Search Results

Search found 380 results on 16 pages for 'utilization'.

Page 16/16 | < Previous Page | 12 13 14 15 16 

  • C++ Sentinel/Count Controlled Loop beginning programming

    - by Bryan Hendricks
    Hello all this is my first post. I'm working on a homework assignment with the following parameters. Piecework Workers are paid by the piece. Often worker who produce a greater quantity of output are paid at a higher rate. 1 - 199 pieces completed $0.50 each 200 - 399 $0.55 each (for all pieces) 400 - 599 $0.60 each 600 or more $0.65 each Input: For each worker, input the name and number of pieces completed. Name Pieces Johnny Begood 265 Sally Great 650 Sam Klutz 177 Pete Precise 400 Fannie Fantastic 399 Morrie Mellow 200 Output: Print an appropriate title and column headings. There should be one detail line for each worker, which shows the name, number of pieces, and the amount earned. Compute and print totals of the number of pieces and the dollar amount earned. Processing: For each person, compute the pay earned by multiplying the number of pieces by the appropriate price. Accumulate the total number of pieces and the total dollar amount paid. Sample Program Output: Piecework Weekly Report Name Pieces Pay Johnny Begood 265 145.75 Sally Great 650 422.50 Sam Klutz 177 88.5 Pete Precise 400 240.00 Fannie Fantastic 399 219.45 Morrie Mellow 200 110.00 Totals 2091 1226.20 You are required to code, compile, link, and run a sentinel-controlled loop program that transforms the input to the output specifications as shown in the above attachment. The input items should be entered into a text file named piecework1.dat and the ouput file stored in piecework1.out . The program filename is piecework1.cpp. Copies of these three files should be e-mailed to me in their original form. Read the name using a single variable as opposed to two different variables. To accomplish this, you must use the getline(stream, variable) function as discussed in class, except that you will replace the cin with your textfile stream variable name. Do not forget to code the compiler directive #include < string at the top of your program to acknowledge the utilization of the string variable, name . Your nested if-else statement, accumulators, count-controlled loop, should be properly designed to process the data correctly. The code below will run, but does not produce any output. I think it needs something around line 57 like a count control to stop the loop. something like (and this is just an example....which is why it is not in the code.) count = 1; while (count <=4) Can someone review the code and tell me what kind of count I need to introduce, and if there are any other changes that need to be made. Thanks. [code] //COS 502-90 //November 2, 2012 //This program uses a sentinel-controlled loop that transforms input to output. #include <iostream> #include <fstream> #include <iomanip> //output formatting #include <string> //string variables using namespace std; int main() { double pieces; //number of pieces made double rate; //amout paid per amount produced double pay; //amount earned string name; //name of worker ifstream inFile; ofstream outFile; //***********input statements**************************** inFile.open("Piecework1.txt"); //opens the input text file outFile.open("piecework1.out"); //opens the output text file outFile << setprecision(2) << showpoint; outFile << name << setw(6) << "Pieces" << setw(12) << "Pay" << endl; outFile << "_____" << setw(6) << "_____" << setw(12) << "_____" << endl; getline(inFile, name, '*'); //priming read inFile >> pieces >> pay >> rate; // ,, while (name != "End of File") //while condition test { //begining of loop pay = pieces * rate; getline(inFile, name, '*'); //get next name inFile >> pieces; //get next pieces } //end of loop inFile.close(); outFile.close(); return 0; }[/code]

    Read the article

  • Threads to make video out of images

    - by masood
    updates: I think/ suspect the imageIO is not thread safe. shared by all threads. the read() call might use resources that are also shared. Thus it will give the performance of a single thread no matter how many threads used. ? if its correct . what is the solution (in practical code) Single request and response model at one time do not utilizes full network/internet bandwidth, thus resulting in low performance. (benchmark is of half speed utilization or even lower) This is to make a video out of an IP cam that gives a new image on each request. http://149.5.43.10:8001/snapshot.jpg It makes a delay of 3 - 8 seconds no matter what I do. Changed thread no. and thread time intervals, debugged the code by System.out.println statements to see if threads work. All seems normal. Any help? Please show some practical code. You may modify mine. This code works (javascript) with much smoother frame rate and max bandwidth usage. but the later code (java) dont. same 3 to 8 seconds gap. <!DOCTYPE html> <html> <head> <script type="text/javascript"> (function(){ var img="/*url*/"; var interval=50; var pointer=0; function showImg(image,idx) { if(idx<=pointer) return; document.body.replaceChild(image,document.getElementsByTagName("img")[0]); pointer=idx; preload(); } function preload() { var cache=null,idx=0;; for(var i=0;i<5;i++) { idx=Date.now()+interval*(i+1); cache=new Image(); cache.onload=(function(ele,idx){return function(){showImg(ele,idx);};})(cache,idx); cache.src=img+"?"+idx; } } window.onload=function(){ document.getElementsByTagName("img")[0].onload=preload; document.getElementsByTagName("img")[0].src="/*initial url*/"; }; })(); </script> </head> <body> <img /> </body> </html> and of java (with problem) : package camba; import java.applet.Applet; import java.awt.Button; import java.awt.Graphics; import java.awt.Image; import java.awt.Label; import java.awt.Panel; import java.awt.TextField; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.net.URL; import java.security.Timestamp; import java.util.Date; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicBoolean; import javax.imageio.ImageIO; public class Camba extends Applet implements ActionListener{ Image img; TextField textField; Label label; Button start,stop; boolean terminate = false; long viewTime; public void init(){ label = new Label("please enter camera URL "); add(label); textField = new TextField(30); add(textField); start = new Button("Start"); add(start); start.addActionListener(this); stop = new Button("Stop"); add(stop); stop.addActionListener(this); } public void actionPerformed(ActionEvent e){ Button source = (Button)e.getSource(); if(source.getLabel() == "Start"){ for (int i = 0; i < 7; i++) { myThread(50*i); } System.out.println("start..."); } if(source.getLabel() == "Stop"){ terminate = true; System.out.println("stop..."); } } public void paint(Graphics g) { update(g); } public void update(Graphics g){ try{ viewTime = System.currentTimeMillis(); g.drawImage(img, 100, 100, this); } catch(Exception e) { e.printStackTrace(); } } public void myThread(final int sleepTime){ new Thread(new Runnable() { public void run() { while(!terminate){ try { TimeUnit.MILLISECONDS.sleep(sleepTime); } catch (InterruptedException ex) { ex.printStackTrace(); } long requestTime= 0; Image tempImage = null; try { URL pic = null; requestTime= System.currentTimeMillis(); pic = new URL(getDocumentBase(), textField.getText()); tempImage = ImageIO.read(pic); } catch(Exception e) { e.printStackTrace(); } if(requestTime >= /*last view time*/viewTime){ img = tempImage; Camba.this.repaint(); } } }}).start(); System.out.println("thread started..."); } }

    Read the article

  • Oracle Coherence, Split-Brain and Recovery Protocols In Detail

    - by Ricardo Ferreira
    This article provides a high level conceptual overview of Split-Brain scenarios in distributed systems. It will focus on a specific example of cluster communication failure and recovery in Oracle Coherence. This includes a discussion on the witness protocol (used to remove failed cluster members) and the panic protocol (used to resolve Split-Brain scenarios). Note that the removal of cluster members does not necessarily indicate a Split-Brain condition. Oracle Coherence does not (and cannot) detect a Split-Brain as it occurs, the condition is only detected when cluster members that previously lost contact with each other regain contact. Cluster Topology and Configuration In order to create an good didactic for the article, let's assume a cluster topology and configuration. In this example we have a six member cluster, consisting of one JVM on each physical machine. The member IDs are as follows: Member ID  IP Address  1  10.149.155.76  2  10.149.155.77  3  10.149.155.236  4  10.149.155.75  5  10.149.155.79  6  10.149.155.78 Members 1, 2, and 3 are connected to a switch, and members 4, 5, and 6 are connected to a second switch. There is a link between the two switches, which provides network connectivity between all of the machines. Member 1 is the first member to join this cluster, thus making it the senior member. Member 6 is the last member to join this cluster. Here is a log snippet from Member 6 showing the complete member set: 2010-02-26 15:27:57.390/3.062 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=6): Started DefaultCacheServer... SafeCluster: Name=cluster:0xDDEB Group{Address=224.3.5.3, Port=35465, TTL=4} MasterMemberSet ( ThisMember=Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) OldestMember=Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ActualMemberSet=MemberSet(Size=6, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) RecycleMillis=120000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) At approximately 15:30, the connection between the two switches is severed: Thirty seconds later (the default packet timeout in development mode) the logs indicate communication failures across the cluster. In this example, the communication failure was caused by a network failure. In a production setting, this type of communication failure can have many root causes, including (but not limited to) network failures, excessive GC, high CPU utilization, swapping/virtual memory, and exceeding maximum network bandwidth. In addition, this type of failure is not necessarily indicative of a split brain. Any communication failure will be logged in this fashion. Member 2 logs a communication failure with Member 5: 2010-02-26 15:30:32.638/196.928 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) ) The Coherence clustering protocol (TCMP) is a reliable transport mechanism built on UDP. In order for the protocol to be reliable, it requires an acknowledgement (ACK) for each packet delivered. If a packet fails to be acknowledged within the configured timeout period, the Coherence cluster member will log a packet timeout (as seen in the log message above). When this occurs, the cluster member will consult with other members to determine who is at fault for the communication failure. If the witness members agree that the suspect member is at fault, the suspect is removed from the cluster. If the witnesses unanimously disagree, the accuser is removed. This process is known as the witness protocol. Since Member 2 cannot communicate with Member 5, it selects two witnesses (Members 1 and 4) to determine if the communication issue is with Member 5 or with itself (Member 2). However, Member 4 is on the switch that is no longer accessible by Members 1, 2 and 3; thus a packet timeout for member 4 is recorded as well: 2010-02-26 15:30:35.648/199.938 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) Member 1 has the ability to confirm the departure of member 4, however Member 6 cannot as it is also inaccessible. At the same time, Member 3 sends a request to remove Member 6, which is followed by a report from Member 3 indicating that Member 6 has departed the cluster: 2010-02-26 15:30:35.706/199.996 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft request for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) 2010-02-26 15:30:35.709/199.999 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft notification for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) The log for Member 3 determines how Member 6 departed the cluster: 2010-02-26 15:30:35.161/191.694 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=3): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ) 2010-02-26 15:30:35.165/191.698 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=3): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ); removing Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) In this case, Member 3 happened to select two witnesses that it still had connectivity with (Members 1 and 2) thus resulting in a simple decision to remove Member 6. Given the departure of Member 6, Member 2 is left with a single witness to confirm the departure of Member 4: 2010-02-26 15:30:35.713/200.003 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=2): Member departure confirmed by MemberSet(Size=1, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ); removing Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) In the meantime, Member 4 logs a missing heartbeat from the senior member. This message is also logged on Members 5 and 6. 2010-02-26 15:30:07.906/150.453 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=PacketListenerN, member=4): Scheduled senior member heartbeat is overdue; rejoining multicast group. Next, Member 4 logs a TcpRing failure with Member 2, thus resulting in the termination of Member 2: 2010-02-26 15:30:21.421/163.968 Oracle Coherence GE 3.5.3/465p2 <D4> (thread=Cluster, member=4): TcpRing: Number of socket exceptions exceeded maximum; last was "java.net.SocketTimeoutException: connect timed out"; removing the member: 2 For quick process termination detection, Oracle Coherence utilizes a feature called TcpRing which is a sparse collection of TCP/IP-based connections between different members in the cluster. Each member in the cluster is connected to at least one other member, which (if at all possible) is running on a different physical box. This connection is not used for any data transfer, only heartbeat communications are sent once a second per each link. If a certain number of exceptions are thrown while trying to re-establish a connection, the member throwing the exceptions is removed from the cluster. Member 5 logs a packet timeout with Member 3 and cites witnesses Members 4 and 6: 2010-02-26 15:30:29.791/165.037 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=5): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) 2010-02-26 15:30:29.798/165.044 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=5): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ); removing Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Eventually we are left with two distinct clusters consisting of Members 1, 2, 3 and Members 4, 5, 6, respectively. In the latter cluster, Member 4 is promoted to senior member. The connection between the two switches is restored at 15:33. Upon the restoration of the connection, the cluster members immediately receive cluster heartbeats from the two senior members. In the case of Members 1, 2, and 3, the following is logged: 2010-02-26 15:33:14.970/369.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): The member formerly known as Member(Id=4, Timestamp=2010-02-26 15:30:35.341, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. Likewise for Members 4, 5, and 6: 2010-02-26 15:33:14.343/336.890 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=4): The member formerly known as Member(Id=1, Timestamp=2010-02-26 15:30:31.64, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. This message indicates that a senior heartbeat is being received from members that were previously removed from the cluster, in other words, something that should not be possible. For this reason, the recipients of these messages will initially ignore them. After several iterations of these messages, the existence of multiple clusters is acknowledged, thus triggering the panic protocol to reconcile this situation. When the presence of more than one cluster (i.e. Split-Brain) is detected by a Coherence member, the panic protocol is invoked in order to resolve the conflicting clusters and consolidate into a single cluster. The protocol consists of the removal of smaller clusters until there is one cluster remaining. In the case of equal size clusters, the one with the older Senior Member will survive. Member 1, being the oldest member, initiates the protocol: 2010-02-26 15:33:45.970/400.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): An existence of a cluster island with senior Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) containing 3 nodes have been detected. Since this Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) is the senior of an older cluster island, the panic protocol is being activated to stop the other island's senior and all junior nodes that belong to it. Member 3 receives the panic: 2010-02-26 15:33:45.803/382.336 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=3): Received panic from senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) caused by Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member 4, the senior member of the younger cluster, receives the kill message from Member 3: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. In turn, Member 4 requests the departure of its junior members 5 and 6: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:43.343/349.015 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=6): Received a Kill message from a valid Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer); stopping cluster service. Once Members 4, 5, and 6 restart, they rejoin the original cluster with senior member 1. The log below is from Member 4. Note that it receives a different member id when it rejoins the cluster. 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:46.921/369.468 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Service Cluster left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:InvocationService, member=4): Service InvocationService left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=OptimisticCache, member=4): Service OptimisticCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=ReplicatedCache, member=4): Service ReplicatedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=DistributedCache, member=4): Service DistributedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:Management, member=4): Service Management left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service Management with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service DistributedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service ReplicatedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service OptimisticCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service InvocationService with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member(Id=6, Timestamp=2010-02-26 15:33:47.046, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) left Cluster with senior member 4 2010-02-26 15:33:49.218/371.765 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=n/a): Restarting cluster 2010-02-26 15:33:49.421/371.968 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=n/a): Service Cluster joined the cluster with senior service member n/a 2010-02-26 15:33:49.625/372.172 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=n/a): This Member(Id=5, Timestamp=2010-02-26 15:33:50.499, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=1) joined cluster "cluster:0xDDEB" with senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) Cool isn't it?

    Read the article

  • Windows Azure: Backup Services Release, Hyper-V Recovery Manager, VM Enhancements, Enhanced Enterprise Management Support

    - by ScottGu
    This morning we released a huge set of updates to Windows Azure.  These new capabilities include: Backup Services: General Availability of Windows Azure Backup Services Hyper-V Recovery Manager: Public preview of Windows Azure Hyper-V Recovery Manager Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Configuration Active Directory: Securely manage hundreds of SaaS applications Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure SDK 2.2: A massive update of our SDK + Visual Studio tooling support All of these improvements are now available to use immediately.  Below are more details about them. Backup Service: General Availability Release of Windows Azure Backup Today we are releasing Windows Azure Backup Service as a general availability service.  This release is now live in production, backed by an enterprise SLA, supported by Microsoft Support, and is ready to use for production scenarios. Windows Azure Backup is a cloud based backup solution for Windows Server which allows files and folders to be backed up and recovered from the cloud, and provides off-site protection against data loss. The service provides IT administrators and developers with the option to back up and protect critical data in an easily recoverable way from any location with no upfront hardware cost. Windows Azure Backup is built on the Windows Azure platform and uses Windows Azure blob storage for storing customer data. Windows Server uses the downloadable Windows Azure Backup Agent to transfer file and folder data securely and efficiently to the Windows Azure Backup Service. Along with providing cloud backup for Windows Server, Windows Azure Backup Service also provides capability to backup data from System Center Data Protection Manager and Windows Server Essentials, to the cloud. All data is encrypted onsite before it is sent to the cloud, and customers retain and manage the encryption key (meaning the data is stored entirely secured and can’t be decrypted by anyone but yourself). Getting Started To get started with the Windows Azure Backup Service, create a new Backup Vault within the Windows Azure Management Portal.  Click New->Data Services->Recovery Services->Backup Vault to do this: Once the backup vault is created you’ll be presented with a simple tutorial that will help guide you on how to register your Windows Servers with it: Once the servers you want to backup are registered, you can use the appropriate local management interface (such as the Microsoft Management Console snap-in, System Center Data Protection Manager Console, or Windows Server Essentials Dashboard) to configure the scheduled backups and to optionally initiate recoveries. You can follow these tutorials to learn more about how to do this: Tutorial: Schedule Backups Using the Windows Azure Backup Agent This tutorial helps you with setting up a backup schedule for your registered Windows Servers. Additionally, it also explains how to use Windows PowerShell cmdlets to set up a custom backup schedule. Tutorial: Recover Files and Folders Using the Windows Azure Backup Agent This tutorial helps you with recovering data from a backup. Additionally, it also explains how to use Windows PowerShell cmdlets to do the same tasks. Below are some of the key benefits the Windows Azure Backup Service provides: Simple configuration and management. Windows Azure Backup Service integrates with the familiar Windows Server Backup utility in Windows Server, the Data Protection Manager component in System Center and Windows Server Essentials, in order to provide a seamless backup and recovery experience to a local disk, or to the cloud. Block level incremental backups. The Windows Azure Backup Agent performs incremental backups by tracking file and block level changes and only transferring the changed blocks, hence reducing the storage and bandwidth utilization. Different point-in-time versions of the backups use storage efficiently by only storing the changes blocks between these versions. Data compression, encryption and throttling. The Windows Azure Backup Agent ensures that data is compressed and encrypted on the server before being sent to the Windows Azure Backup Service over the network. As a result, the Windows Azure Backup Service only stores encrypted data in the cloud storage. The encryption key is not available to the Windows Azure Backup Service, and as a result the data is never decrypted in the service. Also, users can setup throttling and configure how the Windows Azure Backup service utilizes the network bandwidth when backing up or restoring information. Data integrity is verified in the cloud. In addition to the secure backups, the backed up data is also automatically checked for integrity once the backup is done. As a result, any corruptions which may arise due to data transfer can be easily identified and are fixed automatically. Configurable retention policies for storing data in the cloud. The Windows Azure Backup Service accepts and implements retention policies to recycle backups that exceed the desired retention range, thereby meeting business policies and managing backup costs. Hyper-V Recovery Manager: Now Available in Public Preview I’m excited to also announce the public preview of a new Windows Azure Service – the Windows Azure Hyper-V Recovery Manager (HRM). Windows Azure Hyper-V Recovery Manager helps protect your business critical services by coordinating the replication and recovery of System Center Virtual Machine Manager 2012 SP1 and System Center Virtual Machine Manager 2012 R2 private clouds at a secondary location. With automated protection, asynchronous ongoing replication, and orderly recovery, the Hyper-V Recovery Manager service can help you implement Disaster Recovery and restore important services accurately, consistently, and with minimal downtime. Application data in an Hyper-V Recovery Manager scenarios always travels on your on-premise replication channel. Only metadata (such as names of logical clouds, virtual machines, networks etc.) that is needed for orchestration is sent to Azure. All traffic sent to/from Azure is encrypted. You can begin using Windows Azure Hyper-V Recovery today by clicking New->Data Services->Recovery Services->Hyper-V Recovery Manager within the Windows Azure Management Portal.  You can read more about Windows Azure Hyper-V Recovery Manager in Brad Anderson’s 9-part series, Transform the datacenter. To learn more about setting up Hyper-V Recovery Manager follow our detailed step-by-step guide. Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Today’s Windows Azure release includes a number of nice updates to Windows Azure Virtual Machines.  These improvements include: Ability to Delete both VM Instances + Attached Disks in One Operation Prior to today’s release, when you deleted VMs within Windows Azure we would delete the VM instance – but not delete the drives attached to the VM.  You had to manually delete these yourself from the storage account.  With today’s update we’ve added a convenience option that now allows you to either retain or delete the attached disks when you delete the VM:   We’ve also added the ability to delete a cloud service, its deployments, and its role instances with a single action. This can either be a cloud service that has production and staging deployments with web and worker roles, or a cloud service that contains virtual machines.  To do this, simply select the Cloud Service within the Windows Azure Management Portal and click the “Delete” button: Warnings on Availability Sets with Only One Virtual Machine In Them One of the nice features that Windows Azure Virtual Machines supports is the concept of “Availability Sets”.  An “availability set” allows you to define a tier/role (e.g. webfrontends, databaseservers, etc) that you can map Virtual Machines into – and when you do this Windows Azure separates them across fault domains and ensures that at least one of them is always available during servicing operations.  This enables you to deploy applications in a high availability way. One issue we’ve seen some customers run into is where they define an availability set, but then forget to map more than one VM into it (which defeats the purpose of having an availability set).  With today’s release we now display a warning in the Windows Azure Management Portal if you have only one virtual machine deployed in an availability set to help highlight this: You can learn more about configuring the availability of your virtual machines here. Configuring SQL Server Always On SQL Server Always On is a great feature that you can use with Windows Azure to enable high availability and DR scenarios with SQL Server. Today’s Windows Azure release makes it even easier to configure SQL Server Always On by enabling “Direct Server Return” endpoints to be configured and managed within the Windows Azure Management Portal.  Previously, setting this up required using PowerShell to complete the endpoint configuration.  Starting today you can enable this simply by checking the “Direct Server Return” checkbox: You can learn more about how to use direct server return for SQL Server AlwaysOn availability groups here. Active Directory: Application Access Enhancements This summer we released our initial preview of our Application Access Enhancements for Windows Azure Active Directory.  This service enables you to securely implement single-sign-on (SSO) support against SaaS applications (including Office 365, SalesForce, Workday, Box, Google Apps, GitHub, etc) as well as LOB based applications (including ones built with the new Windows Azure AD support we shipped last week with ASP.NET and VS 2013). Since the initial preview we’ve enhanced our SAML federation capabilities, integrated our new password vaulting system, and shipped multi-factor authentication support. We've also turned on our outbound identity provisioning system and have it working with hundreds of additional SaaS Applications: Earlier this month we published an update on dates and pricing for when the service will be released in general availability form.  In this blog post we announced our intention to release the service in general availability form by the end of the year.  We also announced that the below features would be available in a free tier with it: SSO to every SaaS app we integrate with – Users can Single Sign On to any app we are integrated with at no charge. This includes all the top SAAS Apps and every app in our application gallery whether they use federation or password vaulting. Application access assignment and removal – IT Admins can assign access privileges to web applications to the users in their active directory assuring that every employee has access to the SAAS Apps they need. And when a user leaves the company or changes jobs, the admin can just as easily remove their access privileges assuring data security and minimizing IP loss User provisioning (and de-provisioning) – IT admins will be able to automatically provision users in 3rd party SaaS applications like Box, Salesforce.com, GoToMeeting, DropBox and others. We are working with key partners in the ecosystem to establish these connections, meaning you no longer have to continually update user records in multiple systems. Security and auditing reports – Security is a key priority for us. With the free version of these enhancements you'll get access to our standard set of access reports giving you visibility into which users are using which applications, when they were using them and where they are using them from. In addition, we'll alert you to un-usual usage patterns for instance when a user logs in from multiple locations at the same time. Our Application Access Panel – Users are logging in from every type of devices including Windows, iOS, & Android. Not all of these devices handle authentication in the same manner but the user doesn't care. They need to access their apps from the devices they love. Our Application Access Panel will support the ability for users to access access and launch their apps from any device and anywhere. You can learn more about our plans for application management with Windows Azure Active Directory here.  Try out the preview and start using it today. Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure Active Directory provides the ability to manage your organization in a directory which is hosted entirely in the cloud, or alternatively kept in sync with an on-premises Windows Server Active Directory solution (allowing you to seamlessly integrate with the directory you already have).  With today’s Windows Azure release we are integrating Windows Azure Active Directory even more within the core Windows Azure management experience, and enabling an even richer enterprise security offering.  Specifically: 1) All Windows Azure accounts now have a default Windows Azure Active Directory created for them.  You can create and map any users you want into this directory, and grant administrative rights to manage resources in Windows Azure to these users. 2) You can keep this directory entirely hosted in the cloud – or optionally sync it with your on-premises Windows Server Active Directory.  Both options are free.  The later approach is ideal for companies that wish to use their corporate user identities to sign-in and manage Windows Azure resources.  It also ensures that if an employee leaves an organization, his or her access control rights to the company’s Windows Azure resources are immediately revoked. 3) The Windows Azure Service Management APIs have been updated to support using Windows Azure Active Directory credentials to sign-in and perform management operations.  Prior to today’s release customers had to download and use management certificates (which were not scoped to individual users) to perform management operations.  We still support this management certificate approach (don’t worry – nothing will stop working).  But we think the new Windows Azure Active Directory authentication support enables an even easier and more secure way for customers to manage resources going forward.  4) The Windows Azure SDK 2.2 release (which is also shipping today) includes built-in support for the new Service Management APIs that authenticate with Windows Azure Active Directory, and now allow you to create and manage Windows Azure applications and resources directly within Visual Studio using your Active Directory credentials.  This, combined with updated PowerShell scripts that also support Active Directory, enables an end-to-end enterprise authentication story with Windows Azure. Below are some details on how all of this works: Subscriptions within a Directory As part of today’s update, we have associated all existing Window Azure accounts with a Windows Azure Active Directory (and created one for you if you don’t already have one). When you login to the Windows Azure Management Portal you’ll now see the directory name in the URI of the browser.  For example, in the screen-shot below you can see that I have a “scottgu” directory that my subscriptions are hosted within: Note that you can continue to use Microsoft Accounts (formerly known as Microsoft Live IDs) to sign-into Windows Azure.  These map just fine to a Windows Azure Active Directory – so there is no need to create new usernames that are specific to a directory if you don’t want to.  In the scenario above I’m actually logged in using my @hotmail.com based Microsoft ID which is now mapped to a “scottgu” active directory that was created for me.  By default everything will continue to work just like you used to before. Manage your Directory You can manage an Active Directory (including the one we now create for you by default) by clicking the “Active Directory” tab in the left-hand side of the portal.  This will list all of the directories in your account.  Clicking one the first time will display a getting started page that provides documentation and links to perform common tasks with it: You can use the built-in directory management support within the Windows Azure Management Portal to add/remove/manage users within the directory, enable multi-factor authentication, associate a custom domain (e.g. mycompanyname.com) with the directory, and/or rename the directory to whatever friendly name you want (just click the configure tab to do this).  You can also setup the directory to automatically sync with an on-premises Active Directory using the “Directory Integration” tab. Note that users within a directory by default do not have admin rights to login or manage Windows Azure based resources.  You still need to explicitly grant them co-admin permissions on a subscription for them to login or manage resources in Windows Azure.  You can do this by clicking the Settings tab on the left-hand side of the portal and then by clicking the administrators tab within it. Sign-In Integration within Visual Studio If you install the new Windows Azure SDK 2.2 release, you can now connect to Windows Azure from directly inside Visual Studio without having to download any management certificates.  You can now just right-click on the “Windows Azure” icon within the Server Explorer and choose the “Connect to Windows Azure” context menu option to do so: Doing this will prompt you to enter the email address of the username you wish to sign-in with (make sure this account is a user in your directory with co-admin rights on a subscription): You can use either a Microsoft Account (e.g. Windows Live ID) or an Active Directory based Organizational account as the email.  The dialog will update with an appropriate login prompt depending on which type of email address you enter: Once you sign-in you’ll see the Windows Azure resources that you have permissions to manage show up automatically within the Visual Studio server explorer and be available to start using: No downloading of management certificates required.  All of the authentication was handled using your Windows Azure Active Directory! Manage Subscriptions across Multiple Directories If you have already have multiple directories and multiple subscriptions within your Windows Azure account, we have done our best to create a good default mapping of your subscriptions->directories as part of today’s update.  If you don’t like the default subscription-to-directory mapping we have done you can click the Settings tab in the left-hand navigation of the Windows Azure Management Portal and browse to the Subscriptions tab within it: If you want to map a subscription under a different directory in your account, simply select the subscription from the list, and then click the “Edit Directory” button to choose which directory to map it to.  Mapping a subscription to a different directory takes only seconds and will not cause any of the resources within the subscription to recycle or stop working.  We’ve made the directory->subscription mapping process self-service so that you always have complete control and can map things however you want. Filtering By Directory and Subscription Within the Windows Azure Management Portal you can filter resources in the portal by subscription (allowing you to show/hide different subscriptions).  If you have subscriptions mapped to multiple directory tenants, we also now have a filter drop-down that allows you to filter the subscription list by directory tenant.  This filter is only available if you have multiple subscriptions mapped to multiple directories within your Windows Azure Account:   Windows Azure SDK 2.2 Today we are also releasing a major update of our Windows Azure SDK.  The Windows Azure SDK 2.2 release adds some great new features including: Visual Studio 2013 Support Integrated Windows Azure Sign-In support within Visual Studio Remote Debugging Cloud Services with Visual Studio Firewall Management support within Visual Studio for SQL Databases Visual Studio 2013 RTM VM Images for MSDN Subscribers Windows Azure Management Libraries for .NET Updated Windows Azure PowerShell Cmdlets and ScriptCenter I’ll post a follow-up blog shortly with more details about all of the above. Additional Updates In addition to the above enhancements, today’s release also includes a number of additional improvements: AutoScale: Richer time and date based scheduling support (set different rules on different dates) AutoScale: Ability to Scale to Zero Virtual Machines (very useful for Dev/Test scenarios) AutoScale: Support for time-based scheduling of Mobile Service AutoScale rules Operation Logs: Auditing support for Service Bus management operations Today we also shipped a major update to the Windows Azure SDK – Windows Azure SDK 2.2.  It has so much goodness in it that I have a whole second blog post coming shortly on it! :-) Summary Today’s Windows Azure release enables a bunch of great new scenarios, and enables a much richer enterprise authentication offering. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

< Previous Page | 12 13 14 15 16