Search Results

Search found 34893 results on 1396 pages for 'const method'.

Page 16/1396 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Embarassing C++ question regarding const

    - by Neil Butterworth
    My comments on this answer got me thinking about the issues of constness and sorting. I played around a bit and reduced my issues to the fact that this code: #include <vector> int main() { std::vector <const int> v; } will not compile - you can't create a vector of const ints. I suppose I should have known this, but I've never needed to create such a thing before. However, it seems like a useful construct to me, and I wonder if there is any way round this problem - I want to add things to a vector (or whatever), but they should not be changed once added. There's probably some embarrassingly simple solution to this, but it's something I'd never considered before.

    Read the article

  • pass by const reference of class

    - by small_potato
    void foo(const ClassName &name) { ... } How can I access the method of class instance name? name.method() didn't work. then I tried: void foo(const ClassName &name) { ClassName temp = name; ... .... } I can use temp.method, but after foo was executed, the original name screwed up, any idea? BTW, the member variable of name didn't screwed up, but it was the member variable of subclass of class screwed up.

    Read the article

  • use of const in c++ [closed]

    - by prp
    class X; class Y { public: Y(const X & x){cout<<"In Y"<<endl;} }; class X { public: operator Y()const{cout<<"In X"<<endl;} }; void fun(Y y) { cout<<"In fun"<<endl; } int main() { X x; fun(x); } can any one throw some light on this c++ program ...please i am new to c++

    Read the article

  • Templated << friend not working when in interrelationship with other templated union types

    - by Dwight
    While working on my basic vector library, I've been trying to use a nice syntax for swizzle-based printing. The problem occurs when attempting to print a swizzle of a different dimension than the vector in question. In GCC 4.0, I originally had the friend << overloaded functions (with a body, even though it duplicated code) for every dimension in each vector, which caused the code to work, even if the non-native dimension code never actually was called. This failed in GCC 4.2. I recently realized (silly me) that only the function declaration was needed, not the body of the code, so I did that. Now I get the same warning on both GCC 4.0 and 4.2: LINE 50 warning: friend declaration 'std::ostream& operator<<(std::ostream&, const VECTOR3<TYPE>&)' declares a non-template function Plus the five identical warnings more for the other function declarations. The below example code shows off exactly what's going on and has all code necessary to reproduce the problem. #include <iostream> // cout, endl #include <sstream> // ostream, ostringstream, string using std::cout; using std::endl; using std::string; using std::ostream; // Predefines template <typename TYPE> union VECTOR2; template <typename TYPE> union VECTOR3; template <typename TYPE> union VECTOR4; typedef VECTOR2<float> vec2; typedef VECTOR3<float> vec3; typedef VECTOR4<float> vec4; template <typename TYPE> union VECTOR2 { private: struct { TYPE x, y; } v; struct s1 { protected: TYPE x, y; }; struct s2 { protected: TYPE x, y; }; struct s3 { protected: TYPE x, y; }; struct s4 { protected: TYPE x, y; }; struct X : s1 { operator TYPE() const { return s1::x; } }; struct XX : s2 { operator VECTOR2<TYPE>() const { return VECTOR2<TYPE>(s2::x, s2::x); } }; struct XXX : s3 { operator VECTOR3<TYPE>() const { return VECTOR3<TYPE>(s3::x, s3::x, s3::x); } }; struct XXXX : s4 { operator VECTOR4<TYPE>() const { return VECTOR4<TYPE>(s4::x, s4::x, s4::x, s4::x); } }; public: VECTOR2() {} VECTOR2(const TYPE& x, const TYPE& y) { v.x = x; v.y = y; } X x; XX xx; XXX xxx; XXXX xxxx; // Overload for cout friend ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString) { os << "(" << toString.v.x << ", " << toString.v.y << ")"; return os; } friend ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString); friend ostream& operator<<(ostream& os, const VECTOR4<TYPE>& toString); }; template <typename TYPE> union VECTOR3 { private: struct { TYPE x, y, z; } v; struct s1 { protected: TYPE x, y, z; }; struct s2 { protected: TYPE x, y, z; }; struct s3 { protected: TYPE x, y, z; }; struct s4 { protected: TYPE x, y, z; }; struct X : s1 { operator TYPE() const { return s1::x; } }; struct XX : s2 { operator VECTOR2<TYPE>() const { return VECTOR2<TYPE>(s2::x, s2::x); } }; struct XXX : s3 { operator VECTOR3<TYPE>() const { return VECTOR3<TYPE>(s3::x, s3::x, s3::x); } }; struct XXXX : s4 { operator VECTOR4<TYPE>() const { return VECTOR4<TYPE>(s4::x, s4::x, s4::x, s4::x); } }; public: VECTOR3() {} VECTOR3(const TYPE& x, const TYPE& y, const TYPE& z) { v.x = x; v.y = y; v.z = z; } X x; XX xx; XXX xxx; XXXX xxxx; // Overload for cout friend ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString) { os << "(" << toString.v.x << ", " << toString.v.y << ", " << toString.v.z << ")"; return os; } friend ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString); friend ostream& operator<<(ostream& os, const VECTOR4<TYPE>& toString); }; template <typename TYPE> union VECTOR4 { private: struct { TYPE x, y, z, w; } v; struct s1 { protected: TYPE x, y, z, w; }; struct s2 { protected: TYPE x, y, z, w; }; struct s3 { protected: TYPE x, y, z, w; }; struct s4 { protected: TYPE x, y, z, w; }; struct X : s1 { operator TYPE() const { return s1::x; } }; struct XX : s2 { operator VECTOR2<TYPE>() const { return VECTOR2<TYPE>(s2::x, s2::x); } }; struct XXX : s3 { operator VECTOR3<TYPE>() const { return VECTOR3<TYPE>(s3::x, s3::x, s3::x); } }; struct XXXX : s4 { operator VECTOR4<TYPE>() const { return VECTOR4<TYPE>(s4::x, s4::x, s4::x, s4::x); } }; public: VECTOR4() {} VECTOR4(const TYPE& x, const TYPE& y, const TYPE& z, const TYPE& w) { v.x = x; v.y = y; v.z = z; v.w = w; } X x; XX xx; XXX xxx; XXXX xxxx; // Overload for cout friend ostream& operator<<(ostream& os, const VECTOR4& toString) { os << "(" << toString.v.x << ", " << toString.v.y << ", " << toString.v.z << ", " << toString.v.w << ")"; return os; } friend ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString); friend ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString); }; // Test code int main (int argc, char * const argv[]) { vec2 my2dVector(1, 2); cout << my2dVector.x << endl; cout << my2dVector.xx << endl; cout << my2dVector.xxx << endl; cout << my2dVector.xxxx << endl; vec3 my3dVector(3, 4, 5); cout << my3dVector.x << endl; cout << my3dVector.xx << endl; cout << my3dVector.xxx << endl; cout << my3dVector.xxxx << endl; vec4 my4dVector(6, 7, 8, 9); cout << my4dVector.x << endl; cout << my4dVector.xx << endl; cout << my4dVector.xxx << endl; cout << my4dVector.xxxx << endl; return 0; } The code WORKS and produces the correct output, but I prefer warning free code whenever possible. I followed the advice the compiler gave me (summarized here and described by forums and StackOverflow as the answer to this warning) and added the two things that supposedly tells the compiler what's going on. That is, I added the function definitions as non-friends after the predefinitions of the templated unions: template <typename TYPE> ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString); template <typename TYPE> ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString); template <typename TYPE> ostream& operator<<(ostream& os, const VECTOR4<TYPE>& toString); And, to each friend function that causes the issue, I added the <> after the function name, such as for VECTOR2's case: friend ostream& operator<< <> (ostream& os, const VECTOR3<TYPE>& toString); friend ostream& operator<< <> (ostream& os, const VECTOR4<TYPE>& toString); However, doing so leads to errors, such as: LINE 139: error: no match for 'operator<<' in 'std::cout << my2dVector.VECTOR2<float>::xxx' What's going on? Is it something related to how these templated union class-like structures are interrelated, or is it due to the unions themselves? Update After rethinking the issues involved and listening to the various suggestions of Potatoswatter, I found the final solution. Unlike just about every single cout overload example on the internet, I don't need access to the private member information, but can use the public interface to do what I wish. So, I make a non-friend overload functions that are inline for the swizzle parts that call the real friend overload functions. This bypasses the issues the compiler has with templated friend functions. I've added to the latest version of my project. It now works on both versions of GCC I tried with no warnings. The code in question looks like this: template <typename SWIZZLE> inline typename EnableIf< Is2D< typename SWIZZLE::PARENT >, ostream >::type& operator<<(ostream& os, const SWIZZLE& printVector) { os << (typename SWIZZLE::PARENT(printVector)); return os; } template <typename SWIZZLE> inline typename EnableIf< Is3D< typename SWIZZLE::PARENT >, ostream >::type& operator<<(ostream& os, const SWIZZLE& printVector) { os << (typename SWIZZLE::PARENT(printVector)); return os; } template <typename SWIZZLE> inline typename EnableIf< Is4D< typename SWIZZLE::PARENT >, ostream >::type& operator<<(ostream& os, const SWIZZLE& printVector) { os << (typename SWIZZLE::PARENT(printVector)); return os; }

    Read the article

  • presentModalViewController does not want to work when called from a protocol method

    - by johnbdh
    I have a subview that when double tapped a protocol method on the subview's parent view controller is called like this... - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { UITouch *theTouch = [touches anyObject]; if (theTouch.tapCount == 1) { } else if (theTouch.tapCount == 2) { if ([self.delegate respondsToSelector:@selector(editEvent:)]) { [self.delegate editEvent:dictionary]; } } } Here is the protocol method with the dictionary consuming code removed... - (void)editEvent:(NSDictionary){ EventEditViewController *eventEditViewController = [[EventEditViewController alloc] initWithNibName:@"EventEditViewController" bundle:nil]; eventEditViewController.delegate = self; navigationController = [[UINavigationController alloc] initWithRootViewController:eventEditViewController]; [self presentModalViewController:navigationController animated:YES]; [eventEditViewController release]; } The protocol method is called and runs without any errors but the modal view does not present itself. I temporarily copied the protocol method's code to an IBAction method for one of the parent's view button's to isolate it from the subview. When I tap this button the modal view works fine. Can anyone tell me what I am doing wrong? Why does it work when executed from a button on the parent view, and not from a protocol method called from a subview. Here is what I have tried so far to work around the problem... Restarted xCode and the simulator Ran on the device (iTouch) Presenting eventEditViewController instead of navigationController Using Push instead of presentModal. delaying the call to the protocol with performSelector directly to the protocol, to another method in the subview which calls the protocol method, from the protocol method to another method with the presentModal calls. Using a timer. I have it currently setup so that the protocol method calls a known working method that presents a different view. Before calling presentModalViewController it pops a UIAlertView which works every time, but the modal view refuses to display when called via the protocol method. I'm stumped. Perhaps it has something to do with the fact that I am calling the protocol method from a UIView class instead of a UIViewController class. Maybe I need to create a UIViewController for the subView?? Thanks, John

    Read the article

  • Does adding to a method group count as using a variable?

    - by Vaccano
    I have the following code example taken from the code of a Form: protected void SomeMethod() { SomeOtherMethod(this.OnPaint); } private void SomeOtherMethod(Action<PaintEventArgs> onPaint) { onPaint += MyPaint; } protected void MyPaint(PaintEventArgs e) { // paint some stuff } The second method (SomeOtherMethod) has resharper complaining at me. It says of onPaint that "Value assigned is not used in any execution path". To my mind it was used because I added a method to the list of methods called when a paint was done. But usually when resharper tells me something like this it is because I am not understanding some part of C#. Like maybe when the param goes out of goes out of scope the item I added to the list gets removed (or something like that). I thought I would ask here to see if any one knows what resharper is trying to tell me. (Side Note: I usually just override OnPaint. But I am trying to get OnPaint to call a method in another class. I don't want to expose that method publicly so I thought I would pass in the OnPaint group and add to it.)

    Read the article

  • Use Extension method to write cleaner code

    - by Fredrik N
    This blog post will show you step by step to refactoring some code to be more readable (at least what I think). Patrik Löwnedahl gave me some of the ideas when we where talking about making code much cleaner. The following is an simple application that will have a list of movies (Normal and Transfer). The task of the application is to calculate the total sum of each movie and also display the price of each movie. class Program { enum MovieType { Normal, Transfer } static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } else if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } } private static IEnumerable<MovieType> GetMovies() { return new List<MovieType>() { MovieType.Normal, MovieType.Transfer, MovieType.Normal }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the code above I’m using an enum, a good way to add types (isn’t it ;)). I also use one foreach loop to calculate the price, the loop has a condition statement to check what kind of movie is added to the list of movies. I want to reuse the foreach only to increase performance and let it do two things (isn’t that smart of me?! ;)). First of all I can admit, I’m not a big fan of enum. Enum often results in ugly condition statements and can be hard to maintain (if a new type is added we need to check all the code in our app to see if we use the enum somewhere else). I don’t often care about pre-optimizations when it comes to write code (of course I have performance in mind). I rather prefer to use two foreach to let them do one things instead of two. So based on what I don’t like and Martin Fowler’s Refactoring catalog, I’m going to refactoring this code to what I will call a more elegant and cleaner code. First of all I’m going to use Split Loop to make sure the foreach will do one thing not two, it will results in two foreach (Don’t care about performance here, if the results will results in bad performance, you can refactoring later, but computers are so fast to day, so iterating through a list is not often so time consuming.) Note: The foreach actually do four things, will come to is later. var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } } foreach (var movie in movies) { if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To remove the condition statement we can use the Where extension method added to the IEnumerable<T> and is located in the System.Linq namespace: foreach (var movie in movies.Where( m => m == MovieType.Normal)) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } foreach (var movie in movies.Where( m => m == MovieType.Transfer)) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will still do two things, calculate the total price, and display the price of the movie. I will not take care of it at the moment, instead I will focus on the enum and try to remove them. One way to remove enum is by using the Replace Conditional with Polymorphism. So I will create two classes, one base class called Movie, and one called MovieTransfer. The Movie class will have a property called Price, the Movie will now hold the price:   public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code has no enum and will use the new Movie classes instead: class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies.Where( m => m is Movie)) { totalPriceOfNormalMovie += movie.Price; Console.WriteLine(movie.Price); } foreach (var movie in movies.Where( m => m is MovieTransfer)) { totalPriceOfTransferMovie += movie.Price; Console.WriteLine(movie.Price); } } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If you take a look at the foreach now, you can see it still actually do two things, calculate the price and display the price. We can do some more refactoring here by using the Sum extension method to calculate the total price of the movies:   static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = movies.Where(m => m is Movie) .Sum(m => m.Price); int totalPriceOfTransferMovie = movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); foreach (var movie in movies.Where( m => m is Movie)) Console.WriteLine(movie.Price); foreach (var movie in movies.Where( m => m is MovieTransfer)) Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now when the Movie object will hold the price, there is no need to use two separate foreach to display the price of the movies in the list, so we can use only one instead: foreach (var movie in movies) Console.WriteLine(movie.Price); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we want to increase the Maintainability index we can use the Extract Method to move the Sum of the prices into two separate methods. The name of the method will explain what we are doing: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); foreach (var movie in movies) Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now to the last thing, I love the ForEach method of the List<T>, but the IEnumerable<T> doesn’t have it, so I created my own ForEach extension, here is the code of the ForEach extension method: public static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I will now replace the foreach by using this ForEach method: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(m => Console.WriteLine(m.Price)); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ForEach on the movies will now display the price of the movie, but maybe we want to display the name of the movie etc, so we can use Extract Method by moving the lamdba expression into a method instead, and let the method explains what we are displaying: movies.ForEach(DisplayMovieInfo); private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the refactoring is done! Here is the complete code:   class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(DisplayMovieInfo); } private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } pulbic static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I think the new code is much cleaner than the first one, and I love the ForEach extension on the IEnumerable<T>, I can use it for different kind of things, for example: movies.Where(m => m is Movie) .ForEach(DoSomething); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } By using the Where and ForEach extension method, some if statements can be removed and will make the code much cleaner. But the beauty is in the eye of the beholder. What would you have done different, what do you think will make the first example in the blog post look much cleaner than my results, comments are welcome! If you want to know when I will publish a new blog post, you can follow me on twitter: http://www.twitter.com/fredrikn

    Read the article

  • Dynamic memory inside a struct

    - by Maximilien
    Hello, I'm editing a piece of code, that is part of a big project, that uses "const's" to initialize a bunch of arrays. Because I want to parametrize these const's I have to adapt the code to use "malloc" in order to allocate the memory. Unfortunately there is a problem with structs: I'm not able to allocate dynamic memory in the struct itself. Doing it outside would cause to much modification of the original code. Here's a small example: int globalx,globaly; struct bigStruct{ struct subStruct{ double info1; double info2; bool valid; }; double data; //subStruct bar[globalx][globaly]; subStruct ** bar=(subStruct**)malloc(globalx*sizeof(subStruct*)); for(int i=0;i<globalx;i++) bar[i]=(*subStruct)malloc(globaly*sizeof(subStruct)); }; int main(){ globalx=2; globaly=3; bigStruct foo; for(int i=0;i<globalx;i++) for(int j=0;j<globaly;j++){ foo.bar[i][j].info1=i+j; foo.bar[i][j].info2=i*j; foo.bar[i][j].valid=(i==j); } return 0; } Note: in the program code I'm editing globalx and globaly were const's in a specified namespace. Now I removed the "const" so they can act as parameters that are set exactly once. Summarized: How can I properly allocate memory for the substruct inside the struct? Thank you very much! Max

    Read the article

  • Static and Non Static Method Intercall in Java

    - by Vishal
    I am clearing my concepts on Java. My knowledge about Java is on far begineer side, so kindly bear with me. I am trying to understand static method and non static method intercalls. I know -- Static method can call another static method simply by its name within same class. Static method can call another non staic method of same class only after creating instance of the class. Non static method can call another static method of same class simply by way of classname.methodname - No sure if this correct ? My Question is about non static method call to another non staic method of same class. In class declaration, when we declare all methods, can we call another non static method of same class from a non static class ? Please explain with example. Thank you.

    Read the article

  • Graphics module: Am I going the right way?

    - by Paul
    I'm trying to write the graphics module of my engine. That is, this part of the code only provides an interface through which to load images, fonts, etc and draw them on the screen. It is also a wrapper for the library I'm using (SDL in this case). Here are the interfaces for my Image, Font and GraphicsRenderer classes. Please tell me if I'm going the right way. Image class Image { public: Image(); Image(const Image& other); Image(const char* file); ~Image(); bool load(const char* file); void free(); bool isLoaded() const; Image& operator=(const Image& other); private: friend class GraphicsRenderer; void* data_; }; Font class Font { public: Font(); Font(const Font& other); Font(const char* file, int ptsize); ~Font(); void load(const char* file, int ptsize); void free(); bool isLoaded() const; Font& operator=(const Font& other); private: friend class GraphicsRenderer; void* data_; }; GrapphicsRenderer class GraphicsRenderer { public: static GraphicsRenderer* Instance(); void blitImage(const Image& img, int x, int y); void blitText(const char* string, const Font& font, int x, int y); void render(); protected: GraphicsRenderer(); GraphicsRenderer(const GraphicsRenderer& other); GraphicsRenderer& operator=(const GraphicsRenderer& other); ~GraphicsRenderer(); private: void* screen_; bool initialize(); void finalize(); };

    Read the article

  • C++ - Constructor or Initialize Method to Startup

    - by Bob Fincheimer
    I want to determine when to do non-trivial initialization of a class. I see two times to do initialization: constructor and other method. I want to figure out when to use each. Choice 1: Constructor does initialization MyClass::MyClass(Data const& data) : m_data() { // does non-trivial initialization here } MyClass::~MyClass() { // cleans up here } Choice 2: Defer initialization to an initialize method MyClass::MyClass() : m_data() {} MyClass::Initialize(Data const& data) { // does non-trivial initialization here } MyClass::~MyClass() { // cleans up here } So to try and remove any subjectivity I want to figure out which is better in a couple of situations: Class that encapsulates a resource (window/font/some sort of handle) Class that composites resources to do something (a control/domain object) Data structure classes (tree/list/etc.) [Anything else you can think of] Things to analyze: Performance Ease of use by other developers How error-prone/opportunities for bugs [Anything else you can think of]

    Read the article

  • design suggestion for a message decoder in delphi

    - by stanleyxu2005
    Hi All, I want to implement a RPC module. Different requests are encoded as JSON objects. They will be decoded and then be handled by a request handler. At last a corresponding response will be returned. The demo code looks as follows: type IRequestHandler = interface function Handle(const Request: TAaaRequest): TResponse; function Handle(const Request: TBbbRequest): TResponse; end; TDecoder = class class function Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; end; class function TDecoder.Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; var Method: string; Request: TObject; begin Method := Json['method'].AsString; if (Method = TAaaRequest.ClassName) then begin Request := TAaaRequest.FromJSON(Json); // Casted as TObject if Request <> nil then begin Result := RequestHandler.Handle(TAaaRequest(Request)); Request.Free; end; end else if (Method = TBbbRequest.ClassName) then begin Request := TBbbRequest.FromJSON(Json); // Casted as TObject if Request <> nil then begin Result := RequestHandler.Handle(TBbbRequest(Request)); Request.Free; end; end else Result := CreateErrorResponse('Unknown method: ' + Json.ToString); end; According to the code, the handling of different request types are very similar. If I have 100 different request types, I have to copy and paste the above code block 100 times. This is not clever. I am looking for a better way to do the same logic. My imagination is as follows: TDecoder = class private FRequestTypes: TDictionary<string, TClassInfo>; // Does this work? public constructor Create; destructor Destroy; override; function Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; end; constructor TDecoder.Create; begin FRequestTypes := TDictionary<string, TClassInfo>.Create; FRequestTypes.Add(TAaaRequest.ClassName, TAaaRequest); // Does this work? FRequestTypes.Add(TBbbRequest.ClassName, TBbbRequest); end; destructor TDecoder.Destroy; begin FRequestTypes.Free; inherited; end; function TDecoder.Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; var Method: string; Info: TClassInfo; Request: TObject; begin Method := Json['method'].AsString; if FRequestTypes.ContainsKey(Method) then begin // An universal way Info := FRequestTypes[Method]; Request := Info.FromJSON(Json); // Casted as TObject if Request <> nil then begin Result := RequestHandler.Handle(Info(Request)); // Casted to corresponding class type (e.g. TAaaRequest or TBbbRequest) Request.Free; end; end else Result := CreateErrorResponse('Unknown method: ' + Json.ToString); end; I do not know, if I can write an universal way to handle a great number of different request types. Development environment Delphi 2010. Any hint is appreciated.

    Read the article

  • Odd behavior when recursively building a return type for variadic functions

    - by Dennis Zickefoose
    This is probably going to be a really simple explanation, but I'm going to give as much backstory as possible in case I'm wrong. Advanced apologies for being so verbose. I'm using gcc4.5, and I realize the c++0x support is still somewhat experimental, but I'm going to act on the assumption that there's a non-bug related reason for the behavior I'm seeing. I'm experimenting with variadic function templates. The end goal was to build a cons-list out of std::pair. It wasn't meant to be a custom type, just a string of pair objects. The function that constructs the list would have to be in some way recursive, with the ultimate return value being dependent on the result of the recursive calls. As an added twist, successive parameters are added together before being inserted into the list. So if I pass [1, 2, 3, 4, 5, 6] the end result should be {1+2, {3+4, 5+6}}. My initial attempt was fairly naive. A function, Build, with two overloads. One took two identical parameters and simply returned their sum. The other took two parameters and a parameter pack. The return value was a pair consisting of the sum of the two set parameters, and the recursive call. In retrospect, this was obviously a flawed strategy, because the function isn't declared when I try to figure out its return type, so it has no choice but to resolve to the non-recursive version. That I understand. Where I got confused was the second iteration. I decided to make those functions static members of a template class. The function calls themselves are not parameterized, but instead the entire class is. My assumption was that when the recursive function attempts to generate its return type, it would instantiate a whole new version of the structure with its own static function, and everything would work itself out. The result was: "error: no matching function for call to BuildStruct<double, double, char, char>::Go(const char&, const char&)" The offending code: static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> My confusion comes from the fact that the parameters to BuildStruct should always be the same types as the arguments sent to BuildStruct::Go, but in the error code Go is missing the initial two double parameters. What am I missing here? If my initial assumption about how the static functions would be chosen was incorrect, why is it trying to call the wrong function rather than just not finding a function at all? It seems to just be mixing types willy-nilly, and I just can't come up with an explanation as to why. If I add additional parameters to the initial call, it always burrows down to that last step before failing, so presumably the recursion itself is at least partially working. This is in direct contrast to the initial attempt, which always failed to find a function call right away. Ultimately, I've gotten past the problem, with a fairly elegant solution that hardly resembles either of the first two attempts. So I know how to do what I want to do. I'm looking for an explanation for the failure I saw. Full code to follow since I'm sure my verbal description was insufficient. First some boilerplate, if you feel compelled to execute the code and see it for yourself. Then the initial attempt, which failed reasonably, then the second attempt, which did not. #include <iostream> using std::cout; using std::endl; #include <utility> template<typename T1, typename T2> std::ostream& operator <<(std::ostream& str, const std::pair<T1, T2>& p) { return str << "[" << p.first << ", " << p.second << "]"; } //Insert code here int main() { Execute(5, 6, 4.3, 2.2, 'c', 'd'); Execute(5, 6, 4.3, 2.2); Execute(5, 6); return 0; } Non-struct solution: template<typename Type> Type BuildFunction(const Type& t0, const Type& t1) { return t0 + t1; } template<typename Type, typename... Rest> auto BuildFunction(const Type& t0, const Type& t1, const Rest&... rest) -> std::pair<Type, decltype(BuildFunction(rest...))> { return std::pair<Type, decltype(BuildFunction(rest...))> (t0 + t1, BuildFunction(rest...)); } template<typename... Types> void Execute(const Types&... t) { cout << BuildFunction(t...) << endl; } Resulting errors: test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:33:35: instantiated from here test.cpp:28:3: error: no matching function for call to 'BuildFunction(const int&, const int&, const double&, const double&, const char&, const char&)' Struct solution: template<typename... Types> struct BuildStruct; template<typename Type> struct BuildStruct<Type, Type> { static Type Go(const Type& t0, const Type& t1) { return t0 + t1; } }; template<typename Type, typename... Types> struct BuildStruct<Type, Type, Types...> { static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> { return std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> (t0 + t1, BuildStruct<Types...>::Go(rest...)); } }; template<typename... Types> void Execute(const Types&... t) { cout << BuildStruct<Types...>::Go(t...) << endl; } Resulting errors: test.cpp: In instantiation of 'BuildStruct<int, int, double, double, char, char>': test.cpp:33:3: instantiated from 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]' test.cpp:38:41: instantiated from here test.cpp:24:15: error: no matching function for call to 'BuildStruct<double, double, char, char>::Go(const char&, const char&)' test.cpp:24:15: note: candidate is: static std::pair<Type, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...))> BuildStruct<Type, Type, Types ...>::Go(const Type&, const Type&, const Types& ...) [with Type = double, Types = {char, char}, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...)) = char] test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:38:41: instantiated from here test.cpp:33:3: error: 'Go' is not a member of 'BuildStruct<int, int, double, double, char, char>'

    Read the article

  • Combining template method with strategy

    - by Mekswoll
    An assignment in my software engineering class is to design an application which can play different forms a particular game. The game in question is Mancala, some of these games are called Wari or Kalah. These games differ in some aspects but for my question it's only important to know that the games could differ in the following: The way in which the result of a move is handled The way in which the end of the game is determined The way in which the winner is determined The first thing that came to my mind to design this was to use the strategy pattern, I have a variation in algorithms (the actual rules of the game). The design could look like this: I then thought to myself that in the game of Mancala and Wari the way the winner is determined is exactly the same and the code would be duplicated. I don't think this is by definition a violation of the 'one rule, one place' or DRY principle seeing as a change in rules for Mancala wouldn't automatically mean that rule should be changed in Wari as well. Nevertheless from the feedback I got from my professor I got the impression to find a different design. I then came up with this: Each game (Mancala, Wari, Kalah, ...) would just have attribute of the type of each rule's interface, i.e. WinnerDeterminer and if there's a Mancala 2.0 version which is the same as Mancala 1.0 except for how the winner is determined it can just use the Mancala versions. I think the implementation of these rules as a strategy pattern is certainly valid. But the real problem comes when I want to design it further. In reading about the template method pattern I immediately thought it could be applied to this problem. The actions that are done when a user makes a move are always the same, and in the same order, namely: deposit stones in holes (this is the same for all games, so would be implemented in the template method itself) determine the result of the move determine if the game has finished because of the previous move if the game has finished, determine who has won Those three last steps are all in my strategy pattern described above. I'm having a lot of trouble combining these two. One possible solution I found would be to abandon the strategy pattern and do the following: I don't really see the design difference between the strategy pattern and this? But I am certain I need to use a template method (although I was just as sure about having to use a strategy pattern). I also can't determine who would be responsible for creating the TurnTemplate object, whereas with the strategy pattern I feel I have families of objects (the three rules) which I could easily create using an abstract factory pattern. I would then have a MancalaRuleFactory, WariRuleFactory, etc. and they would create the correct instances of the rules and hand me back a RuleSet object. Let's say that I use the strategy + abstract factory pattern and I have a RuleSet object which has algorithms for the three rules in it. The only way I feel I can still use the template method pattern with this is to pass this RuleSet object to my TurnTemplate. The 'problem' that then surfaces is that I would never need my concrete implementations of the TurnTemplate, these classes would become obsolete. In my protected methods in the TurnTemplate I could just call ruleSet.determineWinner(). As a consequence, the TurnTemplate class would no longer be abstract but would have to become concrete, is it then still a template method pattern? To summarize, am I thinking in the right way or am I missing something easy? If I'm on the right track, how do I combine a strategy pattern and a template method pattern? This is part of a homework assignment but I'm not looking to be gifted the answer, I have deliberately been very verbose in my question to show that I have thought about it before coming here to ask a question

    Read the article

  • Passing Parameters to an ADF Page through the URL - Part 2.

    - by shay.shmeltzer
    I showed before how to pass a parameter on the URL when invoking a taskflow (where the taskflow starts with a method call and then a page). However in some simpler scenarios you don't actually need a full blown taskflow. Instead you can use page level parameters defined for your page in the adfc-config.xml file. So below is a demo of this technique. I'm also taking advantage of this video to show the concept of a view object level service method and how to invoke it from your page. P.S. You might wonder - why not just reference #{param.amount} as the value set for the method parameter? Why do I need to copy it into a viewScope parameter? The advantage of placing the value in the viewScope is that it is available even when the page went through several sumbits. For example if you switch the "partialSumbit" property of the "Next" button to false in the above example - the minute that you press the button to go to the next department - the param.amount value is gone. However the ViewScope is still there as long as you stay on this page.

    Read the article

  • Is it OK to introduce methods that are used only during unit tests?

    - by Mchl
    Recently I was TDDing a factory method. The method was to create either a plain object, or an object wrapped in a decorator. The decorated object could be of one of several types all extending StrategyClass. In my test I wanted to check, if the class of returned object is as expected. That's easy when plain object os returned, but what to do when it's wrapped within a decorator? I code in PHP so I could use ext/Reflection to find out a class of wrapped object, but it seemed to me to be overcomplicating things, and somewhat agains rules of TDD. Instead I decided to introduce getClassName() that would return object's class name when called from StrategyClass. When called from the decorator however, it would return the value returned by the same method in decorated object. Some code to make it more clear: interface StrategyInterface { public function getClassName(); } abstract class StrategyClass implements StrategyInterface { public function getClassName() { return \get_class($this); } } abstract class StrategyDecorator implements StrategyInterface { private $decorated; public function __construct(StrategyClass $decorated) { $this->decorated = $decorated; } public function getClassName() { return $this->decorated->getClassName(); } } And a PHPUnit test /** * @dataProvider providerForTestGetStrategy * @param array $arguments * @param string $expected */ public function testGetStrategy($arguments, $expected) { $this->assertEquals( __NAMESPACE__.'\\'.$expected, $this->object->getStrategy($arguments)->getClassName() ) } //below there's another test to check if proper decorator is being used My point here is: is it OK to introduce such methods, that have no other use than to make unit tests easier? Somehow it doesn't feel right to me.

    Read the article

  • Temporary non-const istream reference in constructor (C++)

    - by Christopher Bruns
    It seems that a constructor that takes a non-const reference to an istream cannot be constructed with a temporary value in C++. #include <iostream> #include <sstream> using namespace std; class Bar { public: explicit Bar(std::istream& is) {} }; int main() { istringstream stream1("bar1"); Bar bar1(stream1); // OK on all platforms // compile error on linux, Mac gcc; OK on Windows MSVC Bar bar2(istringstream("bar2")); return 0; } This compiles fine with MSVC, but not with gcc. Using gcc I get a compile error: g++ test.cpp -o test test.cpp: In function ‘int main()’: test.cpp:18: error: no matching function for call to ‘Bar::Bar(std::istringstream)’ test.cpp:9: note: candidates are: Bar::Bar(std::istream&) test.cpp:7: note: Bar::Bar(const Bar&) Is there something philosophically wrong with the second way (bar2) of constructing a Bar object? It looks nicer to me, and does not require that stream1 variable that is only needed for a moment.

    Read the article

  • Return a Const Char* by reading an @property NSString in separate class

    - by Andrew
    I'm probably being an idiot here, but I cannot for the life of me find the answer that I'm looking for. I have an array of CalEvents returned from a CalendarStore query, and for other reasons I am finding the first location of any upcoming event for today that is not an all-day or multi-day event. +(const char*) suggestFirstiCalLocation{ CalCalendarStore *store = [CalCalendarStore defaultCalendarStore]; NSPredicate *allEventsPredicate = [CalCalendarStore eventPredicateWithStartDate:[NSDate date] endDate:[[NSDate date] initWithTimeIntervalSinceNow:3600] calendars:[store calendars]]; NSArray *currentEventCalendarArray = [store eventsWithPredicate:allEventsPredicate]; for (int i = 0; i< [currentEventCalendarArray count]; i++){ if (![[currentEventCalendarArray objectAtIndex:i] isAllDay]){ //Now that other events are cleared, check for multi-day NSDate *startOnDate = [[currentEventCalendarArray objectAtIndex:i] startDate]; NSDate *endOnDate = [[currentEventCalendarArray objectAtIndex:i] endDate]; if ([endOnDate timeIntervalSinceDate:startOnDate ] < 86400.0){ NSString * iCalLocation = [[currentEventCalendarArray objectAtIndex:i] location]; return [iCalLocation UTF8String]; } } } return ""; } For other reasons, I am returning a const char with the value of the location that is found. However, I cannot seem to return "iCalLocation" at all. The compiler fails on the line where I am initializing the "iCalLocation" variable: "Cannot convert to pointer type" Being frank: I am new to Objective-C, and I am still trying to figure points, properties, and such out.

    Read the article

  • C++ constant reference lifetime

    - by aaa
    hello I have code that looks like this: class T {}; class container { const T &first, T &second; container(const T&first, const T & second); }; class adapter : T {}; container(adapter(), adapter()); I thought lifetime of constant reference would be lifetime of container. However, it appears otherwise, adapter object is destroyed after container is created, leading dangling reference. What is the correct lifetime? how to correctly implement binding temporary object to class member reference? Thanks

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • How can i get the value of a session variable inside a static method in c#?

    - by Pandiya Chendur
    I am using asp.net pagemethods with jquery.... How to get the value of a session variable inside static method in c#... protected void Page_Load(object sender, EventArgs e) { Session["UserName"] = "Pandiya"; } [WebMethod] public static string GetName() { string s = Session["UserName"].ToString(); return s; } when i compile this i get the error An object reference is required for the non-static field, method, or property 'System.Web.UI.Page.Session.get' Any suggestion or any alternative...

    Read the article

  • [NEWVERSION]algorithm || method to write prog[UNSOLVED] [closed]

    - by fatai
    I am one of the computer science student. Everyone solve problem with a different or same method, ( but actually I dont know whether they use method or I dont know whether there are such common method to approach problem.) if there are common method, What is it ? If there are different method, which method are you using ? All teacher give us problem which in simple form sometimes, but they donot introduce any approach or method(s) so that we cannot make a decision to choose the method then apply that one to problem , afterward find solution then write code.No help from teacher , push us to find method to solve homework. Ex: my friend is using no method , he says "I start to construct algorithm while I try to write prog." I have found one method when I failed the course, More accurately, my method: When I counter problem in language , I will get more paper and then ; first, input/ output step ; my prog will take this / these there argument(s) and return namely X , ex : in c, input length is not known and at same type , so I must use pointer desired output is in form of package , so use structure second, execution part ; in that step , I am writing all step which are goes to final output ex : in python ; 1.) [ + , [- , 4 , [ * , 1 , 2 ]], 5] 2.) [ + , [- , 4 , 2 ],5 ] 3.) [ + , 2 , 5] 4.) 7 ==> return 7 third, I will write test code ex : in c++ input : append 3 4 5 6 vector_x remove 0 1 desired output vector_x holds : 5 6 now, my other question is ; What is/are other method(s) which have/has been; used to construct class :::: for c++ , python, java used to communicate classes / computers used for solving embedded system problem ::::: for c by other user? Some programmer uses generalized method without considering prog-language(java , perl .. ), what is this method ? Why I wonder , because I learn if you dont costruct algorithm on paper, you may achieve your goal. Like no money no lunch , I can say no algorithm no prog therefore , feel free when you write your own method , a way which is introduced by someone else but you are using and you find it is so efficient

    Read the article

  • Bad method names and what it says about code structure.

    - by maxfridbe
    (Apologies in advance if this is a re-post but I didn't find similar posts) What bad method name patterns have you seen in code and what did it tell you about the code. For instance, I keep seeing: public void preform___X___IfNecessary(...); I believe that this is bad because the operation X has an inversion of conditions. Note that this is a public method because classes methods might legitimately require private helpers like this

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >