Search Results

Search found 3603 results on 145 pages for 'andrew james watt'.

Page 16/145 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Premature-Optimization and Performance Anxiety

    - by James Michael Hare
    While writing my post analyzing the new .NET 4 ConcurrentDictionary class (here), I fell into one of the classic blunders that I myself always love to warn about.  After analyzing the differences of time between a Dictionary with locking versus the new ConcurrentDictionary class, I noted that the ConcurrentDictionary was faster with read-heavy multi-threaded operations.  Then, I made the classic blunder of thinking that because the original Dictionary with locking was faster for those write-heavy uses, it was the best choice for those types of tasks.  In short, I fell into the premature-optimization anti-pattern. Basically, the premature-optimization anti-pattern is when a developer is coding very early for a perceived (whether rightly-or-wrongly) performance gain and sacrificing good design and maintainability in the process.  At best, the performance gains are usually negligible and at worst, can either negatively impact performance, or can degrade maintainability so much that time to market suffers or the code becomes very fragile due to the complexity. Keep in mind the distinction above.  I'm not talking about valid performance decisions.  There are decisions one should make when designing and writing an application that are valid performance decisions.  Examples of this are knowing the best data structures for a given situation (Dictionary versus List, for example) and choosing performance algorithms (linear search vs. binary search).  But these in my mind are macro optimizations.  The error is not in deciding to use a better data structure or algorithm, the anti-pattern as stated above is when you attempt to over-optimize early on in such a way that it sacrifices maintainability. In my case, I was actually considering trading the safety and maintainability gains of the ConcurrentDictionary (no locking required) for a slight performance gain by using the Dictionary with locking.  This would have been a mistake as I would be trading maintainability (ConcurrentDictionary requires no locking which helps readability) and safety (ConcurrentDictionary is safe for iteration even while being modified and you don't risk the developer locking incorrectly) -- and I fell for it even when I knew to watch out for it.  I think in my case, and it may be true for others as well, a large part of it was due to the time I was trained as a developer.  I began college in in the 90s when C and C++ was king and hardware speed and memory were still relatively priceless commodities and not to be squandered.  In those days, using a long instead of a short could waste precious resources, and as such, we were taught to try to minimize space and favor performance.  This is why in many cases such early code-bases were very hard to maintain.  I don't know how many times I heard back then to avoid too many function calls because of the overhead -- and in fact just last year I heard a new hire in the company where I work declare that she didn't want to refactor a long method because of function call overhead.  Now back then, that may have been a valid concern, but with today's modern hardware even if you're calling a trivial method in an extremely tight loop (which chances are the JIT compiler would optimize anyway) the results of removing method calls to speed up performance are negligible for the great majority of applications.  Now, obviously, there are those coding applications where speed is absolutely king (for example drivers, computer games, operating systems) where such sacrifices may be made.  But I would strongly advice against such optimization because of it's cost.  Many folks that are performing an optimization think it's always a win-win.  That they're simply adding speed to the application, what could possibly be wrong with that?  What they don't realize is the cost of their choice.  For every piece of straight-forward code that you obfuscate with performance enhancements, you risk the introduction of bugs in the long term technical debt of the application.  It will become so fragile over time that maintenance will become a nightmare.  I've seen such applications in places I have worked.  There are times I've seen applications where the designer was so obsessed with performance that they even designed their own memory management system for their application to try to squeeze out every ounce of performance.  Unfortunately, the application stability often suffers as a result and it is very difficult for anyone other than the original designer to maintain. I've even seen this recently where I heard a C++ developer bemoaning that in VS2010 the iterators are about twice as slow as they used to be because Microsoft added range checking (probably as part of the 0x standard implementation).  To me this was almost a joke.  Twice as slow sounds bad, but it almost never as bad as you think -- especially if you're gaining safety.  The only time twice is really that much slower is when once was too slow to begin with.  Think about it.  2 minutes is slow as a response time because 1 minute is slow.  But if an iterator takes 1 microsecond to move one position and a new, safer iterator takes 2 microseconds, this is trivial!  The only way you'd ever really notice this would be in iterating a collection just for the sake of iterating (i.e. no other operations).  To my mind, the added safety makes the extra time worth it. Always favor safety and maintainability when you can.  I know it can be a hard habit to break, especially if you started out your career early or in a language such as C where they are very performance conscious.  But in reality, these type of micro-optimizations only end up hurting you in the long run. Remember the two laws of optimization.  I'm not sure where I first heard these, but they are so true: For beginners: Do not optimize. For experts: Do not optimize yet. This is so true.  If you're a beginner, resist the urge to optimize at all costs.  And if you are an expert, delay that decision.  As long as you have chosen the right data structures and algorithms for your task, your performance will probably be more than sufficient.  Chances are it will be network, database, or disk hits that will be your slow-down, not your code.  As they say, 98% of your code's bottleneck is in 2% of your code so premature-optimization may add maintenance and safety debt that won't have any measurable impact.  Instead, code for maintainability and safety, and then, and only then, when you find a true bottleneck, then you should go back and optimize further.

    Read the article

  • Code Reuse is (Damn) Hard

    - by James Michael Hare
    Being a development team lead, the task of interviewing new candidates was part of my job.  Like any typical interview, we started with some easy questions to get them warmed up and help calm their nerves before hitting the hard stuff. One of those easier questions was almost always: “Name some benefits of object-oriented development.”  Nearly every time, the candidate would chime in with a plethora of canned answers which typically included: “it helps ease code reuse.”  Of course, this is a gross oversimplification.  Tools only ease reuse, its developers that ultimately can cause code to be reusable or not, regardless of the language or methodology. But it did get me thinking…  we always used to say that as part of our mantra as to why Object-Oriented Programming was so great.  With polymorphism, inheritance, encapsulation, etc. we in essence set up the concepts to help facilitate reuse as much as possible.  And yes, as a developer now of many years, I unquestionably held that belief for ages before it really struck me how my views on reuse have jaded over the years.  In fact, in many ways Agile rightly eschews reuse as taking a backseat to developing what's needed for the here and now.  It used to be I was in complete opposition to that view, but more and more I've come to see the logic in it.  Too many times I've seen developers (myself included) get lost in design paralysis trying to come up with the perfect abstraction that would stand all time.  Nearly without fail, all of these pieces of code become obsolete in a matter of months or years. It’s not that I don’t like reuse – it’s just that reuse is hard.  In fact, reuse is DAMN hard.  Many times it is just a distraction that eats up architect and developer time, and worse yet can be counter-productive and force wrong decisions.  Now don’t get me wrong, I love the idea of reusable code when it makes sense.  These are in the few cases where you are designing something that is inherently reusable.  The problem is, most business-class code is inherently unfit for reuse! Furthermore, the code that is reusable will often fail to be reused if you don’t have the proper framework in place for effective reuse that includes standardized versioning, building, releasing, and documenting the components.  That should always be standard across the board when promoting reusable code.  All of this is hard, and it should only be done when you have code that is truly reusable or you will be exerting a large amount of development effort for very little bang for your buck. But my goal here is not to get into how to reuse (that is a topic unto itself) but what should be reused.  First, let’s look at an extension method.  There’s many times where I want to kick off a thread to handle a task, then when I want to reign that thread in of course I want to do a Join on it.  But what if I only want to wait a limited amount of time and then Abort?  Well, I could of course write that logic out by hand each time, but it seemed like a great extension method: 1: public static class ThreadExtensions 2: { 3: public static bool JoinOrAbort(this Thread thread, TimeSpan timeToWait) 4: { 5: bool isJoined = false; 6:  7: if (thread != null) 8: { 9: isJoined = thread.Join(timeToWait); 10:  11: if (!isJoined) 12: { 13: thread.Abort(); 14: } 15: } 16: return isJoined; 17: } 18: } 19:  When I look at this code, I can immediately see things that jump out at me as reasons why this code is very reusable.  Some of them are standard OO principles, and some are kind-of home grown litmus tests: Single Responsibility Principle (SRP) – The only reason this extension method need change is if the Thread class itself changes (one responsibility). Stable Dependencies Principle (SDP) – This method only depends on classes that are more stable than it is (System.Threading.Thread), and in itself is very stable, hence other classes may safely depend on it. It is also not dependent on any business domain, and thus isn't subject to changes as the business itself changes. Open-Closed Principle (OCP) – This class is inherently closed to change. Small and Stable Problem Domain – This method only cares about System.Threading.Thread. All-or-None Usage – A user of a reusable class should want the functionality of that class, not parts of that functionality.  That’s not to say they most use every method, but they shouldn’t be using a method just to get half of its result. Cost of Reuse vs. Cost to Recreate – since this class is highly stable and minimally complex, we can offer it up for reuse very cheaply by promoting it as “ready-to-go” and already unit tested (important!) and available through a standard release cycle (very important!). Okay, all seems good there, now lets look at an entity and DAO.  I don’t know about you all, but there have been times I’ve been in organizations that get the grand idea that all DAOs and entities should be standardized and shared.  While this may work for small or static organizations, it’s near ludicrous for anything large or volatile. 1: namespace Shared.Entities 2: { 3: public class Account 4: { 5: public int Id { get; set; } 6:  7: public string Name { get; set; } 8:  9: public Address HomeAddress { get; set; } 10:  11: public int Age { get; set;} 12:  13: public DateTime LastUsed { get; set; } 14:  15: // etc, etc, etc... 16: } 17: } 18:  19: ... 20:  21: namespace Shared.DataAccess 22: { 23: public class AccountDao 24: { 25: public Account FindAccount(int id) 26: { 27: // dao logic to query and return account 28: } 29:  30: ... 31:  32: } 33: } Now to be fair, I’m not saying there doesn’t exist an organization where some entites may be extremely static and unchanging.  But at best such entities and DAOs will be problematic cases of reuse.  Let’s examine those same tests: Single Responsibility Principle (SRP) – The reasons to change for these classes will be strongly dependent on what the definition of the account is which can change over time and may have multiple influences depending on the number of systems an account can cover. Stable Dependencies Principle (SDP) – This method depends on the data model beneath itself which also is largely dependent on the business definition of an account which can be very inherently unstable. Open-Closed Principle (OCP) – This class is not really closed for modification.  Every time the account definition may change, you’d need to modify this class. Small and Stable Problem Domain – The definition of an account is inherently unstable and in fact may be very large.  What if you are designing a system that aggregates account information from several sources? All-or-None Usage – What if your view of the account encompasses data from 3 different sources but you only care about one of those sources or one piece of data?  Should you have to take the hit of looking up all the other data?  On the other hand, should you have ten different methods returning portions of data in chunks people tend to ask for?  Neither is really a great solution. Cost of Reuse vs. Cost to Recreate – DAOs are really trivial to rewrite, and unless your definition of an account is EXTREMELY stable, the cost to promote, support, and release a reusable account entity and DAO are usually far higher than the cost to recreate as needed. It’s no accident that my case for reuse was a utility class and my case for non-reuse was an entity/DAO.  In general, the smaller and more stable an abstraction is, the higher its level of reuse.  When I became the lead of the Shared Components Committee at my workplace, one of the original goals we looked at satisfying was to find (or create), version, release, and promote a shared library of common utility classes, frameworks, and data access objects.  Now, of course, many of you will point to nHibernate and Entity for the latter, but we were looking at larger, macro collections of data that span multiple data sources of varying types (databases, web services, etc). As we got deeper and deeper in the details of how to manage and release these items, it quickly became apparent that while the case for reuse was typically a slam dunk for utilities and frameworks, the data access objects just didn’t “smell” right.  We ended up having session after session of design meetings to try and find the right way to share these data access components. When someone asked me why it was taking so long to iron out the shared entities, my response was quite simple, “Reuse is hard...”  And that’s when I realized, that while reuse is an awesome goal and we should strive to make code maintainable, often times you end up creating far more work for yourself than necessary by trying to force code to be reusable that inherently isn’t. Think about classes the times you’ve worked in a company where in the design session people fight over the best way to implement a class to make it maximally reusable, extensible, and any other buzzwordable.  Then think about how quickly that design became obsolete.  Many times I set out to do a project and think, “yes, this is the best design, I can extend it easily!” only to find out the business requirements change COMPLETELY in such a way that the design is rendered invalid.  Code, in general, tends to rust and age over time.  As such, writing reusable code can often be difficult and many times ends up being a futile exercise and worse yet, sometimes makes the code harder to maintain because it obfuscates the design in the name of extensibility or reusability. So what do I think are reusable components? Generic Utility classes – these tend to be small classes that assist in a task and have no business context whatsoever. Implementation Abstraction Frameworks – home-grown frameworks that try to isolate changes to third party products you may be depending on (like writing a messaging abstraction layer for publishing/subscribing that is independent of whether you use JMS, MSMQ, etc). Simplification and Uniformity Frameworks – To some extent this is similar to an abstraction framework, but there may be one chosen provider but a development shop mandate to perform certain complex items in a certain way.  Or, perhaps to simplify and dumb-down a complex task for the average developer (such as implementing a particular development-shop’s method of encryption). And what are less reusable? Application and Business Layers – tend to fluctuate a lot as requirements change and new features are added, so tend to be an unstable dependency.  May be reused across applications but also very volatile. Entities and Data Access Layers – these tend to be tuned to the scope of the application, so reusing them can be hard unless the abstract is very stable. So what’s the big lesson?  Reuse is hard.  In fact it’s damn hard.  And much of the time I’m not convinced we should focus too hard on it. If you’re designing a utility or framework, then by all means design it for reuse.  But you most also really set down a good versioning, release, and documentation process to maximize your chances.  For anything else, design it to be maintainable and extendable, but don’t waste the effort on reusability for something that most likely will be obsolete in a year or two anyway.

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • wubi dual-boot installation of ubuntu 12.04 on Windows 7 fails to boot

    - by Andrew
    I am trying to use the wubi installation process to create a Ubuntu 12.04 / Windows 7 dual boot setup on my Windows 7 machine (Dell Inspiron 17R). The installation initially works fine, and I am able to load Ubuntu several times after selecting it from the boot menu. However, when I boot into Windows 7 it seems to corrupt the Ubuntu boot process, because after running Windows 7, Ubuntu won't boot on the machine. It is still listed as an option in the boot menu, but when it is selected, the machine does one of the following: -hangs at the load-screen and says that Ubuntu is preparing to run for the first time (although it isn't the first time the OS has been loaded) -hangs with a black screen and does nothing I have uninstalled Ubuntu and then reinstalled it (using wubi) three times. Each time Ubuntu initially boots okay (including rebooting the laptop into Ubuntu several times.) However, whenever I switch over and boot into Windows 7 it breaks the Ubuntu installation. Windows 7 continues to boot and work fine without issues. I have successfully installed Ubuntu using wubi onto a different Windows 7 machine before without problems...it seems that there is something different about this laptop configuration. I am not sure how to debug the issue. I see no error messages during the Ubuntu boot process when it hangs and am not sure how to debug this.

    Read the article

  • no disk space, cant use internet

    - by James
    after trying to install drivers using sudo apt-get update && sudo apt-get upgrade, im faced with a message saying no space left on device, i ran disk usage analyzer as root and there was three folders namely, main volume, home folder, and my 116gb hard drive (which is practically empty) yet both other folders are full, which is stopping me installing drivers because of space, how do i get ubuntu to use this space on my hard drive? its causing problems because i cant gain access to the internet as i cant download drivers when i havnt got enough space, this happens every time i try it sudo fdisk -l Disk /dev/sda: 120.0GB, 120034123776 bytes 255 heads, 63 sectors/track, 14593 cylinders, total 234441648 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0003eeed Device Boot Start End Blocks Id System /dev/sda1 * 2048 231315455 115656704 83 Linux /dev/sda2 231317502 234440703 1561601 5 Extended /dev/sda5 231317504 234440703 1561600 82 Linux swap / solaris Output of df -h df: '/media/ubuntu/FB18-ED76': No such file or directory Filesysytem Size Used Avail Use% Mounted on /cow 751M 751M 0 100% / udev 740M 12K 740M 1% /dev tmpfs 151M 792K 150M 1% /run /dev/sr0 794M 794M 0 100% /cdrom /dev/loop0 758M 758M 0 100% /rofs none 4.0K 0 4.0K 0% /sys/fs/cgroup tmpfs 751M 1.4M 749M 1% /tmp none 5.0M 4.0K 5.0M 1% /run/lock none 751M 276K 751M 1% /run/shm none 100M 40K 100M 1% /run/user

    Read the article

  • Why does Farseer 2.x store temporaries as members and not on the stack? (.NET)

    - by Andrew Russell
    UPDATE: This question refers to Farseer 2.x. The newer 3.x doesn't seem to do this. I'm using Farseer Physics Engine quite extensively at the moment, and I've noticed that it seems to store a lot of temporary value types as members of the class, and not on the stack as one might expect. Here is an example from the Body class: private Vector2 _worldPositionTemp = Vector2.Zero; private Matrix _bodyMatrixTemp = Matrix.Identity; private Matrix _rotationMatrixTemp = Matrix.Identity; private Matrix _translationMatrixTemp = Matrix.Identity; public void GetBodyMatrix(out Matrix bodyMatrix) { Matrix.CreateTranslation(position.X, position.Y, 0, out _translationMatrixTemp); Matrix.CreateRotationZ(rotation, out _rotationMatrixTemp); Matrix.Multiply(ref _rotationMatrixTemp, ref _translationMatrixTemp, out bodyMatrix); } public Vector2 GetWorldPosition(Vector2 localPosition) { GetBodyMatrix(out _bodyMatrixTemp); Vector2.Transform(ref localPosition, ref _bodyMatrixTemp, out _worldPositionTemp); return _worldPositionTemp; } It looks like its a by-hand performance optimisation. But I don't see how this could possibly help performance? (If anything I think it would hurt by making objects much larger).

    Read the article

  • What's the best Open Source code you've ever seen?

    - by Andrew Theken
    Part of the value of Open Source is to provide great example code to people getting started with a new platform or language. What's the best Open Source code you've encountered, and why do you like your choice? Any language will do, but I'm particularly interested in the best examples of Objective-C you can point out. Obviously this is an open-ended question, so I'll leave the question open for a while and see what kinds of answers we get. Thanks!

    Read the article

  • What is the current "standard" for setting up a development environment that supports remote collaboration as well as secure version control?

    - by Andrew
    What is the current "standard" for setting up a development environment that supports remote collaboration as well as secure version control? Considering a virtual dedicated solution with vm for a web layer and a data layer, using VPN for each programmer. We're a small start-up that do both Microsoft and open-source development. Is there a set software tools or packages that are appropriate for a small shop and yet scalable? Thanks.

    Read the article

  • ANTS Memory Profiler 7.0

    - by James Michael Hare
    I had always been a fan of ANTS products (Reflector is absolutely invaluable, and their performance profiler is great as well – very easy to use!), so I was curious to see what the ANTS Memory Profiler could show me. Background While a performance profiler will track how much time is typically spent in each unit of code, a memory profiler gives you much more detail on how and where your memory is being consumed and released in a program. As an example, I’d been working on a data access layer at work to call a market data web service.  This web service would take a list of symbols to quote and would return back the quote data.  To help consolidate the thousands of web requests per second we get and reduce load on the web services, we implemented a 5-second cache of quote data.  Not quite long enough to where customers will typically notice a quote go “stale”, but just long enough to be able to collapse multiple quote requests for the same symbol in a short period of time. A 5-second cache may not sound like much, but it actually pays off by saving us roughly 42% of our web service calls, while still providing relatively up-to-date information.  The question is whether or not the extra memory involved in maintaining the cache was worth it, so I decided to fire up the ANTS Memory Profiler and take a look at memory usage. First Impressions The main thing I’ve always loved about the ANTS tools is their ease of use.  Pretty much everything is right there in front of you in a way that makes it easy for you to find what you need with little digging required.  I’ve worked with other, older profilers before (that shall remain nameless other than to hint it was created by a very large chip maker) where it was a mind boggling experience to figure out how to do simple tasks. Not so with AMP.  The opening dialog is very straightforward.  You can choose from here whether to debug an executable, a web application (either in IIS or from VS’s web development server), windows services, etc. So I chose a .NET Executable and navigated to the build location of my test harness.  Then began profiling. At this point while the application is running, you can see a chart of the memory as it ebbs and wanes with allocations and collections.  At any given point in time, you can take snapshots (to compare states) zoom in, or choose to stop at any time.  Snapshots Taking a snapshot also gives you a breakdown of the managed memory heaps for each generation so you get an idea how many objects are staying around for extended periods of time (as an object lives and survives collections, it gets promoted into higher generations where collection becomes less frequent). Generating a snapshot brings up an analysis view with very handy graphs that show your generation sizes.  Almost all my memory is in Generation 1 in the managed memory component of the first graph, which is good news to me, because Gen 2 collections are much rarer.  I once3 made the mistake once of caching data for 30 minutes and found it didn’t get collected very quick after I released my reference because it had been promoted to Gen 2 – doh! Analysis It looks like (from the second pie chart) that the majority of the allocations were in the string class.  This also is expected for me because the majority of the memory allocated is in the web service responses, so it doesn’t seem the entities I’m adapting to (to prevent being too tightly coupled to the web service proxy classes, which can change easily out from under me) aren’t taking a significant portion of memory. I also appreciate that they have clear summary text in key places such as “No issues with large object heap fragmentation were detected”.  For novice users, this type of summary information can be critical to getting them to use a tool and develop a good working knowledge of it. There is also a handy link at the bottom for “What to look for on the summary” which loads a web page of help on key points to look for. Clicking over to the session overview, it’s easy to compare the samples at each snapshot to see how your memory is growing, shrinking, or staying relatively the same.  Looking at my snapshots, I’m pretty happy with the fact that memory allocation and heap size seems to be fairly stable and in control: Once again, you can check on the large object heap, generation one heap, and generation two heap across each snapshot to spot trends. Back on the analysis tab, we can go to the [Class List] button to get an idea what classes are making up the majority of our memory usage.  As was little surprise to me, System.String was the clear majority of my allocations, though I found it surprising that the System.Reflection.RuntimeMehtodInfo came in second.  I was curious about this, so I selected it and went into the [Instance Categorizer].  This view let me see where these instances to RuntimeMehtodInfo were coming from. So I scrolled back through the graph, and discovered that these were being held by the System.ServiceModel.ChannelFactoryRefCache and I was satisfied this was just an artifact of my WCF proxy. I also like that down at the bottom of the Instance Categorizer it gives you a series of filters and offers to guide you on which filter to use based on the problem you are trying to find.  For example, if I suspected a memory leak, I might try to filter for survivors in growing classes.  This means that for instances of a class that are growing in memory (more are being created than cleaned up), which ones are survivors (not collected) from garbage collection.  This might allow me to drill down and find places where I’m holding onto references by mistake and not freeing them! Finally, if you want to really see all your instances and who is holding onto them (preventing collection), you can go to the “Instance Retention Graph” which creates a graph showing what references are being held in memory and who is holding onto them. Visual Studio Integration Of course, VS has its own profiler built in – and for a free bundled profiler it is quite capable – but AMP gives a much cleaner and easier-to-use experience, and when you install it you also get the option of letting it integrate directly into VS. So once you go back into VS after installation, you’ll notice an ANTS menu which lets you launch the ANTS profiler directly from Visual Studio.   Clicking on one of these options fires up the project in the profiler immediately, allowing you to get right in.  It doesn’t integrate with the Visual Studio windows themselves (like the VS profiler does), but still the plethora of information it provides and the clear and concise manner in which it presents it makes it well worth it. Summary If you like the ANTS series of tools, you shouldn’t be disappointed with the ANTS Memory Profiler.  It was so easy to use that I was able to jump in with very little product knowledge and get the information I was looking it for. I’ve used other profilers before that came with 3-inch thick tomes that you had to read in order to get anywhere with the tool, and this one is not like that at all.  It’s built for your everyday developer to get in and find their problems quickly, and I like that! Tweet Technorati Tags: Influencers,ANTS,Memory,Profiler

    Read the article

  • Blank space on right side of screen with XMonad/Gnome

    - by Andrew
    Fresh install of 11.10 x64. I set up XMonad with gnome-session as I did before on 11.04, following the guide on the Arch wiki. Everything works, but there's this weird vertical space about the size of a scrollbar on the side of the screen. The space is also above xmobar (the battery system tray icon is hidden behind it and I can't click it). XMonad weird space (since I can't post images) Is there some weird XMonad or Gnome option I'm missing? I don't even know where to begin to look.

    Read the article

  • Adding a forum to an existing site

    - by Andrew Heath
    I've got a site with ~500 registered members, 300 of which are what you'd call "active". Site data is kept in a MySQL dbase. I'd like to add a myBB forum to the site, but this question applies to any forum really. What I very much want to avoid is requiring my users to register both on the site and on the forum because my userbase is not technically literate and this would confuse a lot of them. However the forum software has its own registration, login, cookie, and password management system which naturally are different from the site's mechanics. I envision the following possibilities: install myBB into the existing database and customize the login code to unify the two systems. This would probably mean changing the site's code to use the myBB system as that would likely be less painful to refactor and wouldn't hurt future myBB upgrade ability. install myBB into separate database and write a bridging script of some sort that auto-registers existing site users with the forum if they elect to participate. Also check new forum registrations against the site's username list to prevent newcomers from taking existing names. run them fully separate and force users to re-register (easiest for ME, but least desirable for them) I would like a suggested course of action from those who have trod this path before... Thank you.

    Read the article

  • Problem with webcam after changing camera input to my iPhone's camera [closed]

    - by andrew
    While trying to use my iPhone as a webcam I changed the paths for the camera input - now I can neither use the built-in webcam nor my iPhone's camera This is the website where I got the information from: http://www.kudanai.com/2010/11/howto-use-your-iphone-as-webcam-in.html I got stuck at the loopback part. I would just like to know how to set the path back to my built-in camera so I can at least use that. Or if there is some way to reset the camera input settings. I'm using an Inspiron 1525 running Ubuntu 12.04 LTS. memory:2.9 GiB Processor:Intel® Core™2 Duo CPU T5750 @ 2.00GHz × 2 OS type: 64-bit

    Read the article

  • Survey: Do you write custom SQL CLR procedures/functions/etc

    - by James Luetkehoelter
    I'm quite curious because despite the great capabilities of writing CLR-based stored procedures to off-load those nasty operations TSQL isn't that great at (like iteration, or complex math), I'm continuing to see a wealth of SQL 2008 databases with complex stored procedures and functions which would make great candidates. The in-house skill to create the CLR code exists as well, but there is flat out resistance to use it. In one scenario I was told "Oh, iteration isn't a problem because we've trained...(read more)

    Read the article

  • The Hot-Add Memory Hogs

    - by Andrew Clarke
    One of the more difficult tasks, when virtualizing a server, is to determine the amount of memory that Hypervisor should assign to the virtual machine. This requires accurate monitoring and, because of the consequences of setting the value too low, there is a great temptation to err on the side of over-provisioning. This results in fewer guest VMs and, in fact, with more accurate memory provisioning, many virtual environments could support 30% more VMs. In order to achieve a better consolidation (aka VM density) ratio, Windows Server 2008 R2 SP1 has introduced what Microsoft calls ‘Dynamic Memory’. This means that the start-up RAM VM memory assigned to guest virtual machines can be allowed to vary according to demand, changing dynamically while the VM is running, based on the workload of applications running inside. If demand outstrips supply, then memory can be rationed according to the ‘memory weight’ assigned to the guest VM. By this mechanism, memory becomes a shared resource that can be reallocated automatically as demand patterns vary. Unlike VMWare’s Memory Overcommit technology, the sum of all the memory allocations to each virtual machine will not exceed the total memory of the host computer. This is fine for applications that are self-regulating in their demands for memory, releasing memory back into the 'pool' when not under peak load. Other applications however, such as SQL Server Standard and Enterprise, are by nature, memory hogs under high workload; they can grab hot-add memory whilst running under load and then never release it. This requires more careful setting-up and the SQLOS team have provided some guidelines from for configuring SQL Server in virtual environments. Whereas VMWare’s Memory Overcommit is well-proven in a number of different configurations, Hyper-V’s ‘Dynamic Memory’ is new. So far, the indications are that it will improve the business case for virtualizing and it is probably a far more intuitive technology for the average IT professional to grasp. It is certainly worth testing to see whether it works for you.

    Read the article

  • Setting user's group and umask has no effect

    - by Andrew Vit
    I'm trying to allow my "deploy" user to have access to files created by www-data: I added "deploy" to the www-data group. I set umask to 002. When I run the following commands, I'm not seeing the result I expect: deploy@ubuntu-lucid-32-generic:/var/www$ groups www-data adm dialout cdrom plugdev lpadmin sambashare admin deploy sysadmin deploy@ubuntu-lucid-32-generic:/var/www$ newgrp www-data deploy@ubuntu-lucid-32-generic:/var/www$ umask 0002 deploy@ubuntu-lucid-32-generic:/var/www$ mkdir test deploy@ubuntu-lucid-32-generic:/var/www$ ls -la test total 0 drwxr-xr-x 1 deploy deploy 68 Nov 7 20:37 . drwxr-xr-x 1 deploy deploy 476 Nov 7 20:37 .. I see that: The folder doesn't belong to the www-data group. The folder permissions don't have group-write (775). Note that the /var/www directory is owned by the deploy user: drwxr-xr-x 1 deploy deploy 510 Nov 7 20:45 . How can I give www-data selective access to directories? Or, how to share the /var/www directory with my deploy user: I don't care who owns it, as long as I can write to it, and so can www-data. (Ideally I would set up a directory with SGID access for www-data.)

    Read the article

  • Debugging/Logging Techniques for End Users

    - by James Burgess
    I searched a bit, but didn't find anything particularly pertinent to my problem - so please do excuse me if I missed something! A few months back I inherited the source to a fairly-popular indie game project and have been working, along with another developer, on the code-base. We recently made our first release since taking over the development but we're a little stuck. A few users are experiencing slowdowns/lagging in the current version, as compared to the previous version, and we are not able to reproduce these issues in any of our various development environments (debug, release, different OSes, different machines, etc.). What I'd like to know is how can we go about implementing some form of logging/debugging mechanism into the game, that users can enable and send the reports to us for examination? We're not able to distribute debug binaries using the MSVS 2010 runtimes, due to the licensing - and wouldn't want to, for a variety of reasons. We'd really like to get to the bottom of this issue, even if just to find out it's nothing to do with our code base but everything to do with their system configuration. At the moment, we just have no leads - and the community isn't a very technically-savvy one, so we're unable to rely on 'expert' bug reports or investigations. I've seen the debug logging mechanism used in other applications and games for everything from logging simple errors to crash dumps. We're really at a loss at this stage as to how to address these issues, having been over every commit to the repository from the previous to the current version and not finding any real issues.

    Read the article

  • Easy user management on html site?

    - by James Buldon
    I hope I'm not asking a question for which the answer is obvious...If I am, apologies. Within my html site (i.e. not Wordpress, Joomla, etc.) I want to be able to have a level of user management. That means that some pages I want to be only accessible to certain people with the correct username and password. What's the best way to do this? Are there any available scripts out there? I guess I'm looking for a free/open source version of something like this: http://www.webassist.com/php-scripts-and-solutions/user-registration/

    Read the article

  • Generic Repository with SQLite and SQL Compact Databases

    - by Andrew Petersen
    I am creating a project that has a mobile app (Xamarin.Android) using a SQLite database and a WPF application (Code First Entity Framework 5) using a SQL Compact database. This project will even eventually have a SQL Server database as well. Because of this I am trying to create a generic repository, so that I can pass in the correct context depending on which application is making the request. The issue I ran into is my DataContext for the SQL Compact database inherits from DbContext and the SQLite database inherits from SQLiteConnection. What is the best way to make this generic, so that it doesn't matter what kind of database is on the back end? This is what I have tried so far on the SQL Compact side: public interface IRepository<TEntity> { TEntity Add(TEntity entity); } public class Repository<TEntity, TContext> : IRepository<TEntity>, IDisposable where TEntity : class where TContext : DbContext { private readonly TContext _context; public Repository(DbContext dbContext) { _context = dbContext as TContext; } public virtual TEntity Add(TEntity entity) { return _context.Set<TEntity>().Add(entity); } } And on the SQLite side: public class ElverDatabase : SQLiteConnection { static readonly object Locker = new object(); public ElverDatabase(string path) : base(path) { CreateTable<Ticket>(); } public int Add<T>(T item) where T : IBusinessEntity { lock (Locker) { return Insert(item); } } }

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Installing gdm on headless Server Edition

    - by Andrew Koester
    I have Ubuntu Server running on a headless box, which is right now, almost entirely doing only software RAID and feels a little underused. I'd like to get into using Ubuntu as a desktop a little more. What do I need to do (install/etc.) to get Gnome while keeping the box itself headless? I'm not sure which packages to install or which steps to take. I figure I'll just use X over the network (Xming or the like) but something like NX might work.

    Read the article

  • Programming by dictation?

    - by Andrew M
    ie. you speak out the code, and someone else across the room types it in Anyone tried this? Obviously the person taking the dictation would need to be a coder too, so you didn't have to explain everything and go into tedious detail (not 'open bracket, new line...' but more like 'create a new class called myParser that takes three arguments, first one is...'). I thought of it because sometimes I'm too easily distracted at my computer. Surrounded by buttons, instant gratification a click away, the world at my fingertips. To get stuff done, I want to get away, write my code on paper. But that would mean losing access to necessary resources, and necessitate tedious typing-up later on. The solution? Dictate. Pros: no chance to check reddit, stackexchange, gmail, etc. code while you pace the room, lie down, play billiards, whatever train your brain to think more abstractedly (have to visualize things if you can't just see the screen) skip the tedious details (closing brackets etc.) the typist gets to shadow a more experienced programmer and learn how they work the typist can provide assistance/suggestions external pressure of typist expecting instructions, urging you to stay focussed Cons might be too hard might not work any better rather inefficient use of assisting programmer need to find/pay someone to do this

    Read the article

  • Amnesia doesn't start due to audio problems

    - by james
    I have a problem with amnesia game. After Intro and clicking continue button few times, when game is supposed to start it crashes. Here is console output: ALSA lib pcm_dmix.c:1018:(snd_pcm_dmix_open) unable to open slave ALSA lib pcm.c:2217:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.rear ALSA lib pcm.c:2217:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.center_lfe ALSA lib pcm.c:2217:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.side ALSA lib audio/pcm_bluetooth.c:1614:(audioservice_expect) BT_GET_CAPABILITIES failed : Input/output error(5) ALSA lib audio/pcm_bluetooth.c:1614:(audioservice_expect) BT_GET_CAPABILITIES failed : Input/output error(5) ALSA lib audio/pcm_bluetooth.c:1614:(audioservice_expect) BT_GET_CAPABILITIES failed : Input/output error(5) ALSA lib audio/pcm_bluetooth.c:1614:(audioservice_expect) BT_GET_CAPABILITIES failed : Input/output error(5) ALSA lib pcm_dmix.c:957:(snd_pcm_dmix_open) The dmix plugin supports only playback stream ALSA lib pcm_dmix.c:1018:(snd_pcm_dmix_open) unable to open slave Cannot connect to server socket err = No such file or directory Cannot connect to server socket jack server is not running or cannot be started I should mention I have integrated both graphic and sound card.

    Read the article

  • Setting up UPS monitoring

    - by Andrew Heath
    I have acquired a second hand Uninterrupted Power Supply (UPS) that I have refurbished (new battery) and hope to use with my Ubuntu 12.10 system. It's a SOLA 330 with serial out. I have installed NUT Metapackage and NUT Monitor from Software Centre, but am not sure how to go about setting it all up. A Google search brings up several ways of configuring Network UPS Tools (NUT) or HAL-Drivers, however, HAL-Drivers appears to be obsolete and many commands and config files mentioned to edit do not exist in 12.10 or the current version of NUT (most articles are a few years old). One tutorial seemed to work except the Error: no UPS definitions found in ups.conf even though ups.conf has values in it as laid out in the tutorial. How do I go about setting my system to monitor the UPS for a shut down signal? Also, is there a command to determine the UPS is communicating through the serial connection and on what port (to help with setup and configuring, eg. /dev/ttyS0 is mentioned in one of the tutorials I read).

    Read the article

  • Is there any reason to allow Yahoo! Slurp to crawl my site?

    - by James Skemp
    I thought a year or more ago Yahoo! would be using another search engine for results, and no longer using their own Slurp bot. However, a couple of the sites I manage Yahoo! Slurp continues to crawl pages, and seems to ignore the Gone status code when returned (as it keeps coming back). Is there any reason why I wouldn't want to block Yahoo! Slurp via robots.txt or by IP (since it tends to ignore robots.txt in some cases anyways)? I've confirmed that when the bot does hit it is from Yahoo! IPs, so I believe this is a legit instance of the bot. Is Yahoo Search the same as Bing Search now? is a related question, but I don't think it completely answers whether one should add a new block of the bot.

    Read the article

  • How add cpu frequency that should be available?

    - by Andrew Redd
    I have a system with an Intel Core i7 970 that should be able to run at 3.2 GHz. I'm running ubuntu 12.04 and installed the cpufreq indicator to be able to change the governor and noticed that I only had frequencies up to 2.0 GHz available to me. I set to performance and checked with cpufreq-info cpufreq-info -c 0 cpufrequtils 007: cpufreq-info (C) Dominik Brodowski 2004-2009 Report errors and bugs to [email protected], please. analyzing CPU 0: driver: acpi-cpufreq CPUs which run at the same hardware frequency: 0 1 2 3 4 5 6 7 8 9 10 11 CPUs which need to have their frequency coordinated by software: 0 maximum transition latency: 10.0 us. hardware limits: 1.60 GHz - 2.00 GHz available frequency steps: 2.00 GHz, 1.86 GHz, 1.73 GHz, 1.60 GHz available cpufreq governors: conservative, ondemand, userspace, powersave, performance current policy: frequency should be within 1.60 GHz and 2.00 GHz. The governor "performance" may decide which speed to use within this range. current CPU frequency is 2.00 GHz (asserted by call to hardware). cpufreq stats: 2.00 GHz:4.93%, 1.86 GHz:0.03%, 1.73 GHz:0.02%, 1.60 GHz:95.02% (718654) And to double check: $ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies 1995000 1862000 1729000 1596000 How do I get all the frequencies that I should have available to me, all up to the 3.2 GHz?

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >