Search Results

Search found 3701 results on 149 pages for 'cost threshold for parall'.

Page 16/149 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Set value in controller using nested resource

    - by vectran
    I have two models, product and order. Product - cost - id Order - cost - product_id Each time someone places an order, it captures the product_id through a radio button value in the "new order" form. In the controller when creating the new order it needs to set order.cost to order.product.cost. Logically I thought the code should be something like this: def create ... @order.cost == @order.product.cost ... end However I can't seem to make it work at all, hence me asking the question here. Any help is answering (or naming) the question would be greatly appreciated.

    Read the article

  • Line break in the mailto onclick

    - by malaki1974
    The code below works great except the email has all the text on one line like this: Height: 60 | Diagonal: 123 | Width: 107 | Total SF: 13.92 | Cost Per SF: 450 | Total Cost: $6,264.00 I would like to break after each so it looks like this: Height: 60 Diagonal: 123 Width: 107 Total SF: 13.92 Cost Per SF: 450 Total Cost: $6,264.00 I tried \n \r \n\r etc but none of them work. Any ideas? <a class="emailText" href="mailto:?subject=Screen Dimensions" onclick="this.href='mailto:?subject=Screen Dimensions&body='+'Height: '+document.forms.myform.high.value+' | '+'Diagonal: '+document.forms.myform.diagonal.value+' | '+'Width: '+document.forms.myform.wide.value+' | '+'Total SF: '+document.forms.myform.sf.value+' | '+'Cost Per SF: '+document.forms.myform.csf.value+' | '+'Total Cost: '+document.forms.myform.tc.value">Email</a>

    Read the article

  • Sorted sets and comparators

    - by Jack
    Hello, I'm working with a TreeSetthat is meant to store pathfind locations used during the execution of a A* algorithm. Basically until there are "open" elements (still to be exhaustively visited) the neighbours of every open element are taken into consideration and added to a SortedSetthat keeps them ordered by their cost and heuristic cost. This means that I have a class like: public class PathTileInfo implements Comparable<PathTileInfo> { int cost; int hCost; final int x, y; @Override public int compareTo(PathTileInfo t2) { int c = cost + hCost; int c2 = t2.cost + t2.hCost; int costComp = c < c2 ? -1 : (c > c2 ? 1: 0); return costComp != 0 ? costComp : (x < t2.x || y < t2.y ? -1 : (x > t2.x || y > t2.y ? 1 : 0)); } @Override public boolean equals(Object o2) { if (o2 instanceof PathTileInfo) { PathTileInfo i = (PathTileInfo)o2; return i.cost + i.hCost == cost + hCost && x == i.x && y == i.y; } return false; } } In this way first the total cost is considered, then, since a total ordering is needed (consistency with equals) a ordering according to the x,y coordinate is taken into account. This should work but simply it doesn't, if I iterate over the TreeSet during the algorithm execution like in for (PathTileInfo t : openSet) System.out.print("("+t.x+","+t.y+","+(t.cost+t.hCost)+") "); I get results in which the right ordering is not kept, eg: (7,7,6) (7,6,7) (6,8,6) (6,6,7) (5,8,7) (5,7,7) (6,7,6) (6,6,7) (6,5,7) (5,7,7) (5,5,8) (4,7,7) (4,6,8) (4,5,8) is there something subtle I am missing? Thanks!

    Read the article

  • WP7 &ndash; Oh, You Wanted to Develop On Your New Phone? That&rsquo;ll Cost Ya!

    - by D'Arcy Lussier
    Had an interesting Twitter convo today about WP7 development. Question was raised on how to use a WP7 device as the deployment target from within VS.NET. Thinking that this would be an *obvious* question, I replied that you need to set the right value in one of the drop lists in the IDE… I did this, hooked up my device, then tried to run my app, just as a final test that it was as easy as I thought it would be. It wasn’t. So first, your phone can’t be locked, so make sure you unlock it. Also, don’t kill the Zune software when you notice it automagically started – its needed for VS.NET to deploy to your device. Finally, you need to register your device for development. Aiden Caine has a great article on what you need to do for this, but in a nutshell you need to launch the Windows Phone Developer Registration program found in the Windows Phone Developer Tools folder. Now, here’s the catch to all of this: You must have a Windows Phone AppHub account. As in paid account. That’s right – to do development on your actual device, you need to have a $99 ($120 in Canada) AppHub developer membership. Now, I get this – if Microsoft didn’t put this restriction, then they’d be back in Mobile 6.x land where anyone could install whatever app to whoever, whenever, and without any standards being upheld. This is the same thing that Apple does with their marketplace, its not something unprecedented. But, it is something that will be new to the majority of Microsoft developers that have lived without application restrictions for years. Now, if you’re in the US then you have the opportunity to get a rebate on that $99 fee from Microsoft if you publish two apps successfully. You can get more details on this offer here.

    Read the article

  • Intermittent 404 on select assets, LAMP stack

    - by Tom Lagier
    We have a LAMP stack WordPress server that is serving most assets correctly. However, one plugin's CSS file and several images are returning soft 404s roughly 20% of the time. I can't find any reference to the 404 in the access logs, but the browser is definitely receiving a 404 response from somewhere (WordPress, I would assume). When I use an alias URL that does not match the site URL but does resolve to the asset path, the resource loads correctly 100% of the time. However, using the site url only resolves for the select, problematic assets 20% of the time. You can test one of the problematic assets here: http://www.mreco.org/wp-content/uploads/2014/05/zero-cost.jpg However the alias link always resolves correctly: http://mr-eco.wordpress.promocampaigns.com/wp-content/uploads/2014/05/zero-cost.jpg Stranger, if I attempt to access outdated content that definitely does not exist on the server, at the live URL it returns the content roughly 50% of the time. Using the alias link, it 404s 100% of the time - the correct behavior. Error log and PHP error log are clean. A sample access log (pulled from grep 'zero-cost.jpg' /var/log/httpd/mr-eco-access_log) from several refreshes of the live direct link (where I am not seeing any 404's): 10.166.202.202 - - [28/May/2014:20:27:41 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.166.202.202 - - [28/May/2014:20:27:42 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.166.202.202 - - [28/May/2014:20:27:43 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.166.202.202 - - [28/May/2014:20:27:43 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 304 - 10.176.201.37 - - [28/May/2014:20:27:56 +0000] "GET /wp-content/uploads/2014/05/zero-cost.jpg HTTP/1.1" 200 57027 Chrome's dev tools list the following network activity before displaying 404 page content: zero-cost.jpg /wp-content/uploads/2014/05 GET 404 Not Found text/html Other 15.9?KB 73.2?KB 953?ms 947?ms My Apache configuration is standard, I've listed the virtual host entry and .htaccess file below. I can provide other parts of Apache config if necessary. Virtual host: <VirtualHost *:80> DocumentRoot /var/www/public_html/mr-eco.wordpress.promocampaigns.com ServerName www.mreco.org ServerAlias mreco.org mr-eco.wordpress.promocampaigns.com ErrorLog logs/mr-eco-error_log CustomLog logs/mr-eco-access_log common <Directory /var/www/public_html/mr-eco.wordpress.promocampaigns.com> AllowOverride All SetOutputFilter DEFLATE </Directory> </VirtualHost> .htaccess: # BEGIN WordPress <IfModule mod_rewrite.c> RewriteEngine On RewriteBase / RewriteRule ^index\.php$ - [L] RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule . /index.php [L] </IfModule> # END WordPress I have checked for multiple A records and can confirm that there is a single A record pointing at the domain: ;; ANSWER SECTION: mreco.org. 60 IN A 50.18.58.174 I'm fairly new to systems administration, and at a complete loss as to what could cause this. In the past, inconsistently 404ing assets have been because of out-of-sync instances behind a load balancer. In this case, it is a single instance behind the load balancer. Because of the inconsistency, it feels like a caching issue. We don't make use of Apache caching, and as far as I know WordPress should not be caching either. What I've done so far: Reset WordPress permalinks Disabled WordPress plugins Re-generated WordPress .htaccess file Swapped ServerName and ServerAlias directives Cleared browser cache Confirmed disk location of resources Checked PHP, access, and error logs Confirmed correct DNS setup (can post if necessary) I'm at a total loss. Thanks for helping me out!

    Read the article

  • Does software testing methodology rely on flawed data?

    - by Konrad Rudolph
    It’s a well-known fact in software engineering that the cost of fixing a bug increases exponentially the later in development that bug is discovered. This is supported by data published in Code Complete and adapted in numerous other publications. However, it turns out that this data never existed. The data cited by Code Complete apparently does not show such a cost / development time correlation, and similar published tables only showed the correlation in some special cases and a flat curve in others (i.e. no increase in cost). Is there any independent data to corroborate or refute this? And if true (i.e. if there simply is no data to support this exponentially higher cost for late discovered bugs), how does this impact software development methodology?

    Read the article

  • Why does Clojure hang after hacing performed my calculations?

    - by Thomas
    Hi all, I'm experimenting with filtering through elements in parallel. For each element, I need to perform a distance calculation to see if it is close enough to a target point. Never mind that data structures already exist for doing this, I'm just doing initial experiments for now. Anyway, I wanted to run some very basic experiments where I generate random vectors and filter them. Here's my implementation that does all of this (defn pfilter [pred coll] (map second (filter first (pmap (fn [item] [(pred item) item]) coll)))) (defn random-n-vector [n] (take n (repeatedly rand))) (defn distance [u v] (Math/sqrt (reduce + (map #(Math/pow (- %1 %2) 2) u v)))) (defn -main [& args] (let [[n-str vectors-str threshold-str] args n (Integer/parseInt n-str) vectors (Integer/parseInt vectors-str) threshold (Double/parseDouble threshold-str) random-vector (partial random-n-vector n) u (random-vector)] (time (println n vectors (count (pfilter (fn [v] (< (distance u v) threshold)) (take vectors (repeatedly random-vector)))))))) The code executes and returns what I expect, that is the parameter n (length of vectors), vectors (the number of vectors) and the number of vectors that are closer than a threshold to the target vector. What I don't understand is why the programs hangs for an additional minute before terminating. Here is the output of a run which demonstrates the error $ time lein run 10 100000 1.0 [null] 10 100000 12283 [null] "Elapsed time: 3300.856 msecs" real 1m6.336s user 0m7.204s sys 0m1.495s Any comments on how to filter in parallel in general are also more than welcome, as I haven't yet confirmed that pfilter actually works.

    Read the article

  • How can I compare between web development technologies?

    - by Steve
    I would like experts to explain for me how can I compare between web development tools or technologies in order to be able to choose the right one. I'm tired from searching always in the regular way: X Technology vs Y Technology. I'm tired from peoples' biased opinions and usually I don't find a fair comparison. I have decided to put my question here about how can I compare them so you may identify to me the main standards for comparisons so I can compare them by myself and becoming able to choose the technology that is appropriate for the project I will develop. Note: in web development technologies I mean server side languages (e.g. PHP). One important requirement for me that can be defined as major one is cost efficiency and I mean that I don't care about the cost in the near future or the current cost, but what is more important for me is the cost in the future. If, for example, the site becomes one of the most 100 visited sites.   So, how can I compare the cost of different technologies for a future status of a site (such as being very famous site) so I can scale my option easily without missing a good technology like what happened with some sites when they chose not the most effective tool.

    Read the article

  • News Flash: Hong Kong Housing Society Improves Governance Control, Reduces Costs by 25%, Speeds up Approval by 30%

    - by Ruma Sanyal
    “We selected Oracle Fusion Middleware for its superior local support, higher performance, availability, reliability, and flexible enterprise architecture to cost-effectively integrate with existing Oracle applications", said Mr. C.W. Miao, Head of Information Technology, Hong Kong Housing Society in a press release today. To address the challenge of frequent downtime during peak periods and increasing cost in maintaining its legacy systems, Hong Kong Housing Society replaced its legacy systems with Oracle's WebLogic Suite, BPM Suite, and the ADF Framework. The Fusion Middleware solutions provide Hong Kong Housing Society with a flexible, reliable and cost-effective enterprise architecture that enables integration with existing Oracle applications including JD Edwards EnterpriseOne and PeopleSoft. The cost savings and performance results clearly demonstrate significant benefits. Read the PR for complete details.

    Read the article

  • 7 Steps To Cut Recruiting Costs & Drive Exceptional Business Results

    - by Oracle Accelerate for Midsize Companies
    By Steve Viarengo, Vice President Product Management, Oracle Taleo Cloud Services  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 In good times, trimming operational costs is an ongoing goal. In tough times, it’s a necessity. In both good times and bad, however, recruiting occurs. Growth increases headcount in good times, and opportunistic or replacement hiring occurs in slow business cycles. By employing creative recruiting strategies in tandem with the latest technology developments, you can reduce recruiting costs while driving exceptional business results. Here are some critical areas to focus on. 1.  Target Direct Cost Savings Total recruiting process expenses are the sum of external costs plus internal labor costs. Most organizations can reduce recruiting expenses with direct cost savings. While additional savings on indirect costs can be realized from process improvement and efficiency gains, there are direct cost savings and benefits readily available in three broad areas: sourcing, assessments, and green recruiting. 2. Sourcing: Reduce Agency Costs Agency search firm fees can amount to 35 percent of a new employee’s annual base salary. Typically taken from the hiring department budget, these fees may not be visible to HR. By relying on internal mobility programs, referrals, candidate pipelines, and corporate career Websites, organizations can reduce or eliminate this agency spend. And when you do have to pay third-party agency fees, you can optimize the value you receive by collaborating with agencies to identify referred candidates, ensure access to candidate data and history, and receive automatic notifications and correspondence. 3. Sourcing: Reduce Advertising Costs You can realize significant cost reductions by placing all job positions on your corporate career Website. This will allow you to reap a substantial number of candidates at minimal cost compared to job boards and other sourcing options. 4.  Sourcing: Internal Talent Pool Internal talent pools provide a way to reduce sourcing and advertising costs while delivering improved productivity and retention. Internal redeployment reduces costs and ramp-up time while increasing retention and employee satisfaction. 5.  Sourcing: External Talent Pool Strategic recruiting requires identifying and matching people with a given set of skills to a particular job while efficiently allocating sourcing expenditures. By using an e-recruiting system (which drives external talent pool management) with a candidate relationship database, you can automate prescreening and candidate matching while communicating with targeted candidates. Candidate relationship management can lower sourcing costs by marketing new job opportunities to candidates sourced in the past. By mining the talent pool in this fashion, you eliminate the need to source a new pool of candidates for each new requisition. Managing and mining the corporate candidate database can reduce the sourcing cost per candidate by as much as 50 percent. 6.  Assessments: Reduce Turnover Costs By taking advantage of assessments during the recruitment process, you can achieve a range of benefits, including better productivity, superior candidate performance, and lower turnover (providing considerable savings). Assessments also save recruiter and hiring manager time by focusing on a short list of qualified candidates. Hired for fit, such candidates tend to stay with the organization and produce quality work—ultimately driving revenue.  7. Green Recruiting: Reduce Paper and Processing Costs You can reduce recruiting costs by automating the process—and making it green. A paperless process informs candidates that you’re dedicated to green recruiting. It also leads to direct cost savings. E-recruiting reduces energy use and pollution associated with manufacturing, transporting, and recycling paper products. And process automation saves energy in mailing, storage, handling, filing, and reporting tasks. Direct cost savings come from reduced paperwork related to résumés, advertising, and onboarding. Improving the recruiting process through sourcing, assessments, and green recruiting not only saves costs. It also positions the company to improve the talent base during the recession while retaining the ability to grow appropriately in recovery. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • Estimating costs in a GOAP system

    - by fullwall
    I'm currently developing a GOAP system in Java. An explanation of GOAP can be found at http://web.media.mit.edu/~jorkin/goap.html. Essentially, it's using A* to plot between Actions that mutate the world state. To provide a fair chance for all Actions and Goals to execute, I'm using a heuristic function to estimate the cost of doing something. What is the best way to estimate this cost so that it is comparable to all the other costs? As an example, estimating the cost of running away from an enemy versus attacking it - how should the cost be calculated to be comparable?

    Read the article

  • Database Insider - December 2012 issue

    - by Javier Puerta
    The December issue of the Database Insider newsletter is now available. (Full newsletter here) Big Data: From Acquisition to Analysis 2012 will likely be remembered as the year of big data, as a new generation of technologies enables organizations to acquire, organize, and analyze the exponentially growing and typically less-structured data generated from a variety of new sources. Oracle has produced a series of five short videos that offer a quick and compelling high-level introduction to big data. Read More Total Cost of Ownership Comparison: Oracle Exadata vs. IBM P-Series Read the research that found that over three years, the IBM hardware running Oracle Database cost 31 percent more in total cost of ownership than Oracle Exadata. Webcast - Oracle Exadata Database Machine X3 Learn about Oracle’s next-generation database machine, Oracle Exadata X3, that combines massive memory and low-cost disks to deliver the highest performance at the lowest cost. Available in an eight-rack configuration, it allows you to start small and grow.    Maximum Availability with Oracle GoldenGate Discover how to eliminate not only unplanned downtime but also planned downtime resulting from database upgrades, migrations, and consolidation.Thursday, December 1319:00 CET / 6 pm. UK   

    Read the article

  • Why closed contours are guaranteed here?

    - by user198729
    Quoted from here: BW = edge(I,'zerocross',thresh,h) specifies the zero-cross method, using the filter h. thresh is the sensitivity threshold; if the argument is empty ([]), edge chooses the sensitivity threshold automatically. If you specify a threshold of 0, the output image has closed contours, because it includes all the zero crossings in the input image. I don't understand it,can someone elaborate?

    Read the article

  • Increase Query Speed in PostgreSQL

    - by Anthoni Gardner
    Hello, First time posting here, but an avid reader. I am experiancing slow query times on my database (all tested locally thus far) and not sure how to go about it. The database itself has 44 tables and some of them tables have over 1 Million records (mainly the movies, actresses and actors tables). The table is made via JMDB using the flat files on IMDB. Also the SQL query that I am about to show is from that said program (that too experiances very slow search times). I have tried to include as much information as I can, such as the explain plan etc. "QUERY PLAN" "HashAggregate (cost=46492.52..46493.50 rows=98 width=46)" " Output: public.movies.title, public.movies.movieid, public.movies.year" " - Append (cost=39094.17..46491.79 rows=98 width=46)" " - HashAggregate (cost=39094.17..39094.87 rows=70 width=46)" " Output: public.movies.title, public.movies.movieid, public.movies.year" " - Seq Scan on movies (cost=0.00..39093.65 rows=70 width=46)" " Output: public.movies.title, public.movies.movieid, public.movies.year" " Filter: (((title)::text ~~* '%Babe%'::text) AND ((title)::text !~~* '""%}'::text))" " - Nested Loop (cost=0.00..7395.94 rows=28 width=46)" " Output: public.movies.title, public.movies.movieid, public.movies.year" " - Seq Scan on akatitles (cost=0.00..7159.24 rows=28 width=4)" " Output: akatitles.movieid, akatitles.language, akatitles.title, " Filter: (((title)::text ~~* '%Babe%'::text) AND ((title)::text !~~* '""%}'::text))" " - Index Scan using movies_pkey on movies (cost=0.00..8.44 rows=1 width=46)" " Output: public.movies.movieid, public.movies.title, public.movies.year, public.movies.imdbid" " Index Cond: (public.movies.movieid = akatitles.movieid)" SELECT * FROM ((SELECT DISTINCT title, movieid, year FROM movies WHERE title ILIKE '%Babe%' AND NOT (title ILIKE '"%}')) UNION (SELECT movies.title, movies.movieid, movies.year FROM movies INNER JOIN akatitles ON movies.movieid=akatitles.movieid WHERE akatitles.title ILIKE '%Babe%' AND NOT (akatitles.title ILIKE '"%}'))) AS union_tmp2; Returns 612 Rows in 9078ms Database backup (plain text) is 1.61GB It's a really complex query and I am not fully cognizant on it, like I said it was spat out by JMDB. Do you have any suggestions on how I can increase the speed ? Regards Anthoni

    Read the article

  • Direct invocation vs indirect invocation in C

    - by Mohit Deshpande
    I am new to C and I was reading about how pointers "point" to the address of another variable. So I have tried indirect invocation and direct invocation and received the same results (as any C/C++ developer could have predicted). This is what I did: int cost; int *cost_ptr; int main() { cost_ptr = &cost; //assign pointer to cost cost = 100; //intialize cost with a value printf("\nDirect Access: %d", cost); cost = 0; //reset the value *cost_ptr = 100; printf("\nIndirect Access: %d", *cost_ptr); //some code here return 0; //1 } So I am wondering if indirect invocation with pointers has any advantages over direct invocation or vice-versa. Some advantages/disadvantages could include speed, amount of memory consumed performing the operation (most likely the same but I just wanted to put that out there), safeness (like dangling pointers) , good programming practice, etc. 1Funny thing, I am using the GNU C Compiler (gcc) and it still compiles without the return statement and everything is as expected. Maybe because the C++ compiler will automatically insert the return statement if you forget.

    Read the article

  • MySQL - How do I inner join sorting the joined data

    - by Gary
    I'm trying to write a report which will join a person, their work, and their hourly wage at the time of work. I cannot seem to figure out the best way to join the person's cost when the date is less than the date of the work. Let's say a person cost $30 per hour at the start of the year then got a $10 raise o Feb 5 and another on Mar 1. 01/01/2010 $30.00 (per hour) 02/05/2010 $40.00 03/01/2010 $45.00 The person put in hours several days which span the rasies. 01/05/2010 10 hours (should be at $30/hr) 01/27/2010 5 hours (again at $30) 02/10/2010 10 hours (at $40/hr) 03/03/2010 5 hours (at $45/hr) I'm trying to write one SQL statement which will pull the hours, the cost per hour, and the hours*cost. The cost is the hourly rate last entered into the system so the cost date is less than the work date, ordered by cost date limit 1. SELECT person.id, person.name, work.hours, person_costs.value, work.hours * person_costs.value AS value FROM person INNER JOIN work ON (person.id = work.person_id) INNER JOIN person_costs ON (person.id = person_costs.person_id AND person_costs.date < work.date) WHERE person.id = 1234 ORDER BY work.date ASC The problem I'm having, the person_costs isn't ordered by date in descending order. It's pulling out "any" value (naturally sorted by record position) which matches the condition. How do I select the first person_cost value which is older than the work date? Thanks!

    Read the article

  • HP to Cisco spanning tree root flapping

    - by Tim Brigham
    Per a recent question I recently configured both my HP (2x 2900) and Cisco (1x 3750) hardware to use MSTP for interoperability. I thought this was functional until I applied the change to the third device (HP switch 1 below) at which time the spanning tree root started flapping causing performance issues (5% packet loss) between my two HP switches. I'm not sure why. HP Switch 1 A4 connected to Cisco 1/0/1. HP Switch 2 B2 connected to Cisco 2/0/1. HP Switch 1 A2 connected to HP Switch 2 A1. I'd prefer the Cisco stack to act as the root. EDIT: There is one specific line - 'spanning-tree 1 path-cost 500000' in the HP switch 2 that I didn't add and was preexisting. I'm not sure if it could have the kind of impact that I'm describing. I'm more a security and monitoring guy then networking. EDIT 2: I'm starting to believe the problem lies in the fact that the value for my MST 0 instance on the Cisco is still at the default 32768. I worked up a diagram: This is based on every show command I could find for STP. I'll make this change after hours and see if it helps. Cisco 3750 Config: version 12.2 spanning-tree mode mst spanning-tree extend system-id spanning-tree mst configuration name mstp revision 1 instance 1 vlan 1, 40, 70, 100, 250 spanning-tree mst 1 priority 0 vlan internal allocation policy ascending interface TenGigabitEthernet1/1/1 switchport trunk encapsulation dot1q switchport mode trunk ! interface TenGigabitEthernet2/1/1 switchport trunk encapsulation dot1q switchport mode trunk ! interface Vlan1 no ip address ! interface Vlan100 ip address 192.168.100.253 255.255.255.0 ! Cisco 3750 show spanning tree: show spanning-tree MST0 Spanning tree enabled protocol mstp Root ID Priority 32768 Address 0004.ea84.5f80 Cost 200000 Port 53 (TenGigabitEthernet1/1/1) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32768 (priority 32768 sys-id-ext 0) Address a44c.11a6.7c80 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Te1/1/1 Root FWD 2000 128.53 P2p MST1 Spanning tree enabled protocol mstp Root ID Priority 1 Address a44c.11a6.7c80 This bridge is the root Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 1 (priority 0 sys-id-ext 1) Address a44c.11a6.7c80 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Te1/1/1 Desg FWD 2000 128.53 P2p Cisco 3750 show logging: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan100, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan100, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up HP Switch 1: ; J9049A Configuration Editor; Created on release #T.13.71 vlan 1 name "DEFAULT_VLAN" untagged 1-8,10,13-16,18-23,A1-A4 ip address 100.100.100.17 255.255.255.0 no untagged 9,11-12,17,24 exit vlan 100 name "192.168.100" untagged 9,11-12,17,24 tagged 1-8,10,13-16,18-23,A1-A4 no ip address exit vlan 21 name "Users_2" tagged 1,A1-A4 no ip address exit vlan 40 name "Cafe" tagged 1,4,7,A1-A4 no ip address exit vlan 250 name "Firewall" tagged 1,4,7,A1-A4 no ip address exit vlan 70 name "DMZ" tagged 1,4,7-8,13,A1-A4 no ip address exit spanning-tree spanning-tree config-name "mstp" spanning-tree config-revision 1 spanning-tree instance 1 vlan 1 40 70 100 250 password manager password operator HP Switch 1 show spanning tree: show spanning-tree Multiple Spanning Tree (MST) Information STP Enabled : Yes Force Version : MSTP-operation IST Mapped VLANs : 2-39,41-69,71-99,101-249,251-4094 Switch MAC Address : 0021f7-126580 Switch Priority : 32768 Max Age : 20 Max Hops : 20 Forward Delay : 15 Topology Change Count : 363,490 Time Since Last Change : 14 hours CST Root MAC Address : 0004ea-845f80 CST Root Priority : 32768 CST Root Path Cost : 200000 CST Root Port : 1 IST Regional Root MAC Address : 0021f7-126580 IST Regional Root Priority : 32768 IST Regional Root Path Cost : 0 IST Remaining Hops : 20 Root Guard Ports : TCN Guard Ports : BPDU Protected Ports : BPDU Filtered Ports : PVST Protected Ports : PVST Filtered Ports : | Prio | Designated Hello Port Type | Cost rity State | Bridge Time PtP Edge ----- --------- + --------- ---- ---------- + ------------- ---- --- ---- A1 | Auto 128 Disabled | A2 10GbE-CX4 | 2000 128 Forwarding | 0021f7-126580 2 Yes No A3 10GbE-CX4 | Auto 128 Disabled | A4 10GbE-SR | Auto 128 Disabled | HP Switch 1 Logging: I removed the date / time fields since they are inaccurate (no NTP configured on these switches) 00839 stp: MSTI 1 Root changed from 0:a44c11-a67c80 to 32768:0021f7-126580 00839 stp: MSTI 1 Root changed from 32768:0021f7-126580 to 0:a44c11-a67c80 00842 stp: MSTI 1 starved for an MSTI Msg Rx on port A4 from 0:a44c11-a67c80 00839 stp: MSTI 1 Root changed from 0:a44c11-a67c80 to 32768:0021f7-126580 00839 stp: MSTI 1 Root changed from 32768:0021f7-126580 to 0:a44c11-a67c80 00839 stp: MSTI 1 Root changed from 0:a44c11-a67c80 to ... HP Switch 2 Configuration: ; J9146A Configuration Editor; Created on release #W.14.49 vlan 1 name "DEFAULT_VLAN" untagged 1,3-17,21-24,A1-A2,B2 ip address 100.100.100.36 255.255.255.0 no untagged 2,18-20,B1 exit vlan 100 name "192.168.100" untagged 2,18-20 tagged 1,3-17,21-24,A1-A2,B1-B2 no ip address exit vlan 21 name "Users_2" tagged 1,A1-A2,B2 no ip address exit vlan 40 name "Cafe" tagged 1,13-14,16,A1-A2,B2 no ip address exit vlan 250 name "Firewall" tagged 1,13-14,16,A1-A2,B2 no ip address exit vlan 70 name "DMZ" tagged 1,13-14,16,A1-A2,B2 no ip address exit logging 192.168.100.18 spanning-tree spanning-tree 1 path-cost 500000 spanning-tree config-name "mstp" spanning-tree config-revision 1 spanning-tree instance 1 vlan 1 40 70 100 250 HP Switch 2 Spanning Tree: show spanning-tree Multiple Spanning Tree (MST) Information STP Enabled : Yes Force Version : MSTP-operation IST Mapped VLANs : 2-39,41-69,71-99,101-249,251-4094 Switch MAC Address : 0024a8-cd6000 Switch Priority : 32768 Max Age : 20 Max Hops : 20 Forward Delay : 15 Topology Change Count : 21,793 Time Since Last Change : 14 hours CST Root MAC Address : 0004ea-845f80 CST Root Priority : 32768 CST Root Path Cost : 200000 CST Root Port : A1 IST Regional Root MAC Address : 0021f7-126580 IST Regional Root Priority : 32768 IST Regional Root Path Cost : 2000 IST Remaining Hops : 19 Root Guard Ports : TCN Guard Ports : BPDU Protected Ports : BPDU Filtered Ports : PVST Protected Ports : PVST Filtered Ports : | Prio | Designated Hello Port Type | Cost rity State | Bridge Time PtP Edge ----- --------- + --------- ---- ---------- + ------------- ---- --- ---- A1 10GbE-CX4 | 2000 128 Forwarding | 0021f7-126580 2 Yes No A2 10GbE-CX4 | Auto 128 Disabled | B1 SFP+SR | 2000 128 Forwarding | 0024a8-cd6000 2 Yes No B2 | Auto 128 Disabled | HP Switch 2 Logging: I removed the date / time fields since they are inaccurate (no NTP configured on these switches) 00839 stp: CST Root changed from 32768:0021f7-126580 to 32768:0004ea-845f80 00839 stp: IST Root changed from 32768:0021f7-126580 to 32768:0024a8-cd6000 00839 stp: CST Root changed from 32768:0004ea-845f80 to 32768:0024a8-cd6000 00839 stp: CST Root changed from 32768:0024a8-cd6000 to 32768:0004ea-845f80 00839 stp: CST Root changed from 32768:0004ea-845f80 to 32768:0024a8-cd6000 00435 ports: port B1 is Blocked by STP 00839 stp: CST Root changed from 32768:0024a8-cd6000 to 32768:0021f7-126580 00839 stp: IST Root changed from 32768:0024a8-cd6000 to 32768:0021f7-126580 00839 stp: CST Root changed from 32768:0021f7-126580 to 32768:0004ea-845f80

    Read the article

  • Why is textbox.focus throwing the lostfocus event?

    - by cost
    I've seen a few similar questions on SO but nothing that seems to actually address the issue. Here's a simplified version of the function. Private Sub Check_Quantity(sender As System.Object, e As System.Windows.RoutedEventArgs) _ Handles textbox_quantity.LostFocus Dim worked As Boolean = Integer.TryParse(textbox_quantity.Text, quantity) If Not worked Then MsgBox("Enter a valid number for the quantity") textbox_quantity.Focus() textbox_quantity.SelectAll() quantity = 0 End If End Sub It's important to note that this is WPF. What I want to do is very simple. When someone finishes with the textbox the program checks that what they entered is a number. If it does it sticks this in an integer. If not, it tells them to fix it and keeps the focus on the textbox. The issue is a few things, but what it comes down to is this function runs in an infinite loop. This same function works fine in WinForms, but not in WPF. On some other questions people have said that the messagebox appearing causes focus to be lost, but in testing this isn't true. It still loops regardless of if the messagebox is called or not. The problem is the call to textbox_quantity.Focus(). Without that it works fine. Regardless of whether it's there or not though, focus is not set to the textbox, though textbox_quantity.Focus() still returns a value of true. Any thought of what's going on and maybe how I could fix it?

    Read the article

  • Keeping track of File System Utilization in Ops Center 12c

    - by S Stelting
    Enterprise Manager Ops Center 12c provides significant monitoring capabilities, combined with very flexible incident management. These capabilities even extend to monitoring the file systems associated with Solaris or Linux assets. Depending on your needs you can monitor and manage incidents, or you can fine tune alert monitoring rules to specific file systems. This article will show you how to use Ops Center 12c to Track file system utilization Adjust file system monitoring rules Disable file system rules Create custom monitoring rules If you're interested in this topic, please join us for a WebEx presentation! Date: Thursday, November 8, 2012 Time: 11:00 am, Eastern Standard Time (New York, GMT-05:00) Meeting Number: 598 796 842 Meeting Password: oracle123 To join the online meeting ------------------------------------------------------- 1. Go to https://oracleconferencing.webex.com/oracleconferencing/j.php?ED=209833597&UID=1512095432&PW=NOWQ3YjJlMmYy&RT=MiMxMQ%3D%3D 2. If requested, enter your name and email address. 3. If a password is required, enter the meeting password: oracle123 4. Click "Join". To view in other time zones or languages, please click the link: https://oracleconferencing.webex.com/oracleconferencing/j.php?ED=209833597&UID=1512095432&PW=NOWQ3YjJlMmYy&ORT=MiMxMQ%3D%3D   Monitoring File Systems for OS Assets The Libraries tab provides basic, device-level information about the storage associated with an OS instance. This tab shows you the local file system associated with the instance and any shared storage libraries mounted by Ops Center. More detailed information about file system storage is available under the Analytics tab under the sub-tab named Charts. Here, you can select and display the individual mount points of an OS, and export the utilization data if desired: In this example, the OS instance has a basic root file partition and several NFS directories. Each file system mount point can be independently chosen for display in the Ops Center chart. File Systems and Incident  Reporting Every asset managed by Ops Center has a "monitoring policy", which determines what represents a reportable issue with the asset. The policy is made up of a bunch of monitoring rules, where each rule describes An attribute to monitor The conditions which represent an issue The level or levels of severity for the issue When the conditions are met, Ops Center sends a notification and creates an incident. By default, OS instances have three monitoring rules associated with file systems: File System Reachability: Triggers an incident if a file system is not reachable NAS Library Status: Triggers an incident for a value of "WARNING" or "DEGRADED" for a NAS-based file system File System Used Space Percentage: Triggers an incident when file system utilization grows beyond defined thresholds You can view these rules in the Monitoring tab for an OS: Of course, the default monitoring rules is that they apply to every file system associated with an OS instance. As a result, any issue with NAS accessibility or disk utilization will trigger an incident. This can cause incidents for file systems to be reported multiple times if the same shared storage is used by many assets, as shown in this screen shot: Depending on the level of control you'd like, there are a number of ways to fine tune incident reporting. Note that any changes to an asset's monitoring policy will detach it from the default, creating a new monitoring policy for the asset. If you'd like, you can extract a monitoring policy from an asset, which allows you to save it and apply the customized monitoring profile to other OS assets. Solution #1: Modify the Reporting Thresholds In some cases, you may want to modify the basic conditions for incident reporting in your file system. The changes you make to a default monitoring rule will apply to all of the file systems associated with your operating system. Selecting the File Systems Used Space Percentage entry and clicking the "Edit Alert Monitoring Rule Parameters" button opens a pop-up dialog which allows you to modify the rule. The first screen lets you decide when you will check for file system usage, and how long you will wait before opening an incident in Ops Center. By default, Ops Center monitors continuously and reports disk utilization issues which exist for more than 15 minutes. The second screen lets you define actual threshold values. By default, Ops Center opens a Warning level incident is utilization rises above 80%, and a Critical level incident for utilization above 95% Solution #2: Disable Incident Reporting for File System If you'd rather not report file system incidents, you can disable the monitoring rules altogether. In this case, you can select the monitoring rules and click the "Disable Alert Monitoring Rule(s)" button to open the pop-up confirmation dialog. Like the first solution, this option affects all file system monitoring. It allows you to completely disable incident reporting for NAS library status or file system space consumption. Solution #3: Create New Monitoring Rules for Specific File Systems If you'd like to have the greatest flexibility when monitoring file systems, you can create entirely new rules. Clicking the "Add Alert Monitoring Rule" (the icon with the green plus sign) opens a wizard which allows you to define a new rule.  This rule will be based on a threshold, and will be used to monitor operating system assets. We'd like to add a rule to track disk utilization for a specific file system - the /nfs-guest directory. To do this, we specify the following attribute FileSystemUsages.name=/nfs-guest.usedSpacePercentage The value of name in the attribute allows us to define a specific NFS shared directory or file system... in the case of this OS, we could have chosen any of the values shown in the File Systems Utilization chart at the beginning of this article. usedSpacePercentage lets us define a threshold based on the percentage of total disk space used. There are a number of other values that we could use for threshold-based monitoring of FileSystemUsages, including freeSpace freeSpacePercentage totalSpace usedSpace usedSpacePercentage The final sections of the screen allow us to determine when to monitor for disk usage, and how long to wait after utilization reaches a threshold before creating an incident. The next screen lets us define the threshold values and severity levels for the monitoring rule: If historical data is available, Ops Center will display it in the screen. Clicking the Apply button will create the new monitoring rule and active it in your monitoring policy. If you combine this with one of the previous solutions, you can precisely define which file systems will generate incidents and notifications. For example, this monitoring policy has the default "File System Used Space Percentage" rule disabled, but the new rule reports ONLY on utilization for the /nfs-guest directory. Stay Connected: Twitter |  Facebook |  YouTube |  Linkedin |  Newsletter

    Read the article

  • The softer side of BPM

    - by [email protected]
    BPM and RTD are great complementary technologies that together provide a much higher benefit than each of them separately. BPM covers the need for automating processes, making sure that there is uniformity, that rules and regulations are complied with and that the process runs smoothly and quickly processes the units flowing through it. By nature, this automation and unification can lead to a stricter, less flexible process. To avoid this problem it is common to encounter process definition that include multiple conditional branches and human input to help direct processing in the direction that best applies to the current situation. This is where RTD comes into play. The selection of branches and conditions and the optimization of decisions is better left in the hands of a system that can measure the results of its decisions in a closed loop fashion and make decisions based on the empirical knowledge accumulated through observing the running of the process.When designing a business process there are key places in which it may be beneficial to introduce RTD decisions. These are:Thresholds - whenever a threshold is used to determine the processing of a unit, there may be an opportunity to make the threshold "softer" by introducing an RTD decision based on predicted results. For example an insurance company process may have a total claim threshold to initiate an investigation. Instead of having that threshold, RTD could be used to help determine what claims to investigate based on the likelihood they are fraudulent, cost of investigation and effect on processing time.Human decisions - sometimes a process will let the human participants make decisions of flow. For example, a call center process may leave the escalation decision to the agent. While this has flexibility, it may produce undesired results and asymetry in customer treatment that is not based on objective functions but subjective reasoning by the agent. Instead, an RTD decision may be introduced to recommend escalation or other kinds of treatments.Content Selection - a process may include the use of messaging with customers. The selection of the most appropriate message to the customer given the content can be optimized with RTD.A/B Testing - a process may have optional paths for which it is not clear what populations they work better for. Rather than making the arbitrary selection or selection by committee of the option deeped the best, RTD can be introduced to dynamically determine the best path for each unit.In summary, RTD can be used to make BPM based process automation more dynamic and adaptable to the different situations encountered in processing. Effectively making the automation softer, less rigid in its processing.

    Read the article

  • Solving the NP-complete problem in XKCD

    - by Adam Tuttle
    The problem/comic in question: http://xkcd.com/287/ I'm not sure this is the best way to do it, but here's what I've come up with so far. I'm using CFML, but it should be readable by anyone. <cffunction name="testCombo" returntype="boolean"> <cfargument name="currentCombo" type="string" required="true" /> <cfargument name="currentTotal" type="numeric" required="true" /> <cfargument name="apps" type="array" required="true" /> <cfset var a = 0 /> <cfset var found = false /> <cfloop from="1" to="#arrayLen(arguments.apps)#" index="a"> <cfset arguments.currentCombo = listAppend(arguments.currentCombo, arguments.apps[a].name) /> <cfset arguments.currentTotal = arguments.currentTotal + arguments.apps[a].cost /> <cfif arguments.currentTotal eq 15.05> <!--- print current combo ---> <cfoutput><strong>#arguments.currentCombo# = 15.05</strong></cfoutput><br /> <cfreturn true /> <cfelseif arguments.currentTotal gt 15.05> <cfoutput>#arguments.currentCombo# > 15.05 (aborting)</cfoutput><br /> <cfreturn false /> <cfelse> <!--- less than 15.05 ---> <cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br /> <cfset found = testCombo(arguments.currentCombo, arguments.currentTotal, arguments.apps) /> </cfif> </cfloop> </cffunction> <cfset mf = {name="Mixed Fruit", cost=2.15} /> <cfset ff = {name="French Fries", cost=2.75} /> <cfset ss = {name="side salad", cost=3.35} /> <cfset hw = {name="hot wings", cost=3.55} /> <cfset ms = {name="moz sticks", cost=4.20} /> <cfset sp = {name="sampler plate", cost=5.80} /> <cfset apps = [ mf, ff, ss, hw, ms, sp ] /> <cfloop from="1" to="6" index="b"> <cfoutput>#testCombo(apps[b].name, apps[b].cost, apps)#</cfoutput> </cfloop> The above code tells me that the only combination that adds up to $15.05 is 7 orders of Mixed Fruit, and it takes 232 executions of my testCombo function to complete. Is there a better algorithm to come to the correct solution? Did I come to the correct solution?

    Read the article

  • Django: Summing values

    - by Anry
    I have a two Model - Project and Cost. class Project(models.Model): title = models.CharField(max_length=150) url = models.URLField() manager = models.ForeignKey(User) class Cost(models.Model): project = models.ForeignKey(Project) cost = models.FloatField() date = models.DateField() I must return the sum of costs for each project. view.py: from mypm.costs.models import Project, Cost from django.shortcuts import render_to_response from django.db.models import Avg, Sum def index(request): #... return render_to_response('index.html',... How?

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Hanging of host network connections when starting KVM guest on bridge

    - by Chris Phillips
    Hi, I've a KVM system upon which I'm running a network bridge directly between all VM's and a bond0 (eth0, eth1) on the host OS. As such, all machines are presented on the same subnet, available outside of the box. The bond is doing mode 1 active / passive, with an arp_ip_target set to the default gateway, which has caused some issues in itself, but I can't see the bond configs mattering here myself. I'm seeing odd things most times when I stop and start a guest on the platform, in that on the host I lose network connectivity (icmp, ssh) for about 30 seconds. I don't lose connectivity on the other already running VM's though... they can always ping the default GW, but the host can't. I say "about 30 seconds" but from some tests it actually seems to be 28 seconds usually (or at least, I lose 28 pings...) and I'm wondering if this somehow relates to the bridge config. I'm not running STP on the bridge at all, and the forwarding delay is set to 1 second, path cost on the bond0 lowered to 10 and port priority of bond0 also lowered to 1. As such I don't think that the bridge should ever be able to think that bond0 is not connected just fine (as continued guest connectivity implies) yet the IP of the host, which is on the bridge device (... could that matter?? ) becomes unreachable. I'm fairly sure it's about the bridged networking, but at the same time as this happens when a VM is started there are clearly loads of other things also happening so maybe I'm way off the mark. Lack of connectivity: # ping 10.20.11.254 PING 10.20.11.254 (10.20.11.254) 56(84) bytes of data. 64 bytes from 10.20.11.254: icmp_seq=1 ttl=255 time=0.921 ms 64 bytes from 10.20.11.254: icmp_seq=2 ttl=255 time=0.541 ms type=1700 audit(1293462808.589:325): dev=vnet6 prom=256 old_prom=0 auid=42949672 95 ses=4294967295 type=1700 audit(1293462808.604:326): dev=vnet7 prom=256 old_prom=0 auid=42949672 95 ses=4294967295 type=1700 audit(1293462808.618:327): dev=vnet8 prom=256 old_prom=0 auid=42949672 95 ses=4294967295 kvm: 14116: cpu0 unimplemented perfctr wrmsr: 0x186 data 0x130079 kvm: 14116: cpu0 unimplemented perfctr wrmsr: 0xc1 data 0xffdd694a kvm: 14116: cpu0 unimplemented perfctr wrmsr: 0x186 data 0x530079 64 bytes from 10.20.11.254: icmp_seq=30 ttl=255 time=0.514 ms 64 bytes from 10.20.11.254: icmp_seq=31 ttl=255 time=0.551 ms 64 bytes from 10.20.11.254: icmp_seq=32 ttl=255 time=0.437 ms 64 bytes from 10.20.11.254: icmp_seq=33 ttl=255 time=0.392 ms brctl output of relevant bridge: # brctl showstp brdev brdev bridge id 8000.b2e1378d1396 designated root 8000.b2e1378d1396 root port 0 path cost 0 max age 19.99 bridge max age 19.99 hello time 1.99 bridge hello time 1.99 forward delay 0.99 bridge forward delay 0.99 ageing time 299.95 hello timer 0.50 tcn timer 0.00 topology change timer 0.00 gc timer 0.04 flags vnet5 (3) port id 8003 state forwarding designated root 8000.b2e1378d1396 path cost 100 designated bridge 8000.b2e1378d1396 message age timer 0.00 designated port 8003 forward delay timer 0.00 designated cost 0 hold timer 0.00 flags vnet0 (2) port id 8002 state forwarding designated root 8000.b2e1378d1396 path cost 100 designated bridge 8000.b2e1378d1396 message age timer 0.00 designated port 8002 forward delay timer 0.00 designated cost 0 hold timer 0.00 flags bond0 (1) port id 0001 state forwarding designated root 8000.b2e1378d1396 path cost 10 designated bridge 8000.b2e1378d1396 message age timer 0.00 designated port 0001 forward delay timer 0.00 designated cost 0 hold timer 0.00 flags I do see the new port listed as learning, but in line with the forward delay, only for 1 or 2 seconds when polling the brctl output on a loop. All pointers, tips or stabs in the dark appreciated.

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >