Search Results

Search found 383 results on 16 pages for 'isolation'.

Page 16/16 | < Previous Page | 12 13 14 15 16 

  • CodePlex Daily Summary for Thursday, September 20, 2012

    CodePlex Daily Summary for Thursday, September 20, 2012Popular ReleasesSiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.1.2020.421): New features: Disable a specific part of SiteMap to keep the data without displaying them in the CRM application. It simply comments XML part of the sitemap (thanks to rboyers for this feature request) Right click an item and click on "Disable" to disable it Items disabled are greyed and a suffix "- disabled" is added Right click an item and click on "Enable" to enable it Refresh list of web resources in the web resources pickerWPF Animated GIF: WPF Animated GIF 1.2.1: Bug fixes 1275: fixed rendering issues when DisposalMethod = 2 or 3AJAX Control Toolkit: September 2012 Release: AJAX Control Toolkit Release Notes - September 2012 Release Version 60919September 2012 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ...Lib.Web.Mvc & Yet another developer blog: Lib.Web.Mvc 6.1.0: Lib.Web.Mvc is a library which contains some helper classes for ASP.NET MVC such as strongly typed jqGrid helper, XSL transformation HtmlHelper/ActionResult, FileResult with range request support, custom attributes and more. Release contains: Lib.Web.Mvc.dll with xml documentation file Standalone documentation in chm file and change log Library source code Sample application for strongly typed jqGrid helper is available here. Sample application for XSL transformation HtmlHelper/ActionRe...Sense/Net CMS - Enterprise Content Management: SenseNet 6.1.2 Community Edition: Sense/Net 6.1.2 Community EditionMain new featuresOur current release brings a lot of bugfixes, including the resolution of js/css editing cache issues, xlsx file handling from Office, expense claim demo workspace fixes and much more. Besides fixes 6.1.2 introduces workflow start options and other minor features like a reusable Reject client button for approval scenarios and resource editor enhancements. We have also fixed an issue with our install package to bring you a flawless installation...WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.3: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...Python Tools for Visual Studio: 1.5 RC: PTVS 1.5RC Available! We’re pleased to announce the release of Python Tools for Visual Studio 1.5 RC. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including CPython/IronPython, Edit/Intellisense/Debug/Profile, Cloud, HPC, IPython, etc. support. The primary new feature for the 1.5 release is Django including Azure support! The http://www.djangoproject.com is a pop...Launchbar: Lanchbar 4.0.0: First public release.AssaultCube Reloaded: 2.5.4 -: Linux has Ubuntu 11.10 32-bit precompiled binaries and Ubuntu 10.10 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, please wait while we try to package for those OSes. Try to compile it. If it fails, download a virtual machine. The server pack is ready for both Windows and Linux, but you might need to compile your own for Linux (source included) Changelog: New logo Improved airstrike! Reset nukes...Extended WPF Toolkit: Extended WPF Toolkit - 1.7.0: Want an easier way to install the Extended WPF Toolkit?The Extended WPF Toolkit is available on Nuget. What's new in the 1.7.0 Release?New controls Zoombox Pie New features / bug fixes PropertyGrid.ShowTitle property added to allow showing/hiding the PropertyGrid title. Modifications to the PropertyGrid.EditorDefinitions collection will now automatically be applied to the PropertyGrid. Modifications to the PropertyGrid.PropertyDefinitions collection will now be reflected automaticaly...JayData - The cross-platform HTML5 data-management library for JavaScript: JayData 1.2: JayData is a unified data access library for JavaScript to CRUD + Query data from different sources like OData, MongoDB, WebSQL, SqLite, Facebook or YQL. The library can be integrated with Knockout.js or Sencha Touch 2 and can be used on Node.js as well. See it in action in this 6 minutes video Sencha Touch 2 example app using JayData: Netflix browser. What's new in JayData 1.2 For detailed release notes check the release notes. JayData core: all async operations now support promises JayDa...????????API for .Net SDK: SDK for .Net ??? Release 4: 2012?9?17??? ?????,???????????????。 ?????Release 3??????,???????,???,??? ??????????????????SDK,????????。 ??,??????? That's all.VidCoder: 1.4.0 Beta: First Beta release! Catches up to HandBrake nightlies with SVN 4937. Added PGS (Blu-ray) subtitle support. Additional framerates available: 30, 50, 59.94, 60 Additional sample rates available: 8, 11.025, 12 and 16 kHz Additional higher bitrates available for audio. Same as Source Constant Framerate available. Added Apple TV 3 preset. Added new Bob deinterlacing option. Introduced process isolation for encodes. Now if HandBrake crashes, VidCoder will keep running and continue pro...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.02.01: Stabilization release fixed this issues: Links not worked on FF, Chrome and Safari Modified packaging with own manifest file for install and source package. Moved the user Image on the Login to the left side. Moved h2 font-size to 24px. Note : This release Comes w/o source package about we still work an a solution. Who Needs the Visual Studio source files please go to source and download it from there. Known 16 CSS issues that related to the skin.css. All others are DNN default o...Visual Studio Icon Patcher: Version 1.5.1: This fixes a bug in the 1.5 release where it would crash when no language packs were installed for VS2010.VFPX: Desktop Alerts 1.0.2: This update for the Desktop Alerts contains changes to behavior for setting custom sounds for alerts. I have removed ALERTWAV.TXT from the project, and also removed DA_DEFAULTSOUND from the VFPALERT.H file. The AlertManager class and Alert class both have a "default" cSound of ADDBS(JUSTPATH(_VFP.ServerName))+"alert.wav" --- so, as long as you distribute a sound file with the file name "alert.wav" along with the EXE, that file will be used. You can set your own sound file globally by setti...MCEBuddy 2.x: MCEBuddy 2.2.15: Changelog for 2.2.15 (32bit and 64bit) 1. Added support for %originalfilepath% to get the source file full path. Used for custom commands only. 2. Added support for better parsing of Media Portal XML files to extract ShowName and Episode Name and download additional details from TVDB (like Season No, Episode No etc). 3. Added support for TVDB seriesID in metadata 4. Added support for eMail non blocking UI testEmmaClient - Liveresults for Orienteering: EmmaClient 2012-09-13: Minor release with a small fix for producing OS2012 results (and status of runners in the forest)Multiple Image choice custom field type: MultipleImageUpload V1.0: This is the Custom field type which allows the users to choose image as a choice field. This custom field type is SharePoint 2010, install the WSP thru powershell or Stsadm tool and enjoy the functionality...MDS Administration: Version 1.1.3: Fixed Rename issueNew Projects3dxia: bug3dxiaBitbucket Issue Tracker: A simple issue-tracking Windows client for your projects hosted on bitbucket.org.C++ thread-safe logging: Visual Studio C++ log library project: add to your project for thread-safe logging capabilities.Caddies GeoNote: The work started from making a vision for a neighbourhood communication platform, and ended up in creating the version 1.0 of a mobile application – GeoNotes – CodePlexGitHookForAzure: TestCommerce Server Pipeline Log Analyzer: This tool read and analyze pipeline logs under one selected folder. It applies to Microsoft Commerce Server 2002, 2007, 2009 and 2009 R2 Pipeline logs.Contrib.Mod.ResetPassword: Send reset link as a shapeContrib.Taxonomies.ViewExtension: Orchard module that adds a filter box to the taxonomies selector.EasierRdp: This is a remote desktop session management tool which provides an easy way to maintain multiple users and servers' connectionEconomic news grabber: WCF service for get news from rss, news sites and etc. WPF client for presentation this data for end users.Eticaret Sitesi: eee ticFacebook Graph API SDK Helper Class Library: Facebook C# Graph API SDK Helper Class Under developmentfxch01v14: helloKarned 2: Karned est un carnet de pêche informatique. Ce logiciel permet de noter vos prises de pêche à des fins d'analyse, ou simplement pour le souvenir...lixotrash: SandBox and POCs collections, not interesting hereLoggerLib: The project is a "Tracing Library" developed in a Borland C++ enviroment. Il progetto consiste in una libreria di tracciamento, sviluppata in ambiente Borland.LyncTalker: A simple tray application which will speak incoming Lync instant messages.MicroFrameWork: MicroFrameWorkNuzzle: 2.6.5 Dofus EmulatorPDF Merge: PDF Merge is a simple user-friendly application that allows you to merge multiple PDF documents including scanned / imported documents and images into 1 PDF.Pipeline: A library of several lightweight pipeline implementations ("pipes and filters" pattern).Prime Calculator: PrimeCalculator factorizes a number or a math expression into its prime factors or if prime display its prime type [Unit, Prime, Additive, Pure].Racing: not ready yetRuntime DataSet/DataTable viewer: This component basically allows you to inspect the contents of any Data Set or a Data Table at runtime without breaking into the debugger again and again.Service billing: Student group work for the College of West Anglia UCWA. Snake!: A Snake game written in C#SoccerBot: this is just a test projectSQL Server Trace File Import Utility: Command-line utility to import trace files into a data warehouse type structure. Currently it only handles Login events.testscenairo7onv14: helloToQueryString: Serialize any object in C# to a query string with the .ToQueryString() extension method. Supports primitives, strings, arrays and collections.tyajz: tyajz projectWindows Azure Table Storage: you can find all the details in my blog: hhaggan.wordpress.com and if you do have any question or inquiries feel free to contact me at hhaggan@hotmail.comwtcms: wtcms

    Read the article

  • How to configure LocalSessionFactoryBean to release connections after transaction end?

    - by peter
    I am testing an application (Spring 2.5, Hibernate 3.5.0 Beta, Atomikos 3.6.2, and Postgreql 8.4.2) with the configuration for the DAO listed below. The problem that I see is that the pool of 10 connections with the dataSource gets exhausted after the 10's transaction. I know 'hibernate.connection.release_mode' has no effect unless the session is obtained with openSession rather then using a contextual session. I am wandering if anyone has found a way to configure the LocalSessionFactoryBean to release connections after any transaction. Thank you Peter <bean id="dataSource" class="com.atomikos.jdbc.AtomikosDataSourceBean" init-method="init" destroy-method="close"> <property name="uniqueResourceName"><value>XADBMS</value></property> <property name="xaDataSourceClassName"> <value>org.postgresql.xa.PGXADataSource</value> </property> <property name="xaProperties"> <props> <prop key="databaseName">${jdbc.name}</prop> <prop key="serverName">${jdbc.server}</prop> <prop key="portNumber">${jdbc.port}</prop> <prop key="user">${jdbc.username}</prop> <prop key="password">${jdbc.password}</prop> </props> </property> <property name="poolSize"><value>10</value></property> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource"> <ref bean="dataSource" /> </property> <property name="mappingResources"> <list> <value>Abc.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</prop> <prop key="hibernate.show_sql">on</prop> <prop key="hibernate.format_sql">true</prop> <prop key="hibernate.connection.isolation">3</prop> <prop key="hibernate.current_session_context_class">jta</prop> <prop key="hibernate.transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</prop> <prop key="hibernate.transaction.manager_lookup_class">com.atomikos.icatch.jta.hibernate3.TransactionManagerLookup</prop> <prop key="hibernate.connection.release_mode">auto</prop> <prop key="hibernate.transaction.auto_close_session">true</prop> </props> </property> </bean> <!-- Transaction definition here --> <bean id="userTransactionService" class="com.atomikos.icatch.config.UserTransactionServiceImp" init-method="init" destroy-method="shutdownForce"> <constructor-arg> <props> <prop key="com.atomikos.icatch.service"> com.atomikos.icatch.standalone.UserTransactionServiceFactory </prop> </props> </constructor-arg> </bean> <!-- Construct Atomikos UserTransactionManager, needed to configure Spring --> <bean id="AtomikosTransactionManager" class="com.atomikos.icatch.jta.UserTransactionManager" init-method="init" destroy-method="close" depends-on="userTransactionService"> <property name="forceShutdown" value="false" /> </bean> <!-- Also use Atomikos UserTransactionImp, needed to configure Spring --> <bean id="AtomikosUserTransaction" class="com.atomikos.icatch.jta.UserTransactionImp" depends-on="userTransactionService"> <property name="transactionTimeout" value="300" /> </bean> <!-- Configure the Spring framework to use JTA transactions from Atomikos --> <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" depends-on="userTransactionService"> <property name="transactionManager" ref="AtomikosTransactionManager" /> <property name="userTransaction" ref="AtomikosUserTransaction" /> </bean> <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) --> <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <!-- all methods starting with 'get' are read-only --> <tx:method name="get*" read-only="true" propagation="REQUIRED"/> <!-- other methods use the default transaction settings (see below) --> <tx:method name="*" propagation="REQUIRED"/> </tx:attributes> </tx:advice> <aop:config> <aop:advisor pointcut="execution(* *.*.AbcDao.*(..))" advice-ref="txAdvice"/> </aop:config> <!-- DAO objects --> <bean id="abcDao" class="test.dao.impl.HibernateAbcDao" scope="singleton"> <property name="sessionFactory" ref="sessionFactory"/> </bean>

    Read the article

  • Atomikos with Hibernate will exhaust db connections

    - by peter
    I am testing an application (Spring 2.5, Hibernate 3.5.0 Beta, Atomikos 3.6.2, and Postgreql 8.4.2) with the configuration for the DAO listed below. The problem that I see is that the pool of 10 connections with the dataSource gets exhausted after the 10's transaction. I know 'hibernate.connection.release_mode' has no effect unless the session is obtained with openSession rather then using a contextual session. I am wandering if anyone has found a way to instruct atomikos code to release connections after any transaction. Thank you Peter <bean id="dataSource" class="com.atomikos.jdbc.AtomikosDataSourceBean" init-method="init" destroy-method="close"> <property name="uniqueResourceName"><value>XADBMS</value></property> <property name="xaDataSourceClassName"> <value>org.postgresql.xa.PGXADataSource</value> </property> <property name="xaProperties"> <props> <prop key="databaseName">${jdbc.name}</prop> <prop key="serverName">${jdbc.server}</prop> <prop key="portNumber">${jdbc.port}</prop> <prop key="user">${jdbc.username}</prop> <prop key="password">${jdbc.password}</prop> </props> </property> <property name="poolSize"><value>10</value></property> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource"> <ref bean="dataSource" /> </property> <property name="mappingResources"> <list> <value>Abc.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</prop> <prop key="hibernate.show_sql">on</prop> <prop key="hibernate.format_sql">true</prop> <prop key="hibernate.connection.isolation">3</prop> <prop key="hibernate.current_session_context_class">jta</prop> <prop key="hibernate.transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</prop> <prop key="hibernate.transaction.manager_lookup_class">com.atomikos.icatch.jta.hibernate3.TransactionManagerLookup</prop> <prop key="hibernate.connection.release_mode">auto</prop> <prop key="hibernate.current_session_context_class">org.hibernate.context.JTASessionContext</prop> <prop key="hibernate.transaction.auto_close_session">true</prop> </props> </property> </bean> <!-- Transaction definition here --> <bean id="userTransactionService" class="com.atomikos.icatch.config.UserTransactionServiceImp" init-method="init" destroy-method="shutdownForce"> <constructor-arg> <props> <prop key="com.atomikos.icatch.service"> com.atomikos.icatch.standalone.UserTransactionServiceFactory </prop> </props> </constructor-arg> </bean> <!-- Construct Atomikos UserTransactionManager, needed to configure Spring --> <bean id="AtomikosTransactionManager" class="com.atomikos.icatch.jta.UserTransactionManager" init-method="init" destroy-method="close" depends-on="userTransactionService"> <property name="forceShutdown" value="false" /> </bean> <!-- Also use Atomikos UserTransactionImp, needed to configure Spring --> <bean id="AtomikosUserTransaction" class="com.atomikos.icatch.jta.UserTransactionImp" depends-on="userTransactionService"> <property name="transactionTimeout" value="300" /> </bean> <!-- Configure the Spring framework to use JTA transactions from Atomikos --> <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" depends-on="userTransactionService"> <property name="transactionManager" ref="AtomikosTransactionManager" /> <property name="userTransaction" ref="AtomikosUserTransaction" /> </bean> <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) --> <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <!-- all methods starting with 'get' are read-only --> <tx:method name="get*" read-only="true" propagation="REQUIRED"/> <!-- other methods use the default transaction settings (see below) --> <tx:method name="*" propagation="REQUIRED"/> </tx:attributes> </tx:advice> <aop:config> <aop:advisor pointcut="execution(* *.*.AbcDao.*(..))" advice-ref="txAdvice"/> </aop:config> <!-- DAO objects --> <bean id="abcDao" class="test.dao.impl.HibernateAbcDao" scope="singleton"> <property name="sessionFactory" ref="sessionFactory"/> </bean>

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Wireless access point -> Powerline -> Router -> Internet, should this work?

    - by Anthony
    My network at home used to be a laptop and desktop connected wirelessly to a single Wireless ADSL router, a Cisco 877W. Wireless reception around the house with this setup was quite unreliable, so I've gone about looking to improve it. I purchased some Belkin Gigabit powerline adapters and I've got these working fine. I can hook a computer up to one of the powerline adapters, and with the other one plugged into the ADSL router the computer has internet access. Additionally I can hook a Netgear DG834G Wireless ADSL router into it with the adsl not plugged in, and after turning off DHCP can RJ45 a computer up to the network. Everything works fine. However, if I setup a wireless network on the Netgear then any computer that connects wirelessly to it cannot access the internet. It gets an IP address very slowly via DHCP which is a good one, but it cannot access the internet. It can however communicate with the RJ45'd computer also connected to the Netgear. I wondered whether this could be a problem with the Netgear so I've borrowed a Cisco Aironet 1200 and got this working fine when it's attached directly to the primary ADSL router. I can connect to it wireless and get onto the internet. However, if I then plug it into the Netgear I can communicate with other devices attached to the Netgear, but can't get any further than the Netgear. All the while though the other devices RJ45'd to the Netgear are communicating with the internet just fine. I'm starting to suspect it's one of two things causing the problem: 1) For some reason the belkin powerline adapters don't like carrying wireless-originating signals. Could this be possible? 2) The primary Cisco ADSL router doesn't want to communicate with other devices on my network more than one hop away from it. I'm making an assumption here that within the Netgear box the wireless and wired sides are handled differently. Could this be true? Has anyone successfully setup something similar to what I'm trying, with a wireless device on the otherside of a pair of powerline connectors? Update 06/07/2010 - Response to irrational John 28 June Thanks for the answer John - and for clearing up some of my questions. The model number of the belkin powerline adapters are F5D4076. Security was apparently enabled by default on them, and I didn't change them from their default setting. The network diagram in your answer shows exactly what I'm trying to setup: I've followed that guide and I'm still not able to get things working properly. The thing that perplexes me is that wired network traffic works just fine - it's only the wireless traffic that doesn't. This is with the same laptop, and the same DHCP or static IPs. "1. What IP addresses did you assign to each router? What subnet masks are you using?" - subnet is 255.255.255.0, the router connected to the adsl is 192.168.153.1 and that has the DHCP server. The access point on the other side of the powerline adapters I've tried both a static IP of 192.168.153.110, same subnet, and a DHCP-assigned IP. The other devices are DHCP, although I also tried manually entering IP settings. "2. Have you correctly enabled DHCP on only one of the routers and disabled it on all the others?" Yes I have - only the internet-connected router has DHCP enabled. The IP range for the DHCP is from 192.168.153.11 - 192.168.153.200. The strange thing is that wired connections work fine on the LAN, plugged into any router, work fine - it's only the wireless connections that aren't working when they're plugged into the non-primary AP. "Since the routers you are using appear to integrate an ADSL modem I'm assuming there is no WAN port on them." There's no NAT within the LAN, and all wired connections are connected to LAN ports. It's something wrong with the wireless - wired works fine throughout the whole LAN. Update 06/07/2010 - Response to irrational John 29 June The diagram you've drawn in your answer shows pretty much exactly what I'm trying to do. I've spent another evening trying different things and made some progress but I'm still scratching my head. I've borrowed a Netgear access point and been trying with this, and the strange thing is that my PC is working now - this is a Windows 7 PC connected to the access point in the position of where the DG834G is in the diagram. Meanwhile, however, I have an old Powerbook G4 12" I use for music, and while that has a DHCP-assigned IP address, it's not getting any network throughput to either LAN or internet addresses. To make matters more strange, my phone appears to be intermittently working when it's on the wifi. The access point is a Netgear WPN802v1, DHCP, NAT both switched off, running firmware 2.0.9.0. Last night I set it up with exactly the same settings, and similar to tonight I could get a couple of devices to work, and a couple not to. By the morning, however, everything had stopped working - nothing could get a DHCP IP address. I rebooted the 877W earlier this evening and I'm wondering whether this is why a few things are working now. "Could it be possible that the issue could be with the 877W?" I didn't configure this - is it possible that the DHCP server only likes assigning devices that are immediately attached to it? Or similar, could a firewall be stopping too many addresses that are coming through one device? (ie. the Access Point) This could explain why devices are working at the start but then not by the end. In reply to your questions, "1. I looked at the Netgear DG834G support page. There are five versions of this router. Which version do you have? Netgear usually lists this on the label on the bottom of the router. What version of the firmware does it have?" It's a DG834Gv3, and the firmware is the last on the netgear site version 4.01.40. "3. Not knowing which version you have, I glanced at the reference manual for the DG834G v3. In the section for Wireless Settings under the subsection Wireless Access Point there is a check box for a Wireless Isolation setting. If you have this setting it should be off/unchecked. If it is checked then any device connected via wireless would not be able to talk to any other device on the LAN. This sounds like your problem so maybe this is the cause?" I've checked this and it's switched off. I've made a change to the IP of the access point to something outside the DHCP range - it's now 192.158.153.5, with DHCP starting at 11 and going up to 254. Thanks for the tip about this - I only have a few devices so wouldn't anticipate the DHCP server assigning up to 110, but better safe than sorry. Finally one more thing I thought I should add, is with the Powerbook G4 that's not working - it's getting a DHCP IP address and it can communicate with the WPN802 as I can visit the administration page. Anything further than this, however, it can't reach; I can't administrate the 192.168.153.1 (877W router). Strangely, however, when I open Finder on the same powerbook it's detecting my NAS which is attached directly via wire to the 877W. If I try to browse it, it says connection failed. RE: "Perhaps the problem with your Powerbook is with DNS?.." The IP settings on the powerbook are identical to that of the PC with the exception of the IP address; the PC is 192.168.153.17 and the powerbook is 192.168.153.12. Subnets are the same, 255.255.255.0 and default gateway is the same, .1, and the DNS servers are the same. I administrate the 877W by going to 192.168.153.1 in the browser. This is what isn't working from the Powerbook, despite the PC working fine when I do the same. Meanwhile, however, I can administrate the AP on 192.168.153.5 from both PC and Powerbook Update 06/07/2010 - FINAL RESOLUTION of sorts: First off, sorry for the length of this question. I need start to practice a more concise writing style, so I'm going to try to keep this bit brief. After much fiddling, and with the hugely-appreciated help of irrational John, I have come to the conclusion that it's something wrong with the powerbook. I believe that this was perhaps the reason I doubted things worked at the very beginning. I now have the original DG834Gv3 running both wirelessly and wired, and both wired devices and wireless devices get internet connectivity. The only anomaly is the powerbook which I've had to keep wired, as no matter what I do it refuses to work wirelessly. I still have suspicions that the 877W isn't quite right; I'm fairly sure that if I RJ45 the powerline adapter into a different LAN port on it then everything will break. I've just about run out of patience to test this further, and I think I need to go into the 877W's config to match the 877w's lan port's settings. I'm accepting irrational John's answer as he's been enormously helpful, way above the call of duty, and for this line he wrote: Beats the heck out of me. which in the midst of great frustration made me chuckle, and for a sentence in one of his comments to the same answer: If it is specific to the Powerbook I would put that issue aside until after you feel you have the rest of your LAN and the additional WAP all working together correctlyt It was this second sentence that made me put the powerbook aside and concentrate on the other devices that ultimately led me to getting things working.

    Read the article

  • Committed JDO writes do not apply on local GAE HRD, or possibly reused transaction

    - by eeeeaaii
    I'm using JDO 2.3 on app engine. I was using the Master/Slave datastore for local testing and recently switched over to using the HRD datastore for local testing, and parts of my app are breaking (which is to be expected). One part of the app that's breaking is where it sends a lot of writes quickly - that is because of the 1-second limit thing, it's failing with a concurrent modification exception. Okay, so that's also to be expected, so I have the browser retry the writes again later when they fail (maybe not the best hack but I'm just trying to get it working quickly). But a weird thing is happening. Some of the writes which should be succeeding (the ones that DON'T get the concurrent modification exception) are also failing, even though the commit phase completes and the request returns my success code. I can see from the log that the retried requests are working okay, but these other requests that seem to have committed on the first try are, I guess, never "applied." But from what I read about the Apply phase, writing again to that same entity should force the apply... but it doesn't. Code follows. Some things to note: I am attempting to use automatic JDO caching. So this is where JDO uses memcache under the covers. This doesn't actually work unless you wrap everything in a transaction. all the requests are doing is reading a string out of an entity, modifying part of the string, and saving that string back to the entity. If these requests weren't in transactions, you'd of course have the "dirty read" problem. But with transactions, isolation is supposed to be at the level of "serializable" so I don't see what's happening here. the entity being modified is a root entity (not in a group) I have cross-group transactions enabled Another weird thing is happening. If the concurrent modification thing happens, and I subsequently edit more than 5 more entities (this is the max for cross-group transactions), then nothing happens right away, but when I stop and restart the server I get "IllegalArgumentException: operating on too many entity groups in a single transaction". Could it be possible that the PMF is returning the same PersistenceManager every time, or the PM is reusing the same transaction every time? I don't see how I could possibly get the above error otherwise. The code inside the transaction just edits one root entity. I can't think of any other way that GAE would give me the "too many entity groups" error. The relevant code (this is a simplified version) PersistenceManager pm = PMF.getManager(); Transaction tx = pm.currentTransaction(); String responsetext = ""; try { tx.begin(); // I have extra calls to "makePersistent" because I found that relying // on pm.close didn't always write the objects to cache, maybe that // was only a DataNucleus 1.x issue though Key userkey = obtainUserKeyFromCookie(); User u = pm.getObjectById(User.class, userkey); pm.makePersistent(u); // to make sure it gets cached for next time Key mapkey = obtainMapKeyFromQueryString(); // this is NOT a java.util.Map, just FYI Map currentmap = pm.getObjectById(Map.class, mapkey); Text mapData = currentmap.getMapData(); // mapData is JSON stored in the entity Text newMapData = parseModifyAndReturn(mapData); // transform the map currentmap.setMapData(newMapData); // mutate the Map object pm.makePersistent(currentmap); // make sure to persist so there is a cache hit tx.commit(); responsetext = "OK"; } catch (JDOCanRetryException jdoe) { // log jdoe responsetext = "RETRY"; } catch (Exception e) { // log e responsetext = "ERROR"; } finally { if (tx.isActive()) { tx.rollback(); } pm.close(); } resp.getWriter().println(responsetext); EDIT: so I have verified that it fails after exactly 5 transactions. Here's what I do: I create a Foo (root entity), do a bunch of concurrent operations on that Foo, and some fail and get retried, and some commit but don't apply (as described above). Then, I start creating more Foos, and do a few operations on those new Foos. If I only create four Foos, stopping and restarting app engine does NOT give me the IllegalArgumentException. However if I create five Foos (which is the limit for cross-group transactions), then when I stop and restart app engine, I do get the exception. So it seems that somehow these new Foos I am creating are counting toward the limit of 5 max entities per transaction, even though they are supposed to be handled by separate transactions. It's as if a transaction is still open and is being reused by the servlet when it handles the new requests for the 2nd through 5th Foos. EDIT2: it looks like the IllegalArgument thing is independent of the other bug. In other words, it always happens when I create five Foos, even if I don't get the concurrent modification exception. I don't know if it's a symptom of the same problem or if it's unrelated. EDIT3: I found out what was causing the (unrelated) IllegalArgumentException, it was a dumb mistake on my part. But the other issue is still happening. EDIT4: added pseudocode for the datastore access EDIT5: I am pretty sure I know why this is happening, but I will still award the bounty to anyone who can confirm it. Basically, I think the problem is that transactions are not really implemented in the local version of the datastore. References: https://groups.google.com/forum/?fromgroups=#!topic/google-appengine-java/gVMS1dFSpcU https://groups.google.com/forum/?fromgroups=#!topic/google-appengine-java/deGasFdIO-M https://groups.google.com/forum/?hl=en&fromgroups=#!msg/google-appengine-java/4YuNb6TVD6I/gSttMmHYwo0J Because transactions are not implemented, rollback is essentially a no-op. Therefore, I get a dirty read when two transactions try to modify the record at the same time. In other words, A reads the data and B reads the data at the same time. A attempts to modify the data, and B attempts to modify a different part of the data. A writes to the datastore, then B writes, obliterating A's changes. Then B is "rolled back" by app engine, but since rollbacks are a no-op when running on the local datastore, B's changes stay, and A's do not. Meanwhile, since B is the thread that threw the exception, the client retries B, but does not retry A (since A was supposedly the transaction that succeeded).

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

< Previous Page | 12 13 14 15 16