Search Results

Search found 36013 results on 1441 pages for 'public fields'.

Page 157/1441 | < Previous Page | 153 154 155 156 157 158 159 160 161 162 163 164  | Next Page >

  • Resharper intellisense confusion

    - by Mystere Man
    Today I had something weird happen in my copy of Resharper 5. I have a class that looks like this: public class Foo { public string Username { get; private set; } public Foo (string userName) { Username = userName; } public void Bar() { DoWork(Username); } public DoWork(string userName) { } } When I start to type DoWork(us I get the following from intellisense: Notice that it's pulling up the constructor argument, and it ends with a colon: userName: What's going on here?

    Read the article

  • How to make a pause before continuing method

    - by user1766728
    Now, I know that this has been asked, but I need to know how to do this NOT on html or anything. Heres my code, not including all of the other java files. package rtype; import java.awt.Image; import java.awt.event.KeyEvent; import java.util.ArrayList; import javax.swing.ImageIcon; public class aa { private int xd; private int yd; private int dx; private int dy; private int x; private int y; private Image image; private ArrayList missiles; private final int CRAFT_SIZE = 70; public aa() { ImageIcon ii = new ImageIcon(this.getClass().getResource("/aa.png")); image = ii.getImage(); missiles = new ArrayList(); x = 10; y = 10; xd = -14; yd = 140; } public void move() { if(y >=xd) y += dx; else if(y < xd) y += 1; if(y <=yd) y += dy; else if(y > yd) y += -1; } public int getX() { return x; } public int getY() { return y; } public Image getImage() { return image; } public ArrayList getMissiles() { return missiles; } public void keyPressed(KeyEvent e) { int key = e.getKeyCode(); if (key == KeyEvent.VK_SPACE) { fire(); } if (key == KeyEvent.VK_UP) { dy = -1; } if (key == KeyEvent.VK_DOWN) { dy = 1; } if (key == KeyEvent.VK_RIGHT) { yd++; } if (key == KeyEvent.VK_LEFT) { yd--; } if (key == KeyEvent.VK_W) { xd++; } if (key == KeyEvent.VK_S) { xd--; } } public void fire() { try{ missiles.add(new Missle(x + CRAFT_SIZE, y + CRAFT_SIZE)); }catch(Exception e){} } public void keyReleased(KeyEvent e) { int key = e.getKeyCode(); if (key == KeyEvent.VK_UP) { dy = 0; } if (key == KeyEvent.VK_DOWN) { dy = 0; } } } So, at the method, fire(), I want to make it delay between shots. HOW? sorry if this is n00bish

    Read the article

  • Java: "implements Runnable" vs. "extends Thread"

    - by user65374
    From what time I've spent with threads in Java, I've found these two ways to write threads. public class ThreadA implements Runnable { public void run() { //Code } } //with a "new Thread(threadA).start()" call public class ThreadB extends Thread { public ThreadB() { super("ThreadB"); } public void run() { //Code } } //with a "threadB.start()" call Is there any significant difference in these two blocks of code?

    Read the article

  • In ActionScript3 runtime, is there a way to get a list of all static members from a Class

    - by ty
    Let's say we have following class public class PlayerEvent extends Event { public static const PLAYER_INIT:String = "playerInit"; public static const PLAYER_MOVE:String = "playerMove"; public static const PLAYER_USE_SKILL:String = "playerUseSkill"; public function PlayerEvent(type:String) { super(type, false, true); } } } In Flash Player runtime, is there a way I can get a list of all the static members of lass PlayerEvent. Something like: trace(PlayerEvent.staticMethods) // ["PLAYER_INIT", "PLAYER_MOVE", "PLAYER_USE_SKILL"]...

    Read the article

  • Test if a method is an override?

    - by Water Cooler v2
    Is there a way to tell if a method is an override? For e.g. public class Foo { public virtual void DoSomething() {} public virtual int GimmeIntPleez() { return 0; } } public class BabyFoo: Foo { public override int GimmeIntPleez() { return -1; } } Is it possible to reflect on BabyFoo and tell if GimmeIntPleez is an override?

    Read the article

  • How to define an aspectj pointcut that picks out all constructors of a class that has a specific annotation?

    - by PineForest
    Here is the annotation: @Target(value = ElementType.TYPE) @Retention(value = RetentionPolicy.RUNTIME) @Inherited public @interface MyAnnotation { String name(); } Here is one annotated class: @MyAnnotation(name="foo") public class ClassA { public ClassA() { // Do something } } Here is a second annotated class: @MyAnnotation(name="bar") public class ClassB { public ClassB(String aString) { // Do something } } I am looking for an aspectj pointcut that correctly matches the constructors for ClassA and ClassB while not matching any other constructor for any other class NOT annotated by MyAnnotation.

    Read the article

  • DisplayMemberPath is not working in WPF

    - by WpfBee
    I want to display CustomerList\CustomerName property items to the listBox using ItemsSource DisplayMemberPath property only. But it is not working. I do not want to use DataContext or any other binding in my problem. Please help. My code is given below: MainWindow.xaml.cs namespace BindingAnItemControlToAList { /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window { public MainWindow() { InitializeComponent(); } } public class Customer { public string Name {get;set;} public string LastName { get; set; } } public class CustomerList { public List<Customer> Customers { get; set; } public List<string> CustomerName { get; set; } public List<string> CustomerLastName { get; set; } public CustomerList() { Customers = new List<Customer>(); CustomerName = new List<string>(); CustomerLastName = new List<string>(); CustomerName.Add("Name1"); CustomerLastName.Add("LastName1"); CustomerName.Add("Name2"); CustomerLastName.Add("LastName2"); Customers.Add(new Customer() { Name = CustomerName[0], LastName = CustomerLastName[0] }); Customers.Add(new Customer() { Name = CustomerName[1], LastName = CustomerLastName[1] }); } } } **MainWindow.Xaml** <Window x:Class="BindingAnItemControlToAList.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:BindingAnItemControlToAList" Title="MainWindow" Height="350" Width="525" Loaded="Window_Loaded" > <Window.Resources> <local:CustomerList x:Key="Cust"/> </Window.Resources> <Grid Name="Grid1"> <ListBox ItemsSource="{Binding Source={StaticResource Cust}}" DisplayMemberPath="CustomerName" Height="172" HorizontalAlignment="Left" Margin="27,23,0,0" Name="lstStates" VerticalAlignment="Top" Width="245" /> </Grid> </Window>

    Read the article

  • Skinny controller in ASP.NET MVC 4

    - by thangchung
    Rails community are always inspire a lot of best ideas. I really love this community by the time. One of these is "Fat models and skinny controllers". I have spent a lot of time on ASP.NET MVC, and really I did some miss-takes, because I made the controller so fat. That make controller is really dirty and very hard to maintain in the future. It is violate seriously SRP principle and KISS as well. But how can we achieve that in ASP.NET MVC? That question is really clear after I read "Manning ASP.NET MVC 4 in Action". It is simple that we can separate it into ActionResult, and try to implementing logic and persistence data inside this. In last 2 years, I have read this from Jimmy Bogard blog, but in that time I never had a consideration about it. That's enough for talking now. I just published a sample on ASP.NET MVC 4, implemented on Visual Studio 2012 RC at here. I used EF framework at here for implementing persistence layer, and also use 2 free templates from internet to make the UI for this sample. In this sample, I try to implementing the simple magazine website that managing all articles, categories and news. It is not finished at all in this time, but no problems, because I just show you about how can we make the controller skinny. And I wanna hear more about your ideas. The first thing, I am abstract the base ActionResult class like this:    public abstract class MyActionResult : ActionResult, IEnsureNotNull     {         public abstract void EnsureAllInjectInstanceNotNull();     }     public abstract class ActionResultBase<TController> : MyActionResult where TController : Controller     {         protected readonly Expression<Func<TController, ActionResult>> ViewNameExpression;         protected readonly IExConfigurationManager ConfigurationManager;         protected ActionResultBase (Expression<Func<TController, ActionResult>> expr)             : this(DependencyResolver.Current.GetService<IExConfigurationManager>(), expr)         {         }         protected ActionResultBase(             IExConfigurationManager configurationManager,             Expression<Func<TController, ActionResult>> expr)         {             Guard.ArgumentNotNull(expr, "ViewNameExpression");             Guard.ArgumentNotNull(configurationManager, "ConfigurationManager");             ViewNameExpression = expr;             ConfigurationManager = configurationManager;         }         protected ViewResult GetViewResult<TViewModel>(TViewModel viewModel)         {             var m = (MethodCallExpression)ViewNameExpression.Body;             if (m.Method.ReturnType != typeof(ActionResult))             {                 throw new ArgumentException("ControllerAction method '" + m.Method.Name + "' does not return type ActionResult");             }             var result = new ViewResult             {                 ViewName = m.Method.Name             };             result.ViewData.Model = viewModel;             return result;         }         public override void ExecuteResult(ControllerContext context)         {             EnsureAllInjectInstanceNotNull();         }     } I also have an interface for validation all inject objects. This interface make sure all inject objects that I inject using Autofac container are not null. The implementation of this as below public interface IEnsureNotNull     {         void EnsureAllInjectInstanceNotNull();     } Afterwards, I am just simple implementing the HomePageViewModelActionResult class like this public class HomePageViewModelActionResult<TController> : ActionResultBase<TController> where TController : Controller     {         #region variables & ctors         private readonly ICategoryRepository _categoryRepository;         private readonly IItemRepository _itemRepository;         private readonly int _numOfPage;         public HomePageViewModelActionResult(Expression<Func<TController, ActionResult>> viewNameExpression)             : this(viewNameExpression,                    DependencyResolver.Current.GetService<ICategoryRepository>(),                    DependencyResolver.Current.GetService<IItemRepository>())         {         }         public HomePageViewModelActionResult(             Expression<Func<TController, ActionResult>> viewNameExpression,             ICategoryRepository categoryRepository,             IItemRepository itemRepository)             : base(viewNameExpression)         {             _categoryRepository = categoryRepository;             _itemRepository = itemRepository;             _numOfPage = ConfigurationManager.GetAppConfigBy("NumOfPage").ToInteger();         }         #endregion         #region implementation         public override void ExecuteResult(ControllerContext context)         {             base.ExecuteResult(context);             var cats = _categoryRepository.GetCategories();             var mainViewModel = new HomePageViewModel();             var headerViewModel = new HeaderViewModel();             var footerViewModel = new FooterViewModel();             var mainPageViewModel = new MainPageViewModel();             headerViewModel.SiteTitle = "Magazine Website";             if (cats != null && cats.Any())             {                 headerViewModel.Categories = cats.ToList();                 footerViewModel.Categories = cats.ToList();             }             mainPageViewModel.LeftColumn = BindingDataForMainPageLeftColumnViewModel();             mainPageViewModel.RightColumn = BindingDataForMainPageRightColumnViewModel();             mainViewModel.Header = headerViewModel;             mainViewModel.DashBoard = new DashboardViewModel();             mainViewModel.Footer = footerViewModel;             mainViewModel.MainPage = mainPageViewModel;             GetViewResult(mainViewModel).ExecuteResult(context);         }         public override void EnsureAllInjectInstanceNotNull()         {             Guard.ArgumentNotNull(_categoryRepository, "CategoryRepository");             Guard.ArgumentNotNull(_itemRepository, "ItemRepository");             Guard.ArgumentMustMoreThanZero(_numOfPage, "NumOfPage");         }         #endregion         #region private functions         private MainPageRightColumnViewModel BindingDataForMainPageRightColumnViewModel()         {             var mainPageRightCol = new MainPageRightColumnViewModel();             mainPageRightCol.LatestNews = _itemRepository.GetNewestItem(_numOfPage).ToList();             mainPageRightCol.MostViews = _itemRepository.GetMostViews(_numOfPage).ToList();             return mainPageRightCol;         }         private MainPageLeftColumnViewModel BindingDataForMainPageLeftColumnViewModel()         {             var mainPageLeftCol = new MainPageLeftColumnViewModel();             var items = _itemRepository.GetNewestItem(_numOfPage);             if (items != null && items.Any())             {                 var firstItem = items.First();                 if (firstItem == null)                     throw new NoNullAllowedException("First Item".ToNotNullErrorMessage());                 if (firstItem.ItemContent == null)                     throw new NoNullAllowedException("First ItemContent".ToNotNullErrorMessage());                 mainPageLeftCol.FirstItem = firstItem;                 if (items.Count() > 1)                 {                     mainPageLeftCol.RemainItems = items.Where(x => x.ItemContent != null && x.Id != mainPageLeftCol.FirstItem.Id).ToList();                 }             }             return mainPageLeftCol;         }         #endregion     }  Final step, I get into HomeController and add some line of codes like this [Authorize]     public class HomeController : BaseController     {         [AllowAnonymous]         public ActionResult Index()         {             return new HomePageViewModelActionResult<HomeController>(x=>x.Index());         }         [AllowAnonymous]         public ActionResult Details(int id)         {             return new DetailsViewModelActionResult<HomeController>(x => x.Details(id), id);         }         [AllowAnonymous]         public ActionResult Category(int id)         {             return new CategoryViewModelActionResult<HomeController>(x => x.Category(id), id);         }     } As you see, the code in controller is really skinny, and all the logic I move to the custom ActionResult class. Some people said, it just move the code out of controller and put it to another class, so it is still hard to maintain. Look like it just move the complicate codes from one place to another place. But if you have a look and think it in details, you have to find out if you have code for processing all logic that related to HttpContext or something like this. You can do it on Controller, and try to delegating another logic  (such as processing business requirement, persistence data,...) to custom ActionResult class. Tell me more your thinking, I am really willing to hear all of its from you guys. All source codes can be find out at here. Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="http://weblogs.asp.net//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");

    Read the article

  • ASP.NET Localization: Enabling resource expressions with an external resource assembly

    - by Brian Schroer
    I have several related projects that need the same localized text, so my global resources files are in a shared assembly that’s referenced by each of those projects. It took an embarrassingly long time to figure out how to have my .resx files generate “public” properties instead of “internal” so I could have a shared resources assembly (apparently it was pretty tricky pre-VS2008, and my “googling” bogged me down some out-of-date instructions). It’s easy though – Just change the “Custom Tool” to “PublicResXFileCodeGenerator”:    …which can be done via the “Access Modifier” dropdown of the resource file designer window:   A reference to my shared resources DLL gives me the ability to use the resources in code, but by default, the ASP.NET resource expression syntax: <asp:Button ID="BeerButton" runat="server" Text="<%$ Resources:MyResources, Beer %>" />   …assumes that your resources are in your web site project.   To make resource expressions work with my shared resources assembly, I added two classes to the resources assembly: 1) a custom IResourceProvider implementation:   1: using System; 2: using System.Web.Compilation; 3: using System.Globalization; 4:   5: namespace DuffBeer 6: { 7: public class CustomResourceProvider : IResourceProvider 8: { 9: public object GetObject(string resourceKey, CultureInfo culture) 10: { 11: return MyResources.ResourceManager.GetObject(resourceKey, culture); 12: } 13:   14: public System.Resources.IResourceReader ResourceReader 15: { 16: get { throw new NotSupportedException(); } 17: } 18: } 19: }   2) and a custom factory class inheriting from the ResourceProviderFactory base class:   1: using System; 2: using System.Web.Compilation; 3:   4: namespace DuffBeer 5: { 6: public class CustomResourceProviderFactory : ResourceProviderFactory 7: { 8: public override IResourceProvider CreateGlobalResourceProvider(string classKey) 9: { 10: return new CustomResourceProvider(); 11: } 12:   13: public override IResourceProvider CreateLocalResourceProvider(string virtualPath) 14: { 15: throw new NotSupportedException(String.Format( 16: "{0} does not support local resources.", 17: this.GetType().Name)); 18: } 19: } 20: }   In the “system.web / globalization” section of my web.config file, I point the “resourceProviderFactoryType" property to my custom factory:   <system.web> <globalization culture="auto:en-US" uiCulture="auto:en-US" resourceProviderFactoryType="DuffBeer.CustomResourceProviderFactory, DuffBeer" />   This simple approach met my needs for these projects , but if you want to create reusable resource provider and factory classes that allow you to specify the assembly in the resource expression, the instructions are here.

    Read the article

  • Unification of TPL TaskScheduler and RX IScheduler

    - by JoshReuben
    using System; using System.Collections.Generic; using System.Reactive.Concurrency; using System.Security; using System.Threading; using System.Threading.Tasks; using System.Windows.Threading; namespace TPLRXSchedulerIntegration { public class MyScheduler :TaskScheduler, IScheduler     { private readonly Dispatcher _dispatcher; private readonly DispatcherScheduler _rxDispatcherScheduler; //private readonly TaskScheduler _tplDispatcherScheduler; private readonly SynchronizationContext _synchronizationContext; public MyScheduler(Dispatcher dispatcher)         {             _dispatcher = dispatcher;             _rxDispatcherScheduler = new DispatcherScheduler(dispatcher); //_tplDispatcherScheduler = FromCurrentSynchronizationContext();             _synchronizationContext = SynchronizationContext.Current;         }         #region RX public DateTimeOffset Now         { get { return _rxDispatcherScheduler.Now; }         } public IDisposable Schedule<TState>(TState state, DateTimeOffset dueTime, Func<IScheduler, TState, IDisposable> action)         { return _rxDispatcherScheduler.Schedule(state, dueTime, action);         } public IDisposable Schedule<TState>(TState state, TimeSpan dueTime, Func<IScheduler, TState, IDisposable> action)         { return _rxDispatcherScheduler.Schedule(state, dueTime, action);         } public IDisposable Schedule<TState>(TState state, Func<IScheduler, TState, IDisposable> action)         { return _rxDispatcherScheduler.Schedule(state, action);         }         #endregion         #region TPL /// Simply posts the tasks to be executed on the associated SynchronizationContext         [SecurityCritical] protected override void QueueTask(Task task)         {             _dispatcher.BeginInvoke((Action)(() => TryExecuteTask(task))); //TryExecuteTaskInline(task,false); //task.Start(_tplDispatcherScheduler); //m_synchronizationContext.Post(s_postCallback, (object)task);         } /// The task will be executed inline only if the call happens within the associated SynchronizationContext         [SecurityCritical] protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued)         { if (SynchronizationContext.Current != _synchronizationContext)             { SynchronizationContext.SetSynchronizationContext(_synchronizationContext);             } return TryExecuteTask(task);         } // not implemented         [SecurityCritical] protected override IEnumerable<Task> GetScheduledTasks()         { return null;         } /// Implementes the MaximumConcurrencyLevel property for this scheduler class. /// By default it returns 1, because a <see cref="T:System.Threading.SynchronizationContext"/> based /// scheduler only supports execution on a single thread. public override Int32 MaximumConcurrencyLevel         { get             { return 1;             }         } //// preallocated SendOrPostCallback delegate //private static SendOrPostCallback s_postCallback = new SendOrPostCallback(PostCallback); //// this is where the actual task invocation occures //private static void PostCallback(object obj) //{ //    Task task = (Task) obj; //    // calling ExecuteEntry with double execute check enabled because a user implemented SynchronizationContext could be buggy //    task.ExecuteEntry(true); //}         #endregion     } }     What Design Pattern did I use here?

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • Dynamic Filtering

    - by Ricardo Peres
    Continuing my previous posts on dynamic LINQ, now it's time for dynamic filtering. For now, I'll focus on string matching. There are three standard operators for string matching, which both NHibernate, Entity Framework and LINQ to SQL recognize: Equals Contains StartsWith EndsWith So, if we want to apply filtering by one of these operators on a string property, we can use this code: public enum MatchType { StartsWith = 0, EndsWith = 1, Contains = 2, Equals = 3 } public static List Filter(IEnumerable enumerable, String propertyName, String filter, MatchType matchType) { return (Filter(enumerable, typeof(T), propertyName, filter, matchType) as List); } public static IList Filter(IEnumerable enumerable, Type elementType, String propertyName, String filter, MatchType matchType) { MethodInfo asQueryableMethod = typeof(Queryable).GetMethods(BindingFlags.Static | BindingFlags.Public).Where(m = (m.Name == "AsQueryable") && (m.ContainsGenericParameters == false)).Single(); IQueryable query = (enumerable is IQueryable) ? (enumerable as IQueryable) : asQueryableMethod.Invoke(null, new Object [] { enumerable }) as IQueryable; MethodInfo whereMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "Where").ToArray() [ 0 ].MakeGenericMethod(elementType); MethodInfo matchMethod = typeof(String).GetMethod ( (matchType == MatchType.StartsWith) ? "StartsWith" : (matchType == MatchType.EndsWith) ? "EndsWith" : (matchType == MatchType.Contains) ? "Contains" : "Equals", new Type [] { typeof(String) } ); PropertyInfo displayProperty = elementType.GetProperty(propertyName, BindingFlags.Public | BindingFlags.Instance); MemberExpression member = Expression.MakeMemberAccess(Expression.Parameter(elementType, "n"), displayProperty); MethodCallExpression call = Expression.Call(member, matchMethod, Expression.Constant(filter)); LambdaExpression where = Expression.Lambda(call, member.Expression as ParameterExpression); query = whereMethod.Invoke(null, new Object [] { query, where }) as IQueryable; MethodInfo toListMethod = typeof(Enumerable).GetMethod("ToList", BindingFlags.Static | BindingFlags.Public).MakeGenericMethod(elementType); IList list = toListMethod.Invoke(null, new Object [] { query }) as IList; return (list); } var list = new [] { new { A = "aa" }, new { A = "aabb" }, new { A = "ccaa" }, new { A = "ddaadd" } }; var contains = Filter(list, "A", "aa", MatchType.Contains); var endsWith = Filter(list, "A", "aa", MatchType.EndsWith); var startsWith = Filter(list, "A", "aa", MatchType.StartsWith); var equals = Filter(list, "A", "aa", MatchType.Equals); Perhaps I'll write some more posts on this subject in the near future. SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Reinventing the Paged IEnumerable, Weigert Style!

    - by adweigert
    I am pretty sure someone else has done this, I've seen variations as PagedList<T>, but this is my style of a paged IEnumerable collection. I just store a reference to the collection and generate the paged data when the enumerator is needed, so you could technically add to a list that I'm referencing and the properties and results would be adjusted accordingly. I don't mind reinventing the wheel when I can add some of my own personal flare ... // Extension method for easy use public static PagedEnumerable AsPaged(this IEnumerable collection, int currentPage = 1, int pageSize = 0) { Contract.Requires(collection != null); Contract.Assume(currentPage >= 1); Contract.Assume(pageSize >= 0); return new PagedEnumerable(collection, currentPage, pageSize); } public class PagedEnumerable : IEnumerable { public PagedEnumerable(IEnumerable collection, int currentPage = 1, int pageSize = 0) { Contract.Requires(collection != null); Contract.Assume(currentPage >= 1); Contract.Assume(pageSize >= 0); this.collection = collection; this.PageSize = pageSize; this.CurrentPage = currentPage; } IEnumerable collection; int currentPage; public int CurrentPage { get { if (this.currentPage > this.TotalPages) { return this.TotalPages; } return this.currentPage; } set { if (value < 1) { this.currentPage = 1; } else if (value > this.TotalPages) { this.currentPage = this.TotalPages; } else { this.currentPage = value; } } } int pageSize; public int PageSize { get { if (this.pageSize == 0) { return this.collection.Count(); } return this.pageSize; } set { this.pageSize = (value < 0) ? 0 : value; } } public int TotalPages { get { return (int)Math.Ceiling(this.collection.Count() / (double)this.PageSize); } } public IEnumerator GetEnumerator() { var pageSize = this.PageSize; var currentPage = this.CurrentPage; var startCount = (currentPage - 1) * pageSize; return this.collection.Skip(startCount).Take(pageSize).GetEnumerator(); } IEnumerator IEnumerable.GetEnumerator() { return this.GetEnumerator(); } }

    Read the article

  • LINQ: Enhancing Distinct With The SelectorEqualityComparer

    - by Paulo Morgado
    On my last post, I introduced the PredicateEqualityComparer and a Distinct extension method that receives a predicate to internally create a PredicateEqualityComparer to filter elements. Using the predicate, greatly improves readability, conciseness and expressiveness of the queries, but it can be even better. Most of the times, we don’t want to provide a comparison method but just to extract the comaprison key for the elements. So, I developed a SelectorEqualityComparer that takes a method that extracts the key value for each element. Something like this: public class SelectorEqualityComparer<TSource, Tkey> : EqualityComparer<TSource> where Tkey : IEquatable<Tkey> { private Func<TSource, Tkey> selector; public SelectorEqualityComparer(Func<TSource, Tkey> selector) : base() { this.selector = selector; } public override bool Equals(TSource x, TSource y) { Tkey xKey = this.GetKey(x); Tkey yKey = this.GetKey(y); if (xKey != null) { return ((yKey != null) && xKey.Equals(yKey)); } return (yKey == null); } public override int GetHashCode(TSource obj) { Tkey key = this.GetKey(obj); return (key == null) ? 0 : key.GetHashCode(); } public override bool Equals(object obj) { SelectorEqualityComparer<TSource, Tkey> comparer = obj as SelectorEqualityComparer<TSource, Tkey>; return (comparer != null); } public override int GetHashCode() { return base.GetType().Name.GetHashCode(); } private Tkey GetKey(TSource obj) { return (obj == null) ? (Tkey)(object)null : this.selector(obj); } } Now I can write code like this: .Distinct(new SelectorEqualityComparer<Source, Key>(x => x.Field)) And, for improved readability, conciseness and expressiveness and support for anonymous types the corresponding Distinct extension method: public static IEnumerable<TSource> Distinct<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> selector) where TKey : IEquatable<TKey> { return source.Distinct(new SelectorEqualityComparer<TSource, TKey>(selector)); } And the query is now written like this: .Distinct(x => x.Field) For most usages, it’s simpler than using a predicate.

    Read the article

  • More Efficient Data Structure for Large Layered Tile Map

    - by Stupac
    It seems like the popular method is to break the map up into regions and load them as needed, my problem is that in my game there are many AI entities other than the player out performing actions in virtually all the regions of the map. Let's just say I have a 5000x5000 map, when I use a 2D array of byte's to render it my game uses around 17 MB of memory, as soon as I change that data structure to a my own defined MapCell class (which only contains a single field: byte terrain) my game's memory consumption rockets up to 400+ MB. I plan on adding layering, so an array of byte's won't cut it and I figure I'd need to add a List of some sort to the MapCell class to provide objects in the layers. I'm only rendering tiles that are on screen, but I need the rest of the map to be represented in memory since it is constantly used in Update. So my question is, how can I reduce the memory consumption of my map while still maintaining the above requirements? Thank you for your time! Here's a few snippets my C# code in XNA4: public static void LoadMapData() { // Test map generations int xSize = 5000; int ySize = 5000; MapCell[,] map = new MapCell[xSize,ySize]; //byte[,] map = new byte[xSize, ySize]; Terrain[] terrains = new Terrain[4]; terrains[0] = grass; terrains[1] = dirt; terrains[2] = rock; terrains[3] = water; Random random = new Random(); for(int x = 0; x < xSize; x++) { for(int y = 0; y < ySize; y++) { //map[x,y] = new MapCell(terrains[random.Next(4)]); map[x,y] = new MapCell((byte)random.Next(4)); //map[x, y] = (byte)random.Next(4); } } testMap = new TileMap(map, xSize, ySize); // End test map setup currentMap = testMap; } public class MapCell { //public TerrainType terrain; public byte terrain; public MapCell(byte itsTerrain) { terrain = itsTerrain; } // the type of terrain this cell is treated as /*public Terrain terrain { get; set; } public MapCell(Terrain itsTerrain) { terrain = itsTerrain; }*/ }

    Read the article

  • D2K to OA Framework Transition

    - by PRajkumar
    What is the difference between D2K form and OA Framework? It is a very innocent but important question for someone that desires to make transition from D2K to OA Framework. I hope you have already read and implemented OA Framework Getting Started. I will re-visit my own experience of implementing HelloWorld program in "OA Framework". When I implemented HelloWorld a year ago, I had no clue as to what I was doing & why I was doing those steps. I merely copied the steps from Oracle Tutorial without understanding them. Hence in this blog, I will try to explain in simple manner the meaning of OA Framework HelloWorld Program and compare the steps to D2K form [where possible]. To keep things simple, only basics will be discussed. Following key Steps were needed for HelloWorld Step 1 Create a new Workspace and a new Project as dictated by Oracle's tutorial. When defining project, you will specify a default package, which in this case was oracle.apps.ak.hello This means the following: - ak is the short name of the Application in Oracle           [means fnd_applications.short_name] hello is the name of your project Step 2 Next, you will create a OA Page within hello project Think OA Page as the fmx file itself in D2K. I am saying so because this page gets attached to the form function. This page will be created within hello project, hence the package name oracle.apps.ak.hello.webui Note the webui, it is a convention to have page in webui, means this page represents the Web User Interface You will assign the default AM [OAApplicationModule]. Think of AM "Connection Manager" and "Transaction State Manager" for your page          I can't co-relate this to anything in D2k, as there is no concept of Connection Pooling and that D2k is not stateless. Reason being that as soon as you kick off a D2K Form, it connects to a single session of Oracle and sticks to that single Oracle database session. So is not the case in OAF, hence AM is needed. Step 3 You create Region within the Page. ·         Region is what will store your fields. Text input fields will be of type messageTextInput. Think of Canvas in D2K. You can have nested regions. Stacked Canvas in D2K comes the closest to this component of OA Framework Step 4 Add a button to one of the nested regions The itemStyle should be submitButton, in case you want the page to be submitted when this button is clicked There is no WHEN-BUTTON-PRESSED trigger in OAF. In Framework, you will add a controller java code to handle events like Form Submit button clicks. JDeveloper generates the default code for you. Primarily two functions [should I call methods] will be created processRequest [for UI Rendering Handling] and processFormRequest          Think of processRequest as WHEN-NEW-FORM-INSTANCE, though processRequest is very restrictive. Note What is the difference between processRequest and processFormRequest? These two methods are available in the Default Controller class that gets created. processFormRequest This method is commonly used to react/respond to the event that has taken place, for example click of a button. Some examples are if(oapagecontext.getParameter("Cancel") != null) (Do your processing for Cancellation/ Rollback) if(oapagecontext.getParameter("Submit") != null) (Do your validations and commit here) if(oapagecontext.getParameter("Update") != null) (Do your validations and commit here) In the above three examples, you could be calling oapagecontext.forwardImmediately to re-direct the page navigation to some other page if needed. processRequest In this method, usually page rendering related code is written. Effectively, each GUI component is a bean that gets initialised during processRequest. Those who are familiar with D2K forms, something like pre-query may be written in this method. Step 5 In the controller to access the value in field "HelloName" the command is String userContent = pageContext.getParameter("HelloName"); In D2k, we used :block.field. In OAFramework, at submission of page, all the field values get passed into to OAPageContext object. Use getParameter to access the field value To set the value of the field, use OAMessageTextInputBean field HelloName = (OAMessageTextInputBean)webBean.findChildRecursive("HelloName"); fieldHelloName.setText(pageContext,"Setting the default value" ); Note when setting field value in controller: Note 1. Do not set the value in processFormRequest Note 2. If the field comes from View Object, then do not use setText in controller Note 3. For control fields [that are not based on View Objects], you can use setText to assign values in processRequest method Lets take some notes to expand beyond the HelloWorld Project Note 1 In D2K-forms we sort of created a Window, attached to Canvas, and then fields within that Canvas. However in OA Framework, think of Page being fmx/Window, think of Region being a Canvas, and fields being within Regions. This is not a formal/accurate understanding of analogy between D2k and Framework, but is close to being logical. Note 2 In D2k, your Forms fmb file was compiled to fmx. It was fmx file that was deployed on mid-tier. In case of OAF, your OA Page is nothing but a XML file. We call this MDS [meta data]. Whatever name you give to "Page" in OAF, an XML file of the same name gets created. This xml file must then be loaded into database by using XML Importer command. Note 3 Apart from MDS XML file, almost everything else is merely deployed to your mid-tier. Usually this is underneath $JAVA_TOP/oracle/apps/../.. All java files will go underneath java top/oracle/apps/../.. etc. Note 4 When building tutorial, ignore the steps for setting "Attribute Sets". These are not mandatory. Oracle might just have developed their tutorials without including these. Think of these like Visual Attributes of D2K forms Note 5 Controller is where you will write any java code in OA Framework. You can create a Controller per Page or have a different Controller for each of the Regions with the same Page. Note 6 In the method processFormRequest of the Controller, you can access the values of the page by using notation pageContext.getParameter("<fieldname here>"). This method processFormRequest is executed when the OAF Screen/Page is submitted by click of a button. Note 7 Inside the controller, all the Database Related interactions for example interaction with View Objects happen via Application Module. But why so? Because Application Module Manages the transaction state of the Application. OAApplicationModuleImpl oaapplicationmoduleimpl = OAApplicationModuleImpl)oapagecontext.getApplicationModule(oawebbean); OADBTransaction oadbtransaction = OADBTransaction)oaapplicationmoduleimpl.getDBTransaction(); Note 8 In D2K, we have control block or a block based on database view. Similarly, in OA Framework, if the field does not have view Object attached, then it is like a control field. Hence in HelloWorld example, field HelloName is a control field [in D2K terminology]. A view Object can either be based on a view/table, synonym or on a SQL statement. Note 9 I wish to access the fields in multi record block that is based on view Object. Can I do this in Controller? Sure you can. To traverse through those records, do the below ·         Get the reference to the View Object using (OAViewObject)oapagecontext.getApplicationModule(oawebbean).findViewObject("VO Name Here") ·         Loop through the records in View Objects using count returned from oaviewobject.getFetchedRowCount() ·         For each record, fetch the value of the fields within the loop as oracle.jbo.Row row = oaviewobject.getRowAtRangeIndex(loop index here); (String)row.getAttribute("Column name of VO here ");

    Read the article

  • Deferred Shading - Toolkit

    - by AliveDevil
    I recently managed to get some lights rendered in a scene by using a buffer and a for-loop. The problem with this method is the performance drop if more lights are used. I tried to convert Deferred Rendering in XNA4.0 | ROY-T.NL but it is not working, because I am not using any models. I know I have to render color, normals and lights seperate but I don't know how I could get it working. For understanding my structure better I'm using a world-class which holds some chunks. These chunks are loading all vertices from their items. These items have a property which returns the vertices. The item is returning VertexPositionNormalTexture[]. The chunk loads these Vertices and combines them to one large array of VertexPositionNormalTexture via someList.AsParallel().SelectMany(m => m).ToArray()). m is a VertexPositionNormalTexture. someList is List<VertexPositionNormalTexture>. I got my own shader to draw these vertices how I want them to be drawn. The first thing I would try is setting up two RenderTarget2D for rendering the color and normal part. With two different shaders. Than I would have to render the lights and there's the problem: I don't know how. I set up a structure to simplify working with lights but it didn't really help. public struct Light { public Vector3 Position; public Color4 Color; public float Range; public float Intensity; public Light( Vector3 position, Color color, float range, float intensity ) : this() { this.Position = position; this.Color = color; this.Range = range; this.Intensity = intensity; } public float[] Definition { get { return new[] { Position.X, Position.Y, Position.Z, Color.Red, Color.Green, Color.Blue, Intensity, Range }; } } } The next part is equally different because I don't know how to combine the colorMap, normalMap and textureMap to one finalMap. Some information to the system: I'm using SharpDX (Nightly from some months ago) and the SharpDX.Toolkit (I don't want to mess up with Direct3DDevice and similar things). Can someone help me with this problem? If things are missing or I provided insufficient information tell me, I need to get deferred shading working. Things I'm not able to do: create a rendertarget which holds all lights, merge colorMap, normalMap and lightMap to one finalMap and presenting this to the user.

    Read the article

  • OData &ndash; The easiest service I can create

    - by Jon Dalberg
    I wanted to create an OData service with the least amount of code so I fired up Visual Studio and got cracking. I decided to serve up a list of naughty words and make them read-only. Create a new web project. I created an empty MVC 2 application but MVC is not required for OData. Add a new WCF Data Service to the project. I named mine NastyWords.svc since I’m serving up a list of nasty words. Add a class to expose via the service: NastyWord 1: [DataServiceKey("Word")] 2: public class NastyWord 3: { 4: public string Word { get; set; } 5: }   I need to be able to uniquely identify instances of NastyWords for the DataService so I used the DataServiceKey attribute with the “Word” property as the key. I could have added an “ID” property which would have uniquely identified them and would then not need the “DataServiceKey” attribute because the DataService would apply some reflection and heuristics to guess at which property would be the unique identifier. However, the words themselves are unique so adding an “ID” property would be redundantly repetitive. Then I created a data source to expose my NastyWord objects to the service. This is just a simple class with IQueryable<T> properties exposing the entities for my service: 1: public class NastyWordsDataSource 2: { 3: private static IList<NastyWord> words = new List<NastyWord> 4: { 5: new NastyWord{ Word="crap"}, 6: new NastyWord{ Word="darn"}, 7: new NastyWord{ Word="hell"}, 8: new NastyWord{ Word="shucks"} 9: }; 10:   11: public NastyWordsDataSource() 12: { 13: NastyWords = words.AsQueryable(); 14: } 15:   16: public IQueryable<NastyWord> NastyWords { get; private set; } 17: }   Now I can go to the NastyWords.svc class and tell it which data source to use and which entities to expose: 1: public class NastyWords : DataService<NastyWordsDataSource> 2: { 3: // This method is called only once to initialize service-wide policies. 4: public static void InitializeService(DataServiceConfiguration config) 5: { 6: config.SetEntitySetAccessRule("*", EntitySetRights.AllRead); 7: config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; 8: } 9: }   Compile and browse to my NastWords.svc and weep with joy Now I can query my service just like any other OData service. Next time, I’ll modify this service to allow updates to sent so I can build up my list of nasty words. Enjoy!

    Read the article

  • Problem animating in Unity/Orthello 2D. Can't move gameObject

    - by Nelson Gregório
    I have a enemy npc that moves left and right in a corridor. It's animated with 2 sprites using Orthello 2D Framework. If I untick the animation's play on start and looping, the npc moves correctly. If I turn it on, the npc tries to move but is pulled back to his starting position again and again because of the animation loop. If I turn looping off during runtime, the npc moves correctly again. What did I do wrong? Here's the npc code if needed. using UnityEngine; using System.Collections; public class Enemies : MonoBehaviour { private Vector2 movement; public float moveSpeed = 200; public bool started = true; public bool blockedRight = false; public bool blockedLeft = false; public GameObject BorderL; public GameObject BorderR; void Update () { if (gameObject.transform.position.x < BorderL.transform.position.x) { started = false; blockedRight = false; blockedLeft = true; } if (gameObject.transform.position.x > BorderR.transform.position.x) { started = false; blockedLeft = false; blockedRight = true; } if(started) { movement = new Vector2(1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } if(!blockedRight && !started && blockedLeft) { movement = new Vector2(1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } if(!blockedLeft && !started && blockedRight) { movement = new Vector2(-1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } } }

    Read the article

  • Using Query Classes With NHibernate

    - by Liam McLennan
    Even when using an ORM, such as NHibernate, the developer still has to decide how to perform queries. The simplest strategy is to get access to an ISession and directly perform a query whenever you need data. The problem is that doing so spreads query logic throughout the entire application – a clear violation of the Single Responsibility Principle. A more advanced strategy is to use Eric Evan’s Repository pattern, thus isolating all query logic within the repository classes. I prefer to use Query Classes. Every query needed by the application is represented by a query class, aka a specification. To perform a query I: Instantiate a new instance of the required query class, providing any data that it needs Pass the instantiated query class to an extension method on NHibernate’s ISession type. To query my database for all people over the age of sixteen looks like this: [Test] public void QueryBySpecification() { var canDriveSpecification = new PeopleOverAgeSpecification(16); var allPeopleOfDrivingAge = session.QueryBySpecification(canDriveSpecification); } To be able to query for people over a certain age I had to create a suitable query class: public class PeopleOverAgeSpecification : Specification<Person> { private readonly int age; public PeopleOverAgeSpecification(int age) { this.age = age; } public override IQueryable<Person> Reduce(IQueryable<Person> collection) { return collection.Where(person => person.Age > age); } public override IQueryable<Person> Sort(IQueryable<Person> collection) { return collection.OrderBy(person => person.Name); } } Finally, the extension method to add QueryBySpecification to ISession: public static class SessionExtensions { public static IEnumerable<T> QueryBySpecification<T>(this ISession session, Specification<T> specification) { return specification.Fetch( specification.Sort( specification.Reduce(session.Query<T>()) ) ); } } The inspiration for this style of data access came from Ayende’s post Do You Need a Framework?. I am sick of working through multiple layers of abstraction that don’t do anything. Have you ever seen code that required a service layer to call a method on a repository, that delegated to a common repository base class that wrapped and ORMs unit of work? I can achieve the same thing with NHibernate’s ISession and a single extension method. If you’re interested you can get the full Query Classes example source from Github.

    Read the article

  • Sortable & Filterable PrimeFaces DataTable

    - by Geertjan
    <h:form> <p:dataTable value="#{resultManagedBean.customers}" var="customer"> <p:column id="nameHeader" filterBy="#{customer.name}" sortBy="#{customer.name}"> <f:facet name="header"> <h:outputText value="Name" /> </f:facet> <h:outputText value="#{customer.name}" /> </p:column> <p:column id="cityHeader" filterBy="#{customer.city}" sortBy="#{customer.city}"> <f:facet name="header"> <h:outputText value="City" /> </f:facet> <h:outputText value="#{customer.city}" /> </p:column> </p:dataTable> </h:form> That gives me this: And here's the filter in action: Behind this, I have: import com.mycompany.mavenproject3.entities.Customer; import java.io.Serializable; import java.util.List; import javax.annotation.PostConstruct; import javax.ejb.EJB; import javax.faces.bean.RequestScoped; import javax.inject.Named; @Named(value = "resultManagedBean") @RequestScoped public class ResultManagedBean implements Serializable { @EJB private CustomerSessionBean customerSessionBean; public ResultManagedBean() { } private List<Customer> customers; @PostConstruct public void init(){ customers = customerSessionBean.getCustomers(); } public List<Customer> getCustomers() { return customers; } public void setCustomers(List<Customer> customers) { this.customers = customers; } } And the above refers to the EJB below, which is a standard EJB that I create in all my Java EE 6 demos: import com.mycompany.mavenproject3.entities.Customer; import java.io.Serializable; import java.util.List; import javax.ejb.Stateless; import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; @Stateless public class CustomerSessionBean implements Serializable{ @PersistenceContext EntityManager em; public List getCustomers() { return em.createNamedQuery("Customer.findAll").getResultList(); } } Only problem is that the columns are only sortable after the first time I use the filter.

    Read the article

  • How to make an object move again after being stopped by collision in Unity?

    - by Matthew Underwood
    I have a player object which position is always centered on the main camera's viewport. This object has a Rigidbody 2D, a box and circle collider. The player moves around a level, the level has a polygon collider attached. I move the camera until the object hits against the collider, which stops the movement of the camera by setting its speed to 0. The problem happens when I want to move the camera / player object away from the collider. As the speed is already at 0, it cannot move away from the collider. The script attached to the player object, checks for collisions and applies the speed to 0 on the main camera's test script. using UnityEngine; using System.Collections; public class move : MonoBehaviour { public float speed; public test testing; // Use this for initialization void Start () { speed = 10F; testing = Camera.main.GetComponent<test>(); } // Update is called once per frame void FixedUpdate () { Vector3 p = Camera.main.ViewportToWorldPoint(new Vector3(0.5F, 0.5F, Camera.main.nearClipPlane)); transform.position = new Vector3(p.x, p.y, -1); } void OnCollisionEnter2D(Collision2D col) { testing.speed = 0; } void OnCollisionExit2D(Collision2D col) { testing.speed = 10F; } } This is the script attached to the main camera; just a simple script that changes the camera's position. using UnityEngine; using System.Collections; public class test : MonoBehaviour { public float speed; public float translationY; public float translationX; // Use this for initialization void Start () { speed = 10F; } void FixedUpdate () { translationY = Input.GetAxis("Vertical") * speed * Time.deltaTime; translationX = Input.GetAxis("Horizontal") * speed * Time.deltaTime; transform.Translate(translationX, translationY, 0); } } The player object isn't kinematic and is a fixed angle, the colliders aren't triggers and the polygon collider isn't a trigger either. The player is the red square, the collider is the pink area. -- EDIT -- From the latest change the collider set up for the player So if the X speed was disabled. It wouldnt move into the side of the polygon colider which is good, but yet you couldnt move away from it. And moving down would move inside the colider.

    Read the article

  • Weird appearance for a 3D XNA ground

    - by Belos
    I wanted to add a ground so I can know the position of a helicopter in the world. But the ground appeared in a weird way: http://i.stack.imgur.com/yTSuW.jpg The ground had the following texture: http://i.stack.imgur.com/pdpxB.png EDIT: Sorry, I forgot to post the code: public class ImportModel { public Vector3 Position { get; set; } public Vector3 Rotation { get; set; } public Vector3 Scale { get; set; } Model Model; Matrix[] modeltransforms; GraphicsDevice GraphicDevice; ContentManager Content; BoundingSphere sphere; bool boundingimplemented = false; public ImportModel(string model, GraphicsDevice gd, ContentManager cm, Vector3 position, Vector3 rot, Vector3 sca) { GraphicDevice = gd; Content = cm; Position = position; Rotation = rot; Scale = sca; Model = Content.Load<Model>(model); modeltransforms = new Matrix[Model.Bones.Count]; Model.CopyAbsoluteBoneTransformsTo(modeltransforms); } public void Draw(Camera camera) { Matrix baseworld = Matrix.CreateScale(Scale) * Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X, Rotation.Z) * Matrix.CreateTranslation(Position); foreach (ModelMesh mesh in Model.Meshes) { Matrix localworld = modeltransforms[mesh.ParentBone.Index] * baseworld; foreach (ModelMeshPart meshpart in mesh.MeshParts) { BasicEffect effect = (BasicEffect)meshpart.Effect; effect.World = localworld; effect.View = camera.View; effect.Projection = camera.Projection; effect.EnableDefaultLighting(); } mesh.Draw(); } } public BoundingSphere BoundingSphere { get { if (!boundingimplemented) { foreach (ModelMesh mesh in Model.Meshes) { BoundingSphere transformed = mesh.BoundingSphere.Transform( modeltransforms[mesh.ParentBone.Index]); sphere = BoundingSphere.CreateMerged(sphere, transformed); } Matrix worldTransform = Matrix.CreateScale(Scale) * Matrix.CreateTranslation(Position); BoundingSphere transforme = sphere; transforme = transforme.Transform(worldTransform); return transforme; } else { Matrix worldTransform = Matrix.CreateScale(Scale) * Matrix.CreateTranslation(Position); BoundingSphere transformed = sphere; transformed = transformed.Transform(worldTransform); return transformed; } } } } Then I call the class from the Game1 class: ImportModel ground = new ImportModel("ground", GraphicsDevice, Content, Vector3.Zero, Vector3.Zero, new Vector3(20f)); EDIT2:This is how the scene looks from top: i.stack.imgur.com/Hs983.jpg

    Read the article

< Previous Page | 153 154 155 156 157 158 159 160 161 162 163 164  | Next Page >