Search Results

Search found 17129 results on 686 pages for 'wifi configuration'.

Page 156/686 | < Previous Page | 152 153 154 155 156 157 158 159 160 161 162 163  | Next Page >

  • converting to Fluent NHibernate sessionmanager

    - by czuroski
    Hello, I am changing my application to use Fluent NHibernate. I have created my Fluent mapping files and have now moved onto configuring my Session Manager. Currently, I use the following code - private ISessionFactory GetSessionFactory() { return (new Configuration()).Configure().BuildSessionFactory(); } Along with my hibernate.cfg.xml - <?xml version="1.0" encoding="utf-8" ?> <hibernate-configuration xmlns="urn:nhibernate-configuration-2.2" > <session-factory> <property name="connection.provider">NHibernate.Connection.DriverConnectionProvider</property> <property name="dialect">NHibernate.Dialect.InformixDialect1000</property> <property name="connection.driver_class">NHibernate.Driver.OleDbDriver</property> <property name="connection.connection_string">Provider=Ifxoledbc.2;Password=mypass;Persist Security Info=True;User ID=myid;Data Source=mysource</property> <property name="proxyfactory.factory_class">NHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate.ByteCode.Castle</property> <property name="show_sql">false</property> <mapping assembly="DataTransfer" /> </session-factory> </hibernate-configuration> Does anyone know how I could transfer this to Fluent? The problem I have having is with the Database portion of the configuration. Thanks for any thoughts.

    Read the article

  • Spring MVC with several configurations

    - by Michael Bulla
    Hello, for my spring-mvc application I created several types of configuration (unittest, integration, qa, production). All the configs are in one war-file, so there is only one type of application I create. Which configuration to take should be decided by the server, where the application is running. To decide what kind of configuration should be used, I have to look into a file. After that I can decide which configuration should be used by spring mvc. For now by convention there is always the -servlet.xml used. Is there a way how to decide dynamically which config to take? Regards, Michael

    Read the article

  • Running single test class or group with Surefire and TestNG

    - by Slartibartfast
    I want to run single test class from command line using Maven and TestNG Things that doesn't work: mvn -Dtest=ClassName test I have defined groups in pom.xml, and this class isn't in one of those groups. So it got excluded on those grounds. mvn -Dgroups=skipped-group test mvn -Dsurefire.groups=skipped-group test when config is <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.7.1</version> <configuration> <groups>functest</groups> </configuration> </plugin> Parameters work fine in there are no groups defined in pom.xml. Similarly, when surefire is configured with <configuration> <includes> <include>**/*UnitTest.java</include> </includes> </configuration> I can add another test with -Dtest parameter, but cannot add group. In any combination, I can narrow down tests to be executed with groups, but not expand them. What's wrong with my configuration? Is there a way to run a single test or group outside of those defined in pom.xml? Tried on Ubuntu 10.04 with Maven 2.2.1, TestNG 5.14.6 and Surefire 2.7.1

    Read the article

  • migrate database from sybase to mysql

    - by jindalsyogesh
    I have been trying to migrate a database from sybase to Mysql. This is my approach: Generate pojo classes from my sybase database using hibernate in eclipse Use these pojo classes to generate the schema in mysql database Then somehow migrate the data from sybase to mysql I guess this approach should work??? Please let me know if there is any better or easier approach. The thing is I am not even able to get the first step done. I added hibernate plugin in eclipse from this link: [http://download.jboss.org/jbosstools/updates/stable/][1] I added sybase jar file to my project classpath Then I added hibernate console configuration file Then I added hibernate configuration file Then I added hibernate code generation configuration When I try to run the code generation configuration file, I am getting java.lang.NullPointerException and I have no idea how to fix it. I searched a lot of forums, tried to google it, but I not able to find any solution. Can anybody tell me what mistake I am making here or point to some hibernate tutorial for eclipse??

    Read the article

  • Why won't my AJAX controls work? (and ajax for .net 4 not working?)

    - by Nicklamort
    I'm totally new to ajax. I'm using VS2005. I just downloaded .NET framework 4 and so then I downloaded ajaxcontroltoolkit.binary.net4 via [http://ajaxcontroltoolkit.codeplex.com/releases/view/43475] (as opposed to ajaxcontroltoolkit.binary.net35 for .NET 3.5), but when I try to load the ajaxcontroltoolkit.dll into my toolbox (as said in the tutorials), I get the following error msg: "'C:......\ajaxcontroltoolkit.dll' is not a microsoft .NET module." First question: Why is this happening? So I tried downloading the "Recommended" ajaxcontroltoolkit.binary.net35, and it accepted the .dll file and loaded all my controls. So, I started a new website and tried to check out a combobox, and it displays, but IE is giving the follow error msg: 'Sys.Extended.UI.PositioningMode.BottomLeft' is null or not an object.' 2nd question: Why is this happening? LOL Thank you. <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %> <%@ Register Assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" Namespace="System.Web.UI" TagPrefix="asp" %> <%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="ajx" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title>Untitled Page</title> </head> <body> <form id="form1" runat="server"> <div> <asp:ScriptManager runat="server"> </asp:ScriptManager> <ajx:ComboBox ID="ComboBox1" runat="server"> </ajx:ComboBox> </div> </form> </body> </html> Here is my web.config: <?xml version="1.0"?> <configuration> <configSections> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="MachineToApplication"/> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="Everywhere"/> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="MachineToApplication"/> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="MachineToApplication"/> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <appSettings/> <connectionStrings/> <system.web> <pages> <controls> <add tagPrefix="ajaxToolkit" namespace="AjaxControlToolkit" assembly="AjaxControlToolkit"/> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls> </pages> <compilation debug="true"> <assemblies> <add assembly="System.Design, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/> <add assembly="System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions.Design, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> </assemblies> </compilation> <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="GET,HEAD" path="ScriptResource.axd" validate="false" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpModules> <authentication mode="Windows"/> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <modules> <remove name="ScriptModule"/> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated"/> <remove name="ScriptHandlerFactory"/> <remove name="ScriptHandlerFactoryAppServices"/> <remove name="ScriptResource"/> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptResource" verb="GET,HEAD" path="ScriptResource.axd" preCondition="integratedMode" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </handlers> </system.webServer> </configuration>

    Read the article

  • How do I implement configurations and settings?

    - by Malvolio
    I'm writing a system that is deployed in several places and each site needs its own configurations and settings. A "configuration" is a named value that is necessary to a particular site (e.g., the database URL, S3 bucket name); every configuration is necessary, there is not usually a default, and it's typically string-valued. A setting is a named value but it just tweaks the behavior of the system; it's often numeric or Boolean, and there's usually some default. So far, I've been using property files or thing like them, but it's a terrible solution. Several times, a developer has added a requirement for a configuration but not added the value to file for the live configuration, so the new release passed all the tests, then failed when released to live. Better, of course, for every file to be compiled — so if there's a missing configuration, or one of the wrong type, it won't get past the compiler — and inject the site-specific class into the build for each site. As a bones, a Scala file can easy model more complex values, especially lists, but also maps and tuples. The downside is, the files are sometimes maintained by people who aren't developers, so it has to be pretty self-explanatory, which was the advantage of property files. (Someone explain XML configurations to me: all the complexity of a compilable file but the run-time risk of a property file.) What I'm looking for is an easy pattern for defining a group required names and allowable values. Any suggestions?

    Read the article

  • Multi-module Maven build

    - by Don
    Hi, My project has a fairly deep graph of Maven modules. The root POM has the following plugin configured <plugins> <plugin> <groupId>org.jvnet</groupId> <artifactId>animal-sniffer</artifactId> <version>1.2</version> <configuration> <signature> <groupId>org.jvnet.animal-sniffer</groupId> <artifactId>java1.4</artifactId> <version>1.0</version> </signature> </configuration> </plugin> </plugins> If I invoke this target from the command line in the root directory via: mvn animal-sniffer:check Then it works fine as long as the current module extends (either directly or indirectly) from the root POM. However there are many children (or grandchildren) of the root module, which do not inherit from that module's POM. In this case, the goal fails because it cannot find the necessary configuration [ERROR] BUILD ERROR [INFO] ------------------------------------------------------------------------ [INFO] One or more required plugin parameters are invalid/missing for 'animal-sniffer:check' [0] Inside the definition for plugin 'animal-sniffer' specify the following: <configuration> ... <signature>VALUE</signature> </configuration>. When configuring this plugin in the root module, is there any way to exclude a list of sub-modules either by name, or by packaging type? Thanks, Donal

    Read the article

  • Cannot redeploy to remote tomcat 7 with using cargo-maven-plugin

    - by rottmanj
    I am attempting to build and redeploy to a remote tomcat 7 server using the cargo-maven plugin. I have been able to successfully deploy to the remote server, but all other actions fail. Here is the pluging settings in my pom.xml <plugin> <groupId>org.codehaus.cargo</groupId> <artifactId>cargo-maven2-plugin</artifactId> <version>1.1.1</version> <configuration> <!-- Container configuration --> <container> <containerId>tomcat7x</containerId> <type>remote</type> </container> <configuration> <type>runtime</type> <properties> <cargo.remote.username>tomcat</cargo.remote.username> <cargo.remote.password>tomcat</cargo.remote.password> <cargo.remote.uri>http://devserver:8080/manager/html</cargo.remote.uri> </properties> </configuration> </configuration> </plugin> This is the error I am seeing within eclipse, when I attempt to deploy. I posted it to pastebin so it is easier to read. Error link. Any help with this is greatly appreciated.

    Read the article

  • Unable to add FromName to e-mail using cdosys in SQL Server 2008

    - by Alex Andronov
    I have a piece of cdosys code which runs correctly and generates e-mail with my SQL Server 2008 server talking to a MS Exchange 2003 Server. However the from name is not appearing on the e-mails when they arrive. Is there a fault in the code is it not possible this way? Thanks in advance usp_send_cdosysmail @from varchar(500), @to text, @bcc text , @subject varchar(1000), @body text , @smtpserver varchar(25), @bodytype varchar(10) as declare @imsg int declare @hr int declare @source varchar(255) declare @description varchar(500) declare @output varchar(8000) exec @hr = sp_oacreate 'cdo.message', @imsg out exec @hr = sp_oasetproperty @imsg, 'configuration.fields("http://schemas.microsoft.com/cdo/configuration/sendusing").value','2' exec @hr = sp_oasetproperty @imsg, 'configuration.fields("http://schemas.microsoft.com/cdo/configuration/smtpserver").value', @smtpserver exec @hr = sp_oamethod @imsg, 'configuration.fields.update', null exec @hr = sp_oasetproperty @imsg, 'to', @to exec @hr = sp_oasetproperty @imsg, 'bcc', @bcc exec @hr = sp_oasetproperty @imsg, 'from', @from exec @hr = sp_oasetproperty @imsg, 'fromname','A From Name' exec @hr = sp_oasetproperty @imsg, 'subject', @subject -- if you are using html e-mail, use 'htmlbody' instead of 'textbody'. exec @hr = sp_oasetproperty @imsg, @bodytype, @body exec @hr = sp_oamethod @imsg, 'send', null -- sample error handling. if @hr <>0 select @hr begin exec @hr = sp_oageterrorinfo null, @source out, @description out if @hr = 0 begin select @output = ' source: ' + @source print @output select @output = ' description: ' + @description print @output end else begin print ' sp_oageterrorinfo failed.' return end end exec @hr = sp_oadestroy @imsg

    Read the article

  • PhpMyAdmin Hangs On MySQL Error

    - by user75228
    I'm currently running PhpMyAdmin 4.0.10 (the latest version supporting PHP 4.2.X) on my Amazon EC2 connecting to a MySQL database on RDS. Everything works perfectly fine except actions that return a mysql error message. Whether I perform "any" kind of action that will return a mysql error, Phpmyadmin will hang with the yellow "Loading" box forever without displaying anything. For example, if I perform the following command in MySQL CLI : select * from 123; It instantly returns the following error : ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '123' at line 1 which is completely normal because table 123 doesn't exist. However, if I execute the exact same command in the "SQL" box in Phpmyadmin, after I click "Go" it'll display "Loading" and stops there forever. Has anyone ever encountered this kind of issue with Phpmyadmin? Is this a bug or I have something wrong with my config.inc.php? Any help would be much appreciated. I also noticed these error messages in my apache error logs : /opt/apache/bin/httpd: symbol lookup error: /opt/php/lib/php/extensions/no-debug-non-zts-20060613/iconv.so: undefined symbol: libiconv_open /opt/apache/bin/httpd: symbol lookup error: /opt/php/lib/php/extensions/no-debug-non-zts-20060613/iconv.so: undefined symbol: libiconv_open /opt/apache/bin/httpd: symbol lookup error: /opt/php/lib/php/extensions/no-debug-non-zts-20060613/iconv.so: undefined symbol: libiconv_open Below are my config.inc.php settings : <?php /* vim: set expandtab sw=4 ts=4 sts=4: */ /** * phpMyAdmin sample configuration, you can use it as base for * manual configuration. For easier setup you can use setup/ * * All directives are explained in documentation in the doc/ folder * or at <http://docs.phpmyadmin.net/>. * * @package PhpMyAdmin */ /* * This is needed for cookie based authentication to encrypt password in * cookie */ $cfg['blowfish_secret'] = 'something_random'; /* YOU MUST FILL IN THIS FOR COOKIE AUTH! */ /* * Servers configuration */ $i = 0; /* * First server */ $i++; /* Authentication type */ $cfg['Servers'][$i]['auth_type'] = 'cookie'; /* Server parameters */ $cfg['Servers'][$i]['host'] = '*.rds.amazonaws.com'; $cfg['Servers'][$i]['connect_type'] = 'tcp'; $cfg['Servers'][$i]['compress'] = true; /* Select mysql if your server does not have mysqli */ $cfg['Servers'][$i]['extension'] = 'mysqli'; $cfg['Servers'][$i]['AllowNoPassword'] = false; $cfg['LoginCookieValidity'] = '3600'; /* * phpMyAdmin configuration storage settings. */ /* User used to manipulate with storage */ $cfg['Servers'][$i]['controlhost'] = '*.rds.amazonaws.com'; $cfg['Servers'][$i]['controluser'] = 'pma'; $cfg['Servers'][$i]['controlpass'] = 'password'; /* Storage database and tables */ $cfg['Servers'][$i]['pmadb'] = 'phpmyadmin'; $cfg['Servers'][$i]['bookmarktable'] = 'pma__bookmark'; $cfg['Servers'][$i]['relation'] = 'pma__relation'; $cfg['Servers'][$i]['table_info'] = 'pma__table_info'; $cfg['Servers'][$i]['table_coords'] = 'pma__table_coords'; $cfg['Servers'][$i]['pdf_pages'] = 'pma__pdf_pages'; $cfg['Servers'][$i]['column_info'] = 'pma__column_info'; $cfg['Servers'][$i]['history'] = 'pma__history'; $cfg['Servers'][$i]['table_uiprefs'] = 'pma__table_uiprefs'; $cfg['Servers'][$i]['tracking'] = 'pma__tracking'; $cfg['Servers'][$i]['designer_coords'] = 'pma__designer_coords'; $cfg['Servers'][$i]['userconfig'] = 'pma__userconfig'; $cfg['Servers'][$i]['recent'] = 'pma__recent'; /* Contrib / Swekey authentication */ // $cfg['Servers'][$i]['auth_swekey_config'] = '/etc/swekey-pma.conf'; /* * End of servers configuration */ /* * Directories for saving/loading files from server */ $cfg['UploadDir'] = ''; $cfg['SaveDir'] = ''; /** * Defines whether a user should be displayed a "show all (records)" * button in browse mode or not. * default = false */ //$cfg['ShowAll'] = true; /** * Number of rows displayed when browsing a result set. If the result * set contains more rows, "Previous" and "Next". * default = 30 */ $cfg['MaxRows'] = 50; /** * disallow editing of binary fields * valid values are: * false allow editing * 'blob' allow editing except for BLOB fields * 'noblob' disallow editing except for BLOB fields * 'all' disallow editing * default = blob */ //$cfg['ProtectBinary'] = 'false'; /** * Default language to use, if not browser-defined or user-defined * (you find all languages in the locale folder) * uncomment the desired line: * default = 'en' */ //$cfg['DefaultLang'] = 'en'; //$cfg['DefaultLang'] = 'de'; /** * default display direction (horizontal|vertical|horizontalflipped) */ //$cfg['DefaultDisplay'] = 'vertical'; /** * How many columns should be used for table display of a database? * (a value larger than 1 results in some information being hidden) * default = 1 */ //$cfg['PropertiesNumColumns'] = 2; /** * Set to true if you want DB-based query history.If false, this utilizes * JS-routines to display query history (lost by window close) * * This requires configuration storage enabled, see above. * default = false */ //$cfg['QueryHistoryDB'] = true; /** * When using DB-based query history, how many entries should be kept? * * default = 25 */ //$cfg['QueryHistoryMax'] = 100; /* * You can find more configuration options in the documentation * in the doc/ folder or at <http://docs.phpmyadmin.net/>. */ ?>

    Read the article

  • Can anyone tell me why my XML writer is not writing attributes?

    - by user1632018
    I am writing a parsing tool to help me clean up a large VC++ project before I make .net bindings for it. I am using an XML writer to read an xml file and write out each element to a new file. If an element with a certain name is found, then it executes some code and writes an output value into the elements value. So far it is almost working, except for one thing: It is not copying the attributes. Can anyone tell me why this is happening? Here is a sample of what it is supposed to copy/modify(Includes the attributes): <?xml version="1.0" encoding="utf-8"?> <Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <ItemGroup Label="ProjectConfigurations"> <ProjectConfiguration Include="Debug|Win32"> <Configuration>Debug</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> <ProjectConfiguration Include="Release|Win32"> <Configuration>Release</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> </ItemGroup> <PropertyGroup Label="Globals"> <ProjectGuid>{57900E99-A405-49F4-83B2-0254117D041B}</ProjectGuid> <Keyword>Win32Proj</Keyword> <RootNamespace>libproj</RootNamespace> </PropertyGroup> Here is the output I am getting(No Attributes): <?xml version="1.0" encoding="utf-8"?> <Project> <ItemGroup> <ProjectConfiguration> <Configuration>Debug</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> <ProjectConfiguration> <Configuration>Release</Configuration> <Platform>Win32</Platform> </ProjectConfiguration> </ItemGroup> <PropertyGroup> <ProjectGuid>{57900E99-A405-49F4-83B2-0254117D041B}</ProjectGuid> <Keyword>Win32Proj</Keyword> <RootNamespace>libproj</RootNamespace> Here is my code currently. I have tried every way I can come up with to write the attributes. string baseDir = (textBox2.Text + "\\" + safeFileName); string vcName = Path.GetFileName(textBox1.Text); string vcProj = Path.Combine(baseDir, vcName); using (XmlReader reader = XmlReader.Create(textBox1.Text)) { XmlWriterSettings settings = new XmlWriterSettings(); settings.OmitXmlDeclaration = true; settings.ConformanceLevel = ConformanceLevel.Fragment; settings.Indent = true; settings.CloseOutput = false; using (XmlWriter writer = XmlWriter.Create(vcProj, settings)) { while (reader.Read()) { switch (reader.NodeType) { case XmlNodeType.Element: if (reader.Name == "ClInclude") { string include = reader.GetAttribute("Include"); string dirPath = Path.GetDirectoryName(textBox1.Text); Directory.SetCurrentDirectory(dirPath); string fullPath = Path.GetFullPath(include); //string dirPath = Path.GetDirectoryName(fullPath); copyFile(fullPath, 3); string filename = Path.GetFileName(fullPath); writer.WriteStartElement(reader.Name); writer.WriteAttributeString("Include", "include/" + filename); writer.WriteEndElement(); } else if (reader.Name == "ClCompile" && reader.HasAttributes) { string include = reader.GetAttribute("Include"); string dirPath = Path.GetDirectoryName(textBox1.Text); Directory.SetCurrentDirectory(dirPath); string fullPath = Path.GetFullPath(include); copyFile(fullPath, 2); string filename = Path.GetFileName(fullPath); writer.WriteStartElement(reader.Name); writer.WriteAttributeString("Include", "src/" + filename); writer.WriteEndElement(); } else { writer.WriteStartElement(reader.Name); } break; case XmlNodeType.Text: writer.WriteString(reader.Value); break; case XmlNodeType.XmlDeclaration: case XmlNodeType.ProcessingInstruction: writer.WriteProcessingInstruction(reader.Name, reader.Value); break; case XmlNodeType.Comment: writer.WriteComment(reader.Value); break; case XmlNodeType.Attribute: writer.WriteAttributes(reader, true); break; case XmlNodeType.EntityReference: writer.WriteEntityRef(reader.Value); break; case XmlNodeType.EndElement: writer.WriteFullEndElement(); break; } } } }

    Read the article

  • Can I write a test without any assert in it ?

    - by stratwine
    Hi, I'd like to know if it is "ok" to write a test without any "assert" in it. So the test would fail only when an exception / error has occured. Eg: like a test which has a simple select query, to ensure that the database configuration is right. So when I change some db-configuration, I re-run this test and check if the configuration is right. ? Thanks!

    Read the article

  • Formal name of Magento’s Class Override Design Pattern?

    - by Alan Storm
    Magento is a newish (past 5 years) PHP based Ecommerce system with an architecture that's similar to the Java Spring framework (or so I've been told) One of the features of the Framework is certain classes are not directly instantiated. Rather than do something like $model = new Mage_Foo_Model_Name(); you pass an identifier into a static method on a global application object $model = Mage::getModel('foo/name'); and this instantiates the class for you. One of the wins with this approach is getModel checks a global configuration system for the foo/name identifier, and instantiates the class name it finds in the configuration system. This allows you to change the behavior of a Model system wide with a single configuration change. Is there a formal, Gang of Four or otherwise, name that describes this system/design pattern? The instantiation itself looks like a classic Factory pattern, but I'm specifically interested in the whole "override a class in the system via configuration" aspect. Is there a name/concept that covers this, or is it contained within the worldview of a Factory?

    Read the article

  • Password protect web pages on Windows CE 6

    - by Chris
    I am using the default web server for WinCE 6 and wish to password protect certain folders. The default VROOT /remoteadmin/ is password protected, and this works but my configuration doesn't work. I have tried mimicking these settings on my own folders but to little success. Here is how one looks: In the HKLM\Comm\HTTPD\VROOTS key I have created a subkey called /web/configuration (this folder actually exists on the box). The following values are in this key A = 1 DefaultPage = config.html Path = /hard disk/webroot/web/configuration/ UserList = ADMIN This is nigh on identical to the settings in /RemoteAdmin/ but /RemoteAdmin/ requests a password and /web/configuration doesn't (even after reboot).

    Read the article

  • Conditional installation with Wix

    - by Luca
    Is it possible to have a conditional installation configuration, slaved wth the Visual Studio configuration environment? For example, selecting DEBUG or RELEASE configuration, Wix selects different executables in the built installation.

    Read the article

  • How to properly manage a complex DB structure?

    - by errr
    Let's say you have several systems using the same DB - each uses several schemes (sometimes same as the other). This structure of these schemes is somewhat very big and complicated. Now, how could you possibly manage such scheme structure? Obviously using some sort of "configuration" - the simplest would be SQL scripts, but a more reasonable solution would be XMLs which can be easily converted into SQL, or some other readable solution (for example, JPA's XMLs or Annotations). This solution though, causes a problem where you can't really tell if your configuration matches the structure of the DB schemes exactly. You can't say if those two are synchronized. Why wouldn't they? Well, in such big structure there are going to be many changes, and you won't always remember to save/commit your configuration after you've altered the schemes, or maybe you did save/commit it, but eventually didn't altered anything in the schemes and forgot to undo the changes to the configuration. More than that, another problem (not caused by the configuration, but isn't addressed by it either) is versioning. I don't see any good way of managing the DB schemes versions (say our last alteration makes 3 systems crash - not good, how to "rollback"?). And thoughts? thx.

    Read the article

  • Management API - The request body XML was invalid or not correctly specified

    - by maartenba
    Cross posting from http://social.msdn.microsoft.com/Forums/en-US/windowsazuretroubleshooting/thread/31b6aedc-c069-4e32-8e8f-2ff4b7c30793 I'm getting this error on changing configuration through the service management API: The request body XML was invalid or not correctly specified The request body payload: <?xml version="1.0" encoding="utf-8"?> <ChangeConfiguration xmlns="http://schemas.microsoft.com/windowsazu re"> <Configuration>PD94bWwgdmVyc2lvbj0iMS4wIj8+CjxTZXJ2aWNlQ29uZmlndX JhdGlvbiB4bWxuczp4c2k9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlIi B4bWxuczp4c2Q9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hIiB4bWxucz0iaHR0cDovL3 NjaGVtYXMubWljcm9zb2Z0LmNvbS9TZXJ2aWNlSG9zdGluZy8yMDA4LzEwL1NlcnZpY2VDb25maWd1cm F0aW9uIiBzZXJ2aWNlTmFtZT0iIiBvc0ZhbWlseT0iMSIgb3NWZXJzaW9uPSIqIj4KICA8Um9sZSBuYW 1lPSJXZWJSb2xlMSI+CiAgICA8Q29uZmlndXJhdGlvblNldHRpbmdzPgogICAgICA8U2V0dGluZyBuYW 1lPSJNaWNyb3NvZnQuV2luZG93c0F6dXJlLlBsdWdpbnMuRGlhZ25vc3RpY3MuQ29ubmVjdGlvblN0cm luZyIgdmFsdWU9IlVzZURldmVsb3BtZW50U3RvcmFnZT10cnVlIi8+CiAgICA8L0NvbmZpZ3VyYXRpb2 5TZXR0aW5ncz4KICAgIDxJbnN0YW5jZXMgY291bnQ9IjIiLz4KICAgIDxDZXJ0aWZpY2F0ZXMvPgogID wvUm9sZT4KPC9TZXJ2aWNlQ29uZmlndXJhdGlvbj4K</Configuration> </ChangeConfiguration> I'm passing it the following configuration: $configuration = '<?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" serviceName="" osFamily="1" osVersion="*"> <Role name="WebRole1"> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true"/> </ConfigurationSettings> <Instances count="2"/> <Certificates/> </Role> </ServiceConfiguration>'; Does anyone know why this error occurs? I suspect it has something to do with encoding but not sure.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Blank black screen with cursor after login -- RHEL5

    - by Sean O.
    I have a RHEL 5 machine here which is a Dell Precision T3500. I'm an Ubuntu guy, but I'm having a heck of a time with this machine. After processing its first security update, we cannot log in via the gdm greeter. A new kernel was installed; then I installed the nVidia drivers for our Quadro NVS 295. I know the X configuration is valid because the gdm greeter does display; however, upon login all we can get is a blank, black screen with a cursor. I thought perhaps our python installation was corrupted but a reinstall via yum has not helped. I have searched & googled extensively for a potential fix for this and can find nothing. Below are outputs from uname, a tail of an error in /var/log/messages, and the Xorg.conf. Can anyone suggest a course of action? [sean@cheetah ~]$ uname -a Linux cheetah.*.* 2.6.18-308.8.1.el5 #1 SMP Fri May 4 16:43:02 EDT 2012 x86_64 x86_64 x86_64 GNU/Linux [sean@cheetah ~]$ sudo tail /var/log/messages Jun 5 15:03:04 cheetah gconfd (sean-4592): Resolved address "xml:readonly:/etc/gconf/gconf.xml.defaults" to a read-only configuration source at position 2 Jun 5 15:03:05 cheetah hcid[3855]: Default passkey agent (:1.8, /org/bluez/applet) registered Jun 5 15:03:05 cheetah pcscd: winscard.c:304:SCardConnect() Reader E-Gate 0 0 Not Found Jun 5 15:03:05 cheetah last message repeated 2 times Jun 5 15:03:06 cheetah gconfd (sean-4592): Resolved address "xml:readwrite:/home/sean/.gconf" to a writable configuration source at position 0 Jun 5 15:03:06 cheetah setroubleshoot: [program.ERROR] exception ImportError: /usr/lib/libatk-1.0.so.0: undefined symbol: g_assertion_message_expr Traceback (most recent call last): File "/usr/bin/sealert", line 952, in ? from setroubleshoot.gui_utils import * File "/usr/lib/python2.4/site-packages/setroubleshoot/gui_utils.py", line 26, in ? import gtk File "/usr/lib64/python2.4/site-packages/gtk-2.0/gtk/__init__.py", line 48, in ? from gtk import _gtk ImportError: /usr/lib/libatk-1.0.so.0: undefined symbol: g_assertion_message_expr Jun 5 15:03:07 cheetah setroubleshoot: [program.ERROR] exception ImportError: /usr/lib/libatk-1.0.so.0: undefined symbol: g_assertion_message_expr Traceback (most recent call last): File "/usr/bin/sealert", line 952, in ? from setroubleshoot.gui_utils import * File "/usr/lib/python2.4/site-packages/setroubleshoot/gui_utils.py", line 26, in ? import gtk File "/usr/lib64/python2.4/site-packages/gtk-2.0/gtk/__init__.py", line 48, in ? from gtk import _gtk ImportError: /usr/lib/libatk-1.0.so.0: undefined symbol: g_assertion_message_expr Jun 5 15:03:08 cheetah pcscd: winscard.c:304:SCardConnect() Reader E-Gate 0 0 Not Found Jun 5 15:07:01 cheetah ntpd[4114]: synchronized to 64.16.211.38, stratum 3 Jun 5 15:07:01 cheetah ntpd[4114]: kernel time sync enabled 0001 [sean@cheetah ~]$ cat /etc/X11/xorg.conf # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 295.53 ([email protected]) Sat May 12 00:34:20 PDT 2012 # Xorg configuration created by system-config-display Section "ServerLayout" Identifier "single head configuration" Screen 0 "Screen0" 0 0 InputDevice "Mouse0" "CorePointer" InputDevice "Keyboard0" "CoreKeyboard" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/input/mice" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" Identifier "Keyboard0" Driver "kbd" Option "XkbModel" "pc105" Option "XkbLayout" "us" EndSection Section "Monitor" ### Comment all HorizSync and VertSync values to use DDC: ### Comment all HorizSync and VertSync values to use DDC: Identifier "Monitor0" ModelName "LCD Panel 1600x1200" HorizSync 31.5 - 74.7 VertRefresh 56.0 - 65.0 Option "dpms" EndSection Section "Device" Identifier "Videocard0" Driver "nvidia" EndSection Section "Screen" Identifier "Screen0" Device "Videocard0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection

    Read the article

  • Centos/OVH: public IP on KVM virtual machine

    - by Sébastien
    Since a few days, I'm trying to configure my KVM vm to have a public IP address, without any success. First, I'm on OVH, and you need to know they don't allow networking from different mac addresses. I have so registered a virtual mac address associated with my failover IP Here's my configuration: Guest wanted IP: 46.105.40.x Host IP: 176.31.240.x Host configuration dummy0 interface: ifcfg-dummy0 BOOTPROTO=static IPADDR=10.0.0.1 NETMASK=255.0.0.0 ONBOOT=yes NM_CONTROLLED=no ARP=yes BRIDGE=br0 br0 bridge: ifcfg-br0 DEVICE=br0 TYPE=Bridge DELAY=0 ONBOOT=yes BOOTPROTO=static IPADDR=192.168.1.1 NETMASK=255.255.255.0 PEERDNS=yes NM_CONTROLLED=no ARP=yes Failover ip is redirected to the br0 bridge with ip route add 46.105.40.xxx dev br0 > cat /proc/sys/net/ipv4/ip_forward 1 > cat /proc/sys/net/ipv4/conf/vnet0/proxy_arp 1 > route -n Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 176.31.240.254 0.0.0.0 UG 0 0 0 eth0 46.105.40.x 0.0.0.0 255.255.255.255 UH 0 0 0 br0 176.31.240.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 br0 Guest configuration: KVM: <interface type='bridge'> <mac address='02:00:00:30:22:05'/> <source bridge='br0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/> </interface> I've borrowed most of the OVH configuration here (in french, http://guides.ovh.com/BridgeClient) for the guest configuration eth0 interface: ifcfg-eth0 DEVICE="eth0" BOOTPROTO=none HWADDR="02:00:00:30:22:05" NM_CONTROLLED="yes" ONBOOT="yes" TYPE="Ethernet" UUID="e9138469-0d81-4ee6-b5ab-de0d7d17d1c8" USERCTL=no PEERDNS=yes IPADDR=46.105.40.xxx NETMASK=255.255.255.255 GATEWAY=176.31.240.254 ARP=yes For the routes, I have in route-eth0: 176.31.240.254 dev eth0 default via 176.31.240.254 dev eth0 With this configuration, I don't have any access to the internet. The only thing I can do is to ping the public ip of the host, nothing more. My final conclusion is that the route does not work, because, when, on the guest, I run ping 8.8.8.8, I have, on the host: > tcpdump -i vnet0 icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on br0, link-type EN10MB (Ethernet), capture size 65535 bytes 13:38:09.009324 IP 46-105-40-xxx.kimsufi.com > google-public-dns-a.google.com: ICMP echo request, id 50183, seq 1, length 64 13:38:09.815344 IP 46-105-40-xxx.kimsufi.com > google-public-dns-a.google.com: ICMP echo request, id 50183, seq 2, length 64 I never get the ping reply, only the request. It seems Guest - Host communication is fine. On eth0: > tcpdump -i eth0 icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes 13:39:40.240561 IP 46-105-40-xxx.kimsufi.com > google-public-dns-a.google.com: ICMP echo request, id 50439, seq 1, length 64 13:39:40.250161 IP google-public-dns-a.google.com > 46-105-40-xxx.kimsufi.com: ICMP echo reply, id 50439, seq 1, length 64 I have the request and the reply on eth0, but reply is not forwarded to the bridge. I really don't understand why, I though it was the aim of the route to do that! IPtables is disabled on both host and guest. I really hope some of you will be able to help me! Many thanks in advance, Sébastien

    Read the article

  • 5 reason why you should upgrade to new iPad (3rd generation)

    - by Gopinath
    Apple released the new iPad, 3rd generation, couple of days ago and they will be available in stores from March 16 onwards.  It’s the best tablet available in the market and for first time buyers it’s a no brainer to choose it. What about the iPad owners? Should they upgrade their iPad 2 to the new iPad? This is the question on the lips of most of the iPad owners. In this post we will provide you 5 reasons why you should upgrade your iPad, if more than two reasons are convincing then you should upgrade to the new iPad. Retina display – The best display ever made for mobile device, a game changer The new iPad comes with Retina display with screen resolution of 2048 x 1536, which is twice the resolution of iPad 2. Undoubtedly the iPad 3’s display is the best display ever made for a mobile device and it’s a game changer. With better resolution on iPad 3 eBook reading is going to be a pleasure with clear and crisp text Watching HD movies on iPad is going to be unbelievably good The new Games targeted for Retina display are going to be more realistic and needless to explain the pleasure of playing such games Graphic artists and photo editors get a professional on screen rendering support to create beautiful graphics 2x Faster & 2x Memory – Better Games and powerful Apps The new iPad is more powerful with 2x faster graphics and 2x more memory. Apple claims that the A5x processor of new iPad is 2x faster than iPad 2 and 4x faster than the best graphic chips available from other vendors. The RAM of  new iPad  is upgraded to 1 GB compared from 512 MB of iPad 2. With the fast processor and more memory, Apps and games are going to be blazing fast. 4G Internet – Browse the web at the speeds of 42 MB/sec Half of the iPad owners are frequent commuters who access internet over cellular networks, the new iPad’s 4G LTE is going to be a big boom for their  high data access needs. With the new iPad’s 4G LTE connectivity you can browse the web at 42 MB/sec and it mean you can watch a HD video without buffering issues. iPad 2 comes with 3G network support and it’s browsing speeds are way less than the new iPad. 5MP Camera – HD Movie Recording & gorgeous Photography iPad 2 has a 0.7 mega pixel camera and the new iPad comes with 5 megapixels camera. That is a huge boost for hobbyist  photographers and videographers. With the new iPad you can shoot gorgeous photos and 1080p HD video. The iSight camera of new iPad uses advanced optics with features like auto exposure, auto focus and face detection up to 10 faces. Amazon Pays up to $300 for old iPad 2 16 GB Wifi and more for other models Do you know that you can trade in your iPad 2 16 GB Wifi for upto $300? Amazon has an excellent trade in program for selling your used iPad 2s. Depending on the condition of the iPad 2  Amazon offers $234, $270, $300.00 for 16 GB Wifi versions that in Acceptable, Good and Like New conditions respectively.  The higher models of iPad 2s fetch you more money. With this great deal from Amazon the amount of extra money you need to spend for new iPad is almost half of their price. Visit Amazon Trade In’s website or read Amazon’s brilliant plan to pay you crazy money for your iPad 2 for more details. Related: New IPad Vs. IPad 2–Side By Side Comparison Of Hardware Specification [Infographic]

    Read the article

  • Drivers for Atheros AR928X?

    - by Pato7
    I am new in Ubuntu and I had a big trouble with wifi. My ubuntu 12.10 doesn't detect my wifi card and I can't toggle the "activate wireless" option on the tasks bar (it is grey). I searched for drivers to make it work, but nothing worked for me. Can anyone give me a hand? Many thanks in advanced! lspci output 00:00.0 Host bridge: Intel Corporation Mobile 4 Series Chipset Memory Controller Hub (rev 07) 00:01.0 PCI bridge: Intel Corporation Mobile 4 Series Chipset PCI Express Graphics Port (rev 07) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 03) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 03) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 03) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 03) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 03) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 03) 00:1c.1 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 2 (rev 03) 00:1c.2 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 3 (rev 03) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 03) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 03) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 03) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 03) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev 93) 00:1f.0 ISA bridge: Intel Corporation ICH9M LPC Interface Controller (rev 03) 00:1f.2 SATA controller: Intel Corporation 82801IBM/IEM (ICH9M/ICH9M-E) 4 port SATA Controller [AHCI mode] (rev 03) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 03) 01:00.0 VGA compatible controller: Advanced Micro Devices [AMD] nee ATI RV710 [Mobility Radeon HD 4500/5100 Series] 01:00.1 Audio device: Advanced Micro Devices [AMD] nee ATI RV710/730 HDMI Audio [Radeon HD 4000 series] 02:00.0 Ethernet controller: Marvell Technology Group Ltd. 88E8057 PCI-E Gigabit Ethernet Controller (rev 10) 03:00.0 Network controller: Atheros Communications Inc. AR928X Wireless Network Adapter (PCI-Express) (rev 01) 0c:03.0 FireWire (IEEE 1394): Ricoh Co Ltd R5C832 IEEE 1394 Controller (rev 05) 0c:03.1 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 22) 0c:03.2 System peripheral: Ricoh Co Ltd R5C592 Memory Stick Bus Host Adapter (rev 12) lshw -c network output *-network descripción: Ethernet interface producto: 88E8057 PCI-E Gigabit Ethernet Controller fabricante: Marvell Technology Group Ltd. id físico: 0 información del bus: pci@0000:02:00.0 nombre lógico: eth0 versión: 10 serie: 00:24:be:83:b2:4f tamaño: 100Mbit/s capacidad: 1Gbit/s anchura: 64 bits reloj: 33MHz capacidades: pm msi pciexpress bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuración: autonegotiation=on broadcast=yes driver=sky2 driverversion=1.30 duplex=full ip=192.168.1.123 latency=0 link=yes multicast=yes port=twisted pair speed=100Mbit/s recursos: irq:45 memoria:d3520000-d3523fff ioport:c000(size=256) memoria:d3500000-d351ffff *-network DESACTIVADO descripción: Interfaz inalámbrica producto: AR928X Wireless Network Adapter (PCI-Express) fabricante: Atheros Communications Inc. id físico: 0 información del bus: pci@0000:03:00.0 nombre lógico: wlan0 versión: 01 serie: 2c:81:58:e6:b6:03 anchura: 64 bits reloj: 33MHz capacidades: pm msi pciexpress msix bus_master cap_list ethernet physical wireless configuración: broadcast=yes driver=ath9k driverversion=3.5.0-18-generic firmware=N/A latency=0 link=no multicast=yes wireless=IEEE 802.11bgn recursos: irq:17 memoria:d2100000-d210ffff rfkill list all output 0: phy0: Wireless LAN Soft blocked: yes Hard blocked: yes 1: sony-wifi: Wireless LAN Soft blocked: yes Hard blocked: no

    Read the article

  • Gmail Sync on Android phone

    - by sunocky
    Android has the Gmail push features, which means the new message arrives in the mailbox without checking or refreshing the mailbox. As I understand, the sync processes are like these: 1) User turns on the sync 2) There will be a alert msg and the sync flag in the Gmail DB of this device will be True 3) When a new email reach the Gmail Server, it will check if the device sync value, if it's True then send the email OK, here, I don't quite understand how exactly does it work, For a WiFi and cell signal connection, does the phone has a TCP socket open keep listening to the Gmail Server, or when a new email arrives the Server send a SMS alert to the phone, and then it will open the data channel to fetch the email? Are the two ways of connections have different approaches? And second question is which method is the priority one? Say when you are in the middle of receiving data(emails), and suddenly the phone connect to a wireless network, will the data socket be closed and then reopened for the WiFi one? What's the behavior for the case when carrier's data channel and WiFi flips? I have also downloaded the source code, anyone knows which part should I be looking into in order to solves my questions? I found a folder called "email" inside the folder "package", should I be looking at its code? I know I asked quite some questions here, I'd appreciate if you know the answer for any of them, thanks very much!

    Read the article

  • SSH problems (ssh_exchange_identification: read: Connection reset by peer)

    - by kSiR
    I was running 11.10 and decided to do the full upgrade and come up to 12.04 after the update SSH (not SSHD) is now misbehaving when attempting to connect to other OpenSSH instances. I say OpenSSH as I am running a DropBear sshd on my router and I am able to connect to it. When attempting to connect to an OpenSSH server risk@skynet:~/.ssh$ ssh -vvv risk@someserver OpenSSH_5.9p1 Debian-5ubuntu1, OpenSSL 1.0.1 14 Mar 2012 debug1: Reading configuration data /home/risk/.ssh/config debug3: key names ok: [[email protected],[email protected],[email protected],[email protected],ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-rsa,ssh-dss] debug1: Reading configuration data /etc/ssh/ssh_config debug1: /etc/ssh/ssh_config line 19: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to someserver [someserver] port 22. debug1: Connection established. debug1: identity file /home/risk/.ssh/id_rsa type -1 debug1: identity file /home/risk/.ssh/id_rsa-cert type -1 debug1: identity file /home/risk/.ssh/id_dsa type -1 debug1: identity file /home/risk/.ssh/id_dsa-cert type -1 debug3: Incorrect RSA1 identifier debug3: Could not load "/home/risk/.ssh/id_ecdsa" as a RSA1 public key debug1: identity file /home/risk/.ssh/id_ecdsa type 3 debug1: Checking blacklist file /usr/share/ssh/blacklist.ECDSA-521 debug1: Checking blacklist file /etc/ssh/blacklist.ECDSA-521 debug1: identity file /home/risk/.ssh/id_ecdsa-cert type -1 ssh_exchange_identification: read: Connection reset by peer risk@skynet:~/.ssh$ DropBear instance risk@skynet:~/.ssh$ ssh -vvv root@darkness OpenSSH_5.9p1 Debian-5ubuntu1, OpenSSL 1.0.1 14 Mar 2012 debug1: Reading configuration data /home/risk/.ssh/config debug3: key names ok: [[email protected],[email protected],[email protected],[email protected],ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-rsa,ssh-dss] debug1: Reading configuration data /etc/ssh/ssh_config debug1: /etc/ssh/ssh_config line 19: Applying options for * debug2: ssh_connect: needpriv 0 debug1: Connecting to darkness [192.168.1.1] port 22. debug1: Connection established. debug1: identity file /home/risk/.ssh/id_rsa type -1 debug1: identity file /home/risk/.ssh/id_rsa-cert type -1 debug1: identity file /home/risk/.ssh/id_dsa type -1 debug1: identity file /home/risk/.ssh/id_dsa-cert type -1 debug3: Incorrect RSA1 identifier debug3: Could not load "/home/risk/.ssh/id_ecdsa" as a RSA1 public key debug1: identity file /home/risk/.ssh/id_ecdsa type 3 debug1: Checking blacklist file /usr/share/ssh/blacklist.ECDSA-521 debug1: Checking blacklist file /etc/ssh/blacklist.ECDSA-521 debug1: identity file /home/risk/.ssh/id_ecdsa-cert type -1 debug1: Remote protocol version 2.0, remote software version dropbear_0.52 debug1: no match: dropbear_0.52 ... I have googled and ran most ALL fixes recommend both from the Debian and Arch sides and none of them seem to resolve my issue. Any ideas?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

< Previous Page | 152 153 154 155 156 157 158 159 160 161 162 163  | Next Page >