Search Results

Search found 23271 results on 931 pages for 'static classes'.

Page 156/931 | < Previous Page | 152 153 154 155 156 157 158 159 160 161 162 163  | Next Page >

  • Generic Singleton Fasade design pattern

    - by Paul
    Hi I try write singleton fasede pattern with generics. I have one problem, how can I call method from generic variable. Something like this: T1 t1 = new T1(); //call method from t1 t1.Method(); In method SingletonFasadeMethod I have compile error: Error 1 'T1' does not contain a definition for 'Method' and no extension method 'Method' accepting a first argument of type 'T1' could be found (are you missing a using directive or an assembly reference?) Any advace? Thank, I am beginner in C#. All code is here: namespace GenericSingletonFasade { public interface IMyInterface { string Method(); } internal class ClassA : IMyInterface { public string Method() { return " Calling MethodA "; } } internal class ClassB : IMyInterface { public string Method() { return " Calling MethodB "; } } internal class ClassC : IMyInterface { public string Method() { return "Calling MethodC"; } } internal class ClassD : IMyInterface { public string Method() { return "Calling MethodD"; } } public class SingletonFasade<T1,T2,T3> where T1 : class,new() where T2 : class,new() where T3 : class,new() { private static T1 t1; private static T2 t2; private static T3 t3; private SingletonFasade() { t1 = new T1(); t2 = new T2(); t3 = new T3(); } class SingletonCreator { static SingletonCreator() { } internal static readonly SingletonFasade<T1,T2,T3> uniqueInstace = new SingletonFasade<T1,T2,T3>(); } public static SingletonFasade<T1,T2,T3> UniqueInstace { get { return SingletonCreator.uniqueInstace; } } public string SingletonFasadeMethod() { //Problem is here return t1.Method() + t2.Method() + t3.Method(); } } }

    Read the article

  • question about permutation problem

    - by davit-datuashvili
    i have posted similar problem here http://stackoverflow.com/questions/2920315/permutation-of-array but i want following we know that with length n there is n! possible permutation from which one such that all element are in order they are in sorted variant so i want break permutation when array is in order and print result but something is wrong i think that problem is repeated of permutation here is my code import java.util.*; public class permut{ public static Random r=new Random(); public static void display(int a[],int n){ for (int i=0;i<n;i++){ System.out.println(a[i]); } } public static void Permut(int a[],int n){ int j=0; int k=0; while (j<fact(n)){ int s=r.nextInt(n); for (int i=0;i<n;i++){ k=a[i]; a[i]=a[s]; a[s]=k; } j++; if (sorted(a,n)) display(a,n); break; } } public static void main(String[]args){ int a[]=new int[]{3,4,1,2}; int n=a.length; Permut(a,n); } public static int fact(int n){ if (n==0 || (n==1) ) return 1; return n*fact(n-1); } public static boolean sorted(int a[],int n ){ boolean flag=false; for (int i=0;i<n-1;i++){ if (a[i]<a[i+1]){ flag=true; } else{ flag=false; } } return flag; } } can anybody help me? result is nothing

    Read the article

  • Reloading Rails Directories on Change for Development, Not in Lib

    - by yar
    I have checked out several questions on this, including all of those you see next to the question. Unfortunately, I'm not working with a plugin, and I don't want to work in lib. I have a directory called File.join(Rails.root, 'classes') and I'd like the classes in this directory to reload automatically in dev. In my environment.rb I have this line config.load_paths << File.join(Rails.root, 'classes') which works fine and blows up if the path isn't there. The reloading line in my development.rb also works fine require_dependency File.join(Rails.root, 'classes', 'blah.rb') which blows up if the file is not there (a good sign). However, the file doesn't reload. This all works if the file is in the root of lib and I use the require_dependency line, but my whole point is to get stuff out of lib as suggested here.

    Read the article

  • Code thinks Datagrid footer textbox is empty...

    - by The Sheek Geek
    Hello All, I am working on an .net (C#) web application. Recently a defect came my way that stated that when two users were logged into the application at the same time they both could not update values without one refreshing the page. When I looked into the issue I discovered that the author of the code has used static datasets. I changed the datasets to not be static and everything works great. However, This issue spans many pages in the application and I must fix it everywhere. On some of these pages the application uses datasets to bind data to datagrids. The datagrids are populated with the information in the dataset and the footer contains some textboxes and an add button to add extra rows. Here is where the problem starts: When the page was using static datasets and the user attempted to add a row through the interface everything worked fine. However, when I changed it to use datasets that were not static (they are loaded every time the page loads) and the user attempts to add a row, the code thinks that the textbox is empty (discovered when debugging even though I can see the text that I entered) and empty field validation fails and a message is displayed. Can someone please tell me why on Earth this is happening? Why does it see the text when the dataset is static (the dataset NEVER populates the foot row) and not see the text when it is not static? Some insight would be awesome! Thanks in advance!

    Read the article

  • Java how does Key Event Handling Mechanism(KeyListeners notified) work ?

    - by Carbonizer
    How does application/JVM know which classes if implemented key handling interfaces ? Does it use java Reflections or does it check all the classes for methods ? How can a application or executing JVM understanding to deliver the user event or call the specific methods on a class that implemented the keylistener interface. Does it look at all the classes if those methods are implemented or how does it know which classes implmented keylistener interface ? If you dont implement the keylistener Interface for a class but still implmentation all its methods. Do the class still process the user event occurred ?

    Read the article

  • iOS TableView crash don't know how. Here is the app

    - by jollyr0ger
    Hi! In my app that you can download here: http://ge.tt/2DDqfJa I've started a discussion but is died here iOS TableView crash loading different data The problem is when I back from viewing the YouTube video to the recipes list, the app crash... And when i select a category for the second time, where have to load a tableview with different data source, it crash. This is the crash log Program received signal: “EXC_BAD_ACCESS”. (gdb) bt #0 0x00f0da63 in objc_msgSend () #1 0x04b27ca0 in ?? () #2 0x00002665 in -[RecipesListController viewWillAppear:] (self=0x4b38a00, _cmd=0x6d81a2, animated=1 '\001') at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/RecipesListController.m:67 #3 0x00370c9a in -[UINavigationController _startTransition:fromViewController:toViewController:] () #4 0x0036b606 in -[UINavigationController _startDeferredTransitionIfNeeded] () #5 0x0037283e in -[UINavigationController pushViewController:transition:forceImmediate:] () #6 0x04f49549 in -[UINavigationControllerAccessibility(SafeCategory) pushViewController:transition:forceImmediate:] () #7 0x0036b4a0 in -[UINavigationController pushViewController:animated:] () #8 0x00003919 in -[CategoryViewController tableView:didSelectRowAtIndexPath:] (self=0x4b27ca0, _cmd=0x6d19e3, tableView=0x500c200, indexPath=0x4b2d650) at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/CategoryViewCotroller.m:104 #9 0x0032a794 in -[UITableView _selectRowAtIndexPath:animated:scrollPosition:notifyDelegate:] () #10 0x00320d50 in -[UITableView _userSelectRowAtPendingSelectionIndexPath:] () #11 0x000337f6 in __NSFireDelayedPerform () #12 0x00d8cfe3 in __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ () #13 0x00d8e594 in __CFRunLoopDoTimer () #14 0x00ceacc9 in __CFRunLoopRun () #15 0x00cea240 in CFRunLoopRunSpecific () #16 0x00cea161 in CFRunLoopRunInMode () #17 0x016e0268 in GSEventRunModal () #18 0x016e032d in GSEventRun () #19 0x002c342e in UIApplicationMain () #20 0x00001c08 in main (argc=1, argv=0xbfffef58) at /Users/claudiocanino/Documents/iOS/CottoMangiato/main.m:15 Another bt log: (gdb) bt #0 0x00cd76a1 in __CFBasicHashDeallocate () #1 0x00cc2bcb in _CFRelease () #2 0x00002dd6 in -[RecipesListController setRecipesArray:] (self=0x6834d50, _cmd=0x4293, _value=0x4e3bc70) at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/RecipesListController.m:16 #3 0x00002665 in -[RecipesListController viewWillAppear:] (self=0x6834d50, _cmd=0x6d81a2, animated=1 '\001') at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/RecipesListController.m:67 #4 0x00370c9a in -[UINavigationController _startTransition:fromViewController:toViewController:] () #5 0x0036b606 in -[UINavigationController _startDeferredTransitionIfNeeded] () #6 0x0037283e in -[UINavigationController pushViewController:transition:forceImmediate:] () #7 0x091ac549 in -[UINavigationControllerAccessibility(SafeCategory) pushViewController:transition:forceImmediate:] () #8 0x0036b4a0 in -[UINavigationController pushViewController:animated:] () #9 0x00003919 in -[CategoryViewController tableView:didSelectRowAtIndexPath:] (self=0x4b12970, _cmd=0x6d19e3, tableView=0x5014400, indexPath=0x4b2bd00) at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/CategoryViewCotroller.m:104 #10 0x0032a794 in -[UITableView _selectRowAtIndexPath:animated:scrollPosition:notifyDelegate:] () #11 0x00320d50 in -[UITableView _userSelectRowAtPendingSelectionIndexPath:] () #12 0x000337f6 in __NSFireDelayedPerform () #13 0x00d8cfe3 in __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ () #14 0x00d8e594 in __CFRunLoopDoTimer () #15 0x00ceacc9 in __CFRunLoopRun () #16 0x00cea240 in CFRunLoopRunSpecific () #17 0x00cea161 in CFRunLoopRunInMode () #18 0x016e0268 in GSEventRunModal () #19 0x016e032d in GSEventRun () #20 0x002c342e in UIApplicationMain () #21 0x00001c08 in main (argc=1, argv=0xbfffef58) at /Users/claudiocanino/Documents/iOS/CottoMangiato/main.m:15 Thanks

    Read the article

  • Call c++ function pointer from c#

    - by Sam
    Is it possible to call a c(++) static function pointer like this typedef int (*MyCppFunc)(void* SomeObject); from c#? void CallFromCSharp(MyCppFunc funcptr, IntPtr param) { funcptr(param); } I need to be able to callback from c# into some old c++ classes. C++ is managed, but the classes are not ref classes (yet). So far I got no idea how to call a c++ function pointer from c#, is it possible?

    Read the article

  • Clicking mouse by sending messages

    - by Frank Meulenaar
    I'm trying to send mouse clicks to a program. As I don't want the mouse to move, I don't want to use SendInput or mouse_event, and because the window that should receive the clicks doesn't really use Buttons or other GUI events, I can't send messages to these buttons. I'm trying to get this working using SendMessage, but for some reason it doesn't work. Relevant code is (in C#, but tried Java with jnative as well), trying this on Vista [DllImport("user32.dll", CharSet=CharSet.Auto)] public static extern int SendMessage(IntPtr A_0, int A_1, int A_2, int A_3); static int WM_CLOSE = 0x10; static int WM_LBUTTONDOWN = 0x201; static int WM_LBUTTONUP = 0x202; public static void click(IntPtr hWnd, int x, int y) { SendMessage(hWnd, WM_LBUTTONDOWN, 1, ((x << 0x10) ^ y)); SendMessage(hWnd, WM_LBUTTONUP, 0, ((x << 0x10) ^ y)); } public static void close(IntPtr hWnd) { SendMessage(hWnd, WM_CLOSE, 0, 0); } The close works fine, but the click doesn't do anything.

    Read the article

  • C++, inject additional data in a method

    - by justik
    I am adding the new modul in some large library. All methods here are implemented as static. Let mi briefly describe the simplified model: typedef std::vector<double> TData; double test ( const TData &arg ) { return arg ( 0 ) * sin ( arg ( 1 ) + ...;} double ( * p_test ) ( const TData> &arg) = &test; class A { public: static T f1 (TData &input) { .... //some computations B::f2 (p_test); } }; Inside f1() some computations are perfomed and a static method B::f2 is called. The f2 method is implemented by another author and represents some simulation algorithm (example here is siplified). class B { public: static double f2 (double ( * p_test ) ( const TData &arg ) ) { //difficult algorithm working p_test many times double res = p_test(arg); } }; The f2 method has a pointer to some weight function (here p_test). But in my case some additional parameters computed in f1 for test() methods are required double test ( const TData &arg, const TData &arg2, char *arg3.... ) { } How to inject these parameters into test() (and so to f2) to avoid changing the source code of the f2 methods (that is not trivial), redesign of the library and without dirty hacks :-) ? The most simple step is to override f2 static double f2 (double ( * p_test ) ( const TData &arg ), const TData &arg2, char *arg3.... ) But what to do later? Consider, that methods are static, so there will be problems with objects. Thanks for your help.

    Read the article

  • Singleton pattern in C++

    - by skydoor
    I have a question about the singleton pattern. I saw two cases concerning the static member in the singleton class. First it is an object, like this class CMySingleton { public: static CMySingleton& Instance() { static CMySingleton singleton; return singleton; } // Other non-static member functions private: CMySingleton() {} // Private constructor ~CMySingleton() {} CMySingleton(const CMySingleton&); // Prevent copy-construction CMySingleton& operator=(const CMySingleton&); // Prevent assignment }; One is an pointer, like this class GlobalClass { int m_value; static GlobalClass *s_instance; GlobalClass(int v = 0) { m_value = v; } public: int get_value() { return m_value; } void set_value(int v) { m_value = v; } static GlobalClass *instance() { if (!s_instance) s_instance = new GlobalClass; return s_instance; } }; What's the difference between the two cases? Which one is correct?

    Read the article

  • C++ dynamic type construction and detection

    - by KneLL
    There was an interesting problem in C++, but it concerns more likely architecture. There are many (10, 20, 40, etc) classes that describe some characteristics (mix-in classes), for exmaple: struct Base { virtual ~Base() {} }; struct A : virtual public Base { int size; }; struct B : virtual public Base { float x, y; }; struct C : virtual public Base { bool some_bool_state; }; struct D : virtual public Base { string str; } // .... Primary module declares and exports a function (for simplicity just function declarations without classes): // .h file void operate(Base *pBase); // .cpp file void operate(Base *pBase) { // .... } Any other module can has a code like this: #include "mixins.h" #include "primary.h" class obj1_t : public A, public C, public D {}; class obj2_t : public B, public D {}; // ... void Pass() { obj1_t obj1; obj2_t obj2; operate(&obj1); operate(&obj2); } The question is how to know what the real type of given object in operate() without dynamic_cast and any type information in classes (constants, etc)? Function operate() is used with big array of objects in small time periods and dynamic_cast is too slow for it. And I don't want to include constants (enum obj_type { ... }) because this is not OOP-way. // module operate.cpp void some_operate(Base *pBase) { processA(pBase); processB(pBase); } void processA(A *pA) { } void processB(B *pB) { } I cannot directly pass a pBase to these functions. And it's impossible to have all possible combinations of classes, because I can add new classes just by including new .h files. As one of solutions that comed to mind, in editor application I can use a composite container: struct CompositeObject { vector<Base *pBase> parts; }; But editor does not need a time optimization and can use dynamic_cast for parts to determine the exact type. In operate() I cannot use this solution. So, is it possible to not use a dynamic_cast and type information to solve this problem? Or maybe I should use another architecture?

    Read the article

  • C# InternalsVisibleTo() attribute for VBNET 2.0 while testing?

    - by Will Marcouiller
    I'm building an Active Directory wrapper in VBNET 2.0 (can't use later .NET) in which I have the following: IUtilisateur IGroupe IUniteOrganisation These interfaces are implemented in internal classes (Friend in VBNET), so that I want to implement a façade in order to instiate each of the interfaces with their internal classes. This will allow the architecture a better flexibility, etc. Now, I want to test these classes (Utilisateur, Groupe, UniteOrganisation) in a different project within the same solution. However, these classes are internal. I would like to be able to instantiate them without going through my façade, but only for these tests, nothing more. Here's a piece of code to illustrate it: public static class DirectoryFacade { public static IGroupe CreerGroupe() { return new Groupe(); } } // Then in code, I would write something alike: public partial class MainForm : Form { public MainForm() { IGroupe g = DirectoryFacade.CreerGroupe(); // Doing stuff with instance here... } } // My sample interface: public interface IGroupe { string Domaine { get; set; } IList<IUtilisateur> Membres { get; } } internal class Groupe : IGroupe { private IList<IUtilisateur> _membres; internal Groupe() { _membres = new List<IUtilisateur>(); } public string Domaine { get; set; } public IList<IUtilisateur> Membres { get { return _membres; } } } I heard of InternalsVisibleTo() attribute, recently. I was wondering whether it is available in VBNET 2.0/VS2005 so that I could access the assmebly's internal classes for my tests? Otherwise, how could I achieve this?

    Read the article

  • Silently binding a variable instance to a class in C++?

    - by gct
    So I've got a plugin-based system I'm writing. Users can create a child class of a Plugin class and then it will be loaded at runtime and integrated with the rest of the system. When a Plugin is run from the system, it's run in the context of a group of plugins, which I call a Session. My problem is that inside the user plugins, two streaming classes called pf_ostream and pf_istream can be used to read/write data to the system. I'd like to bind the plugin instance's session variable to pf_ostream and pf_istream somehow so that when the user instantiates those classes, it's already bound to the session for them (basically I don't want them to see the session internals) I could just do this with a macro, wrapping a call to the constructor like: #define MAKE_OSTREAM = pf_ostream_int(this->session) But I thought there might be a better way. I looked at using a nested class inside Plugin wrapping pf_ostream but it appears nested classes don't get access to the enclosing classes variables in a closure sort of way. Does anyone know of a neat way to do this?

    Read the article

  • Does Java not support multiple inheritance?

    - by user1720616
    Lets us take instances of two classes public abstract class Shapes { public abstract void draw(Graphics g); } public class Rectangle extends Shapes { public void draw(Graphics g) { //implementation of the method } } here the class Rectangle has extended class Shapes and implicitly it extends class Object.I know no other extension is possible but cant we call inheriting classes Shapes and Object multiple inheritance?(Since inheriting two classes is multiple inheritance from one perspective)

    Read the article

  • Qt Should I derive from QDataStream?

    - by ShaChris23
    I'm currently using QDataStream to serialize my classes. I have quite a few number of my own classes that I serialize often. Should I derive QDataStream to create my own DataStream class? Or is there a better pattern than this? Note that these custom classes are used by many of our projects, so maybe doing so will make coding easier. Another way to phrase this question is: when a framework provides you with a serialization class, how do you handle serializing your own custom-type classes such that you don't have to remember how to serialize them everytime.

    Read the article

  • Looking into Entity Framework Code First Migrations

    - by nikolaosk
    In this post I will introduce you to Code First Migrations, an Entity Framework feature introduced in version 4.3 back in February of 2012.I have extensively covered Entity Framework in this blog. Please find my other Entity Framework posts here .   Before the addition of Code First Migrations (4.1,4.2 versions), Code First database initialisation meant that Code First would create the database if it does not exist (the default behaviour - CreateDatabaseIfNotExists). The other pattern we could use is DropCreateDatabaseIfModelChanges which means that Entity Framework, will drop the database if it realises that model has changes since the last time it created the database.The final pattern is DropCreateDatabaseAlways which means that Code First will recreate the database every time one runs the application.That is of course fine for the development database but totally unacceptable and catastrophic when you have a production database. We cannot lose our data because of the work that Code First works.Migrations solve this problem.With migrations we can modify the database without completely dropping it.We can modify the database schema to reflect the changes to the model without losing data.In version EF 5.0 migrations are fully included and supported. I will demonstrate migrations with a hands-on example.Let me say a few words first about Entity Framework first. The .Net framework provides support for Object Relational Mappingthrough EF. So EF is a an ORM tool and it is now the main data access technology that microsoft works on. I use it quite extensively in my projects. Through EF we have many things out of the box provided for us. We have the automatic generation of SQL code.It maps relational data to strongly types objects.All the changes made to the objects in the memory are persisted in a transactional way back to the data store. You can find in this post an example on how to use the Entity Framework to retrieve data from an SQL Server Database using the "Database/Schema First" approach.In this approach we make all the changes at the database level and then we update the model with those changes. In this post you can see an example on how to use the "Model First" approach when working with ASP.Net and the Entity Framework.This model was firstly introduced in EF version 4.0 and we could start with a blank model and then create a database from that model.When we made changes to the model , we could recreate the database from the new model. The Code First approach is the more code-centric than the other two. Basically we write POCO classes and then we persist to a database using something called DBContext.Code First relies on DbContext. We create 2,3 classes (e.g Person,Product) with properties and then these classes interact with the DbContext class we can create a new database based upon our POCOS classes and have tables generated from those classes.We do not have an .edmx file in this approach.By using this approach we can write much easier unit tests.DbContext is a new context class and is smaller,lightweight wrapper for the main context class which is ObjectContext (Schema First and Model First).Let's move on to our hands-on example.I have installed VS 2012 Ultimate edition in my Windows 8 machine. 1)  Create an empty asp.net web application. Give your application a suitable name. Choose C# as the development language2) Add a new web form item in your application. Leave the default name.3) Create a new folder. Name it CodeFirst .4) Add a new item in your application, a class file. Name it Footballer.cs. This is going to be a simple POCO class.Place this class file in the CodeFirst folder.The code follows    public class Footballer     {         public int FootballerID { get; set; }         public string FirstName { get; set; }         public string LastName { get; set; }         public double Weight { get; set; }         public double Height { get; set; }              }5) We will have to add EF 5.0 to our project. Right-click on the project in the Solution Explorer and select Manage NuGet Packages... for it.In the window that will pop up search for Entity Framework and install it.Have a look at the picture below   If you want to find out if indeed EF version is 5.0 version is installed have a look at the References. Have a look at the picture below to see what you will see if you have installed everything correctly.Have a look at the picture below 6) Then we need to create a context class that inherits from DbContext.Add a new class to the CodeFirst folder.Name it FootballerDBContext.Now that we have the entity classes created, we must let the model know.I will have to use the DbSet<T> property.The code for this class follows     public class FootballerDBContext:DbContext     {         public DbSet<Footballer> Footballers { get; set; }             }    Do not forget to add  (using System.Data.Entity;) in the beginning of the class file 7) We must take care of the connection string. It is very easy to create one in the web.config.It does not matter that we do not have a database yet.When we run the DbContext and query against it , it will use a connection string in the web.config and will create the database based on the classes.I will use the name "FootballTraining" for the database.In my case the connection string inside the web.config, looks like this    <connectionStrings>    <add name="CodeFirstDBContext" connectionString="server=.;integrated security=true; database=FootballTraining" providerName="System.Data.SqlClient"/>                       </connectionStrings>8) Now it is time to create Linq to Entities queries to retrieve data from the database . Add a new class to your application in the CodeFirst folder.Name the file DALfootballer.csWe will create a simple public method to retrieve the footballers. The code for the class followspublic class DALfootballer     {         FootballerDBContext ctx = new FootballerDBContext();         public List<Footballer> GetFootballers()         {             var query = from player in ctx.Footballers select player;             return query.ToList();         }     } 9) Place a GridView control on the Default.aspx page and leave the default name.Add an ObjectDataSource control on the Default.aspx page and leave the default name. Set the DatasourceID property of the GridView control to the ID of the ObjectDataSource control.(DataSourceID="ObjectDataSource1" ). Let's configure the ObjectDataSource control. Click on the smart tag item of the ObjectDataSource control and select Configure Data Source. In the Wizzard that pops up select the DALFootballer class and then in the next step choose the GetFootballers() method.Click Finish to complete the steps of the wizzard.Build and Run your application.  10) Obviously you will not see any records coming back from your database, because we have not inserted anything. The database is created, though.Have a look at the picture below.  11) Now let's change the POCO class. Let's add a new property to the Footballer.cs class.        public int Age { get; set; } Build and run your application again. You will receive an error. Have a look at the picture below 12) That was to be expected.EF Code First Migrations is not activated by default. We have to activate them manually and configure them according to your needs. We will open the Package Manager Console from the Tools menu within Visual Studio 2012.Then we will activate the EF Code First Migration Features by writing the command “Enable-Migrations”.  Have a look at the picture below. This adds a new folder Migrations in our project. A new auto-generated class Configuration.cs is created.Another class is also created [CURRENTDATE]_InitialCreate.cs and added to our project.The Configuration.cs  is shown in the picture below. The [CURRENTDATE]_InitialCreate.cs is shown in the picture below  13) ??w we are ready to migrate the changes in the database. We need to run the Add-Migration Age command in Package Manager ConsoleAdd-Migration will scaffold the next migration based on changes you have made to your model since the last migration was created.In the Migrations folder, the file 201211201231066_Age.cs is created.Have a look at the picture below to see the newly generated file and its contents. Now we can run the Update-Database command in Package Manager Console .See the picture above.Code First Migrations will compare the migrations in our Migrations folder with the ones that have been applied to the database. It will see that the Age migration needs to be applied, and run it.The EFMigrations.CodeFirst.FootballeDBContext database is now updated to include the Age column in the Footballers table.Build and run your application.Everything will work fine now.Have a look at the picture below to see the migrations applied to our table. 14) We may want it to automatically upgrade the database (by applying any pending migrations) when the application launches.Let's add another property to our Poco class.          public string TShirtNo { get; set; }We want this change to migrate automatically to the database.We go to the Configuration.cs we enable automatic migrations.     public Configuration()        {            AutomaticMigrationsEnabled = true;        } In the Page_Load event handling routine we have to register the MigrateDatabaseToLatestVersion database initializer. A database initializer simply contains some logic that is used to make sure the database is setup correctly.   protected void Page_Load(object sender, EventArgs e)        {            Database.SetInitializer(new MigrateDatabaseToLatestVersion<FootballerDBContext, Configuration>());        } Build and run your application. It will work fine. Have a look at the picture below to see the migrations applied to our table in the database. Hope it helps!!!  

    Read the article

  • Code Reuse is (Damn) Hard

    - by James Michael Hare
    Being a development team lead, the task of interviewing new candidates was part of my job.  Like any typical interview, we started with some easy questions to get them warmed up and help calm their nerves before hitting the hard stuff. One of those easier questions was almost always: “Name some benefits of object-oriented development.”  Nearly every time, the candidate would chime in with a plethora of canned answers which typically included: “it helps ease code reuse.”  Of course, this is a gross oversimplification.  Tools only ease reuse, its developers that ultimately can cause code to be reusable or not, regardless of the language or methodology. But it did get me thinking…  we always used to say that as part of our mantra as to why Object-Oriented Programming was so great.  With polymorphism, inheritance, encapsulation, etc. we in essence set up the concepts to help facilitate reuse as much as possible.  And yes, as a developer now of many years, I unquestionably held that belief for ages before it really struck me how my views on reuse have jaded over the years.  In fact, in many ways Agile rightly eschews reuse as taking a backseat to developing what's needed for the here and now.  It used to be I was in complete opposition to that view, but more and more I've come to see the logic in it.  Too many times I've seen developers (myself included) get lost in design paralysis trying to come up with the perfect abstraction that would stand all time.  Nearly without fail, all of these pieces of code become obsolete in a matter of months or years. It’s not that I don’t like reuse – it’s just that reuse is hard.  In fact, reuse is DAMN hard.  Many times it is just a distraction that eats up architect and developer time, and worse yet can be counter-productive and force wrong decisions.  Now don’t get me wrong, I love the idea of reusable code when it makes sense.  These are in the few cases where you are designing something that is inherently reusable.  The problem is, most business-class code is inherently unfit for reuse! Furthermore, the code that is reusable will often fail to be reused if you don’t have the proper framework in place for effective reuse that includes standardized versioning, building, releasing, and documenting the components.  That should always be standard across the board when promoting reusable code.  All of this is hard, and it should only be done when you have code that is truly reusable or you will be exerting a large amount of development effort for very little bang for your buck. But my goal here is not to get into how to reuse (that is a topic unto itself) but what should be reused.  First, let’s look at an extension method.  There’s many times where I want to kick off a thread to handle a task, then when I want to reign that thread in of course I want to do a Join on it.  But what if I only want to wait a limited amount of time and then Abort?  Well, I could of course write that logic out by hand each time, but it seemed like a great extension method: 1: public static class ThreadExtensions 2: { 3: public static bool JoinOrAbort(this Thread thread, TimeSpan timeToWait) 4: { 5: bool isJoined = false; 6:  7: if (thread != null) 8: { 9: isJoined = thread.Join(timeToWait); 10:  11: if (!isJoined) 12: { 13: thread.Abort(); 14: } 15: } 16: return isJoined; 17: } 18: } 19:  When I look at this code, I can immediately see things that jump out at me as reasons why this code is very reusable.  Some of them are standard OO principles, and some are kind-of home grown litmus tests: Single Responsibility Principle (SRP) – The only reason this extension method need change is if the Thread class itself changes (one responsibility). Stable Dependencies Principle (SDP) – This method only depends on classes that are more stable than it is (System.Threading.Thread), and in itself is very stable, hence other classes may safely depend on it. It is also not dependent on any business domain, and thus isn't subject to changes as the business itself changes. Open-Closed Principle (OCP) – This class is inherently closed to change. Small and Stable Problem Domain – This method only cares about System.Threading.Thread. All-or-None Usage – A user of a reusable class should want the functionality of that class, not parts of that functionality.  That’s not to say they most use every method, but they shouldn’t be using a method just to get half of its result. Cost of Reuse vs. Cost to Recreate – since this class is highly stable and minimally complex, we can offer it up for reuse very cheaply by promoting it as “ready-to-go” and already unit tested (important!) and available through a standard release cycle (very important!). Okay, all seems good there, now lets look at an entity and DAO.  I don’t know about you all, but there have been times I’ve been in organizations that get the grand idea that all DAOs and entities should be standardized and shared.  While this may work for small or static organizations, it’s near ludicrous for anything large or volatile. 1: namespace Shared.Entities 2: { 3: public class Account 4: { 5: public int Id { get; set; } 6:  7: public string Name { get; set; } 8:  9: public Address HomeAddress { get; set; } 10:  11: public int Age { get; set;} 12:  13: public DateTime LastUsed { get; set; } 14:  15: // etc, etc, etc... 16: } 17: } 18:  19: ... 20:  21: namespace Shared.DataAccess 22: { 23: public class AccountDao 24: { 25: public Account FindAccount(int id) 26: { 27: // dao logic to query and return account 28: } 29:  30: ... 31:  32: } 33: } Now to be fair, I’m not saying there doesn’t exist an organization where some entites may be extremely static and unchanging.  But at best such entities and DAOs will be problematic cases of reuse.  Let’s examine those same tests: Single Responsibility Principle (SRP) – The reasons to change for these classes will be strongly dependent on what the definition of the account is which can change over time and may have multiple influences depending on the number of systems an account can cover. Stable Dependencies Principle (SDP) – This method depends on the data model beneath itself which also is largely dependent on the business definition of an account which can be very inherently unstable. Open-Closed Principle (OCP) – This class is not really closed for modification.  Every time the account definition may change, you’d need to modify this class. Small and Stable Problem Domain – The definition of an account is inherently unstable and in fact may be very large.  What if you are designing a system that aggregates account information from several sources? All-or-None Usage – What if your view of the account encompasses data from 3 different sources but you only care about one of those sources or one piece of data?  Should you have to take the hit of looking up all the other data?  On the other hand, should you have ten different methods returning portions of data in chunks people tend to ask for?  Neither is really a great solution. Cost of Reuse vs. Cost to Recreate – DAOs are really trivial to rewrite, and unless your definition of an account is EXTREMELY stable, the cost to promote, support, and release a reusable account entity and DAO are usually far higher than the cost to recreate as needed. It’s no accident that my case for reuse was a utility class and my case for non-reuse was an entity/DAO.  In general, the smaller and more stable an abstraction is, the higher its level of reuse.  When I became the lead of the Shared Components Committee at my workplace, one of the original goals we looked at satisfying was to find (or create), version, release, and promote a shared library of common utility classes, frameworks, and data access objects.  Now, of course, many of you will point to nHibernate and Entity for the latter, but we were looking at larger, macro collections of data that span multiple data sources of varying types (databases, web services, etc). As we got deeper and deeper in the details of how to manage and release these items, it quickly became apparent that while the case for reuse was typically a slam dunk for utilities and frameworks, the data access objects just didn’t “smell” right.  We ended up having session after session of design meetings to try and find the right way to share these data access components. When someone asked me why it was taking so long to iron out the shared entities, my response was quite simple, “Reuse is hard...”  And that’s when I realized, that while reuse is an awesome goal and we should strive to make code maintainable, often times you end up creating far more work for yourself than necessary by trying to force code to be reusable that inherently isn’t. Think about classes the times you’ve worked in a company where in the design session people fight over the best way to implement a class to make it maximally reusable, extensible, and any other buzzwordable.  Then think about how quickly that design became obsolete.  Many times I set out to do a project and think, “yes, this is the best design, I can extend it easily!” only to find out the business requirements change COMPLETELY in such a way that the design is rendered invalid.  Code, in general, tends to rust and age over time.  As such, writing reusable code can often be difficult and many times ends up being a futile exercise and worse yet, sometimes makes the code harder to maintain because it obfuscates the design in the name of extensibility or reusability. So what do I think are reusable components? Generic Utility classes – these tend to be small classes that assist in a task and have no business context whatsoever. Implementation Abstraction Frameworks – home-grown frameworks that try to isolate changes to third party products you may be depending on (like writing a messaging abstraction layer for publishing/subscribing that is independent of whether you use JMS, MSMQ, etc). Simplification and Uniformity Frameworks – To some extent this is similar to an abstraction framework, but there may be one chosen provider but a development shop mandate to perform certain complex items in a certain way.  Or, perhaps to simplify and dumb-down a complex task for the average developer (such as implementing a particular development-shop’s method of encryption). And what are less reusable? Application and Business Layers – tend to fluctuate a lot as requirements change and new features are added, so tend to be an unstable dependency.  May be reused across applications but also very volatile. Entities and Data Access Layers – these tend to be tuned to the scope of the application, so reusing them can be hard unless the abstract is very stable. So what’s the big lesson?  Reuse is hard.  In fact it’s damn hard.  And much of the time I’m not convinced we should focus too hard on it. If you’re designing a utility or framework, then by all means design it for reuse.  But you most also really set down a good versioning, release, and documentation process to maximize your chances.  For anything else, design it to be maintainable and extendable, but don’t waste the effort on reusability for something that most likely will be obsolete in a year or two anyway.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Dynamic Filtering

    - by Ricardo Peres
    Continuing my previous posts on dynamic LINQ, now it's time for dynamic filtering. For now, I'll focus on string matching. There are three standard operators for string matching, which both NHibernate, Entity Framework and LINQ to SQL recognize: Equals Contains StartsWith EndsWith So, if we want to apply filtering by one of these operators on a string property, we can use this code: public enum MatchType { StartsWith = 0, EndsWith = 1, Contains = 2, Equals = 3 } public static List Filter(IEnumerable enumerable, String propertyName, String filter, MatchType matchType) { return (Filter(enumerable, typeof(T), propertyName, filter, matchType) as List); } public static IList Filter(IEnumerable enumerable, Type elementType, String propertyName, String filter, MatchType matchType) { MethodInfo asQueryableMethod = typeof(Queryable).GetMethods(BindingFlags.Static | BindingFlags.Public).Where(m = (m.Name == "AsQueryable") && (m.ContainsGenericParameters == false)).Single(); IQueryable query = (enumerable is IQueryable) ? (enumerable as IQueryable) : asQueryableMethod.Invoke(null, new Object [] { enumerable }) as IQueryable; MethodInfo whereMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "Where").ToArray() [ 0 ].MakeGenericMethod(elementType); MethodInfo matchMethod = typeof(String).GetMethod ( (matchType == MatchType.StartsWith) ? "StartsWith" : (matchType == MatchType.EndsWith) ? "EndsWith" : (matchType == MatchType.Contains) ? "Contains" : "Equals", new Type [] { typeof(String) } ); PropertyInfo displayProperty = elementType.GetProperty(propertyName, BindingFlags.Public | BindingFlags.Instance); MemberExpression member = Expression.MakeMemberAccess(Expression.Parameter(elementType, "n"), displayProperty); MethodCallExpression call = Expression.Call(member, matchMethod, Expression.Constant(filter)); LambdaExpression where = Expression.Lambda(call, member.Expression as ParameterExpression); query = whereMethod.Invoke(null, new Object [] { query, where }) as IQueryable; MethodInfo toListMethod = typeof(Enumerable).GetMethod("ToList", BindingFlags.Static | BindingFlags.Public).MakeGenericMethod(elementType); IList list = toListMethod.Invoke(null, new Object [] { query }) as IList; return (list); } var list = new [] { new { A = "aa" }, new { A = "aabb" }, new { A = "ccaa" }, new { A = "ddaadd" } }; var contains = Filter(list, "A", "aa", MatchType.Contains); var endsWith = Filter(list, "A", "aa", MatchType.EndsWith); var startsWith = Filter(list, "A", "aa", MatchType.StartsWith); var equals = Filter(list, "A", "aa", MatchType.Equals); Perhaps I'll write some more posts on this subject in the near future. SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • Helper method to Replace/Remove characters that do not match the Regular Expression

    - by Michael Freidgeim
    I have a few fields, that use regEx for validation. In case if provided field has unaccepted characters, I don't want to reject the whole field, as most of validators do, but just remove invalid characters. I am expecting to keep only Character Classes for allowed characters and created a helper method to strip unaccepted characters. The allowed pattern should be in Regex format, expect them wrapped in square brackets. function will insert a tilde after opening squere bracket , according to http://stackoverflow.com/questions/4460290/replace-chars-if-not-match.  [^ ] at the start of a character class negates it - it matches characters not in the class.I anticipate that it could work not for all RegEx describing valid characters sets,but it works for relatively simple sets, that we are using.         /// <summary>               /// Replaces  not expected characters.               /// </summary>               /// <param name="text"> The text.</param>               /// <param name="allowedPattern"> The allowed pattern in Regex format, expect them wrapped in brackets</param>               /// <param name="replacement"> The replacement.</param>               /// <returns></returns>               /// //        http://stackoverflow.com/questions/4460290/replace-chars-if-not-match.               //http://stackoverflow.com/questions/6154426/replace-remove-characters-that-do-not-match-the-regular-expression-net               //[^ ] at the start of a character class negates it - it matches characters not in the class.               //Replace/Remove characters that do not match the Regular Expression               static public string ReplaceNotExpectedCharacters( this string text, string allowedPattern,string replacement )              {                     allowedPattern = allowedPattern.StripBrackets( "[", "]" );                      //[^ ] at the start of a character class negates it - it matches characters not in the class.                      var result = Regex .Replace(text, @"[^" + allowedPattern + "]", replacement);                      return result;              }static public string RemoveNonAlphanumericCharacters( this string text)              {                      var result = text.ReplaceNotExpectedCharacters(NonAlphaNumericCharacters, "" );                      return result;              }        public const string NonAlphaNumericCharacters = "[a-zA-Z0-9]";There are a couple of functions from my StringHelper class  http://geekswithblogs.net/mnf/archive/2006/07/13/84942.aspx , that are used here.    //                           /// <summary>               /// 'StripBrackets checks that starts from sStart and ends with sEnd (case sensitive).               ///           'If yes, than removes sStart and sEnd.               ///           'Otherwise returns full string unchanges               ///           'See also MidBetween               /// </summary>               /// <param name="str"></param>               /// <param name="sStart"></param>               /// <param name="sEnd"></param>               /// <returns></returns>               public static string StripBrackets( this string str, string sStart, string sEnd)              {                      if (CheckBrackets(str, sStart, sEnd))                     {                           str = str.Substring(sStart.Length, (str.Length - sStart.Length) - sEnd.Length);                     }                      return str;              }               public static bool CheckBrackets( string str, string sStart, string sEnd)              {                      bool flag1 = (str != null ) && (str.StartsWith(sStart) && str.EndsWith(sEnd));                      return flag1;              }               public static string WrapBrackets( string str, string sStartBracket, string sEndBracket)              {                      StringBuilder builder1 = new StringBuilder(sStartBracket);                     builder1.Append(str);                     builder1.Append(sEndBracket);                      return builder1.ToString();              }v

    Read the article

  • why client can not receive message from server (java) [migrated]

    - by user1745931
    I have just started learning java. I modified the client side code for a server/client communication program, by creating two threads for the client side, main thread for receiving user's input, and inputThread for receiving server's response. I am sure that server has sent the response to client, however, no response message is obtain at client. Here is my code. Can anyone help me to figure it out? Thanks package clientnio; import java.net.*; import java.nio.*; import java.io.*; import java.nio.channels.*; import java.util.Scanner; public class ClientNIO { public static int bufferLen = 50; public static SocketChannel client; public static ByteBuffer writeBuffer; public static ByteBuffer readBuffer; public static void main(String[] args) { writeBuffer = ByteBuffer.allocate(bufferLen); readBuffer = ByteBuffer.allocate(bufferLen); try { SocketAddress address = new InetSocketAddress("localhost",5505); System.out.println("Local address: "+ address); client=SocketChannel.open(address); client.configureBlocking(false); //readBuffer.flip(); new inputThread(readBuffer); /* String a="asdasdasdasddffasfas"; writeBuffer.put(a.getBytes()); writeBuffer.clear(); int d=client.write(writeBuffer); writeBuffer.flip(); */ while (true) { InputStream inStream = System.in; Scanner scan = new Scanner(inStream); if (scan.hasNext()==true) { String inputLine = scan.nextLine(); writeBuffer.put(inputLine.getBytes()); //writeBuffer.clear(); System.out.println(writeBuffer.remaining()); client.write(writeBuffer); System.out.println("Sending data: "+new String(writeBuffer.array())); writeBuffer.flip(); Thread.sleep(300); } } } catch(Exception e) { System.out.println(e); } } } class inputThread extends Thread { private ByteBuffer readBuffer; public inputThread(ByteBuffer readBuffer1) { System.out.println("Receiving thread starts."); this.readBuffer = readBuffer1; start(); } @Override public void run() { try { while (true) { readBuffer.flip(); int i=ClientNIO.client.read(readBuffer); if(i>0) { byte[] b=readBuffer.array(); System.out.println("Receiving data: "+new String(b)); //client.close(); //System.out.println("Connection closed."); //break; } Thread.sleep(100); } } catch (Exception e) { System.out.println(e); } } }

    Read the article

  • Getting a SecurityToken from a RequestSecurityTokenResponse in WIF

    - by Shawn Cicoria
    When you’re working with WIF and WSTrustChannelFactory when you call the Issue operation, you can also request that a RequestSecurityTokenResponse as an out parameter. However, what can you do with that object?  Well, you could keep it around and use it for subsequent calls with the extension method CreateChannelWithIssuedToken – or can you? public static T CreateChannelWithIssuedToken<T>(this ChannelFactory<T> factory, SecurityToken issuedToken);   As you can see from the method signature it takes a SecurityToken – but that’s not present on the RequestSecurityTokenResponse class. However, you can through a little magic get a GenericXmlSecurityToken by means of the following set of extension methods below – just call rstr.GetSecurityTokenFromResponse() – and you’ll get a GenericXmlSecurityToken as a return. public static class TokenHelper { /// <summary> /// Takes a RequestSecurityTokenResponse, pulls out the GenericXmlSecurityToken usable for further WS-Trust calls /// </summary> /// <param name="rstr"></param> /// <returns></returns> public static GenericXmlSecurityToken GetSecurityTokenFromResponse(this RequestSecurityTokenResponse rstr) { var lifeTime = rstr.Lifetime; var appliesTo = rstr.AppliesTo.Uri; var tokenXml = rstr.GetSerializedTokenFromResponse(); var token = GetTokenFromSerializedToken(tokenXml, appliesTo, lifeTime); return token; } /// <summary> /// Provides a token as an XML string. /// </summary> /// <param name="rstr"></param> /// <returns></returns> public static string GetSerializedTokenFromResponse(this RequestSecurityTokenResponse rstr) { var serializedRst = new WSFederationSerializer().GetResponseAsString(rstr, new WSTrustSerializationContext()); return serializedRst; } /// <summary> /// Turns the XML representation of the token back into a GenericXmlSecurityToken. /// </summary> /// <param name="tokenAsXmlString"></param> /// <param name="appliesTo"></param> /// <param name="lifetime"></param> /// <returns></returns> public static GenericXmlSecurityToken GetTokenFromSerializedToken(this string tokenAsXmlString, Uri appliesTo, Lifetime lifetime) { RequestSecurityTokenResponse rstr2 = new WSFederationSerializer().CreateResponse( new SignInResponseMessage(appliesTo, tokenAsXmlString), new WSTrustSerializationContext()); return new GenericXmlSecurityToken( rstr2.RequestedSecurityToken.SecurityTokenXml, new BinarySecretSecurityToken( rstr2.RequestedProofToken.ProtectedKey.GetKeyBytes()), lifetime.Created.HasValue ? lifetime.Created.Value : DateTime.MinValue, lifetime.Expires.HasValue ? lifetime.Expires.Value : DateTime.MaxValue, rstr2.RequestedAttachedReference, rstr2.RequestedUnattachedReference, null); } }

    Read the article

  • NSString drawAtPoint Crash on the iPhone (NSString drawAtPoint)

    - by Kyle
    Hey. I have a very simple text output to buffer system which will crash randomly. It will be fine for DAYS, then sometimes it'll crash a few times in a few minutes. The callstack is almost exactly the same for other guys who use higher level controls: http://discussions.apple.com/thread.jspa?messageID=7949746 http://stackoverflow.com/questions/1978997/iphone-app-crashed-assertion-failed-function-evictglyphentryfromstrike-file It crashes at the line (below as well in drawTextToBuffer()): [nsString drawAtPoint:CGPointMake(0, 0) withFont:clFont]; I have the same call of "evict_glyph_entry_from_cache" with the abort calls immediately following it. Apparently it happens to other people. I can say that my NSString* is perfectly fine at the time of the crash. I can read the text from the debugger just fine. static CGColorSpaceRef curColorSpace; static CGContextRef myContext; static float w, h; static int iFontSize; static NSString* sFontName; static UIFont* clFont; static int iLineHeight; unsigned long* txb; /* 256x256x4 Buffer */ void selectFont(int iSize, NSString* sFont) { iFontSize = iSize; clFont = [UIFont fontWithName:sFont size:iFontSize]; iLineHeight = (int)(ceil([clFont capHeight])); } void initText() { w = 256; h = 256; txb = (unsigned long*)malloc_(w * h * 4); curColorSpace = CGColorSpaceCreateDeviceRGB(); myContext = CGBitmapContextCreate(txb, w, h, 8, w * 4, curColorSpace, kCGImageAlphaPremultipliedLast); selectFont(12, @"Helvetica"); } void drawTextToBuffer(NSString* nsString) { CGContextSaveGState(myContext); CGContextSetRGBFillColor(myContext, 1, 1, 1, 1); UIGraphicsPushContext(myContext); /* This line will crash. It crashes even with constant Strings.. At the time of the crash, the pointer to nsString is perfectly fine. The data looks fine! */ [nsString drawAtPoint:CGPointMake(0, 0) withFont:clFont]; UIGraphicsPopContext(); CGContextRestoreGState(myContext); } It will happen with other non-unicode supporting methods as well such as CGContextShowTextAtPoint(); the callstack is similar with that as well. Is this any kind of known issue with the iPhone? Or, perhaps, can something outside of this cause be causing an exception in this particular call (drawAtPoint)?

    Read the article

  • C# - WebBrowser control seems to cache screenshots

    - by Justin
    Hey, I'm using the WebBrowser control in an ASP.NET MVC 2 app (don't judge, I'm doing it in an admin section only to be used by me), here's the code: public static class Screenshot { private static string _url; private static int _width; private static byte[] _bytes; public static byte[] Get(string url) { // This method gets a screenshot of the webpage // rendered at its full size (height and width) return Get(url, 50); } public static byte[] Get(string url, int width) { //set properties. _url = url; _width = width; //start screen scraper. var webBrowseThread = new Thread(new ThreadStart(TakeScreenshot)); webBrowseThread.SetApartmentState(ApartmentState.STA); webBrowseThread.Start(); //check every second if it got the screenshot yet. //i know, the thread sleep is terrible, but it's the secure section, don't judge... int numChecks = 20; for (int k = 0; k < numChecks; k++) { Thread.Sleep(1000); if (_bytes != null) { return _bytes; } } return null; } private static void TakeScreenshot() { try { //load the webpage into a WebBrowser control. using (WebBrowser wb = new WebBrowser()) { wb.ScrollBarsEnabled = false; wb.ScriptErrorsSuppressed = true; wb.Navigate(_url); while (wb.ReadyState != WebBrowserReadyState.Complete) { Application.DoEvents(); } //set the size of the WebBrowser control. //take Screenshot of the web pages full width. wb.Width = wb.Document.Body.ScrollRectangle.Width; //take Screenshot of the web pages full height. wb.Height = wb.Document.Body.ScrollRectangle.Height; //get a Bitmap representation of the webpage as it's rendered in the WebBrowser control. var bitmap = new Bitmap(wb.Width, wb.Height); wb.DrawToBitmap(bitmap, new Rectangle(0, 0, wb.Width, wb.Height)); //resize. var height = _width * (bitmap.Height / bitmap.Width); var thumbnail = bitmap.GetThumbnailImage(_width, height, null, IntPtr.Zero); //convert to byte array. var ms = new MemoryStream(); thumbnail.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg); _bytes = ms.ToArray(); } } catch(Exception exc) {//TODO: why did screenshot fail? string message = exc.Message; } } This works fine for the first screenshot that I take, however if I try to take subsequent screenshots of different URL's, it saves screenshots of the first url for the new url, or sometimes it'll save the screenshot from 3 or 4 url's ago. I'm creating a new instance of WebBrowser for each screenshot and am disposing of it properly with the "using" block, any idea why it's behaving this way? Thanks, Justin

    Read the article

  • design of orm tool

    - by ifree
    Hello , I want to design a orm tool for my daily work, but I'm always worry about the mapping of foreign key. Here's part of my code: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Data; namespace OrmTool { [AttributeUsage(AttributeTargets.Property)] public class ColumnAttribute:Attribute { public string Name { get; set; } public SqlDbType DataType { get; set; } public bool IsPk { get; set; } } [AttributeUsage(AttributeTargets.Class,AllowMultiple=false,Inherited=false)] public class TableAttribute:Attribute { public string TableName { get; set; } public string Description { get; set; } } [AttributeUsage(AttributeTargets.Property)] public class ReferencesAttribute : ColumnAttribut { public Type Host { get; set; } public string HostPkName{get;set;} } } I want to use Attribute to get the metadata of Entity ,then mapping them,but i think it's really hard to get it done; public class DbUtility { private static readonly string CONNSTR = ConfigurationManager.ConnectionStrings["connstr"].ConnectionString; private static readonly Type TableType = typeof(TableAttribute); private static readonly Type ColumnType = typeof(ColumnAttribute); private static readonly Type ReferenceType = typeof(ReferencesAttribute); private static IList<TEntity> EntityListGenerator<TEntity>(string tableName,PropertyInfo[] props,params SqlParameter[] paras) { return null; } private static IList<TEntity> ResultList() { return null; } private static SqlCommand PrepareCommand(string sql,SqlConnection conn,params SqlParameter[] paras) { SqlCommand cmd = new SqlCommand(); cmd.CommandText = sql; cmd.Connection = conn; if (paras != null) cmd.Parameters.AddRange(paras); conn.Open(); return cmd; } } I don't know how to do the next step, if every Entity has it's own foreign key,how do I get the return result ? If the Entity like this: [Table(Name="ArtBook")] public class ArtBook{ [column(Name="id",IsPk=true,DataType=SqlDbType.Int)] public int Id{get;set;} [References(Name="ISBNId",DataType=SqlDataType.Int,Host=typeof(ISBN),HostPkName="Id")] public ISBN BookISBN{get;set;} public .....more properties. } public class ISBN{ public int Id{get;set;} public bool IsNative{get;set;} } If I read all ArtBooks from database and when I get a ReferencesAttribute how do I set the value of BookISBN?

    Read the article

< Previous Page | 152 153 154 155 156 157 158 159 160 161 162 163  | Next Page >