeSpaceDirection); Can anyone give me a clue as to what I'm doing wrong here? I think the light should remain looking at a fixed point on the box, regardless of the camera orientation. Here are the vertex and pixel shaders: /////////////////////////////////////////////////// // Vertex Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Uniform Buffer Structures /////////////////////////////////////////////////// // Camera. layout (std140) uniform Camera { mat4 Camera_View; mat4 Camera_ViewInverseTranspose; mat4 Camera_Projection; }; // Matrices per model. layout (std140) uniform Model { mat4 Model_World; mat4 Model_WorldView; mat4 Model_WorldViewInverseTranspose; mat4 Model_WorldViewProjection; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Streams (per vertex) /////////////////////////////////////////////////// layout(location = 0) in vec3 attrib_Position; layout(location = 1) in vec3 attrib_Normal; layout(location = 2) in vec3 attrib_Tangent; layout(location = 3) in vec3 attrib_BiNormal; layout(location = 4) in vec2 attrib_Texture; /////////////////////////////////////////////////// // Output streams (per vertex) /////////////////////////////////////////////////// out vec3 attrib_Fragment_Normal; out vec4 attrib_Fragment_Position; out vec2 attrib_Fragment_Texture; out vec3 attrib_Fragment_Light; out vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main() { // Transform normal into eye space attrib_Fragment_Normal = (Model_WorldViewInverseTranspose * vec4(attrib_Normal, 0.0)).xyz; // Transform vertex into eye space (world * view * vertex = eye) vec4 position = Model_WorldView * vec4(attrib_Position, 1.0); // Compute vector from eye space vertex to light (light is in eye space already) attrib_Fragment_Light = Light_Position - position.xyz; // Compute vector from the vertex to the eye (which is now at the origin). attrib_Fragment_Eye = -position.xyz; // Output texture coord. attrib_Fragment_Texture = attrib_Texture; // Compute vertex position by applying camera projection. gl_Position = Camera_Projection * position; } and the pixel shader: /////////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Samplers /////////////////////////////////////////////////// uniform sampler2D Map_Diffuse; /////////////////////////////////////////////////// // Global Uniforms /////////////////////////////////////////////////// // Material. layout (std140) uniform Material { vec4 Material_Ambient_Colour; vec4 Material_Diffuse_Colour; vec4 Material_Specular_Colour; vec4 Material_Emissive_Colour; float Material_Shininess; float Material_Strength; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Input streams (per vertex) /////////////////////////////////////////////////// in vec3 attrib_Fragment_Normal; in vec3 attrib_Fragment_Position; in vec2 attrib_Fragment_Texture; in vec3 attrib_Fragment_Light; in vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Result /////////////////////////////////////////////////// out vec4 Out_Colour; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main(void) { // Compute N dot L. vec3 N = normalize(attrib_Fragment_Normal); vec3 L = normalize(attrib_Fragment_Light); vec3 E = normalize(attrib_Fragment_Eye); vec3 H = normalize(L + E); float NdotL = clamp(dot(L,N), 0.0, 1.0); float NdotH = clamp(dot(N,H), 0.0, 1.0); // Compute ambient term. vec4 ambient = Material_Ambient_Colour * Light_Ambient_Colour; // Diffuse. vec4 diffuse = texture2D(Map_Diffuse, attrib_Fragment_Texture) * Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL; // Specular. float specularIntensity = pow(NdotH, Material_Shininess) * Material_Strength; vec4 specular = Light_Specular_Colour * Material_Specular_Colour * specularIntensity; // Light attenuation (so we don't have to use 1 - x, we step between Max and Min). float d = length(-attrib_Fragment_Light); float attenuation = smoothstep(Light_Attenuation_Max, Light_Attenuation_Min, d); // Adjust attenuation based on light cone. float LdotS = dot(-L, Light_Direction), CosI = Light_Cone_Min - Light_Cone_Max; attenuation *= clamp((LdotS - Light_Cone_Max) / CosI, 0.0, 1.0); // Final colour. Out_Colour = (ambient + diffuse + specular) * Light_Intensity * attenuation; }

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Hibernate Lazy init exception in spring scheduled job

    - by Noam Nevo
    I have a spring scheduled job (@Scheduled) that sends emails from my system according to a list of recipients in the DB. This method is annotated with the @Scheduled annotation and it invokes a method from another interface, the method in the interface is annotated with the @Transactional annotation. Now, when i invoke the scheduled method manually, it works perfectly. But when the method is invoked by spring scheduler i get the LazyInitFailed exception in the method implementing the said interface. What am I doing wrong? code: The scheduled method: @Component public class ScheduledReportsSender { public static final int MAX_RETIRES = 3; public static final long HALF_HOUR = 1000 * 60 * 30; @Autowired IScheduledReportDAO scheduledReportDAO; @Autowired IDataService dataService; @Autowired IErrorService errorService; @Scheduled(cron = "0 0 3 ? * *") // every day at 2:10AM public void runDailyReports() { // get all daily reports List<ScheduledReport> scheduledReports = scheduledReportDAO.getDaily(); sendScheduledReports(scheduledReports); } private void sendScheduledReports(List<ScheduledReport> scheduledReports) { if(scheduledReports.size()<1) { return; } //check if data flow ended its process by checking the report_last_updated table in dwh int reportTimeId = scheduledReportDAO.getReportTimeId(); String todayTimeId = DateUtils.getTimeid(DateUtils.getTodayDate()); int yesterdayTimeId = Integer.parseInt(DateUtils.addDaysSafe(todayTimeId, -1)); int counter = 0; //wait for time id to update from the daily flow while (reportTimeId != yesterdayTimeId && counter < MAX_RETIRES) { errorService.logException("Daily report sender, data not ready. Will try again in one hour.", null, null, null); try { Thread.sleep(HALF_HOUR); } catch (InterruptedException ignore) {} reportTimeId = scheduledReportDAO.getReportTimeId(); counter++; } if (counter == MAX_RETIRES) { MarketplaceServiceException mse = new MarketplaceServiceException(); mse.setMessage("Data flow not done for today, reports are not sent."); throw mse; } // get updated timeid updateTimeId(); for (ScheduledReport scheduledReport : scheduledReports) { dataService.generateScheduledReport(scheduledReport); } } } The Invoked interface: public interface IDataService { @Transactional public void generateScheduledReport(ScheduledReport scheduledReport); } The implementation (up to the line of the exception): @Service public class DataService implements IDataService { public void generateScheduledReport(ScheduledReport scheduledReport) { // if no recipients or no export type - return if(scheduledReport.getRecipients()==null || scheduledReport.getRecipients().size()==0 || scheduledReport.getExportType() == null) { return; } } } Stack trace: ERROR: 2012-09-01 03:30:00,365 [Scheduler-15] LazyInitializationException.<init>(42) | failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:383) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:375) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:122) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.x.service.DataService.generateScheduledReport(DataService.java:219) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:309) at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvocation.java:183) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:150) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy208.generateScheduledReport(Unknown Source) at com.x.scheduledJobs.ScheduledReportsSender.sendScheduledReports(ScheduledReportsSender.java:85) at com.x.scheduledJobs.ScheduledReportsSender.runDailyReports(ScheduledReportsSender.java:38) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.util.MethodInvoker.invoke(MethodInvoker.java:273) at org.springframework.scheduling.support.MethodInvokingRunnable.run(MethodInvokingRunnable.java:65) at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:51) at org.springframework.scheduling.concurrent.ReschedulingRunnable.run(ReschedulingRunnable.java:81) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:165) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636) ERROR: 2012-09-01 03:30:00,366 [Scheduler-15] MethodInvokingRunnable.run(68) | Invocation of method 'runDailyReports' on target class [class com.x.scheduledJobs.ScheduledReportsSender] failed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:383) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:375) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:122) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.x.service.DataService.generateScheduledReport(DataService.java:219) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:309) at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvocation.java:183) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:150) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy208.generateScheduledReport(Unknown Source) at com.x.scheduledJobs.ScheduledReportsSender.sendScheduledReports(ScheduledReportsSender.java:85) at com.x.scheduledJobs.ScheduledReportsSender.runDailyReports(ScheduledReportsSender.java:38) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.util.MethodInvoker.invoke(MethodInvoker.java:273) at org.springframework.scheduling.support.MethodInvokingRunnable.run(MethodInvokingRunnable.java:65) at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:51) at org.springframework.scheduling.concurrent.ReschedulingRunnable.run(ReschedulingRunnable.java:81) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:165) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636)

    Read the article

  • How should I delete a child object from within a parent's slot? Possibly boost::asio specific.

    - by kaliatech
    I have written a network server class that maintains a std::set of network clients. The network clients emit a signal to the network server on disconnect (via boost::bind). When a network client disconnects, the client instance needs to be removed from the Set and eventually deleted. I would think this is a common pattern, but I am having problems that might, or might not, be specific to ASIO. I've tried to trim down to just the relevant code: /** NetworkServer.hpp **/ class NetworkServices : private boost::noncopyable { public: NetworkServices(void); ~NetworkServices(void); private: void run(); void onNetworkClientEvent(NetworkClientEvent&); private: std::set<boost::shared_ptr<const NetworkClient>> clients; }; /** NetworkClient.cpp **/ void NetworkServices::run() { running = true; boost::asio::io_service::work work(io_service); //keeps service running even if no operations // This creates just one thread for the boost::asio async network services boost::thread iot(boost::bind(&NetworkServices::run_io_service, this)); while (running) { boost::system::error_code err; try { tcp::socket* socket = new tcp::socket(io_service); acceptor->accept(*socket, err); if (!err) { NetworkClient* networkClient = new NetworkClient(io_service, boost::shared_ptr<tcp::socket>(socket)); networkClient->networkClientEventSignal.connect(boost::bind(&NetworkServices::onNetworkClientEvent, this, _1)); clients.insert(boost::shared_ptr<NetworkClient>(networkClient)); networkClient->init(); //kicks off 1st asynch_read call } } // etc... } } void NetworkServices::onNetworkClientEvent(NetworkClientEvent& evt) { switch(evt.getType()) { case NetworkClientEvent::CLIENT_ERROR : { boost::shared_ptr<const NetworkClient> clientPtr = evt.getClient().getSharedPtr(); // ------ THIS IS THE MAGIC LINE ----- // If I keep this, the io_service hangs. If I comment it out, // everything works fine (but I never delete the disconnected NetworkClient). // If actually deleted the client here I might expect problems because it is the caller // of this method via boost::signal and bind. However, The clientPtr is a shared ptr, and a // reference is being kept in the client itself while signaling, so // I would the object is not going to be deleted from the heap here. That seems to be the case. // Never-the-less, this line makes all the difference, most likely because it controls whether or not the NetworkClient ever gets deleted. clients.erase(clientPtr); //I should probably put this socket clean-up in NetworkClient destructor. Regardless by doing this, // I would expect the ASIO socket stuff to be adequately cleaned-up after this. tcp::socket& socket = clientPtr->getSocket(); try { socket.shutdown(boost::asio::socket_base::shutdown_both); socket.close(); } catch(...) { CommServerContext::error("Error while shutting down and closing socket."); } break; } default : { break; } } } /** NetworkClient.hpp **/ class NetworkClient : public boost::enable_shared_from_this<NetworkClient>, Client { NetworkClient(boost::asio::io_service& io_service, boost::shared_ptr<tcp::socket> socket); virtual ~NetworkClient(void); inline boost::shared_ptr<const NetworkClient> getSharedPtr() const { return shared_from_this(); }; boost::signal <void (NetworkClientEvent&)> networkClientEventSignal; void onAsyncReadHeader(const boost::system::error_code& error, size_t bytes_transferred); }; /** NetworkClient.cpp - onAsyncReadHeader method called from io_service.run() thread as result of an async_read operation. Error condition usually result of an unexpected client disconnect.**/ void NetworkClient::onAsyncReadHeader( const boost::system::error_code& error, size_t bytes_transferred) { if (error) { //Make sure this instance doesn't get deleted from parent/slot deferencing //Alternatively, somehow schedule for future delete? boost::shared_ptr<const NetworkClient> clientPtr = getSharedPtr(); //Signal to service that this client is disconnecting NetworkClientEvent evt(*this, NetworkClientEvent::CLIENT_ERROR); networkClientEventSignal(evt); networkClientEventSignal.disconnect_all_slots(); return; } I believe it's not safe to delete the client from within the slot handler because the function return would be ... undefined? (Interestingly, it doesn't seem to blow up on me though.) So I've used boost:shared_ptr along with shared_from_this to make sure the client doesn't get deleted until all slots have been signaled. It doesn't seem to really matter though. I believe this question is not specific to ASIO, but the problem manifests in a peculiar way when using ASIO. I have one thread executing io_service.run(). All ASIO read/write operations are performed asynchronously. Everything works fine with multiple clients connecting/disconnecting UNLESS I delete my client object from the Set per the code above. If I delete my client object, the io_service seemingly deadlocks internally and no further asynchronous operations are performed unless I start another thread. I have try/catches around the io_service.run() call and have not been able to detect any errors. Questions: Are there best practices for deleting child objects, that are also signal emitters, from within parent slots? Any ideas as to why the io_service is hanging when I delete my network client object?

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Entity Framework 6: Alpha2 Now Available

    - by ScottGu
    The Entity Framework team recently announced the 2nd alpha release of EF6.   The alpha 2 package is available for download from NuGet. Since this is a pre-release package make sure to select “Include Prereleases” in the NuGet package manager, or execute the following from the package manager console to install it: PM> Install-Package EntityFramework -Pre This week’s alpha release includes a bunch of great improvements in the following areas: Async language support is now available for queries and updates when running on .NET 4.5. Custom conventions now provide the ability to override the default conventions that Code First uses for mapping types, properties, etc. to your database. Multi-tenant migrations allow the same database to be used by multiple contexts with full Code First Migrations support for independently evolving the model backing each context. Using Enumerable.Contains in a LINQ query is now handled much more efficiently by EF and the SQL Server provider resulting greatly improved performance. All features of EF6 (except async) are available on both .NET 4 and .NET 4.5. This includes support for enums and spatial types and the performance improvements that were previously only available when using .NET 4.5. Start-up time for many large models has been dramatically improved thanks to improved view generation performance. Below are some additional details about a few of the improvements above: Async Support .NET 4.5 introduced the Task-Based Asynchronous Pattern that uses the async and await keywords to help make writing asynchronous code easier. EF 6 now supports this pattern. This is great for ASP.NET applications as database calls made through EF can now be processed asynchronously – avoiding any blocking of worker threads. This can increase scalability on the server by allowing more requests to be processed while waiting for the database to respond. The following code shows an MVC controller that is querying a database for a list of location entities:     public class HomeController : Controller     {         LocationContext db = new LocationContext();           public async Task<ActionResult> Index()         {             var locations = await db.Locations.ToListAsync();               return View(locations);         }     } Notice above the call to the new ToListAsync method with the await keyword. When the web server reaches this code it initiates the database request, but rather than blocking while waiting for the results to come back, the thread that is processing the request returns to the thread pool, allowing ASP.NET to process another incoming request with the same thread. In other words, a thread is only consumed when there is actual processing work to do, allowing the web server to handle more concurrent requests with the same resources. A more detailed walkthrough covering async in EF is available with additional information and examples. Also a walkthrough is available showing how to use async in an ASP.NET MVC application. Custom Conventions When working with EF Code First, the default behavior is to map .NET classes to tables using a set of conventions baked into EF. For example, Code First will detect properties that end with “ID” and configure them automatically as primary keys. However, sometimes you cannot or do not want to follow those conventions and would rather provide your own. For example, maybe your primary key properties all end in “Key” instead of “Id”. Custom conventions allow the default conventions to be overridden or new conventions to be added so that Code First can map by convention using whatever rules make sense for your project. The following code demonstrates using custom conventions to set the precision of all decimals to 5. As with other Code First configuration, this code is placed in the OnModelCreating method which is overridden on your derived DbContext class:         protected override void OnModelCreating(DbModelBuilder modelBuilder)         {             modelBuilder.Properties<decimal>()                 .Configure(x => x.HasPrecision(5));           } But what if there are a couple of places where a decimal property should have a different precision? Just as with all the existing Code First conventions, this new convention can be overridden for a particular property simply by explicitly configuring that property using either the fluent API or a data annotation. A more detailed description of custom code first conventions is available here. Community Involvement I blogged a while ago about EF being released under an open source license.  Since then a number of community members have made contributions and these are included in EF6 alpha 2. Two examples of community contributions are: AlirezaHaghshenas contributed a change that increases the startup performance of EF for larger models by improving the performance of view generation. The change means that it is less often necessary to use of pre-generated views. UnaiZorrilla contributed the first community feature to EF: the ability to load all Code First configuration classes in an assembly with a single method call like the following: protected override void OnModelCreating(DbModelBuilder modelBuilder) {        modelBuilder.Configurations            .AddFromAssembly(typeof(LocationContext).Assembly); } This code will find and load all the classes that inherit from EntityTypeConfiguration<T> or ComplexTypeConfiguration<T> in the assembly where LocationContext is defined. This reduces the amount of coupling between the context and Code First configuration classes, and is also a very convenient shortcut for large models. Other upcoming features coming in EF 6 Lots of information about the development of EF6 can be found on the EF CodePlex site, including a roadmap showing the other features that are planned for EF6. One of of the nice upcoming features is connection resiliency, which will automate the process of retying database operations on transient failures common in cloud environments and with databases such as the Windows Azure SQL Database. Another often requested feature that will be included in EF6 is the ability to map stored procedures to query and update operations on entities when using Code First. Summary EF6 is the first open source release of Entity Framework being developed in CodePlex. The alpha 2 preview release of EF6 is now available on NuGet, and contains some really great features for you to try. The EF team are always looking for feedback from developers - especially on the new features such as custom Code First conventions and async support. To provide feedback you can post a comment on the EF6 alpha 2 announcement post, start a discussion or file a bug on the CodePlex site. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • connecting clients to server with emulator on different computers

    - by prolink007
    I am writing an application that communicates using sockets. I have a server running on one android emulator on a computer, then i have 2 other clients running on android emulators on 2 other computers. I am trying to get the 2 clients to connect to the server. This works when i run the server and clients on the same computer, but when i attempt to do this on the same wifi network and on separate computers it gives me the following error. The client and server code is posted below. A lot is stripped out just to show the important stuff. Also, after the server starts i telnet into the server and run these commands redir add tcp:5000:6000 (i have also tried without doing the redir but it still says the same thing). Then i start the clients and get the error. Thanks for the help! Both the 5000 port and 6000 port are open on my router. And i have windows firewall disabled on the computer hosting the server. 11-27 18:54:02.274: W/ActivityManager(60): Activity idle timeout for HistoryRecord{44cf0a30 school.cpe434.ClassAidClient/school.cpe434.ClassAid.ClassAidClient4Activity} 11-27 18:57:02.424: W/System.err(205): java.net.SocketException: The operation timed out 11-27 18:57:02.454: W/System.err(205): at org.apache.harmony.luni.platform.OSNetworkSystem.connectSocketImpl(Native Method) 11-27 18:57:02.454: W/System.err(205): at org.apache.harmony.luni.platform.OSNetworkSystem.connect(OSNetworkSystem.java:114) 11-27 18:57:02.465: W/System.err(205): at org.apache.harmony.luni.net.PlainSocketImpl.connect(PlainSocketImpl.java:245) 11-27 18:57:02.465: W/System.err(205): at org.apache.harmony.luni.net.PlainSocketImpl.connect(PlainSocketImpl.java:220) 11-27 18:57:02.465: W/System.err(205): at java.net.Socket.startupSocket(Socket.java:780) 11-27 18:57:02.465: W/System.err(205): at java.net.Socket.<init>(Socket.java:314) 11-27 18:57:02.465: W/System.err(205): at school.cpe434.ClassAid.ClassAidClient4Activity.onCreate(ClassAidClient4Activity.java:102) 11-27 18:57:02.474: W/System.err(205): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1047) 11-27 18:57:02.474: W/System.err(205): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2459) 11-27 18:57:02.474: W/System.err(205): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2512) 11-27 18:57:02.474: W/System.err(205): at android.app.ActivityThread.access$2200(ActivityThread.java:119) 11-27 18:57:02.474: W/System.err(205): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1863) 11-27 18:57:02.474: W/System.err(205): at android.os.Handler.dispatchMessage(Handler.java:99) 11-27 18:57:02.474: W/System.err(205): at android.os.Looper.loop(Looper.java:123) 11-27 18:57:02.486: W/System.err(205): at android.app.ActivityThread.main(ActivityThread.java:4363) 11-27 18:57:02.486: W/System.err(205): at java.lang.reflect.Method.invokeNative(Native Method) 11-27 18:57:02.486: W/System.err(205): at java.lang.reflect.Method.invoke(Method.java:521) 11-27 18:57:02.486: W/System.err(205): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) 11-27 18:57:02.486: W/System.err(205): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) 11-27 18:57:02.486: W/System.err(205): at dalvik.system.NativeStart.main(Native Method) The server code public class ClassAidServer4Activity extends Activity { ServerSocket ss = null; String mClientMsg = ""; String mClientExtraMsg = ""; Thread myCommsThread = null; public static final int SERVERPORT = 6000; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); TextView tv = (TextView) findViewById(R.id.textView1); tv.setText("Nothing from client yet"); this.myCommsThread = new Thread(new CommsThread()); this.myCommsThread.start(); } class CommsThread implements Runnable { public void run() { // Socket s = null; try { ss = new ServerSocket(SERVERPORT ); } catch (IOException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } while(true) { try { Socket socket = ss.accept(); connectedDeviceCount++; Thread lThread = new Thread(new ListeningThread(socket)); lThread.start(); } catch (IOException e) { e.printStackTrace(); } } } } class ListeningThread implements Runnable { private Socket s = null; public ListeningThread(Socket socket) { // TODO Auto-generated constructor stub this.s = socket; } @Override public void run() { // TODO Auto-generated method stub while (!Thread.currentThread().isInterrupted()) { Message m = new Message(); // m.what = QUESTION_ID; try { if (s == null) s = ss.accept(); BufferedReader input = new BufferedReader( new InputStreamReader(s.getInputStream())); String st = null; st = input.readLine(); String[] temp = parseReadMessage(st); mClientMsg = temp[1]; if(temp.length > 2) { mClientExtraMsg = temp[2]; } m.what = Integer.parseInt(temp[0]); myUpdateHandler.sendMessage(m); } catch (IOException e) { e.printStackTrace(); } } } } } The client code public class ClassAidClient4Activity extends Activity { //telnet localhost 5554 //redir add tcp:5000:6000 private Socket socket; private String serverIpAddress = "192.168.1.102"; private static final int REDIRECTED_SERVERPORT = 5000; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); try { InetAddress serverAddr = InetAddress.getByName(serverIpAddress); socket = new Socket(serverAddr, REDIRECTED_SERVERPORT); } catch (UnknownHostException e1) { mQuestionAdapter.add("UnknownHostException"); e1.printStackTrace(); } catch (IOException e1) { mQuestionAdapter.add("IOException"); e1.printStackTrace(); } } }

    Read the article

  • TStringList and TThread that does not free all of its memory

    - by VanillaH
    Version used: Delphi 7. I'm working on a program that does a simple for loop on a Virtual ListView. The data is stored in the following record: type TList=record Item:Integer; SubItem1:String; SubItem2:String; end; Item is the index. SubItem1 the status of the operations (success or not). SubItem2 the path to the file. The for loop loads each file, does a few operations and then, save it. The operations take place in a TStringList. Files are about 2mb each. Now, if I do the operations on the main form, it works perfectly. Multi-threaded, there is a huge memory problem. Somehow, the TStringList doesn't seem to be freed completely. After 3-4k files, I get an EOutofMemory exception. Sometimes, the software is stuck to 500-600mb, sometimes not. In any case, the TStringList always return an EOutofMemory exception and no file can be loaded anymore. On computers with more memory, it takes longer to get the exception. The same thing happens with other components. For instance, if I use THTTPSend from Synapse, well, after a while, the software cannot create any new threads because the memory consumption is too high. It's around 500-600mb while it should be, max, 100mb. On the main form, everything works fine. I guess the mistake is on my side. Maybe I don't understand threads enough. I tried to free everything on the Destroy event. I tried FreeAndNil procedure. I tried with only one thread at a time. I tried freeing the thread manually (no FreeOnTerminate...) No luck. So here is the thread code. It's only the basic idea; not the full code with all the operations. If I remove the LoadFile prodecure, everything works good. A thread is created for each file, according to a thread pool. unit OperationsFiles; interface uses Classes, SysUtils, Windows; type TOperationFile = class(TThread) private Position : Integer; TPath, StatusMessage: String; FileStringList: TStringList; procedure UpdateStatus; procedure LoadFile; protected procedure Execute; override; public constructor Create(Path: String; LNumber: Integer); end; implementation uses Form1; procedure TOperationFile.LoadFile; begin try FileStringList.LoadFromFile(TPath); // Operations... StatusMessage := 'Success'; except on E : Exception do StatusMessage := E.ClassName; end; end; constructor TOperationFile.Create(Path : String; LNumber: Integer); begin inherited Create(False); TPath := Path; Position := LNumber; FreeOnTerminate := True; end; procedure TOperationFile.UpdateStatus; begin FileList[Position].SubItem1 := StatusMessage; Form1.ListView4.UpdateItems(Position,Position); end; procedure TOperationFile.Execute; begin FileStringList:= TStringList.Create; LoadFile; Synchronize(UpdateStatus); FileStringList.Free; end; end. What could be the problem? I thought at one point that, maybe, too many threads are created. If a user loads 1 million files, well, ultimately, 1 million threads is going to be created -- although, only 50 threads are created and running at the same time. Thanks for your input.

    Read the article

  • SQL SERVER – Reducing CXPACKET Wait Stats for High Transactional Database

    - by pinaldave
    While engaging in a performance tuning consultation for a client, a situation occurred where they were facing a lot of CXPACKET Waits Stats. The client asked me if I could help them reduce this huge number of wait stats. I usually receive this kind of request from other client as well, but the important thing to understand is whether this question has any merits or benefits, or not. Before we continue the resolution, let us understand what CXPACKET Wait Stats are. The official definition suggests that CXPACKET Wait Stats occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if a conflict concerning this wait type develops into a problem. (from BOL) In simpler words, when a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. Threads which came first have to wait for the slower thread to finish. The Wait by a specific completed thread is called CXPACKET Wait Stat. Note that CXPACKET Wait is done by completed thread and not the one which are unfinished. “Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is also unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query.” Now let us see what the best practices to reduce the CXPACKET Wait Stats are. The suggestions, with which you will find that if you search online through the browser, would play a major role as and might be asked about their jobs In addition, might tell you that you should set ‘maximum degree of parallelism’ to 1. I do agree with these suggestions, too; however, I think this is not the final resolutions. As soon as you set your entire query to run on single CPU, you will get a very bad performance from the queries which are actually performing okay when using parallelism. The best suggestion to this is that you set ‘the maximum degree of parallelism’ to a lower number or 1 (be very careful with this – it can create more problems) but tune the queries which can be benefited from multiple CPU’s. You can use query hint OPTION (MAXDOP 0) to run the server to use parallelism. Here is the two-quick script which helps to resolve these issues: Change MAXDOP at Server Level EXEC sys.sp_configure N'max degree of parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Run Query with all the CPU (using parallelism) USE AdventureWorks GO SELECT * FROM Sales.SalesOrderDetail ORDER BY ProductID OPTION (MAXDOP 0) GO Below is the blog post which will help you to find all the parallel query in your server. SQL SERVER – Find Queries using Parallelism from Cached Plan Please note running Queries in single CPU may worsen your performance and it is not recommended at all. Infect this can be very bad advise. I strongly suggest that you identify the queries which are offending and tune them instead of following any other suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Parallelism in .NET – Part 19, TaskContinuationOptions

    - by Reed
    My introduction to Task continuations demonstrates continuations on the Task class.  In addition, I’ve shown how continuations allow handling of multiple tasks in a clean, concise manner.  Continuations can also be used to handle exceptional situations using a clean, simple syntax. In addition to standard Task continuations , the Task class provides some options for filtering continuations automatically.  This is handled via the TaskContinationOptions enumeration, which provides hints to the TaskScheduler that it should only continue based on the operation of the antecedent task. This is especially useful when dealing with exceptions.  For example, we can extend the sample from our earlier continuation discussion to include support for handling exceptions thrown by the Factorize method: // Get a copy of the UI-thread task scheduler up front to use later var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Start our task var factorize = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); // When we succeed, report the results to the UI factorize.ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), CancellationToken.None, TaskContinuationOptions.NotOnFaulted, uiScheduler); // When we have an exception, report it factorize.ContinueWith(task => textBox1.Text = string.Format("Error: {0}", task.Exception.Message), CancellationToken.None, TaskContinuationOptions.OnlyOnFaulted, uiScheduler); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code works by using a combination of features.  First, we schedule our task, the same way as in the previous example.  However, in this case, we use a different overload of Task.ContinueWith which allows us to specify both a specific TaskScheduler (in order to have your continuation run on the UI’s synchronization context) as well as a TaskContinuationOption.  In the first continuation, we tell the continuation that we only want it to run when there was not an exception by specifying TaskContinuationOptions.NotOnFaulted.  When our factorize task completes successfully, this continuation will automatically run on the UI thread, and provide the appropriate feedback. However, if the factorize task has an exception – for example, if the Factorize method throws an exception due to an improper input value, the second continuation will run.  This occurs due to the specification of TaskContinuationOptions.OnlyOnFaulted in the options.  In this case, we’ll report the error received to the user. We can use TaskContinuationOptions to filter our continuations by whether or not an exception occurred and whether or not a task was cancelled.  This allows us to handle many situations, and is especially useful when trying to maintain a valid application state without ever blocking the user interface.  The same concepts can be extended even further, and allow you to chain together many tasks based on the success of the previous ones.  Continuations can even be used to create a state machine with full error handling, all without blocking the user interface thread.

    Read the article

  • Inequality joins, Asynchronous transformations and Lookups : SSIS

    - by jamiet
    It is pretty much accepted by SQL Server Integration Services (SSIS) developers that synchronous transformations are generally quicker than asynchronous transformations (for a description of synchronous and asynchronous transformations go read Asynchronous and synchronous data flow components). Notice I said “generally” and not “always”; there are circumstances where using asynchronous transformations can be beneficial and in this blog post I’ll demonstrate such a scenario, one that is pretty common when building data warehouses. Imagine I have a [Customer] dimension table that manages information about all of my customers as a slowly-changing dimension. If that is a type 2 slowly changing dimension then you will likely have multiple rows per customer in that table. Furthermore you might also have datetime fields that indicate the effective time period of each member record. Here is such a table that contains data for four dimension members {Terry, Max, Henry, Horace}: Notice that we have multiple records per customer and that the [SCDStartDate] of a record is equivalent to the [SCDEndDate] of the record that preceded it (if there was one). (Note that I am on record as saying I am not a fan of this technique of storing an [SCDEndDate] but for the purposes of clarity I have included it here.) Anyway, the idea here is that we will have some incoming data containing [CustomerName] & [EffectiveDate] and we need to use those values to lookup [Customer].[CustomerId]. The logic will be: Lookup a [CustomerId] WHERE [CustomerName]=[CustomerName] AND [SCDStartDate] <= [EffectiveDate] AND [EffectiveDate] <= [SCDEndDate] The conventional approach to this would be to use a full cached lookup but that isn’t an option here because we are using inequality conditions. The obvious next step then is to use a non-cached lookup which enables us to change the SQL statement to use inequality operators: Let’s take a look at the dataflow: Notice these are all synchronous components. This approach works just fine however it does have the limitation that it has to issue a SQL statement against your lookup set for every row thus we can expect the execution time of our dataflow to increase linearly in line with the number of rows in our dataflow; that’s not good. OK, that’s the obvious method. Let’s now look at a different way of achieving this using an asynchronous Merge Join transform coupled with a Conditional Split. I’ve shown it post-execution so that I can include the row counts which help to illustrate what is going on here: Notice that there are more rows output from our Merge Join component than on the input. That is because we are joining on [CustomerName] and, as we know, we have multiple records per [CustomerName] in our lookup set. Notice also that there are two asynchronous components in here (the Sort and the Merge Join). I have embedded a video below that compares the execution times for each of these two methods. The video is just over 8minutes long. View on Vimeo  For those that can’t be bothered watching the video I’ll tell you the results here. The dataflow that used the Lookup transform took 36 seconds whereas the dataflow that used the Merge Join took less than two seconds. An illustration in case it is needed: Pretty conclusive proof that in some scenarios it may be quicker to use an asynchronous component than a synchronous one. Your mileage may of course vary. The scenario outlined here is analogous to performance tuning procedural SQL that uses cursors. It is common to eliminate cursors by converting them to set-based operations and that is effectively what we have done here. Our non-cached lookup is performing a discrete operation for every single row of data, exactly like a cursor does. By eliminating this cursor-in-disguise we have dramatically sped up our dataflow. I hope all of that proves useful. You can download the package that I demonstrated in the video from my SkyDrive at http://cid-550f681dad532637.skydrive.live.com/self.aspx/Public/BlogShare/20100514/20100514%20Lookups%20and%20Merge%20Joins.zip Comments are welcome as always. @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Sun Fire X4800 M2 Posts World Record x86 SPECjEnterprise2010 Result

    - by Brian
    Oracle's Sun Fire X4800 M2 using the Intel Xeon E7-8870 processor and Sun Fire X4470 M2 using the Intel Xeon E7-4870 processor, produced a world record single application server SPECjEnterprise2010 benchmark result of 27,150.05 SPECjEnterprise2010 EjOPS. The Sun Fire X4800 M2 server ran the application tier and the Sun Fire X4470 M2 server was used for the database tier. The Sun Fire X4800 M2 server demonstrated 63% better performance compared to IBM P780 server result of 16,646.34 SPECjEnterprise2010 EjOPS. The Sun Fire X4800 M2 server demonstrated 4% better performance than the Cisco UCS B440 M2 result, both results used the same number of processors. This result used Oracle WebLogic Server 12c, Java HotSpot(TM) 64-Bit Server 1.7.0_02, and Oracle Database 11g. This result was produced using Oracle Linux. Performance Landscape Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results. The table below compares against the best results from IBM and Cisco. SPECjEnterprise2010 Performance Chart as of 3/12/2012 Submitter EjOPS* Application Server Database Server Oracle 27,150.05 1x Sun Fire X4800 M2 8x 2.4 GHz Intel Xeon E7-8870 Oracle WebLogic 12c 1x Sun Fire X4470 M2 4x 2.4 GHz Intel Xeon E7-4870 Oracle Database 11g (11.2.0.2) Cisco 26,118.67 2x UCS B440 M2 Blade Server 4x 2.4 GHz Intel Xeon E7-4870 Oracle WebLogic 11g (10.3.5) 1x UCS C460 M2 Blade Server 4x 2.4 GHz Intel Xeon E7-4870 Oracle Database 11g (11.2.0.2) IBM 16,646.34 1x IBM Power 780 8x 3.86 GHz POWER 7 WebSphere Application Server V7 1x IBM Power 750 Express 4x 3.55 GHz POWER 7 IBM DB2 9.7 Workgroup Server Edition FP3a * SPECjEnterprise2010 EjOPS, bigger is better. Configuration Summary Application Server: 1 x Sun Fire X4800 M2 8 x 2.4 GHz Intel Xeon processor E7-8870 256 GB memory 4 x 10 GbE NIC 2 x FC HBA Oracle Linux 5 Update 6 Oracle WebLogic Server 11g Release 1 (10.3.5) Java HotSpot(TM) 64-Bit Server VM on Linux, version 1.7.0_02 (Java SE 7 Update 2) Database Server: 1 x Sun Fire X4470 M2 4 x 2.4 GHz Intel Xeon E7-4870 512 GB memory 4 x 10 GbE NIC 2 x FC HBA 2 x Sun StorageTek 2540 M2 4 x Sun Fire X4270 M2 4 x Sun Storage F5100 Flash Array Oracle Linux 5 Update 6 Oracle Database 11g Enterprise Edition Release 11.2.0.2 Benchmark Description SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems. The workload consists of an end to end web based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages, Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans. The SPECjEnterprise2010 benchmark heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network. The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second ("SPECjEnterprise2010 EjOPS"). This metric is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is no price/performance metric in this benchmark. Key Points and Best Practices Sixteen Oracle WebLogic server instances were started using numactl, binding 2 instances per chip. Eight Oracle database listener processes were started, binding 2 instances per chip using taskset. Additional tuning information is in the report at http://spec.org. See Also Oracle Press Release -- SPECjEnterprise2010 Results Page Sun Fire X4800 M2 Server oracle.com OTN Sun Fire X4270 M2 Server oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Oracle Linux oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN WebLogic Suite oracle.com OTN Disclosure Statement SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Sun Fire X4800 M2, 27,150.05 SPECjEnterprise2010 EjOPS; IBM Power 780, 16,646.34 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M2, 26,118.67 SPECjEnterprise2010 EjOPS. Results from www.spec.org as of 3/27/2012.

    Read the article

  • Silverlight Cream for January 26, 2011 -- #1036

    - by Dave Campbell
    In this all-submittal Issue: XamlNinja, Kevin Dockx, Steve Wortham, Andrea Boschin, Mick Norman, Colin Eberhardt, and Rudi Grobler(-2-, -3-, -4-, -5-). Above the Fold: Silverlight: "Getting an invalid cross-thread exception in Silverlight?" Kevin Dockx WP7: "WP7 Contrib – the last messenger" XamlNinja ISO: "How many files are too many files for isolated storage?" Mick Norman Shoutouts: Telerik announced a free WP7 Webinars series that you probably don't want to miss: Join Us for the Special Free Windows Phone 7 Webinars Series. Guest lecturers - Shawn Wildermuth and Mark Arteaga From SilverlightCream.com: WP7 Contrib – the last messenger XamlNinja has a great post up extending Laurent's IMessenger to deal with a tricky issue of trying to fire a message from one VM to another even if the 2nd VM isn't alive yet... oh, and this is in WP7Contrib, so go grab it! Getting an invalid cross-thread exception in Silverlight? Kevin Dockx has a solution to a problem we've all had... the 'invalid cross-thread exception' ... and the solution is even for those of us trying to do this in a VM... cool and easy solution, Kevin! Mastering Storyboards One Mistake at a Time Steve Wortham is back with a tutorial with a great title :) ... check out the progression from one success to another in this picture/title viewer ... don't miss the very end where he has the control rolled up into a CaptionedImageHyperlink, and a link to download it! Windows Phone 7 - Part #2: Your First Application Andrea Boschin has part 2 of his SilverlightShow WP7 series up. Lots of good intro material here on the manifest file and app.xaml ... he even gets into the ApplicationBar, phone orientation, and the Metro theme. How many files are too many files for isolated storage? Mick Norman alerted me to his blog early this morning, and this is his latest post... interesting tests of how many files are too many for ISO on your WP7... and I have to admit... he's stuffing a boatload of them out there in these tests! ... great info Mick! and thanks for the links. A Navigator Control For Visiblox Time Series Charts Colin Eberhardt's latest post is about creating an interactive navigator for large time series datasets in Visiblox charts.... check the images at the top of the post, and it'll be obvious :) ... very cool stuff. MVVM Frameworks with WP7 support Rudi Grobler has been very busy and if you check the dates, these posts are all in a day or two! This first highlights two contenders for MVVM on WP7: Caliburn and MVVMLight... both well-supported... quick intro to each followed by good links out to the author's sites Reading barcodes from your WP7 device Rudi Grobler also has a cool post up on reading barcodes with your WP7... he's using the ZXing Barcode Scanning Library, and makes quick work of the job. Taking Sterling for a Test-Drive Rudi Grobler has a quick intro to Sterlink, Jeremy Likness' ISO database for Silverlight up... quickly taking care of writing and reading back data. SQLite on WP7 After his discussion of Sterling, Rudi Grobler is now demonstrating the use of SQLite that has been ported to WP7. Check out his demo code... looks pretty easy to use. Hacking the WP7 Camera (The basics) Rudi Grobler's latest post is on getting direct access to the camera on WP7... be sure to do all the downloads and check out the external links he has. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • SQL SERVER – CXPACKET – Parallelism – Advanced Solution – Wait Type – Day 7 of 28

    - by pinaldave
    Earlier we discussed about the what is the common solution to solve the issue with CXPACKET wait time. Today I am going to talk about few of the other suggestions which can help to reduce the CXPACKET wait. If you are going to suggest that I should focus on MAXDOP and COST THRESHOLD – I totally agree. I have covered them in details in yesterday’s blog post. Today we are going to discuss few other way CXPACKET can be reduced. Potential Reasons: If data is heavily skewed, there are chances that query optimizer may estimate the correct amount of the data leading to assign fewer thread to query. This can easily lead to uneven workload on threads and may create CXPAKCET wait. While retrieving the data one of the thread face IO, Memory or CPU bottleneck and have to wait to get those resources to execute its tasks, may create CXPACKET wait as well. Data which is retrieved is on different speed IO Subsystem. (This is not common and hardly possible but there are chances). Higher fragmentations in some area of the table can lead less data per page. This may lead to CXPACKET wait. As I said the reasons here mentioned are not the major cause of the CXPACKET wait but any kind of scenario can create the probable wait time. Best Practices to Reduce CXPACKET wait: Refer earlier article regarding MAXDOP and Cost Threshold. De-fragmentation of Index can help as more data can be obtained per page. (Assuming close to 100 fill-factor) If data is on multiple files which are on multiple similar speed physical drive, the CXPACKET wait may reduce. Keep the statistics updated, as this will give better estimate to query optimizer when assigning threads and dividing the data among available threads. Updating statistics can significantly improve the strength of the query optimizer to render proper execution plan. This may overall affect the parallelism process in positive way. Bad Practice: In one of the recent consultancy project, when I was called in I noticed that one of the ‘experienced’ DBA noticed higher CXPACKET wait and to reduce them, he has increased the worker threads. The reality was increasing worker thread has lead to many other issues. With more number of the threads, more amount of memory was used leading memory pressure. As there were more threads CPU scheduler faced higher ‘Context Switching’ leading further degrading performance. When I explained all these to ‘experienced’ DBA he suggested that now we should reduce the number of threads. Not really! Lower number of the threads may create heavy stalling for parallel queries. I suggest NOT to touch the setting of number of the threads when dealing with CXPACKET wait. Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and I no way claim it to be accurate. I suggest reading book on-line for further clarification. All the discussion of Wait Stats over here is generic and it varies by system to system. You are recommended to test this on development server before implementing to production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • P90X or How I Stopped Worrying and Love Exercise

    - by Matt Christian
    Last Wednesday, after many UPS delivery failures, I received P90X in the mail.  P90X is a series of DVD's and a nutrition guide you use to shed pounds and gain muscle.  Odds are you've seen the infomercial on TV at some point if you watch a little tube now and again.  I started last Thursday and am still standing to tell this tale. At it's core, P90X is a 12 DVD set of exercise videos.  Each video is comprised of a different workout routine that typically last around an hour (some up to 1 1/2 hours).  Every day you are supposed to do one of the workouts which are different every day (sometimes you may repeat a shorter 6 min workout dedicated to abs twice a week).  There are different 'programs' focused on different areas, for weight loss you do the Lean Program, standard weight loss and muscle gain do the Regular Program, and for those hardcore health-nuts, the Insane Program (which consists of 2 - 1 hour long exercises per day).  Each Program has a different set of workouts per week which you repeat for 3 weeks, followed by a 'Relaxation Week' which is essentially a slightly different order.  After the month of workouts is over, you've finished 1 phase out of 3.  P90X takes 90 days, split into 3 Phases (1 phase per month).  Every phase has a different workout order which is also focused on different areas (Weight Loss, Muscle Gain, etc...)  With the DVD's you also get a small glossy book of about 100 pages detailing the different workouts and the different programs as well as a sample workout to see if you're even ready to start P90X. The second part of P90X, which can also be considered the 'core' (actually the other half of the core) is the nutrition guide that is included.  The Nutrition Guide is a book similar to the one that defines the exercises (about 100 glossy pages) though it details foods you should eat, the amounts, and a number of healthy (and tasty!) recipes.  The guide is split up into 3 phases as well, promoting high protein and low carb/dairy at during Phase 1, and levelling off through to Phase 3 where you have a relatively balanced amount of every food group. So after 1 week where am I?  I've stuck quite close to the nutrition guide (there isn't 'diet food' in here people, it's ACTUALLY food) and done my exercise every day.  I think a lot of the first week is getting into the whole idea and learning the moves performed on the DVD.  Have I lost weight?  No.  Do I feel some definition already starting to poke out?  Absolutely (no pun intended). Tony Horton (the 51-year old hulk that runs the whole thing) is very fun to listen and work along with and the 'diet' really isn't too hard to follow unless all you eat is carbs.  I've tried the gym thing and could not get motivated enough to continue going.  P90X is the first time I've ached from a workout, BEFORE starting my next workout.  For anyone interested, Google 'P90X' or 'BeachBody' to find out more information about this awesome program!

    Read the article

  • about the JOGL 2 problem

    - by Chuchinyi
    Please some help me about the JOGL 2 problem(Sorry for previous error format). I complied JOGL2Template.java ok. but execut it with following error. D:\java\java\jogl>javac JOGL2Template.java <== compile ok D:\java\java\jogl>java JOGL2Template <== execute error Exception in thread "main" java.lang.ExceptionInInitializerError at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:1176) at JOGL2Template.<init>(JOGL2Template.java:24) at JOGL2Template.main(JOGL2Template.java:57) Caused by: java.lang.SecurityException: no certificate for gluegen-rt.dll in D:\ java\lib\gluegen-rt-natives-windows-i586.jar at com.jogamp.common.util.JarUtil.validateCertificate(JarUtil.java:350) at com.jogamp.common.util.JarUtil.validateCertificates(JarUtil.java:324) at com.jogamp.common.util.cache.TempJarCache.validateCertificates(TempJa rCache.java:328) at com.jogamp.common.util.cache.TempJarCache.bootstrapNativeLib(TempJarC ache.java:283) at com.jogamp.common.os.Platform$3.run(Platform.java:308) at java.security.AccessController.doPrivileged(Native Method) at com.jogamp.common.os.Platform.loadGlueGenRTImpl(Platform.java:298) at com.jogamp.common.os.Platform.<clinit>(Platform.java:207) ... 3 more there is JOGL2Template.java source code: import java.awt.Dimension; import java.awt.Frame; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import com.jogamp.opengl.util.FPSAnimator; import javax.swing.JFrame; /* * JOGL 2.0 Program Template For AWT applications */ public class JOGL2Template extends JFrame implements GLEventListener { private static final int CANVAS_WIDTH = 640; // Width of the drawable private static final int CANVAS_HEIGHT = 480; // Height of the drawable private static final int FPS = 60; // Animator's target frames per second // Constructor to create profile, caps, drawable, animator, and initialize Frame public JOGL2Template() { // Get the default OpenGL profile that best reflect your running platform. GLProfile glp = GLProfile.getDefault(); // Specifies a set of OpenGL capabilities, based on your profile. GLCapabilities caps = new GLCapabilities(glp); // Allocate a GLDrawable, based on your OpenGL capabilities. GLCanvas canvas = new GLCanvas(caps); canvas.setPreferredSize(new Dimension(CANVAS_WIDTH, CANVAS_HEIGHT)); canvas.addGLEventListener(this); // Create a animator that drives canvas' display() at 60 fps. final FPSAnimator animator = new FPSAnimator(canvas, FPS); addWindowListener(new WindowAdapter() { // For the close button @Override public void windowClosing(WindowEvent e) { // Use a dedicate thread to run the stop() to ensure that the // animator stops before program exits. new Thread() { @Override public void run() { animator.stop(); System.exit(0); } }.start(); } }); add(canvas); pack(); setTitle("OpenGL 2 Test"); setVisible(true); animator.start(); // Start the animator } public static void main(String[] args) { new JOGL2Template(); } @Override public void init(GLAutoDrawable drawable) { // Your OpenGL codes to perform one-time initialization tasks // such as setting up of lights and display lists. } @Override public void display(GLAutoDrawable drawable) { // Your OpenGL graphic rendering codes for each refresh. } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int w, int h) { // Your OpenGL codes to set up the view port, projection mode and view volume. } @Override public void dispose(GLAutoDrawable drawable) { // Hardly used. } }

    Read the article

  • What packages do I need to compile .tex documents using XeLaTeX?

    - by maria
    Hi I'm aware of the existence of similar threads on this forum. But any of replies mach to my problem. I'm using Ubuntu 10.4 and I hadn't problems with fonts till I've decided to use XeLaTeX instead of LaTeX (cf http://tex.stackexchange.com/questions/12347/typesetting-a-document-using-arabic-script/12358#12358). The problem is that I'm not able to compile any .tex document using XeLaTeX, as well as properly display XeLaTeX documentation. As I've learn thanks to mentioned thread, XeLaTeX uses the fonts availables in general in the system. I was trying yo read fontspec documentation, but it opens in pdf with a lot of white gaps and terminal output (quite long) consist mostly of errors. This are just few lines of it: Error: Missing language pack for 'Adobe-Japan1' mapping Error: Unknown font tag 'F5.1' Error (24124): No font in show Error: Unknown font tag 'F5.1' I was trying to compile simple XeLaTeX file: \documentclass{article} \usepackage{fontspec} \setmainfont{Linux Libertine O} \begin{document} Hello World! \end{document} without succes. This is terminal output of compilation: This is XeTeX, Version 3.1415926-2.2-0.9995.2 (TeX Live 2009/Debian) restricted \write18 enabled. entering extended mode (./ex.tex LaTeX2e <2009/09/24> Babel <v3.8l> and hyphenation patterns for english, usenglishmax, dumylang, noh yphenation, polish, loaded. (/usr/share/texmf-texlive/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texmf-texlive/tex/latex/base/size10.clo)) (/usr/share/texmf-texlive/tex/xelatex/fontspec/fontspec.sty (/usr/share/texmf-texlive/tex/generic/ifxetex/ifxetex.sty) (/usr/share/texmf-texlive/tex/latex/tools/calc.sty) (/usr/share/texmf-texlive/tex/latex/xkeyval/xkeyval.sty (/usr/share/texmf-texlive/tex/generic/xkeyval/xkeyval.tex (/usr/share/texmf-texlive/tex/generic/xkeyval/keyval.tex))) (/usr/share/texmf-texlive/tex/latex/base/fontenc.sty (/usr/share/texmf-texlive/tex/xelatex/euenc/eu1enc.def) (/usr/share/texmf-texlive/tex/xelatex/euenc/eu1lmr.fd)) fontspec.cfg loaded. (/usr/share/texmf-texlive/tex/xelatex/fontspec/fontspec.cfg))kpathsea: Invalid fontname `Linux Libertine O', contains ' ' ! Font \zf@basefont="Linux Libertine O" at 10.0pt not loadable: Metric (TFM) fi le or installed font not found. \zf@fontspec ...ntname \zf@suffix " at \f@size pt \unless \ifzf@icu \zf@set@... l.3 \setmainfont{Linux Libertine O} ? I can't find Linux Libertine O. Searching for otf- by aptitude gives as result: maria@maria-laptop:/etc/fonts$ aptitude search otf p emdebian-rootfs - emdebian root filesystem support p libotf-bin - A Library for handling OpenType Font - utilities p libotf-dev - A Library for handling OpenType Font - development i libotf0 - A Library for handling OpenType Font - runtime p libotf0-dbg - The libotf libraries and debugging symbols p libpam-dotfile - A PAM module which allows users to have more than one password p livecd-rootfs - construction script for the livecd rootfs p makebootfat - Utility to create a bootable FAT filesystem p otf-ipaexfont - Japanese OpenType font, IPAexFont (IPAexGothic/Mincho) p otf-ipaexfont-gothic - Japanese OpenType font, IPAexFont (IPAexGothic) p otf-ipaexfont-mincho - Japanese OpenType font, IPAexFont (IPAexMincho) p otf-ipafont - Japanese OpenType font set, IPAfont p otf-ipafont-gothic - Japanese OpenType font set, IPA Gothic font p otf-ipafont-mincho - Japanese OpenType font set, IPA Mincho font p otf-stix - the Scientific and Technical Information eXchange fonts p otf-thai-tlwg - Thai fonts in OpenType format p otf-yozvox-yozfont - Japanese proportional Handwriting OpenType font p otf2bdf - generate BDF bitmap fonts from OpenType outline fonts p robotfindskitten - Zen Simulation of robot finding kitten So font in question is not just uninstalled, but not available, if I'm not wrong. Does it mean that I lack some repositoires? I was trying also to apply solution from the thread How do I reinstall default fonts?, but the result is: maria@maria-laptop:~$ sudo apt-get install msttcorefonts [sudo] password for maria: Reading package lists... Done Building dependency tree Reading state information... Done Note, selecting ttf-mscorefonts-installer instead of msttcorefonts ttf-mscorefonts-installer is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. maria@maria-laptop:~$ It seems that is not a usual problem for use of XeLaTeX; nobody in the mentioned thread suggested instalation of anything else than TeX Live. Thanks in advance

    Read the article

< Previous Page | 151 152 153 154 155 156 157 158 159 160 161 162  | Next Page >