Search Results

Search found 1430 results on 58 pages for 'risk assesment'.

Page 16/58 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • screen "xxx.xxx.x.xx" shape changed

    - by user776942
    I'm trying to setup synergy with Windows 7 (server, which is 192.168.1.51) and OpenSuse (client, which is 192.168.1.50). I've even tried a complete uninstall and reinstallation, but get the same error and can't connect. Here is my log: Synergy 1.3.8 Server on Microsoft Windows 7 x64 This is an experimental x64 build of Synergy. Use it at your own risk. started server screen "192.168.1.51" shape changed

    Read the article

  • How do I change colors on-the-fly in mintty?

    - by Thomas L Holaday
    How do I change the colors in a Cygwin mintty session which is already open? Is it possible? Use case: Under environment-imposed time constraints, multiple terminal windows have been opened without forethought. In order to reduce the risk of typing the commands for system A into the terminal for system B, it would be nice if they were different colors. Is there some escape sequence or whatnot that can change the color scheme for a running session?

    Read the article

  • How to remove directories from source after copying them?

    - by user55542
    I just want to move dirs. I looked successively at mv, cp and rsync, since each tool in turn didn't seem to have the option to remove directories from source after copying them. For instance, mv needs files, not dirs, when src and dst are on different devices: "inter-device move failed: src to dst; unable to remove target: Is a directory" Perhaps the simplest way to do this is by using an additional deletion cmd, although I'd prefer not to use it, since that increases risk of data loss.

    Read the article

  • Why did my graphics card explode?

    - by C-dizzle
    How did my graphics card "explode" like it did in the picture I have here? And if I was just plugging into my on-board graphics, why wouldn't the PC boot up like it normally would? It wouldn't come up until I opened the cover and removed the card, that's when I found it like this. EDIT: If the card was trying to still operate like this for a while, did it run the risk of damaging the PCI-E slot?

    Read the article

  • How can I prevent Virtualmin from storing passwords in cleartext?

    - by Josh
    I am really surprised at this behavior. In Virtualmin, I can see the password for any SSH user by clicking the "(Show..)" link next to the "Password ( ) Leave unchanged" option in a variety of locations. I have found that the passwords for all users including users with SSH access are stored in cleartext files in /etc/webmin/... This seems like an unnecessary risk! How can I prevent Virtualmin from storing passwords in this manner?

    Read the article

  • In-Place DC Upgrade from Server 2003R2 Standard to 2008 Enterprise

    - by Yadhu Tony
    We have a Domain controller in server 2008 Enterprise and Additional DC in server 2003 R2. Now I need to upgrade Additional Domain controller to Server 2008 Enterprise and raise the domain functional level to 2008. The DC is running with Active Directory, DNS and DHCP. The server is installed in VMware ESXi 4.0. Please guide me to carry out the upgrade. Also I want to know about the possible risk of in-place upgrade, if any.

    Read the article

  • Virtual Machine and Virus

    - by tellme
    I have a requirement for which I have to get online without protection (firewall, anti-virus). At the same time, I don't want to risk getting infected with viruses. If I install a virtual machine (VirtualBox) to test, and it does get infected with viruses, will it also infect my host system? In other words, can I use the virtual machine for testing without being concerned about a virus on the virtual machine infecting my host?

    Read the article

  • How do I update Safari on Windows?

    - by James A. Rosen
    I'd like to update Safari to 4.0.5 for security reasons, but I can't figure out how to run the Apple updater manually. On Mac there's usually a "Check for Updates" menu item, but I don't see one on the Windows version. I tried downloading the latest version from http://www.apple.com/safari/download/, but Windows won't let me open the file, saying it is a security risk.

    Read the article

  • Using a 20V power block on a 19V notebook

    - by user4444
    Is that dangerous : for the computer (without the battery) for the cells If possible, explain why. Edit : Here are some more assumptions : Without the battery included, there is no risk of overheating the cell, or over charging them. But there is still some dc to dc conversion taking place on the motherboard. I assume this dc to dc stage to be quite tolerant. What kind of trouble can I run into when using 20V instead of 19V ? Overheating ?

    Read the article

  • Using a 20V power block on a 19V notebook

    - by user4444
    Is that dangerous : for the computer (without the battery) for the cells If possible, explain why. Edit : Here are some more assumptions : Without the battery included, there is no risk of overheating the cell, or over charging them. But there is still some dc to dc conversion taking place on the motherboard. I assume this dc to dc stage to be quite tolerant. What kind of trouble can I run into when using 20V instead of 19V ? Overheating ?

    Read the article

  • File permissions on a dedicated server [duplicate]

    - by Niet the Dark Absol
    This question already has an answer here: What permissions should my website files/folders have on a Linux webserver? 4 answers I have a dedicated server for my website. There are no other users, and no other websites on the same machine. Is there any risk in setting 777-permissions on my site's public_html folder, bearing in mind configuration files with passwords and access keys are stored outside that root?

    Read the article

  • Why should I prune old objects from Active Directory?

    - by Nic
    What is the point of pruning old objects from Active Directory, especially computer accounts? If a computer is wiped or destroyed, then the stale computer account doesn't pose any security risk because it can't be used any more. And I can't imagine that stale objects affect performance very much, because if they aren't being changed then they aren't being replicated. So, what is the real motivation to keep Active Directory clean of stale objects?

    Read the article

  • Can a windows virus downloaded in linux be transferred to windows?

    - by user219048
    I know that linux is mostly safe from viruses, however: if you do download a windows virus (i.e., through a drive-by download), will it just sit there on your computer, and take up space? Is it unable to infect files because of the different operating system? If you transfer files between computers (by using a usb flash drive or through online file sharing), is there any risk that the virus could be transferred to windows and activate?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Why is Java EE 6 better than Spring ?

    - by arungupta
    Java EE 6 was released over 2 years ago and now there are 14 compliant application servers. In all my talks around the world, a question that is frequently asked is Why should I use Java EE 6 instead of Spring ? There are already several blogs covering that topic: Java EE wins over Spring by Bill Burke Why will I use Java EE instead of Spring in new Enterprise Java projects in 2012 ? by Kai Waehner (more discussion on TSS) Spring to Java EE migration (Part 1 and 2, 3 and 4 coming as well) by David Heffelfinger Spring to Java EE - A Migration Experience by Lincoln Baxter Migrating Spring to Java EE 6 by Bert Ertman and Paul Bakker at NLJUG Moving from Spring to Java EE 6 - The Age of Frameworks is Over at TSS Java EE vs Spring Shootout by Rohit Kelapure and Reza Rehman at JavaOne 2011 Java EE 6 and the Ewoks by Murat Yener Definite excuse to avoid Spring forever - Bert Ertman and Arun Gupta I will try to share my perspective in this blog. First of all, I'd like to start with a note: Thank you Spring framework for filling the interim gap and providing functionality that is now included in the mainstream Java EE 6 application servers. The Java EE platform has evolved over the years learning from frameworks like Spring and provides all the functionality to build an enterprise application. Thank you very much Spring framework! While Spring was revolutionary in its time and is still very popular and quite main stream in the same way Struts was circa 2003, it really is last generation's framework - some people are even calling it legacy. However my theory is "code is king". So my approach is to build/take a simple Hello World CRUD application in Java EE 6 and Spring and compare the deployable artifacts. I started looking at the official tutorial Developing a Spring Framework MVC Application Step-by-Step but it is using the older version 2.5. I wasn't able to find any updated version in the current 3.1 release. Next, I downloaded Spring Tool Suite and thought that would provide some template samples to get started. A least a quick search did not show any handy tutorials - either video or text-based. So I searched and found a link to their SVN repository at src.springframework.org/svn/spring-samples/. I tried the "mvc-basic" sample and the generated WAR file was 4.43 MB. While it was named a "basic" sample it seemed to come with 19 different libraries bundled but it was what I could find: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/joda-time-jsptags-1.0.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar And it is not even using any database! The app deployed fine on GlassFish 3.1.2 but the "@Controller Example" link did not work as it was missing the context root. With a bit of tweaking I could deploy the application and assume that the account got created because no error was displayed in the browser or server log. Next I generated the WAR for "mvc-ajax" and the 5.1 MB WAR had 20 JARs (1 removed, 2 added): ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.6.4.jar./WEB-INF/lib/jackson-mapper-asl-1.6.4.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar 2 more JARs for just doing Ajax. Anyway, deploying this application gave the following error: Caused by: java.lang.NoSuchMethodError: org.codehaus.jackson.map.SerializationConfig.<init>(Lorg/codehaus/jackson/map/ClassIntrospector;Lorg/codehaus/jackson/map/AnnotationIntrospector;Lorg/codehaus/jackson/map/introspect/VisibilityChecker;Lorg/codehaus/jackson/map/jsontype/SubtypeResolver;)V    at org.springframework.samples.mvc.ajax.json.ConversionServiceAwareObjectMapper.<init>(ConversionServiceAwareObjectMapper.java:20)    at org.springframework.samples.mvc.ajax.json.JacksonConversionServiceConfigurer.postProcessAfterInitialization(JacksonConversionServiceConfigurer.java:40)    at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:407) Seems like some incorrect repos in the "pom.xml". Next one is "mvc-showcase" and the 6.49 MB WAR now has 28 JARs as shown below: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/aspectjrt-1.6.10.jar./WEB-INF/lib/commons-fileupload-1.2.2.jar./WEB-INF/lib/commons-io-2.0.1.jar./WEB-INF/lib/el-api-2.2.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.8.1.jar./WEB-INF/lib/jackson-mapper-asl-1.8.1.jar./WEB-INF/lib/javax.inject-1.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/jdom-1.0.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-api-1.2.jar./WEB-INF/lib/jstl-impl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/rome-1.0.0.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.1.0.RELEASE.jar./WEB-INF/lib/spring-asm-3.1.0.RELEASE.jar./WEB-INF/lib/spring-beans-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-support-3.1.0.RELEASE.jar./WEB-INF/lib/spring-core-3.1.0.RELEASE.jar./WEB-INF/lib/spring-expression-3.1.0.RELEASE.jar./WEB-INF/lib/spring-web-3.1.0.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.1.0.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar The app at least deployed and showed results this time. But still no database! Next I tried building "jpetstore" and got the error: [ERROR] Failed to execute goal on project org.springframework.samples.jpetstore:Could not resolve dependencies for project org.springframework.samples:org.springframework.samples.jpetstore:war:1.0.0-SNAPSHOT: Failed to collect dependencies for [commons-fileupload:commons-fileupload:jar:1.2.1 (compile), org.apache.struts:com.springsource.org.apache.struts:jar:1.2.9 (compile), javax.xml.rpc:com.springsource.javax.xml.rpc:jar:1.1.0 (compile), org.apache.commons:com.springsource.org.apache.commons.dbcp:jar:1.2.2.osgi (compile), commons-io:commons-io:jar:1.3.2 (compile), hsqldb:hsqldb:jar:1.8.0.7 (compile), org.apache.tiles:tiles-core:jar:2.2.0 (compile), org.apache.tiles:tiles-jsp:jar:2.2.0 (compile), org.tuckey:urlrewritefilter:jar:3.1.0 (compile), org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-orm:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-context-support:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework.webflow:spring-js:jar:2.0.7.RELEASE (compile), org.apache.ibatis:com.springsource.com.ibatis:jar:2.3.4.726 (runtime), com.caucho:com.springsource.com.caucho:jar:3.2.1 (compile), org.apache.axis:com.springsource.org.apache.axis:jar:1.4.0 (compile), javax.wsdl:com.springsource.javax.wsdl:jar:1.6.1 (compile), javax.servlet:jstl:jar:1.2 (runtime), org.aspectj:aspectjweaver:jar:1.6.5 (compile), javax.servlet:servlet-api:jar:2.5 (provided), javax.servlet.jsp:jsp-api:jar:2.1 (provided), junit:junit:jar:4.6 (test)]: Failed to read artifact descriptor for org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT: Could not transfer artifact org.springframework:spring-webmvc:pom:3.0.0.BUILD-SNAPSHOT from/to JBoss repository (http://repository.jboss.com/maven2): Access denied to: http://repository.jboss.com/maven2/org/springframework/spring-webmvc/3.0.0.BUILD-SNAPSHOT/spring-webmvc-3.0.0.BUILD-SNAPSHOT.pom It appears the sample is broken - maybe I was pulling from the wrong repository - would be great if someone were to point me at a good target to use here. With a 50% hit on samples in this repository, I started searching through numerous blogs, most of which have either outdated information (using XML-heavy Spring 2.5), some piece of configuration (which is a typical "feature" of Spring) is missing, or too much complexity in the sample. I finally found this blog that worked like a charm. This blog creates a trivial Spring MVC 3 application using Hibernate and MySQL. This application performs CRUD operations on a single table in a database using typical Spring technologies.  I downloaded the sample code from the blog, deployed it on GlassFish 3.1.2 and could CRUD the "person" entity. The source code for this application can be downloaded here. More details on the application statistics below. And then I built a similar CRUD application in Java EE 6 using NetBeans wizards in a couple of minutes. The source code for the application can be downloaded here and the WAR here. The Spring Source Tool Suite may also offer similar wizard-driven capabilities but this blog focus primarily on comparing the runtimes. The lack of STS tutorials was slightly disappointing as well. NetBeans however has tons of text-based and video tutorials and tons of material even by the community. One more bit on the download size of tools bundle ... NetBeans 7.1.1 "All" is 211 MB (which includes GlassFish and Tomcat) Spring Tool Suite  2.9.0 is 347 MB (~ 65% bigger) This blog is not about the tooling comparison so back to the Java EE 6 version of the application .... In order to run the Java EE version on GlassFish, copy the MySQL Connector/J to glassfish3/glassfish/domains/domain1/lib/ext directory and create a JDBC connection pool and JDBC resource as: ./bin/asadmin create-jdbc-connection-pool --datasourceclassname \\ com.mysql.jdbc.jdbc2.optional.MysqlDataSource --restype \\ javax.sql.DataSource --property \\ portNumber=3306:user=mysql:password=mysql:databaseName=mydatabase \\ myConnectionPool ./bin/asadmin create-jdbc-resource --connectionpoolid myConnectionPool jdbc/myDataSource I generated WARs for the two projects and the table below highlights some differences between them: Java EE 6 Spring WAR File Size 0.021030 MB 10.87 MB (~516x) Number of files 20 53 (> 2.5x) Bundled libraries 0 36 Total size of libraries 0 12.1 MB XML files 3 5 LoC in XML files 50 (11 + 15 + 24) 129 (27 + 46 + 16 + 11 + 19) (~ 2.5x) Total .properties files 1 Bundle.properties 2 spring.properties, log4j.properties Cold Deploy 5,339 ms 11,724 ms Second Deploy 481 ms 6,261 ms Third Deploy 528 ms 5,484 ms Fourth Deploy 484 ms 5,576 ms Runtime memory ~73 MB ~101 MB Some points worth highlighting from the table ... 516x WAR file, 10x deployment time - With 12.1 MB of libraries (for a very basic application) bundled in your application, the WAR file size and the deployment time will naturally go higher. The WAR file for Spring-based application is 516x bigger and the deployment time is double during the first deployment and ~ 10x during subsequent deployments. The Java EE 6 application is fully portable and will run on any Java EE 6 compliant application server. 36 libraries in the WAR - There are 14 Java EE 6 compliant application servers today. Each of those servers provide all the functionality like transactions, dependency injection, security, persistence, etc typically required of an enterprise or web application. There is no need to bundle 36 libraries worth 12.1 MB for a trivial CRUD application. These 14 compliant application servers provide all the functionality baked in. Now you can also deploy these libraries in the container but then you don't get the "portability" offered by Spring in that case. Does your typical Spring deployment actually do that ? 3x LoC in XML - The number of XML files is about 1.6x and the LoC is ~ 2.5x. So much XML seems circa 2003 when the Java language had no annotations. The XML files can be further reduced, e.g. faces-config.xml can be replaced without providing i18n, but I just want to compare stock applications. Memory usage - Both the applications were deployed on default GlassFish 3.1.2 installation and any additional memory consumed as part of deployment/access was attributed to the application. This is by no means scientific but at least provides an initial ballpark. This area definitely needs more investigation. Another table that compares typical Java EE 6 compliant application servers and the custom-stack created for a Spring application ... Java EE 6 Spring Web Container ? 53 MB (tcServer 2.6.3 Developer Edition) Security ? 12 MB (Spring Security 3.1.0) Persistence ? 6.3 MB (Hibernate 4.1.0, required) Dependency Injection ? 5.3 MB (Framework) Web Services ? 796 KB (Spring WS 2.0.4) Messaging ? 3.4 MB (RabbitMQ Server 2.7.1) 936 KB (Java client 936) OSGi ? 1.3 MB (Spring OSGi 1.2.1) GlassFish and WebLogic (starting at 33 MB) 83.3 MB There are differentiating factors on both the stacks. But most of the functionality like security, persistence, and dependency injection is baked in a Java EE 6 compliant application server but needs to be individually managed and patched for a Spring application. This very quickly leads to a "stack explosion". The Java EE 6 servers are tested extensively on a variety of platforms in different combinations whereas a Spring application developer is responsible for testing with different JDKs, Operating Systems, Versions, Patches, etc. Oracle has both the leading OSS lightweight server with GlassFish and the leading enterprise Java server with WebLogic Server, both Java EE 6 and both with lightweight deployment options. The Web Container offered as part of a Java EE 6 application server not only deploys your enterprise Java applications but also provide operational management, diagnostics, and mission-critical capabilities required by your applications. The Java EE 6 platform also introduced the Web Profile which is a subset of the specifications from the entire platform. It is targeted at developers of modern web applications offering a reasonably complete stack, composed of standard APIs, and is capable out-of-the-box of addressing the needs of a large class of Web applications. As your applications grow, the stack can grow to the full Java EE 6 platform. The GlassFish Server Web Profile starting at 33MB (smaller than just the non-standard tcServer) provides most of the functionality typically required by a web application. WebLogic provides battle-tested functionality for a high throughput, low latency, and enterprise grade web application. No individual managing or patching, all tested and commercially supported for you! Note that VMWare does have a server, tcServer, but it is non-standard and not even certified to the level of the standard Web Profile most customers expect these days. Customers who choose this risk proprietary lock-in since VMWare does not seem to want to formally certify with either Java EE 6 Enterprise Platform or with Java EE 6 Web Profile but of course it would be great if they were to join the community and help their customers reduce the risk of deploying on VMWare software. Some more points to help you decide choose between Java EE 6 and Spring ... Freedom to choose container - There are 14 Java EE 6 compliant application servers today, with a variety of open source and commercial offerings. A Java EE 6 application can be deployed on any of those containers. So if you deployed your application on GlassFish today and would like to scale up with your demands then you can deploy the same application to WebLogic. And because of the portability of a Java EE 6 application, you can even take it a different vendor altogether. Spring requires a runtime which could be any of these app servers as well. But why use Spring when all the required functionality is already baked into the application server itself ? Spring also has a different definition of portability where they claim to bundle all the libraries in the WAR file and move to any application server. But we saw earlier how bloated that archive could be. The equivalent features in Spring runtime offerings (mainly tcServer) are not all open source, not as mature, and often require manual assembly.  Vendor choice - The Java EE 6 platform is created using the Java Community Process where all the big players like Oracle, IBM, RedHat, and Apache are conritbuting to make the platform successful. Each application server provides the basic Java EE 6 platform compliance and has its own competitive offerings. This allows you to choose an application server for deploying your Java EE 6 applications. If you are not happy with the support or feature of one vendor then you can move your application to a different vendor because of the portability promise offered by the platform. Spring is a set of products from a single company, one price book, one support organization, one sustaining organization, one sales organization, etc. If any of those cause a customer headache, where do you go ? Java EE, backed by multiple vendors, is a safer bet for those that are risk averse. Production support - With Spring, typically you need to get support from two vendors - VMWare and the container provider. With Java EE 6, all of this is typically provided by one vendor. For example, Oracle offers commercial support from systems, operating systems, JDK, application server, and applications on top of them. VMWare certainly offers complete production support but do you really want to put all your eggs in one basket ? Do you really use tcServer ? ;-) Maintainability - With Spring, you are likely building your own distribution with multiple JAR files, integrating, patching, versioning, etc of all those components. Spring's claim is that multiple JAR files allow you to go à la carte and pick the latest versions of different components. But who is responsible for testing whether all these versions work together ? Yep, you got it, its YOU! If something does not work, who patches and maintains the JARs ? Of course, you! Commercial support for such a configuration ? On your own! The Java EE application servers manage all of this for you and provide a well-tested and commercially supported bundle. While it is always good to realize that there is something new and improved that updates and replaces older frameworks like Spring, the good news is not only does a Java EE 6 container offer what is described here, most also will let you deploy and run your Spring applications on them while you go through an upgrade to a more modern architecture. End result, you get the best of both worlds - keeping your legacy investment but moving to a more agile, lightweight world of Java EE 6. A message to the Spring lovers ... The complexity in J2EE 1.2, 1.3, and 1.4 led to the genesis of Spring but that was in 2004. This is 2012 and the name has changed to "Java EE 6" :-) There are tons of improvements in the Java EE platform to make it easy-to-use and powerful. Some examples: Adding @Stateless on a POJO makes it an EJB EJBs can be packaged in a WAR with no special packaging or deployment descriptors "web.xml" and "faces-config.xml" are optional in most of the common cases Typesafe dependency injection is now part of the Java EE platform Add @Path on a POJO allows you to publish it as a RESTful resource EJBs can be used as backing beans for Facelets-driven JSF pages providing full MVC Java EE 6 WARs are known to be kilobytes in size and deployed in milliseconds Tons of other simplifications in the platform and application servers So if you moved away from J2EE to Spring many years ago and have not looked at Java EE 6 (which has been out since Dec 2009) then you should definitely try it out. Just be at least aware of what other alternatives are available instead of restricting yourself to one stack. Here are some workshops and screencasts worth trying: screencast #37 shows how to build an end-to-end application using NetBeans screencast #36 builds the same application using Eclipse javaee-lab-feb2012.pdf is a 3-4 hours self-paced hands-on workshop that guides you to build a comprehensive Java EE 6 application using NetBeans Each city generally has a "spring cleanup" program every year. It allows you to clean up the mess from your house. For your software projects, you don't need to wait for an annual event, just get started and reduce the technical debt now! Move away from your legacy Spring-based applications to a lighter and more modern approach of building enterprise Java applications using Java EE 6. Watch this beautiful presentation that explains how to migrate from Spring -> Java EE 6: List of files in the Java EE 6 project: ./index.xhtml./META-INF./person./person/Create.xhtml./person/Edit.xhtml./person/List.xhtml./person/View.xhtml./resources./resources/css./resources/css/jsfcrud.css./template.xhtml./WEB-INF./WEB-INF/classes./WEB-INF/classes/Bundle.properties./WEB-INF/classes/META-INF./WEB-INF/classes/META-INF/persistence.xml./WEB-INF/classes/org./WEB-INF/classes/org/javaee./WEB-INF/classes/org/javaee/javaeemysql./WEB-INF/classes/org/javaee/javaeemysql/AbstractFacade.class./WEB-INF/classes/org/javaee/javaeemysql/Person.class./WEB-INF/classes/org/javaee/javaeemysql/Person_.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$1.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$PersonControllerConverter.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController.class./WEB-INF/classes/org/javaee/javaeemysql/PersonFacade.class./WEB-INF/classes/org/javaee/javaeemysql/util./WEB-INF/classes/org/javaee/javaeemysql/util/JsfUtil.class./WEB-INF/classes/org/javaee/javaeemysql/util/PaginationHelper.class./WEB-INF/faces-config.xml./WEB-INF/web.xml List of files in the Spring 3.x project: ./META-INF ./META-INF/MANIFEST.MF./WEB-INF./WEB-INF/applicationContext.xml./WEB-INF/classes./WEB-INF/classes/log4j.properties./WEB-INF/classes/org./WEB-INF/classes/org/krams ./WEB-INF/classes/org/krams/tutorial ./WEB-INF/classes/org/krams/tutorial/controller ./WEB-INF/classes/org/krams/tutorial/controller/MainController.class ./WEB-INF/classes/org/krams/tutorial/domain ./WEB-INF/classes/org/krams/tutorial/domain/Person.class ./WEB-INF/classes/org/krams/tutorial/service ./WEB-INF/classes/org/krams/tutorial/service/PersonService.class ./WEB-INF/hibernate-context.xml ./WEB-INF/hibernate.cfg.xml ./WEB-INF/jsp ./WEB-INF/jsp/addedpage.jsp ./WEB-INF/jsp/addpage.jsp ./WEB-INF/jsp/deletedpage.jsp ./WEB-INF/jsp/editedpage.jsp ./WEB-INF/jsp/editpage.jsp ./WEB-INF/jsp/personspage.jsp ./WEB-INF/lib ./WEB-INF/lib/antlr-2.7.6.jar ./WEB-INF/lib/aopalliance-1.0.jar ./WEB-INF/lib/c3p0-0.9.1.2.jar ./WEB-INF/lib/cglib-nodep-2.2.jar ./WEB-INF/lib/commons-beanutils-1.8.3.jar ./WEB-INF/lib/commons-collections-3.2.1.jar ./WEB-INF/lib/commons-digester-2.1.jar ./WEB-INF/lib/commons-logging-1.1.1.jar ./WEB-INF/lib/dom4j-1.6.1.jar ./WEB-INF/lib/ejb3-persistence-1.0.2.GA.jar ./WEB-INF/lib/hibernate-annotations-3.4.0.GA.jar ./WEB-INF/lib/hibernate-commons-annotations-3.1.0.GA.jar ./WEB-INF/lib/hibernate-core-3.3.2.GA.jar ./WEB-INF/lib/javassist-3.7.ga.jar ./WEB-INF/lib/jstl-1.1.2.jar ./WEB-INF/lib/jta-1.1.jar ./WEB-INF/lib/junit-4.8.1.jar ./WEB-INF/lib/log4j-1.2.14.jar ./WEB-INF/lib/mysql-connector-java-5.1.14.jar ./WEB-INF/lib/persistence-api-1.0.jar ./WEB-INF/lib/slf4j-api-1.6.1.jar ./WEB-INF/lib/slf4j-log4j12-1.6.1.jar ./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-jdbc-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-orm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-tx-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar ./WEB-INF/lib/standard-1.1.2.jar ./WEB-INF/lib/xml-apis-1.0.b2.jar ./WEB-INF/spring-servlet.xml ./WEB-INF/spring.properties ./WEB-INF/web.xml So, are you excited about Java EE 6 ? Want to get started now ? Here are some resources: Java EE 6 SDK (including runtime, samples, tutorials etc) GlassFish Server Open Source Edition 3.1.2 (Community) Oracle GlassFish Server 3.1.2 (Commercial) Java EE 6 using WebLogic 12c and NetBeans (Video) Java EE 6 with NetBeans and GlassFish (Video) Java EE with Eclipse and GlassFish (Video)

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Protecting offline IRM rights and the error "Unable to Connect to Offline database"

    - by Simon Thorpe
    One of the most common problems I get asked about Oracle IRM is in relation to the error message "Unable to Connect to Offline database". This error message is a result of how Oracle IRM is protecting the cached rights on the local machine and if that cache has become invalid in anyway, this error is thrown. Offline rights and security First we need to understand how Oracle IRM handles offline use. The way it is implemented is one of the main reasons why Oracle IRM is the leading document security solution and demonstrates our methodology to ensure that solutions address both security and usability and puts the balance of these two in your control. Each classification has a set of predefined roles that the manager of the classification can assign to users. Each role has an offline period which determines the amount of time a user can access content without having to communicate with the IRM server. By default for the context model, which is the classification system that ships out of the box with Oracle IRM, the offline period for each role is 3 days. This is easily changed however and can be as low as under an hour to as long as years. It is also possible to switch off the ability to access content offline which can be useful when content is very sensitive and requires a tight leash. So when a user is online, transparently in the background, the Oracle IRM Desktop communicates with the server and updates the users rights and offline periods. This transparent synchronization period is determined by the server and communicated to all IRM Desktops and allows for users rights to be kept up to date without their intervention. This allows us to support some very important scenarios which are key to a successful IRM solution. A user doesn't have to make any decision when going offline, they simply unplug their laptop and they already have their offline periods synchronized to the maximum values. Any solution that requires a user to make a decision at the point of going offline isn't going to work because people forget to do this and will therefore be unable to legitimately access their content offline. If your rights change to REMOVE your access to content, this also happens in the background. This is very useful when someone has an offline duration of a week and they happen to make a connection to the internet 3 days into that offline period, the Oracle IRM Desktop detects this online state and automatically updates all rights for the user. This means the business risk is reduced when setting long offline periods, because of the daily transparent sync, you can reflect changes as soon as the user is online. Of course, if they choose not to come online at all during that week offline period, you cannot effect change, but you take that risk in giving the 7 day offline period in the first place. If you are added to a NEW classification during the day, this will automatically be synchronized without the user even having to open a piece of content secured against that classification. This is very important, consider the scenario where a senior executive downloads all their email but doesn't open any of it. Disconnects the laptop and then gets on a plane. During the flight they attempt to open a document attached to a downloaded email which has been secured against an IRM classification the user was not even aware they had access to. Because their new role in this classification was automatically synchronized their experience is a good one and the document opens. More information on how the Oracle IRM classification model works can be found in this article by Martin Abrahams. So what about problems accessing the offline rights database? So onto the core issue... when these rights are cached to your machine they are stored in an encrypted database. The encryption of this offline database is keyed to the instance of the installation of the IRM Desktop and the Windows user account. Why? Well what you do not want to happen is for someone to get their rights for content and then copy these files across hundreds of other machines, therefore getting access to sensitive content across many environments. The IRM server has a setting which controls how many times you can cache these rights on unique machines. This is because people typically access IRM content on more than one computer. Their work desktop, a laptop and often a home computer. So Oracle IRM allows for the usability of caching rights on more than one computer whilst retaining strong security over this cache. So what happens if these files are corrupted in someway? That's when you will see the error, Unable to Connect to Offline database. The most common instance of seeing this is when you are using virtual machines and copy them from one computer to the next. The virtual machine software, VMWare Workstation for example, makes changes to the unique information of that virtual machine and as such invalidates the offline database. How do you solve the problem? Resolution is however simple. You just delete all of the offline database files on the machine and they will be recreated with working encryption when the Oracle IRM Desktop next starts. However this does mean that the IRM server will think you have your rights cached to more than one computer and you will need to rerequest your rights, even though you are only going to be accessing them on one. Because it still thinks the old cache is valid. So be aware, it is good practice to increase the server limit from the default of 1 to say 3 or 4. This is done using the Enterprise Manager instance of IRM. So to delete these offline files I have a simple .bat file you can use; Download DeleteOfflineDBs.bat Note that this uses pskillto stop the irmBackground.exe from running. This is part of the IRM Desktop and holds open a lock to the offline database. Either kill this from task manager or use pskillas part of the script.

    Read the article

  • 6 Tips and Tricks for Microsoft’s New Outlook.com

    - by Chris Hoffman
    Microsoft’s new Outlook.com is the successor to Hotmail – all Hotmail users will eventually be migrated to Outlook.com. Outlook.com is a modern webmail system that offers some useful features, including some not found in Gmail. If you have a @hotmail.com address, don’t worry – you’ll be able to use Outlook.com with @hotmail.com addresses, too. To get started with Outlook.com or create an @outlook.com email address, head over to Outlook.com. HTG Explains: Is UPnP a Security Risk? How to Monitor and Control Your Children’s Computer Usage on Windows 8 What Happened to Solitaire and Minesweeper in Windows 8?

    Read the article

  • Tolkien’s Rivendell Rendered in LEGO

    - by Jason Fitzpatrick
    If you’re a fan of all things geeky rendered in LEGO–and we certainly are–you’ll want to take a moment to appreciate this incredible model of the mythical Rivendell from the Lord of the Rings universe. Courtesy of builders Blake Baer and Jake Bittner, the behemoth model measures nearly 4×3 ft. in size, weighs 120 pounds, and required over 50,000 LEGO bricks. Hit up the link below to check out the full set of photos. Rivendell in LEGO [via Geeks Are Sexy] How To Switch Webmail Providers Without Losing All Your Email How To Force Windows Applications to Use a Specific CPU HTG Explains: Is UPnP a Security Risk?

    Read the article

  • Tom Kyte Webcast on Oracle Maximum Availability Architecture Best Practices - Thursday, April 12 @ 10:00 AM PDT

    - by jgelhaus
    Date: Thursday, April 12, 2012 Time: 10:00 AM PDT Update Your Knowledge with Oracle Expert Tom Kyte Data is one of the most critical assets of any organization with many operations depending on having complete and accurate data available 24/7. By implementing Oracle’s Maximum Availability Architecture (MAA), organizations can minimize the cost and risk associated with downtime. Oracle’s MAA best practices extend beyond Oracle Database to span a broad range of products, including Oracle Exadata and Oracle Database Appliance. Join Oracle expert Tom Kyte for this Live Webcast to learn how to: Protect your systems from planned and unplanned downtime Achieve the highest quality of service at the lowest cost Eliminate idle redundancy in the data center Register today and ask Tom your questions around availability best practices.

    Read the article

  • Oracle Supply Chain builds momentum in the Press

    - by [email protected]
    SCM coverage in early '10 was dominated by major product announcements. The release of Oracle Global Trade Management and Oracle Transportation Management 6.1 garnered ten unique articles. SearchOracle.com and Supply Chain Management Review primarily focused on the compliance aspect of the announcement while Managing Automation concentrated on the new trade management capabilities. Elsewhere, there was a lot of interest around the new 'Green Dashboard' as reported by Modern Materials Handling, Environmental Leader and TMCnet. Other SCM news included the announced integration of Oracle Hyperion Planning and Demantra S&OP as reported by Database Trends and Applications and Treasury & Risk.

    Read the article

  • Unique Business Value vs. Unique IT

    - by barry.perkins
    When the age of computing started, technology was new, exciting, full of potential and had a long way to grow. Vendor architectures were proprietary, and limited in function at first, growing in capability and complexity over time. There were few if any "standards", let alone "open standards" and the concepts of "open systems", and "open architectures" were far in the future. Companies employed intelligent, talented and creative people to implement the best possible solutions for their company. At first, those solutions were "unique" to each company. As time progressed, standards emerged, companies shared knowledge, business capability supplied by technology grew, and companies continued to expand their use of technology. Taking advantage of change required companies to struggle through periodic "revolutionary" change cycles, struggling through costly changes that were fraught with risk, resulted in solutions with an increasingly shorter half-life, and frequently required altering existing business processes and retraining employees and partner businesses. The pace of technological invention and implementation grew at an ever increasing rate, making the "revolutionary" approach based upon "proprietary" or "closed" architectures or technologies no longer viable. Concurrent with the advancement of technology, the rate of change in business increased, leading us to the incredibly fast paced, highly charged, and competitive global economy that we have today, where the most successful companies are companies that are good at implementing, leveraging and exploiting change. Fast forward to today, a world where dramatic changes in business and technology happen continually, a world where "evolutionary" change is crucial. Companies can no longer afford to build "unique IT", nor can they afford regular intervals of "revolutionary" change, with the associated costs and risks. Human ingenuity was once again up to the task, turning technology into a platform supporting business through evolutionary change, by employing "open": open standards; open systems; open architectures; and open solutions. Employing "open", enables companies to implement systems based upon technology, capability and standards that will evolve over time, providing a solid platform upon which a company can drive business needs, requirements, functions, and processes down into the technology, rather than exposing technology to the business, allowing companies to focus on providing "unique business value" rather than "unique IT". The big question! Does moving from "older" technology that no longer meets the needs of today's business, to new "open" technology require yet another "revolutionary change"? A "revolutionary" change with a short half-life, camouflaging reality with great marketing? The answer is "perhaps". With the endless options available to choose from, it is entirely possible to implement a solution that may work well today, but in 5 years time will become yet another albatross for the company to bear. Some solutions may look good today, solving a budget challenge by reducing cost, or solving a specific tactical challenge, but result in highly complex environments, that may be difficult to manage and maintain and limit the future potential of your business. Put differently, some solutions might push today's challenge into the future, resulting in a more complex and expensive solution. There is no such thing as a "1 size fits all" IT solution for business. If all companies implemented business solutions based upon technology that required, or forced the same business processes across all businesses in an industry, it would be extremely difficult to show competitive advantage through "unique business value". It would be equally difficult to "evolve" to meet or exceed business needs and keep up with today's rapid pace of change. How does one ensure that they do not jump from one trap directly into another? Or to put it positively, there are solutions available today that can address these challenges and issues. How does one ensure that the buying decision of today will serve the business well for years into the future? Intelligent & Informed decisions - "buying right" In a previous blog entry, we discussed the value of linking tactical to strategic The key is driving the focus to what is best for your business, handling today's tactical issues while also aligning with a roadmap/strategy that is tightly aligned with your strategic business objectives. When considering the plethora of possible options that provide various approaches to solving today's complex business problems, it is extremely important to ensure that vendors supplying those options, focus on what is best for your business, supplying sufficient information, providing adequate answers to questions, addressing challenges, issues, concerns and objections honestly and openly, and focus on supplying solutions that are tailored for, and deliver the most business value possible for your business. Here are a few questions to consider relative to the proposed options that should help ensure that today's solution doesn't become tomorrow's problem. Do the proposed solutions: Solve the problem(s) you are trying to address? Provide a solid foundation upon which to grow/enhance your business? Provide tactical gains that align with and enable your strategic business goals/objectives? Provide an infrastructure that can be leveraged with subsequent projects? Solve problems for the business overall, the lines of business, or just IT? Simplify your current environment Provide the basis for business: Efficiency Agility Clarity governance, risk, compliance real time business visibility and trend analysis Does your IT staff have the knowledge/experience to successfully manage the proposed systems once they are deployed in production? Done well, you will be presented with options tailored to your business, that enable you to drive the "unique business value" necessary to help your business stand out from others, creating a distinct competitive advantage, delivering what your customers need, when they need it, so you can attract new customers, new business, and grow top line revenue, all at a cost that provides a strong Return on Investment/Return on Assets. The net result is growth with managed cost providing significantly improved profit margin and shareholder value.

    Read the article

  • Look for Oracle at the 2010 ISM San Diego Conference

    - by [email protected]
    Oracle is sponsoring and exhibiting at ISM's 95th Annual International Supply Management Conference and Educational Exhibit on April 25th through 28th.   Be sure to catch our presentation with Hackett that explores how procurement can use payables to boost an organization's balance and income statements. Pierre Mitchell from Hackett will be sharing groundbreaking new research that identifies explicit links between a strategic approach to supplier payments and world-class performance.   If your organization can benefit from increased margin, improved working capital, greater efficiency, and reduced risk, then you can't afford to miss this session. We'll be presenting on Monday at 5:00pm in Exhibit  Hall D.       Some of Oracle's top talent will be available to answer your questions in booth number 527. It is a great opportunity to learn about Oracle's innovations for supplier management, spend classification, invoice automation, and On Demand delivery of procurement applications.  

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >