Search Results

Search found 11547 results on 462 pages for 'parameter binding'.

Page 160/462 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • how to access char*** from dll import in C#

    - by mavrick
    I have a function in win32 dll with signature as: void func1(int a, char*** outData) int a -- input parameter char*** outData -- output parameter - pointer to array of char strings Any idea how to access this in C# using dll import & what should be the signature.

    Read the article

  • unable to pas derived List<>

    - by Tarscher
    Hi all, I have class A {} class B : A {} I also have a method that expects a List parameter void AMethod(List<A> parameter) {} Why can't I List<B> bs = new List<B>(); AMethod(bs); And secondly what is the most elegant way to make this work? regards

    Read the article

  • How to document class attributes with NaturalDocs

    - by HWende
    Via """ Function: myfunc Parameters: a : First parameter b : First parameter """ I can document a function and it gets listed in the class summary. How can I do something similar with attributes? Since I don't declare them in python I was hoping something like """ ---------------------------------------------------------------------------- Attributes: first - First attribute of the class second - Second one """ That is not working at all...

    Read the article

  • Replace a method call

    - by deV
    Hi, I want to achieve below task: 1. I need to search Html.Resource("key") in my application and replace it with GetResource("key",object) 2. The GetResource method has two parameters: the first parameter should be the same as the original method,"key" in this case, and I need to pass in the second parameter which is variable. 3. I need to replace only when the Html.Resource("key") occurs inside certain tags like td and div else I need not replace it. Thanks in advance

    Read the article

  • What is a valid use for Response.Redirect("SomeURL", false) ?

    - by Aheho
    In ASP.NET I frequently use Response.Redirect to redirect the end user to another page on my system. I always set the second parameter to true to immediately end the response. For the life of me, I can't think of a reason why anybody would ever set that parameter to true. What's the point of continuing generating a page when the end user's browser is just going to be redirected to a different page immediately?

    Read the article

  • Using java provided parameters into xpath function while applying xslt transformation

    - by filmac
    I'm working at a java application that performs some xslt transformation. I would like to match nodes into the xslt document, using a parameter provided by java. Which is the right way to do something like: <xsl:template match="//m:properties/*[contains($pattern,name())]"> because when I launch my application, it claims it's not able to compile the stylesheet, since pattern is not defined but I'm setting it using the setParameter method and I was able to use another parameter defined in the same way but in a different context. Thanks in advance Fil

    Read the article

  • Perl check for the existence of a value in a regular array

    - by Mel
    I am trying to figure out a way of checking for the existence of a value in an array without iterating through the array. I am reading a file for a parameter. I have a long list of parameters I do not want to deal with. I placed these unwanted parameters in an array @badparams I want to read a new parameter and if it does not exist in @badparams, process it. If it does exist in @badparams, go to the next read.

    Read the article

  • [Symfony] Accessing user session from a custom routing class

    - by David
    Is there some way to acces the user object from a custom routing class? I'd like to add a parameter when generating a url, and that parameter is inside the user session, so I need to access it. The only way I found to access is using the sfContext::getInstance()-getUser(), but it's known to be inefficient. Thanks!

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • How to deal with transport level security policy with OSB

    - by Jian Liang
    Recently, we received a use case for Oracle Service Bus (OSB) 11gPS4 to consume a Web Service which is secured by HTTP transport level security policy. The WSDL of the remote web service looks like following where the part marked in red shows the security policy: <?xml version='1.0' encoding='UTF-8'?> <definitions xmlns:wssutil="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="https://httpsbasicauth" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="https://httpsbasicauth" name="HttpsBasicAuthService"> <wsp:UsingPolicy wssutil:Required="true"/> <wsp:Policy wssutil:Id="WSHttpBinding_IPartyServicePortType_policy"> <wsp:ExactlyOne> <wsp:All> <ns1:TransportBinding xmlns:ns1="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"> <wsp:Policy> <ns1:TransportToken> <wsp:Policy> <ns1:HttpsToken RequireClientCertificate="false"/> </wsp:Policy> </ns1:TransportToken> <ns1:AlgorithmSuite> <wsp:Policy> <ns1:Basic256/> </wsp:Policy> </ns1:AlgorithmSuite> <ns1:Layout> <wsp:Policy> <ns1:Strict/> </wsp:Policy> </ns1:Layout> </wsp:Policy> </ns1:TransportBinding> <ns2:UsingAddressing xmlns:ns2="http://www.w3.org/2006/05/addressing/wsdl"/> </wsp:All> </wsp:ExactlyOne> </wsp:Policy> <types> <xsd:schema> <xsd:import namespace="https://proxyhttpsbasicauth" schemaLocation="http://localhost:7001/WS/HttpsBasicAuthService?xsd=1"/> </xsd:schema> <xsd:schema> <xsd:import namespace="https://httpsbasicauth" schemaLocation="http://localhost:7001/WS/HttpsBasicAuthService?xsd=2"/> </xsd:schema> </types> <message name="echoString"> <part name="parameters" element="tns:echoString"/> </message> <message name="echoStringResponse"> <part name="parameters" element="tns:echoStringResponse"/> </message> <portType name="HttpsBasicAuth"> <operation name="echoString"> <input message="tns:echoString"/> <output message="tns:echoStringResponse"/> </operation> </portType> <binding name="HttpsBasicAuthSoapPortBinding" type="tns:HttpsBasicAuth"> <wsp:PolicyReference URI="#WSHttpBinding_IPartyServicePortType_policy"/> <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/> <operation name="echoString"> <soap:operation soapAction=""/> <input> <soap:body use="literal"/> </input> <output> <soap:body use="literal"/> </output> </operation> </binding> <service name="HttpsBasicAuthService"> <port name="HttpsBasicAuthSoapPort" binding="tns:HttpsBasicAuthSoapPortBinding"> <soap:address location="https://localhost:7002/WS/HttpsBasicAuthService"/> </port> </service> </definitions> The security assertion in the WSDL (marked in red) indicates that this is the HTTP transport level security policy which requires one way SSL with default authentication (aka. basic authenticate with username/password). Normally, there are two ways to handle web service security policy with OSB 11g: Use WebLogic 9.x policy Use OWSM Since OSB doesn’t support WebLogic 9.x WSSP transport level assertion (except for WS transport), when we tried to create the business service based on the imported WSDL, OSB complained with the following message: [OSB Kernel:398133]The service is based on WSDL with Web Services Security Policies that are not natively supported by Oracle Service Bus. Please select OWSM Policies - From OWSM Policy Store option and attach equivalent OWSM security policy. For the Business Service, either you can add the necessary client policies manually by clicking Add button or you can let Oracle Service Bus automatically pick and add compatible client policies by clicking Add Compatible button. Unfortunately, when tried with OWSM, we couldn’t find http_token_policy from OWSM since OSB PS4 doesn’t support OWSM http_token_policy. It seems that we ran into an unsupported situation that no appropriate policy can be used from both WebLogic and OWSM. As this security policy requires one way SSL with basic authentication at the transport level, a possible workaround is to meet the remote service's requirement at transport level without using web service policy. We can simply use OSB to establish SSL connection and provide username/password for authentication at the transport level to the remote web service. In this case, the business service within OSB will be transparent to the web service policy. However, we still need to deal with OSB console’s complaint related to unsupported security policy because the failure of WSDL validation prohibits OSB console to move forward. With the help from OSB Product Management team, we finally came up with the following solutions: Solution 1: OSB PS5 The good news is that the http_token_policy is made available in OSB PS5. With OSB PS5, you can simply add OWSM oracle/wss_http_token_over_ssl_client_policy to the business service. The simplest solution is to upgrade to OSB PS5 where the OWSM solution is provided out of the box. But if you are not in a position where upgrading is an immediate option, you might want to consider other two workaround solutions described below. Solution 2: Modifying WSDL This solution addresses OSB console’s complaint by removing the security policy from the imported WSDL within OSB. Without the security policy, OSB console allows the business service to be created based on modified WSDL.  Please bear in mind, modifying WSDL is done only for the OSB side via OSB console, no change is required on the remote Web Service. The main steps of this solution: Connect to OSB console import the remote WSDL into OSB remove security assertion (the red marked part) from the imported WSDL create a service account. In our sample, we simply take the user weblogic create the business service and check "Basic" for Authentication and select the created service account make sure that OSB consumes the web service via https. This solution requires modifying WSDL. It is suitable for any OSB version (10g or OSB 11g version) prior to PS5 without OWSM. However, modifying WSDL by hand is troublesome as it requires the user to remember that the original WSDL was edited.  It forces you to make the same edit each time you want to re-import the service WSDL when changes occur at the service level. This also prevents you from using UDDI to import WSDL.  Solution 3: Using original WSDL This solution keeps the WSDL intact and ignores the embedded policy by using OWSM. By design, OWSM doesn’t like WSDL with embedded security assertion. Since OWSM doesn’t provide the feature to explicitly ignore the embedded policy from a remote WSDL, in this solution, we use OWSM in a tricky way to ignore the embedded policy. Connect to OSB console import the remote WSDL into OSB create a service account create the business service in which check "Basic" for Authentication and select the created service account as the imported WSDL is intact, the OSB Kernel:398133 error is expected ignore this error message for the moment and navigate to the Policies Page of business service Select “From OWSM Policy Store” and click “Add” button, the list of policies will pop-up Here is the tricky part: select an arbitrary policy, and click “Cancel” Update and save By clicking “Cancel’ button, we didn’t add any OWSM policy to business service, but the embedded policy is ignored. Yes, this is tricky. According to Oracle OSB Product Manager, the future release of OWSM will add a button “None” which allows to ignore the embedded policy explicitly. This solution keeps the imported WSDL intact which is the big advantage over the solution 2. It is suitable for OSB 11g (version prior to PS5) domain with OWSM configured. This blog addressed the unsupported transport level web service security policy with OSB PS4. To summarize, if you are using OSB PS5 or in a position to upgrade to PS5, the recommendation is to use OWSM OOTB transport level security policy directly. With the release prior to 11g PS5, you can consider the solution 2 or 3 depending on if OWSM is configured.

    Read the article

  • Blazing fast performance with RadGridView for Silverlight 4, RadDataPager and WCF RIA Services

    In my previous post I’ve used almost 2 million records to the check the grid performance in WPF and I’ve decided to do the same for Silverlight 4 using WCF RIA Services. The grid again is bound completely codelessly using DomainDataSource and RadDataPager: <Grid x:Name="LayoutRoot"> <Grid.RowDefinitions> <RowDefinition /> <RowDefinition Height="Auto" /> </Grid.RowDefinitions> <riaControls:DomainDataSource Name="orderDomainDataSource" QueryName="GetOrdersAndOrderDetails"> <riaControls:DomainDataSource.DomainContext> <my:NorthwindDomainContext /> </riaControls:DomainDataSource.DomainContext> </riaControls:DomainDataSource> <telerik:RadGridView Name="RadGridView1" IsReadOnly="True" AutoExpandGroups="True" ItemsSource="{Binding Data, ElementName=orderDomainDataSource}" /> <telerik:RadDataPager Grid.Row="1" PageSize="10" Source="{Binding Data, ElementName=orderDomainDataSource}" DisplayMode="All" /> </Grid> And the query again will return join between Northwind Orders and Order_Details: … public IQueryable<OrdersAndOrderDetails> GetOrdersAndOrderDetails() ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SharePoint and COMException (0x80004005): Cannot complete this action

    - by Damon
    I ran into a small issue today working on a deployment.  We were moving a custom ASP.NET control from my development environment into a SharePoint layout page on a staging environment .  I was expecting some minor issues to arise since I had developed the control in an ASP.NET website project, but after getting everything moved over we got an obscure COMException error the that looked like this: Cannot complete this action. Please try again. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Runtime.InteropServices.COMException: Cannot complete this action. [COMException (0x80004005): Cannot complete this action. .Lengthy stack trace goes here. Everything in the custom control was built using managed code, so we weren't sure why a COMException would suddenly appear. The control made use of an ITemplate to define its UI, so there was a lot of markup and binding code inside the template. As such, we started taking chunks of the template out of the layout page and eventually the error went away.  It was being caused by a section of code where we were calling a custom utility method inside some binding code: <%# WebUtility.FormatDecimal(.) %> Solution: It turns out that we were missing an Assembly and Import directive at the top of the page to let the page know where to find this method.  After adding these to the page, the error went away and everything worked great.  So a COMException (0x80004005) Cannot complete this action error is just SharePoint's friendly way of letting you know you're missing an assembly or imports reference.

    Read the article

  • SOA Suite 11gR1 Patch Set 2 (PS2) released today!

    - by Demed L'Her
      We just released this morning SOA Suite 11gR1 Patch Set 2 (PS2)! You can download it as usual from: OTN (main platforms only) eDelivery (all platforms)   11gR1 PS2 is delivered as a sparse installer, that is to say that it is meant to be applied on the latest full release (11gR1 PS1). The good part is that it’s great for existing PS1 users who simply need to apply the patch and run the patch assistant – the not so good part is that new users will first need to download PS1. What’s in that release? Bug fixes of course but also several significant new features. Here is a short selection of the most significant features in PS2: Spring component (for native Java extensibility and integration) SOA Partitions (to organize and manage your composites) Direct Binding (for transactional invocations to and from Oracle Service Bus) HTTP binding (for those of you trying to do away with SOAP and looking for simple GET and POST) Resequencer (for ordering out-of-order messages) WS Atomic Transactions (WS-AT) support (for propagation of transactions across heterogeneous environments) Check out the complete list of new features in PS2 for more (including links to the documentation for the above)! But maybe even more importantly we are also releasing Oracle Service Bus 11gR1 and BPM Suite 11gR1 at the same time – all on the same base platform (WebLogic Server 10.3.3)! (NB: it might take a while for all pages and caches to be updated with the new content so if you don’t find what you need today, try again soon!)   Technorati Tags: ps1,11gr1ps2,new release,oracle soa suite,oracle

    Read the article

  • Silverlight Cream for May 30, 2010 -- #873

    - by Dave Campbell
    In this Issue: Matthias Shapiro, Colin Blair(-2-), Mike Snow, Marlon Grech, Victor Gaudioso. Shoutout: If you're going to be anywhere near Mission Viejo, California on June 19th, set your calendar for this Victor Gaudioso event: New Speaking Event: Microsoft Book Signing/Silverlight 4 Presentation SilverLaw has another example of his Flexible surface app up: Drag & Drop Flexible Surface - Silverlight 4 From SilverlightCream.com: Silverlight 4 Binding and StringFormat in XAML Matthias Shapiro has a discussion posted about StringFormat binding in Silverlight 4 ... he dug in hard on this... well worth a read. View Model Collection Properties for WCF RIA Services Colin Blair is discussing some possibilities for exposing collections of entities from the ViewModel... his favorite: PagedCollectionView. The next post discusses this deeper. Advanced Paged Collection View Colin Blair continues in more depth on the PagedCollectionView, this time handling paging, sorting, and multiple loads. Silverlight Tip of the day #25 – Detecting Validation Errors on Submit Mike Snow's latest Tip of the Day is up and is about validation - specifically validating after your user has pressed "OK" INotifyPropertyChanged… I am fed up of handling events just to know when a property changed Marlon Grech has an Rx-less solution to code notifications of properties changing... this is a WPF and Silverlight solution and all the code is downloadable. New Silverlight Video Tutorial: How to Add Multiple BitmapEffects to One Object Victor Gaudioso's latest outing is in response to a query from a reader and is a video tutorial showing how to add multiple bitmap effects to one object. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Ajax Talk at .NET Developers Association

    - by Stephen Walther
    Thanks everyone who came to my Ajax talk tonight at the .NET Developers Association! The slides and demos from the talk can be downloaded by clicking the following link:   ASP.NET Ajax: What’s New?    You need Visual Studio  2010 to view the code samples. The first project, named Demos, contains the following samples: ASPAjax4 1_CompositeScripts.aspx – Demonstrates how to use the ScriptManger to combine, compress, and cache JavaScript files automatically. 2_EnableCdn.aspx – Demonstrates how to retrieve ASP.NET Ajax framework scripts from the Microsoft Ajax CDN automatically. jQuery 1_Selectors.aspx – Demonstrates how to use jQuery selectors 2_WebForms.aspx – Demonstrates how to use the client tablesorter plugin with ASP.NET Web Forms. 3_MVC.aspx – Demonstrates how to use jQuery animation and the templating plugin with ASP.NET MVC. 4_OData.aspx – Demonstrates how to use jQuery with the Netflix API by using JSONP and odata. 5_Templating.aspx – Demonstrates how to use jQuery client templating. 6_TemplateConditionals.aspx – Demonstrates how to use logic within a jQuery template. 7_DataLinking.aspx – Demonstrates how to perform data-binding in jQuery. 8_Converters.aspx – Demonstrates how to defines converters that work with data-binding. The second project, named ACT_Tools, illustrates how to use the Microsoft Ajax Minifier and the JSBuild JavaScript preprocessor. When you perform a build in Visual Studio, all JavaScript and CSS files are minified automatically. Furthermore, any *.pre.js file is processed using the JSBuild preprocessor and the output is saved to the ScriptOutput folder. Select Show All Files in Visual Studio to see the generated results of the minifier and the preprocessor.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Silverlight Cream for April 06, 2010 -- #832

    - by Dave Campbell
    In this Issue: Alex van Beek, Gill Cleeren, SilverlightShow, Michael Sync, Rénald Nollet, Charles Petzold, The-Oliver, and Max Paulousky. Shoutouts: Denislav Savkov of SilverlightShow ported his Slider control to WP7: Windows Phone 7 Series Sample Image Viewer SilverlightShow interview: The Silverlight Tour - what, where and why. Interview with one of the Tour organizers Laurent Duveau From SilverlightCream.com: Silverlight 4: using the VisualStateManager for state animations with MVVM Alex van Beek has an approach to resolving the MVVM issue of Animations without keeping a reference to the ViewModel by way of VisualStateManager Leveraging the ASP.NET Membership in Silverlight Gill Cleeren's post at SilverlightShow talks about using ASP.NET authentication inside your Silverlight making membership not only something you know and understand, but now the transition from your ASP.NET apps to Silverlight is simple as well. Windows Phone 7 Series RSS reader SilverlightShow has a demo RSS Reader for WP7 up... no text, but the code is there. Step by Step Tutorial : Installing Multi-Touch Simulator for Silverlight Phone 7 Michael Sync actually has a multi-touch simulator working for WP7 ... it involves a bunch of moving parts and one of the requirements is Windows 7, but if that works for you, this will too :) Element Property Binding Improvements in Blend 4 Beta and Visual Studio 2010 RC Rénald Nollet demonstrates new Blend and VS2010 features that assists you in Element Property binding with real examples. Projection Transforms Sans Math Charles Petzold is writing about Silverlight and 3D and specifically in this post 3D without math which becomes PlaneProjection... good long tutorial on it and code to back it all up. Daily Demo: Silverlight Install out of browser & Check for Update Behaviors The-Oliver has a post up about OOB and checking for updates using behaviors with only a slight change to your xaml... cool! Wizards. Prototype of sketching Wizard for WPF – 2 Max Paulousky has part 2 of his tutorial on a sketchflow Wizard for WPF ... yes WPF, but check it out... source too. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Bug with Set / Get Accessor in .Net 3.5

    - by MarkPearl
    I spent a few hours scratching my head on this one... So I thought I would blog about it in case someone else had the same headache. Assume you have a class, and you are wanting to use the INotifyPropertyChanged interface so that when you bind to an instance of the class, you get the magic sauce of binding to do you updates to the UI. Well, I had a special instance where I wanted one of the properties of the class to add some additional formatting to itself whenever someone changed its value (see the code below).   class Test: INotifyPropertyChanged {     private string_inputValue;     public stringInputValue     {         get        {             return_inputValue;         }         set        {             if(value!= _inputValue)             {                 _inputValue = value+ "Extra Stuff";                 NotifyPropertyChanged("InputValue");                     }         }     }     public eventPropertyChangedEventHandler PropertyChanged;     public voidNotifyPropertyChanged(stringinfo)     {         if(PropertyChanged != null)         {             PropertyChanged(this, newPropertyChangedEventArgs(info));         }     } }   Everything looked fine, but when I ran it in my WPF project, the textbox I was binding to would not update? I couldn’t understand it! I thought the code made sense, so why wasn’t it working? Eventually StackOverflow came to the rescue, where I was told that it was a bug in the .Net 3.5 Runtime and that a fix was scheduled in .Net 4 For those who have the same problem, here is the workaround… You need to put the NotifyPropertyChanged method on the application thread! public string InputValue { get { return _inputValue; } set { if (value != _inputValue) { _inputValue = value + "Extra Stuff"; // // React to the type of measurement // Application.Current.Dispatcher.BeginInvoke((Action)delegate { NotifyPropertyChanged("InputValue"); }); } } }

    Read the article

  • Conditional styles and templates with RadGridView for Silverlight and WPF

    Im happy to announce that with our upcoming Q1 2010 Service Pack 1 (middle of April) you will be able to apply conditionally styles and templates for RadGridView easily using DataTemplateSelectors and StyleSelectors for both Silverlight and WPF: You can test the new functionally with our upcoming latest internal build this Friday and in the meantime here is an example: XAML <Grid x:Name="LayoutRoot"> <Grid.Resources> <local:MyStyleSelector x:Key="styleSelector" /> <local:MyDataTemplateSelector x:Key="templateSelector" /> </Grid.Resources> <telerik:RadGridView AutoGenerateColumns="False" ItemsSource="{Binding}" RowStyleSelector="{StaticResource styleSelector}"> <telerik:RadGridView.Columns> <telerik:GridViewDataColumn DataMemberBinding="{Binding ID}" CellTemplateSelector="{StaticResource templateSelector}" /> </telerik:RadGridView.Columns> </telerik:RadGridView></Grid>     C# public class MyStyleSelector : StyleSelector{ public override ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Problem with WCF-SQL Adapter

    - by Paul Petrov
    When using WCF receive adapter with SQL binding in Polling mode please be aware of the following problem. Problem: At some regular but seemingly random intervals the application stops processing new requests, places a lock on the database and prevent other application from accessing it. Initially it looked like DTC issue, as it was distributed transaction that stalled most of the time. Symptoms: Orchestration instances in Dehydrated state, receive location not picking up new messages, exclusive locks on database tables, errors in DTC trace. Cause: Microsoft has confirmed that there is a bug in the WCF-SQL adapter. In the receive adapter binding configuration there's receiveTimeout property set to 10 minutes by default. If during this period data is not found in the table the adapter would start new thread and allocate more memory without releasing old resources. Thus if there's no new data in the table for a long time a new thread will be created in the host instance every 10 minutes until it reaches threshold (1000) and then there's no threads left for this host instance and it can't start/complete any tasks. Then this host instance won't be able to do anything. If other artifacts are hosted in the instance they will suffer consequences as well. Solution: - Set receiveTimeout to the maximum time 24.20:31:23.6470000. - Place WCF-SQL receive locations in separate host to provide its own thread pool and eliminate impact on other processes - Ensure WCF-SQL dedicated host instances are restarted at interval less or equal to receiveTimeout to flush threads and memory - Monitor performance counters Process/Thread Count/BTSNTSvc{n} for thread count trend and respond to alert if it grows by restarting host instance If you use WCF-SQL Adapter in the Notification mode then make sure to remove sqlAdapterInboundTransactionBehavior otherwise this location will exhibit the same issue. In this case though, setting receiveTimeout doesn't help and new thread will be created at default intervals (10 min) ignoring maximum setting.

    Read the article

  • Win a Free Copy of Windows Presentation Foundation 4.5 Cookbook

    - by Ricardo Peres
    Win A free copy of the 'Windows Presentation Foundation 4.5 Cookbook', just by commenting! For the contest, Packt Publishing has two eBook copies of Windows Presentation Foundation 4.5 Cookbookto be given away to two lucky winners. How you can win: To win your copy of this book, all you need to do is come up with a comment below highlighting the reason "why you would like to win this book”. Duration of the contest & selection of winners: The contest is valid for 7 days (until November 26), and is open to everyone. Winners will be selected on the basis of their comment posted. Windows Presentation Foundation 4.5 Cookbookis written by Pavel Yosifovich, the CTO of CodeValue (http://www.codevalue.net), a software development, consulting, and training company, based in Israel. This book is written in an easy-to-read style, with a strong emphasis on real-world, practical examples. Step-by-step explanations are provided for performing important tasks. This book is the best guide for C# developer who is looking forward to increase understanding and knowledge of WPF. Using this book, readers will learn to build complex and flexible user interfaces using XAML, perform lengthy operations asynchronously while keeping the UI responsive, get well-versed with WPF features such as data binding, layout, resources, templates, and styles and also customize a control’s template to alter appearance but preserve behavior. In the next days I will post my review on this book. In the meantime, here’s the table of contents: Preface Chapter 1: Foundations Chapter 2: Resources Chapter 3: Layout and Panels Chapter 4: Using Standard Controls Chapter 5: Application and Windows Chapter 6: Data Binding Chapter 7: Commands and MVVM Chapter 8: Styles, Triggers, and Control Templates Chapter 9: Graphics and Animation Chapter 10: Custom Elements Chapter 11: Threading Index I’m waiting for your comments!

    Read the article

  • Organizing Business and Presentation entities

    - by simoneL
    Background I am developing a WPF project. This is the basic structure: User Interface (WPF Project); Interfaces (class library, contains all the interfaces and the entities used by the application; Modules (every module contains the logic of a specific argument, e.g. File Management, and can eventually contains Wpf User Controls). In the WPF Controls, to facilitate the binding operations I have created a BaseViewModel class which contains a Raise method that automates the binding mechanism (for further details, I used a technique similar to that one described in this article). The problem Understand which is the best way to separate Presentation form from the Business form in the entities classes. The case In the Interfaces project I have, for instance, the class User public class User { public virtual string Name { get; set; } // Other properties } In one of the modules I need to use the User class and to bind its properties to the User Interface controls. To do so I have to use a custom implementation of the get and set keywords. At first point, I thought to create a class in the Module called, for instance, ClientUser and override the properties that I need: public class ClientUser : User { private string name; public override string Name { get { return name; } set { Raise(out name, value); } } // Other properties } The problem is the Raise method, which is declared in the BaseViewModel class, but due to C# single inheritance constraint, I can't inherit from both classes. Which is the right way to implement this architecture?

    Read the article

  • Per-vertex animation with VBOs: VBO per character or VBO per animation?

    - by charstar
    Goal To leverage the richness of well vetted animation tools such as Blender to do the heavy lifting for a small but rich set of animations. I am aware of additive pose blending like that from Naughty Dog and similar techniques but I would prefer to expend a little RAM/VRAM to avoid implementing a thesis-ready pose solver. I would also like to avoid implementing a key-frame + interpolation curve solver (reinventing Blender vertex groups and IPOs), if possible. Scenario Meshes are animated using either skeletons (skinned animation) or some form of morph targets (i.e. per-vertex key frames). However, in either case, the animations are known in full at load-time, that is, there is no physics, IK solving, or any other form of in-game pose solving. The number of character actions (animations) will be limited but rich (hand-animated). There may be multiple characters using a each mesh and its animations simultaneously in-game (they will likely be at different frames of the same animation at the same time). Assume color and texture coordinate buffers are static. Current Considerations Much like a non-shader-powered pose solver, create a VBO for each character and copy vertex and normal data to each VBO on each frame (VBO in STREAMING). Create one VBO for each animation where each frame (interleaved vertex and normal data) is concatenated onto the VBO. Then each character simply has a buffer pointer offset based on its current animation frame (e.g. pointer offset = (numVertices+numNormals)*frameNumber). (VBO in STATIC) Known Trade-Offs In 1 above: Each VBO would be small but there would be many VBOs and therefore lots of buffer binding and vertex copying each frame. Both client and pipeline intensive. In 2 above: There would be few VBOs therefore insignificant buffer binding and no vertex data getting jammed down the pipe each frame, but each VBO would be quite large. Are there any pitfalls to number 2 (aside from finite memory)? I've found a lot of information on what you can do, but no real best practices. Are there other considerations or methods that I am missing?

    Read the article

  • EJB Persist On Master Child Relationship

    - by deepak.siddappa(at)oracle.com
    Let us take scenario where in users wants to persist master child relationship. Here will have two tables dept, emp (using Scott Schema) which are having master child relation.Model Diagram: Here in the above model diagram, Dept is the Master table and Emp is child table and Dept is related to emp by one to n relationship. Lets assume we need to make new entries in emp table using EJB persist method. Create a Emp form manually dropping the fields, where deptno will be dropped as Single Selection -> ADF Select One Choice (which is a foreign key in emp table) from deptFindAll DC. Make sure to bind all field variables in backing bean.Employee Form:Once the Emp form created, If the persistEmp() method is used to commit the record this will persist all the Emp fields into emp table except deptno, because the deptno will be passed as a Object reference in persistEmp method  (Its foreign key reference). So directly deptno can't be passed to the persistEmp method instead deptno should be explicitly set to the emp object, then the persist will save the deptno to the emp table.Below solution is one way of work around to achieve this scenario -Create a method in sessionBean for adding emp records and expose this method in DataControl.     For Ex: Here in the below code 'em" is a EntityManager.            private EntityManager em - will be member variable in sessionEJBBeanpublic void addEmpRecord(String ename, String job, BigDecimal deptno) { Emp emp = new Emp(); emp.setEname(ename); emp.setJob(job); //setting the deptno explicitly Dept dept = new Dept(); dept.setDeptno(deptno); //passing the dept object emp.setDept(dept); //persist the emp object data to Emp table em.persist(emp); }From DataControl palette Drop addEmpRecord as Method ADF button, In Edit action binding window enter the parameter values which are binded in backing bean.     For Ex:     If the name deptno textfield is binded with "deptno" variable in backing bean, then El Expression Builder pass value as "#{backingbean.deptno.value}"Binding:

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >