Search Results

Search found 2726 results on 110 pages for 'processor'.

Page 16/110 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Questioning one of the arguments for dependency injection: Why is creating an object graph hard?

    - by oberlies
    Dependency injection frameworks like Google Guice give the following motivation for their usage (source): To construct an object, you first build its dependencies. But to build each dependency, you need its dependencies, and so on. So when you build an object, you really need to build an object graph. Building object graphs by hand is labour intensive (...) and makes testing difficult. But I don't buy this argument: Even without dependency injection, I can write classes which are both easy to instantiate and convenient to test. E.g. the example from the Guice motivation page could be rewritten in the following way: class BillingService { private final CreditCardProcessor processor; private final TransactionLog transactionLog; // constructor for tests, taking all collaborators as parameters BillingService(CreditCardProcessor processor, TransactionLog transactionLog) { this.processor = processor; this.transactionLog = transactionLog; } // constructor for production, calling the (productive) constructors of the collaborators public BillingService() { this(new PaypalCreditCardProcessor(), new DatabaseTransactionLog()); } public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) { ... } } So there may be other arguments for dependency injection (which are out of scope for this question!), but easy creation of testable object graphs is not one of them, is it?

    Read the article

  • Running Solaris 11 as a control domain on a T2000

    - by jsavit
    There is increased adoption of Oracle Solaris 11, and many customers are deploying it on systems that previously ran Solaris 10. That includes older T1-processor based systems like T1000 and T2000. Even though they are old (from 2005) and don't have the performance of current SPARC servers, they are still functional, stable servers that customers continue to operate. One reason to install Solaris 11 on them is that older machines are attractive for testing OS upgrades before updating current, production systems. Normally this does not present a challenge, because Solaris 11 runs on any T-series or M-series SPARC server. One scenario adds a complication: running Solaris 11 in a control domain on a T1000 or T2000 hosting logical domains. Solaris 11 pre-installed Oracle VM Server for SPARC incompatible with T1 Unlike Solaris 10, Solaris 11 comes with Oracle VM Server for SPARC preinstalled. The ldomsmanager package contains the logical domains manager for Oracle VM Server for SPARC 2.2, which requires a SPARC T2, T2+, T3, or T4 server. It does not work with T1-processor systems, which are only supported by LDoms Manager 1.2 and earlier. The following screenshot shows what happens (bold font) if you try to use Oracle VM Server for SPARC 2.x commands in a Solaris 11 control domain. The commands were issued in a control domain on a T2000 that previously ran Solaris 10. We also display the version of the logical domains manager installed in Solaris 11: root@t2000 psrinfo -vp The physical processor has 4 virtual processors (0-3) UltraSPARC-T1 (chipid 0, clock 1200 MHz) # prtconf|grep T SUNW,Sun-Fire-T200 # ldm -V Failed to connect to logical domain manager: Connection refused # pkg info ldomsmanager Name: system/ldoms/ldomsmanager Summary: Logical Domains Manager Description: LDoms Manager - Virtualization for SPARC T-Series Category: System/Virtualization State: Installed Publisher: solaris Version: 2.2.0.0 Build Release: 5.11 Branch: 0.175.0.8.0.3.0 Packaging Date: May 25, 2012 10:20:48 PM Size: 2.86 MB FMRI: pkg://solaris/system/ldoms/[email protected],5.11-0.175.0.8.0.3.0:20120525T222048Z The 2.2 version of the logical domains manager will have to be removed, and 1.2 installed, in order to use this as a control domain. Preparing to change - create a new boot environment Before doing anything else, lets create a new boot environment: # beadm list BE Active Mountpoint Space Policy Created -- ------ ---------- ----- ------ ------- solaris NR / 2.14G static 2012-09-25 10:32 # beadm create solaris-1 # beadm activate solaris-1 # beadm list BE Active Mountpoint Space Policy Created -- ------ ---------- ----- ------ ------- solaris N / 4.82M static 2012-09-25 10:32 solaris-1 R - 2.14G static 2012-09-29 11:40 # init 0 Normally an init 6 to reboot would have been sufficient, but in the next step I reset the system anyway in order to put the system in factory default mode for a "clean" domain configuration. Preparing to change - reset to factory default There was a leftover domain configuration on the T2000, so I reset it to the factory install state. Since the ldm command is't working yet, it can't be done from the control domain, so I did it by logging onto to the service processor: $ ssh -X admin@t2000-sc Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. Oracle Advanced Lights Out Manager CMT v1.7.9 Please login: admin Please Enter password: ******** sc> showhost Sun-Fire-T2000 System Firmware 6.7.10 2010/07/14 16:35 Host flash versions: OBP 4.30.4.b 2010/07/09 13:48 Hypervisor 1.7.3.c 2010/07/09 15:14 POST 4.30.4.b 2010/07/09 14:24 sc> bootmode config="factory-default" sc> poweroff Are you sure you want to power off the system [y/n]? y SC Alert: SC Request to Power Off Host. SC Alert: Host system has shut down. sc> poweron SC Alert: Host System has Reset At this point I rebooted into the new Solaris 11 boot environment, and Solaris commands showed it was running on the factory default configuration of a single domain owning all 32 CPUs and 32GB of RAM (that's what it looked like in 2005.) # psrinfo -vp The physical processor has 8 cores and 32 virtual processors (0-31) The core has 4 virtual processors (0-3) The core has 4 virtual processors (4-7) The core has 4 virtual processors (8-11) The core has 4 virtual processors (12-15) The core has 4 virtual processors (16-19) The core has 4 virtual processors (20-23) The core has 4 virtual processors (24-27) The core has 4 virtual processors (28-31) UltraSPARC-T1 (chipid 0, clock 1200 MHz) # prtconf|grep Mem Memory size: 32640 Megabytes Note that the older processor has 4 virtual CPUs per core, while current processors have 8 per core. Remove ldomsmanager 2.2 and install the 1.2 version The Solaris 11 pkg command is now used to remove the 2.2 version that shipped with Solaris 11: # pkg uninstall ldomsmanager Packages to remove: 1 Create boot environment: No Create backup boot environment: No Services to change: 2 PHASE ACTIONS Removal Phase 130/130 PHASE ITEMS Package State Update Phase 1/1 Package Cache Update Phase 1/1 Image State Update Phase 2/2 Finally, LDoms 1.2 installed via its install script, the same way it was done years ago: # unzip LDoms-1_2-Integration-10.zip # cd LDoms-1_2-Integration-10/Install/ # ./install-ldm Welcome to the LDoms installer. You are about to install the Logical Domains Manager package that will enable you to create, destroy and control other domains on your system. Given the capabilities of the LDoms domain manager, you can now change the security configuration of this Solaris instance using the Solaris Security Toolkit. ... ... normal install messages omitted ... The Solaris Security Toolkit applies to Solaris 10, and cannot be used in Solaris 11 (in which several things hardened by the Toolkit are already hardened by default), so answer b in the choice below: You are about to install the Logical Domains Manager package that will enable you to create, destroy and control other domains on your system. Given the capabilities of the LDoms domain manager, you can now change the security configuration of this Solaris instance using the Solaris Security Toolkit. Select a security profile from this list: a) Hardened Solaris configuration for LDoms (recommended) b) Standard Solaris configuration c) Your custom-defined Solaris security configuration profile Enter a, b, or c [a]: b ... other install messages omitted for brevity... After install I ensure that the necessary services are enabled, and verify the version of the installed LDoms Manager: # svcs ldmd STATE STIME FMRI online 22:00:36 svc:/ldoms/ldmd:default # svcs vntsd STATE STIME FMRI disabled Aug_19 svc:/ldoms/vntsd:default # ldm -V Logical Domain Manager (v 1.2-debug) Hypervisor control protocol v 1.3 Using Hypervisor MD v 1.1 System PROM: Hypervisor v. 1.7.3. @(#)Hypervisor 1.7.3.c 2010/07/09 15:14\015 OpenBoot v. 4.30.4. @(#)OBP 4.30.4.b 2010/07/09 13:48 Set up control domain and domain services At this point we have a functioning LDoms 1.2 environment that can be configured in the usual fashion. One difference is that LDoms 1.2 behavior had 'delayed configuration mode (as expected) during initial configuration before rebooting the control domain. Another minor difference with a Solaris 11 control domain is that you define virtual switches using the 'vanity name' of the network interface, rather than the hardware driver name as in Solaris 10. # ldm list ------------------------------------------------------------------------------ Notice: the LDom Manager is running in configuration mode. Configuration and resource information is displayed for the configuration under construction; not the current active configuration. The configuration being constructed will only take effect after it is downloaded to the system controller and the host is reset. ------------------------------------------------------------------------------ NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- SP 32 32640M 3.2% 4d 2h 50m # ldm add-vdiskserver primary-vds0 primary # ldm add-vconscon port-range=5000-5100 primary-vcc0 primary # ldm add-vswitch net-dev=net0 primary-vsw0 primary # ldm set-mau 2 primary # ldm set-vcpu 8 primary # ldm set-memory 4g primary # ldm add-config initial # ldm list-spconfig factory-default initial [current] That's it, really. After reboot, we are ready to install guest domains. Summary - new wine in old bottles This example shows that (new) Solaris 11 can be installed on (old) T2000 servers and used as a control domain. The main activity is to remove the preinstalled Oracle VM Server for 2.2 and install Logical Domains 1.2 - the last version of LDoms to support T1-processor systems. I tested Solaris 10 and Solaris 11 guest domains running on this server and they worked without any surprises. This is a viable way to get further into Solaris 11 adoption, even on older T-series equipment.

    Read the article

  • User defined type for healthcare / Medical Records variable name prefixes?

    - by Peter Turner
    I was reading Code Complete regarding variable naming in trying to find an answer to this question and stumbled on a table of commonly accepted prefixes for programming word processor software. Well, I'm not a word processor software programmer, but if I was, I'd be happy to use those user defined types. Since I'm a programmer for a smallish healthcare ISV, and have no contact with the larger community of healthcare software programmers (other than the neglected and forsaken HealthCareIT.SE where I never had the chance to ask this question). I want to know if there is a coding convention for medical records. Like Patient = pnt and Chart = chrt and Medication = med or mdctn or whatever. I'm not talking full on hungarian notation, but just a standard that would fit in code complete in place of that wonderful chart of word processor UDT's which are of so little use to me.

    Read the article

  • Cursor freezes for 5 secs every now and then

    - by user20560
    I've installed Ubuntu 11.04 (64bit) on my new Thinkpad Edge 11 laptop from Lenovo with the following specs: Processor type AMD Athlon II Neo Processor Speed 1.8 GHz Memory Type DDR3 SDRAM RAM 2048 MB Hard Drive Type HDD Harddisk 250 GB Grafic processor ATI Mobility Radeon HD 6310 Ubuntu has found all my hardware and it works perfectly. I have one irritating problem though: From time to time (sometimes every minute, other times every hour)the cursor freezes for about 5 sec. This happens independently from the number of processes running on the laptop. It's only the cursor that freezes - I can still tab between windows and use the keyboard. I've installed GPointingDeviceSettings, activating the trackpoint, which btw works perfectly. Also I have installed the ATI Catalyst proprietary display driver. Anyone has an idea of whats wrong? Thank you in advance Best regards, Jens

    Read the article

  • Architecture - 32-bit handling 64-bit instructions

    - by tkoomzaaskz
    tomasz@tomasz-lenovo-ideapad-Y530:~$ lscpu Architecture: i686 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Thread(s) per core: 1 Core(s) per socket: 2 Socket(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 23 Stepping: 6 CPU MHz: 2000.000 BogoMIPS: 4000.12 Cache L1d: 32K Cache L1i: 32K Cache L2: 3072K I can see that my architecture is 32-bit (i686). But CPU op-mode(s) are 32-bit and 64-bit. The question is: how come? How is it handled that a 32-bit processor performs 64-bit operations? I guess it's a lot slower than native 32-bit operations. Is it built-in processor functionality (to emulate being 64-bit) or is it software dependent? When does it make sense for a 32-bit processor to run 64-bit operations?

    Read the article

  • ubuntu 14.04 slow

    - by TURN A
    so i upgraded to ubuntu 14.04 from 12.04 with a usb but i have internet ,my computer is really slow at 1024x768 definition ,everything works super slow ,windows closing and opening and streaming videos ,everything ive used so far.but it works fine at 800x600 definition ,i want it to be fine at the higher definition ,how do i make it run well at 1024x768 ? in additional drivers nothing shows ,and my computer mirrors by default for some reason ,i tried stopping it from mirroring but most buttons dont want to work and weird glitches happen ,the system doesnt work well when not mirroring , i dont care if it mirrors or not i just want good performance .thank you in advance for any answers !! here are the computer specs Processor 1.8 GHz 8032 RAM 2 GB DDR3 Memory Speed 1066 MHz Hard Drive 32 GB Graphics Coprocessor Graphics Media Accelerator HD Wireless Type 802.11B, 802.11G, 802.11n Number of USB 2.0 Ports 4 Expand Other Technical Details Brand Name Asus Item model number EB1030-B003L Hardware Platform Linux Operating System Ubuntu Item Weight 1.5 pounds Item Dimensions L x W x H 1.14 x 6.70 x 8.60 inches Color Black Processor Brand Intel Processor Count 1 Computer Memory Type DDR3 SDRAM Flash Memory Size 32 Hard Drive Interface Solid State Optical Drive Type No

    Read the article

  • Realtek RTL8111/8168B wired network doesn't work anymore

    - by Radar4002
    This sounds like it's a common problem upgrading 11.04, but I am having trouble finding a common solution, and one that will work for me. I just applied updates via the update manager and now my wired network connection is down. I know Ubuntu network settings is the issue, because I have a dual-boot with Win 7 and my network/internet is fine on Win 7. I don't know too much about networking, so what can I do to trouble shoot this issue? I can choose an older grub version, 2.6.38-8 instead of 2.6.38-11 and this does not resolve the issue. Here is my lspci result: 00:00.0 Host bridge: ATI Technologies Inc RD890 Northbridge only single slot PCI-e GFX Hydra part (rev 02) 00:02.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (PCI express gpp port B) 00:04.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (PCI express gpp port D) 00:05.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (PCI express gpp port E) 00:06.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (PCI express gpp port F) 00:07.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (PCI express gpp port G) 00:09.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (PCI express gpp port H) 00:0a.0 PCI bridge: ATI Technologies Inc RD890 PCI to PCI bridge (external gfx1 port A) 00:11.0 SATA controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 SATA Controller [IDE mode] (rev 40) 00:12.0 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB OHCI0 Controller 00:12.2 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB EHCI Controller 00:13.0 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB OHCI0 Controller 00:13.2 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB EHCI Controller 00:14.0 SMBus: ATI Technologies Inc SBx00 SMBus Controller (rev 41) 00:14.1 IDE interface: ATI Technologies Inc SB7x0/SB8x0/SB9x0 IDE Controller (rev 40) 00:14.2 Audio device: ATI Technologies Inc SBx00 Azalia (Intel HDA) (rev 40) 00:14.3 ISA bridge: ATI Technologies Inc SB7x0/SB8x0/SB9x0 LPC host controller (rev 40) 00:14.4 PCI bridge: ATI Technologies Inc SBx00 PCI to PCI Bridge (rev 40) 00:14.5 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB OHCI2 Controller 00:15.0 PCI bridge: ATI Technologies Inc Device 43a0 00:16.0 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB OHCI0 Controller 00:16.2 USB Controller: ATI Technologies Inc SB7x0/SB8x0/SB9x0 USB EHCI Controller 00:18.0 Host bridge: Advanced Micro Devices [AMD] Family 10h Processor HyperTransport Configuration 00:18.1 Host bridge: Advanced Micro Devices [AMD] Family 10h Processor Address Map 00:18.2 Host bridge: Advanced Micro Devices [AMD] Family 10h Processor DRAM Controller 00:18.3 Host bridge: Advanced Micro Devices [AMD] Family 10h Processor Miscellaneous Control 00:18.4 Host bridge: Advanced Micro Devices [AMD] Family 10h Processor Link Control 01:00.0 VGA compatible controller: ATI Technologies Inc Juniper [Radeon HD 5700 Series] 01:00.1 Audio device: ATI Technologies Inc Juniper HDMI Audio [Radeon HD 5700 Series] 02:00.0 USB Controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) 05:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 03) 06:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 03) 07:00.0 SATA controller: JMicron Technology Corp. JMB362/JMB363 Serial ATA Controller (rev 03) 07:00.1 IDE interface: JMicron Technology Corp. JMB362/JMB363 Serial ATA Controller (rev 03) 08:0e.0 FireWire (IEEE 1394): Texas Instruments TSB43AB23 IEEE-1394a-2000 Controller (PHY/Link) 09:00.0 SATA controller: JMicron Technology Corp. JMB362/JMB363 Serial ATA Controller (rev 02) 09:00.1 IDE interface: JMicron Technology Corp. JMB362/JMB363 Serial ATA Controller (rev 02) Here is my sudo lshw -class network: *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:05:00.0 logical name: eth0 version: 03 serial: 6c:f0:49:e7:72:e8 size: 10Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:40 ioport:9e00(size=256) memory:fceff000-fcefffff memory:fcef8000-fcefbfff memory:fce00000-fce1ffff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:06:00.0 logical name: eth1 version: 03 serial: 6c:f0:49:e7:72:ea size: 10Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:47 ioport:8e00(size=256) memory:fddff000-fddfffff memory:fddf8000-fddfbfff memory:fdd00000-fdd1ffff

    Read the article

  • World Record Siebel PSPP Benchmark on SPARC T4 Servers

    - by Brian
    Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers. The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users. This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour. The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers. Performance Landscape Systems Txn/hr Users Call Center Order Management Response Times (sec) 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web 3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB 239,748 29,000 0.165 0.925 Oracle: Call Center + Order Management Transactions: 197,128 + 42,620 Users: 20300 + 8700 Configuration Summary Web Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 10 8/11 iPlanet Web Server 7 Application Server Configuration: 3 x SPARC T4-2 servers, each with 2 x SPARC T4 processor, 2.85 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 10 8/11 Siebel CRM 8.1.1.5 SIA Database Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.2) Storage Configuration: 1 x Sun Storage F5100 Flash Array 80 x 24 GB flash modules Benchmark Description Siebel 8.1 PSPP benchmark includes Call Center and Order Management: Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling. High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively. Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process. High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively. Key Points and Best Practices No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects. See Also Siebel White Papers SPARC T4-1 Server oracle.com OTN SPARC T4-2 Server oracle.com OTN Siebel CRM oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • How do I set the encoding statement in the XML declaration when performing an XSL transformation usi

    - by aspiehler
    I wrote a simple package installer in WinBatch that needs to update an XML file with information about the package contents. My first stab at it involved loading the file with Msxml2.DOMDocument, adding nodes and data as required, then saving the data back to disk. This worked well enough, except that it would not create tab and CR/LF whitespace in the new data. The solution I came up with was writing an XSL stylesheet that would recreate the XML file with whitespace added back in. I'm doing this by: loading the XSL file into an Msxml2.FreeThreadedDOMDocument object setting that object as the stylesheet property of an Msxml2.XSLTemplate object creating an XSL processor via Msxml2.XSLTemplate.createProcessor() setting my original Msxml2.DOMDocument as the input property of the XSL processor Calling transform() method of the XSL processor, and saving the output to a file. This works as for as reformatting the XML file with tabs and carriage returns, but my XML declaration comes out either as <?xml version="1.0"?> or <?xml version="1.0" encoding="UTF-16"?> depending on whether I used Msxml2.*.6.0 or Msxml2.* objects (a fall back if the system doesn't have 6.0). If the encoding is set to UTF-16, Msxml12.DOMDocument complains about trying to convert UTF-16 to 1-byte encoding the next time I run my package installer. I've tried creating and adding an XML declaration using both createProcessingInstruction() to both the XML and XSL DOM objects, but neither one seems to affect the output of the XSLTemplate processor. I've also set encoding to UTF-8 in the <xsl:output/> tag in my XSL file. Here is the relevant code in my Winbatch script: xmlDoc = ObjectCreate("Msxml2.DOMDocument.6.0") if !xmlDoc then xmlDoc = ObjectCreate("Msxml2.DOMDocument") xmlDoc.async = @FALSE xmlDoc.validateOnParse = @TRUE xmlDoc.resolveExternals = @TRUE xmlDoc.preserveWhiteSpace = @TRUE xmlDoc.setProperty("SelectionLanguge", "XPath") xmlDoc.setProperty("SelectionNamespaces", "xmlns:fns='http://www.abc.com/f_namespace'") xmlDoc.load(xml_file_path) xslStyleSheet = ObjectCreate("Msxml2.FreeThreadedDOMDocument.6.0") if !xslStyleSheet then xslStyleSheet = ObjectCreate("Msxml2.FreeThreadedDOMDocument") xslStyleSheet.async = @FALSE xslStyleSheet.validateOnParse = @TRUE xslStyleSheet.load(xsl_style_sheet_path) xslTemplate = ObjectCreate("Msxml2.XSLTemplate.6.0") if !xslTemplate then xslTemplate = ObjectCreate("Msxml2.XSLTemplate") xslTemplate.stylesheet = xslStyleSheet processor = xslTemplate.createProcessor() processor.input = xmlDoc processor.transform() ; create a new file and write the XML processor output to it fh = FileOpen(output_file_path, "WRITE" , @FALSE) FileWrite(fh, processor.output) FileClose(fh) The style sheet, with some slight changes to protect the innocent: <?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.1"> <xsl:output method="xml" indent="yes" encoding="UTF-8"/> <xsl:template match="/"> <fns:test_station xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:fns="http://www.abc.com/f_namespace"> <xsl:for-each select="/fns:test_station/identification"> <xsl:text>&#x0A; </xsl:text> <identification> <xsl:for-each select="./*"> <xsl:text>&#x0A; </xsl:text> <xsl:copy-of select="."/> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </identification> </xsl:for-each> <xsl:for-each select="/fns:test_station/software"> <xsl:text>&#x0A; </xsl:text> <software> <xsl:for-each select="./package"> <xsl:text>&#x0A; </xsl:text> <package> <xsl:for-each select="./*"> <xsl:text>&#x0A; </xsl:text> <xsl:copy-of select="."/> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </package> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </software> </xsl:for-each> <xsl:for-each select="/fns:test_station/calibration"> <xsl:text>&#x0A; </xsl:text> <calibration> <xsl:for-each select="./item"> <xsl:text>&#x0A; </xsl:text> <item> <xsl:for-each select="./*"> <xsl:text>&#x0A; </xsl:text> <xsl:copy-of select="."/> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </item> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </calibration> </xsl:for-each> </fns:test_station> </xsl:template> </xsl:stylesheet> And this is a sample output file: <?xml version="1.0" encoding="UTF-16"?> <fns:test_station xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:fns="http://www.abc.com/f_namespace"> <software> <package> <part_number>123456789</part_number> <version>00</version> <test_category>1</test_category> <description>name of software package</description> <execution_path>c:\program files\test\test.exe</execution_path> <execution_arguments>arguments</execution_arguments> <crc_path>c:\ste_config\crc\123456789.lst</crc_path> <uninstall_path>c:\ste_config\uninstall\uninst_123456789.bat</uninstall_path> <install_timestamp>2009-11-09T14:00:44</install_timestamp> </package> </software> </fns:test_station>

    Read the article

  • Most efficient way of creating tree from adjacency list

    - by Jeff Meatball Yang
    I have an adjacency list of objects (rows loaded from SQL database with the key and it's parent key) that I need to use to build an unordered tree. It's guaranteed to not have cycles. This is taking wayyy too long (processed only ~3K out of 870K nodes in about 5 minutes). Running on my workstation Core 2 Duo with plenty of RAM. Any ideas on how to make this faster? public class StampHierarchy { private StampNode _root; private SortedList<int, StampNode> _keyNodeIndex; // takes a list of nodes and builds a tree // starting at _root private void BuildHierarchy(List<StampNode> nodes) { Stack<StampNode> processor = new Stack<StampNode>(); _keyNodeIndex = new SortedList<int, StampNode>(nodes.Count); // find the root _root = nodes.Find(n => n.Parent == 0); // find children... processor.Push(_root); while (processor.Count != 0) { StampNode current = processor.Pop(); // keep a direct link to the node via the key _keyNodeIndex.Add(current.Key, current); // add children current.Children.AddRange(nodes.Where(n => n.Parent == current.Key)); // queue the children foreach (StampNode child in current.Children) { processor.Push(child); nodes.Remove(child); // thought this might help the Where above } } } } public class StampNode { // properties: int Key, int Parent, string Name, List<StampNode> Children }

    Read the article

  • In a multithreaded app, would a multi-core or multiprocessor arrangement be better?

    - by Michael
    I've read a lot on this topic already both here (e.g., stackoverflow.com/questions/1713554/threads-processes-vs-multithreading-multi-core-multiprocessor-how-they-are or http://stackoverflow.com/questions/680684/multi-cpu-multi-core-and-hyper-thread) and elsewhere (e.g., ixbtlabs.com/articles2/cpu/rmmt-l2-cache.html or software.intel.com/en-us/articles/multi-core-introduction/), but I still am not sure about a couple things that seem very straightforward. So I thought I'd just ask. (1) Is a multi-core processor in which each core has dedicated cache effectively the same as a multiprocessor system (balanced of course for processor speed, cache size, and so on)? (2) Let's say I have some images to analyze (i.e., computer vision), and I have these images loaded into RAM. My app spawns a thread for each image that needs to be analyzed. Will this app on a shared cache multi-core processor run slower than on a dedicated cache multi-core processor, and would the latter run at the same speed as on an equivalent single-core multiprocessor machine? Thank you for the help!

    Read the article

  • Using Xalan in Eclipse plugin

    - by Leslie Norman
    I am facing problems in using xalan in eclipse plugin. When I try to create factory instance by: TransformerFactory tFactory = TransformerFactory.newInstance("org.apache.xalan.processor.TransformerFactoryImpl", null); I get error: javax.xml.transform.TransformerFactoryConfigurationError: Provider org.apache.xalan.processor.TransformerFactoryImpl not found ... I have following lib jars in plugin classpath: xml-apis.jar, xercesImpl.jar, serializer.jar, xalan.jar I even can't create class instance by: c = Class.forName("org.apache.xalan.processor.TransformerFactoryImpl"); Object o = c.newInstance(); It returns error: java.lang.ClassNotFoundException: org.apache.xalan.processor.TransformerFactoryImpl But if I run same code outside eclipse plugin with same libs on classpath, it works fine. Could Somebody give an idea if I am doing some mistake or how to reolve this issue?

    Read the article

  • Understanding the output of ldd

    - by nebukadnezzar
    I'm having a hard time understanding the output of ldd - Especially the processor identifiers. The string in question is this one: Shortest.so: ELF 32-bit LSB shared object, Intel 80386, version 1 (SYSV), dynamically linked, from ']', not stripped I have several questions about it: What does "ELF" mean? I know that's what Linux binaries are called like (Windows Binaries are called PE Binaries, "Portable Executable" Binaries), but isn't ELF an abbreviation for something? What does LSB mean? I can't even guess it... I see the string "Intel" there, now I seriously wonder about the portability of Linux binaries, as ldd seems to expect every binary to be compiled on a intel processor... but what if it wasn't compiled on a Intel processor? Or when I attempt to run the binary on a computer that doesn't run ontop of a Intel processor? Why the ']'? My guess is it should be some sort of Linker identify, but ']' doesn't look much like a Identifier... Thanks in advance

    Read the article

  • About x86 architecture assembly and others

    - by caramel1991
    I have the wisdom to learn assembly language,so I search through the internet for the information about this language,and came across some page telling that assembly is a low level native language and varied from one to another processor,so I just wonder,I'm currently running an intel based processor,I've no idea whether it is x86 or what,but I just wanna know,Does it possible for me to learn other processor arhchitecture assembly on my pc??Besides,is there any good books that could guide me through learning the intel architecture assembly.

    Read the article

  • About x86 architecture assembly and others

    - by caramel1991
    I have the wisdom to learn assembly language,so I search through the internet for the information about this language,and came across some page telling that assembly is a low level native language and varied from one to another processor,so I just wonder,I'm currently running an intel based processor,I've no idea whether it is x86 or what,but I just wanna know,Does it possible for me to learn other processor arhchitecture assembly on my pc??Besides,is there any good books that could guide me through learning the intel architecture assembly.

    Read the article

  • Restoring web session in struts2

    - by bozo
    Hi, I have a classical scenario of a website and payment gateway integration, where the request for payment is sent to payment processor, and the payment processor calls back my application once it's done with some parameters I passed to it in the original request. Among parameters, we pass jsessionid and we expect that when the remote server makes request to our server (via customer browser redirect to our server) that the session will be the same as the session used to send the initial payment request. This does not happen, we have two different sessions, although the payment processor includes our original jsessionid in the request to us (https://blabla/?jsessionid=something). How should we go about recreating a session in struts2, in the only thing that connects the 'OLD' and 'NEW' session is the jsessionid in the request URL? Any ideas? Is this possible at all or is the 'OLD' session data deleted when the user moves away from our server onto a completely different domain of a payment processor with their data-entry form? This would explain our innability to recreate the session. Thanks a lot for your replies.

    Read the article

  • Multiple plugin instance loading with MEF

    - by Dave
    In my last application, using MEF to load plugins went just fine, but now I'm running into a new issue. I have a solution for it that I explain at the end of this question, but I'm looking for other ways to do it. Let's say I have an interface called ApplianceInterface. I also have two plugins that inherit from ApplianceInterface, let's call them Blender and Processor. Now, I would like to have multiple Blenders and Processors in my application, but I am not sure how to instantiate them properly. Before, I would simply use the ImportMany attribute and upon calling ComposeParts, my application would load Blender and Processor. For example: [ImportMany(typeof(ApplianceInterface))] private IEnumerable<ApplianceInterface> Appliances { get; set; } and my Blender and Processor plugins would be attributed like this: [PartCreationPolicy(CreationPolicy.NonShared)] [Export(typeof(MyInterface)] public class Blender : ApplianceInterface { ... } but what this ends up doing for me is populating Appliances with one Blender and one Processor. I need to be able to create an arbitrary number of Blender and Processor objects. Now, from the documentation I understand that [PartCreationPolicy(CreationPolicy.NonShared)] is what allows MEF to create a new instance each time, but is there a similar "magical" way to create a specific number of instances of something using MEF? Up until now, I've relied on [Import] and [ImportMany] to resolve the assemblies. Is my only option to use a global container, and then resolve the export manually using GetExportedValue<? I have tried GetExportedValue< and that implementation does work fine for me, but I was just curious if there is a better, more accepted way to do it.

    Read the article

  • Select where a value present

    - by Roy
    First a database example: id, product_id, cat, name, value -------------------------------- 1,1,Algemeen,Processor,2 Ghz 2,1,Algemeen,Geheugen,4 GB 3,2,Algemeen,Processor,3 Ghz 4,2,Algemeen,Geheugen,4 GB 5,3,Beeldscherm,Inch,22" 6,3,Beeldscherm,Kleur,Zwart 7,3,Algemeen,Geheugen,3 GB 8,3,Algemeen,Processor,3 Ghz I want with one query to select the follow id's: 1,2,3,4,7,8 Because the cat = algemeen and the name = processor by these products. ID 5,6 are only present by product 3. So, the entry's (cat and name) which are present by all products (product_id) have to be selected. The database contains 80.000 entry's with a lot of diffrent cat's, name's and value's. Is this possible with one query or is some php necessary? How do I do this? My apologies for the bad English.

    Read the article

  • Interesting articles and blogs on SPARC T4

    - by mv
    Interesting articles and blogs on SPARC T4 processor   I have consolidated all the interesting information I could get on SPARC T4 processor and its hardware cryptographic capabilities.  Hope its useful. 1. Advantages of SPARC T4 processor  Most important points in this T4 announcement are : "The SPARC T4 processor was designed from the ground up for high speed security and has a cryptographic stream processing unit (SPU) integrated directly into each processor core. These accelerators support 16 industry standard security ciphers and enable high speed encryption at rates 3 to 5 times that of competing processors. By integrating encryption capabilities directly inside the instruction pipeline, the SPARC T4 processor eliminates the performance and cost barriers typically associated with secure computing and makes it possible to deliver high security levels without impacting the user experience." Data Sheet has more details on these  : "New on-chip Encryption Instruction Accelerators with direct non-privileged support for 16 industry-standard cryptographic algorithms plus random number generation in each of the eight cores: AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, Kasumi, MD5, RSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512" I ran "isainfo -v" command on Solaris 11 Sparc T4-1 system. It shows the new instructions as expected  : $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32  2.  Dan Anderson's Blog have some interesting points about how these can be used : "New T4 crypto instructions include: aes_kexpand0, aes_kexpand1, aes_kexpand2,         aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l, aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l.       Having SPARC T4 hardware crypto instructions is all well and good, but how do we access it ?      The software is available with Solaris 11 and is used automatically if you are running Solaris a SPARC T4.  It is used internally in the kernel through kernel crypto modules.  It is available in user space through the PKCS#11 library." 3.   Dans' Blog on Where's the Crypto Libraries? Although this was written in 2009 but still is very useful  "Here's a brief tour of the major crypto libraries shown in the digraph:   The libpkcs11 library contains the PKCS#11 API (C_\*() functions, such as C_Initialize()). That in turn calls library pkcs11_softtoken or pkcs11_kernel, for userland or kernel crypto providers. The latter is used mostly for hardware-assisted cryptography (such as n2cp for Niagara2 SPARC processors), as that is performed more efficiently in kernel space with the "kCF" module (Kernel Crypto Framework). Additionally, for Solaris 10, strong crypto algorithms were split off in separate libraries, pkcs11_softtoken_extra libcryptoutil contains low-level utility functions to help implement cryptography. libsoftcrypto (OpenSolaris and Solaris Nevada only) implements several symmetric-key crypto algorithms in software, such as AES, RC4, and DES3, and the bignum library (used for RSA). libmd implements MD5, SHA, and SHA2 message digest algorithms" 4. Difference in T3 and T4 Diagram in this blog is good and self explanatory. Jeff's blog also highlights the differences  "The T4 servers have improved crypto acceleration, described at https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine. It is "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". Every physical or virtual CPU on a SPARC-T4 has full access to hardware based crypto acceleration at all times. .... For completeness sake, it's worth noting that the T4 adds more crypto algorithms, and accelerates Camelia, CRC32c, and more SHA-x." 5. About performance counters In this blog, performance counters are explained : "Note that unlike T3 and before, T4 crypto doesn't require kernel modules like ncp or n2cp, there is no visibility of crypto hardware with kstats or cryptoadm. T4 does provide hardware counters for crypto operations.  You can see these using cpustat: cpustat -c pic0=Instr_FGU_crypto 5 You can check the general crypto support of the hardware and OS with the command "isainfo -v". Since T4 crypto's implementation now allows direct userland access, there are no "crypto units" visible to cryptoadm.  " For more details refer Martin's blog as well. 6. How to turn off  SPARC T4 or Intel AES-NI crypto acceleration  I found this interesting blog from Darren about how to turn off  SPARC T4 or Intel AES-NI crypto acceleration. "One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.   The alternate to this is having the application coded to call getisax(2) system call and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so and libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  For SPARC T4 : export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" .. For Intel systems with AES-NI support: export LD_HWCAP="-aes"" Note that LD_HWCAP is explained in  http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html "LD_HWCAP, LD_HWCAP_32, and LD_HWCAP_64 -  Identifies an alternative hardware capabilities value... A “-” prefix results in the capabilities that follow being removed from the alternative capabilities." 7. Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing This Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing explains more details.  It has DTrace scripts which may come in handy : "To ensure the hardware-assisted cryptographic acceleration is configured to use and working with the security scenarios, it is recommended to use the following Solaris DTrace script. #!/usr/sbin/dtrace -s pid$1:libsoftcrypto:yf*:entry, pid$target:libsoftcrypto:rsa*:entry, pid$1:libmd:yf*:entry { @[probefunc] = count(); } tick-1sec { printa(@ops); trunc(@ops); }" Note that I have slightly modified the D Script to have RSA "libsoftcrypto:rsa*:entry" as well as per recommendations from Chi-Chang Lin. 8. References http://www.oracle.com/us/corporate/features/sparc-t4-announcement-494846.html http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1-ds-487858.pdf https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine https://blogs.oracle.com/DanX/entry/where_s_the_crypto_libraries https://blogs.oracle.com/darren/entry/howto_turn_off_sparc_t4 http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html   https://blogs.oracle.com/hardware/entry/unleash_the_power_of_cryptography https://blogs.oracle.com/cmt/entry/t4_crypto_cheat_sheet https://blogs.oracle.com/martinm/entry/t4_performance_counters_explained  https://blogs.oracle.com/jsavit/entry/no_mau_required_on_a http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-business-wp-524472.pdf

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Intel Atom: NVIDIA ION vs. Radeon HD 4330 Graphics

    <b>Phoronix:</b> "Before devoting this hardware to the farm, we ran a few benchmarks comparing the performance of NVIDIA's ION GeForce 9400M graphics processor to the ATI Radeon HD 4330 graphics processor found on the MSI 6667BB-004US and several other Atom-powered devices."

    Read the article

  • Server Systems for SQL Server 2012 per core licensing

    - by jchang
    Until recently, the SQL Server Enterprise Edition per processor (socket) licensing model resulted in only 2 or 3 server system configurations being the preferred choice. Determine the number of sockets: 2, 4 or 8. Then select the processor with the most compute capability at that socket count level. Finally, fill the DIMM sockets with the largest capacity ECC memory module at reasonable cost per GB. Currently this is the 16GB DIMM with a price of $365 on the Dell website, and $240 from Crucial. The...(read more)

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >