Search Results

Search found 50994 results on 2040 pages for 'simple solution'.

Page 160/2040 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • Working With Extended Events

    - by Fatherjack
    SQL Server 2012 has made working with Extended Events (XE) pretty simple when it comes to what sessions you have on your servers and what options you have selected and so forth but if you are like me then you still have some SQL Server instances that are 2008 or 2008 R2. For those servers there is no built-in way to view the Extended Event sessions in SSMS. I keep coming up against the same situations – Where are the xel log files? What events, actions or predicates are set for the events on the server? What sessions are there on the server already? I got tired of this being a perpetual question and wrote some TSQL to save as a snippet in SQL Prompt so that these details are permanently only a couple of clicks away. First, some history. If you just came here for the code skip down a few paragraphs and it’s all there. If you want a little time to reminisce about SQL Server then stick with me through the next paragraph or two. We are in a bit of a cross-over period currently, there are many versions of SQL Server but I would guess that SQL Server 2008, 2008 R2 and 2012 comprise the majority of installations. With each of these comes a set of management tools, of which SQL Server Management Studio (SSMS) is one. In 2008 and 2008 R2 Extended Events made their first appearance and there was no way to work with them in the SSMS interface. At some point the Extended Events guru Jonathan Kehayias (http://www.sqlskills.com/blogs/jonathan/) created the SQL Server 2008 Extended Events SSMS Addin which is really an excellent tool to ease XE session administration. This addin will install in SSMS 2008 or 2008R2 but not SSMS 2012. If you use a compatible version of SSMS then I wholly recommend downloading and using it to make your work with XE much easier. If you have SSMS 2012 installed, and there is no reason not to as it will let you work with all versions of SQL Server, then you cannot install this addin. If you are working with SQL Server 2012 then SSMS 2012 has built in functionality to manage XE sessions – this functionality does not apply for 2008 or 2008 R2 instances though. This means you are somewhat restricted and have to use TSQL to manage XE sessions on older versions of SQL Server. OK, those of you that skipped ahead for the code, you need to start from here: So, you are working with SSMS 2012 but have a SQL Server that is an earlier version that needs an XE session created or you think there is a session created but you aren’t sure, or you know it’s there but can’t remember if it is running and where the output is going. How do you find out? Well, none of the information is hidden as such but it is a bit of a wrangle to locate it and it isn’t a lot of code that is unlikely to remain in your memory. I have created two pieces of code. The first examines the SYS.Server_Event_… management views in combination with the SYS.DM_XE_… management views to give the name of all sessions that exist on the server, regardless of whether they are running or not and two pieces of TSQL code. One piece will alter the state of the session: if the session is running then the code will stop the session if executed and vice versa. The other piece of code will drop the selected session. If the session is running then the code will stop it first. Do not execute the DROP code unless you are sure you have the Create code to hand. It will be dropped from the server without a second chance to change your mind. /**************************************************************/ /***   To locate and describe event sessions on a server    ***/ /***                                                        ***/ /***   Generates TSQL to start/stop/drop sessions           ***/ /***                                                        ***/ /***        Jonathan Allen - @fatherjack                    ***/ /***                 June 2013                                ***/ /***                                                        ***/ /**************************************************************/ SELECT  [EES].[name] AS [Session Name - all sessions] ,         CASE WHEN [MXS].[name] IS NULL THEN ISNULL([MXS].[name], 'Stopped')              ELSE 'Running'         END AS SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'ALTER EVENT SESSION [' + [EES].[name]                          + '] ON SERVER STATE = START;')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP;'         END AS ALTER_SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'DROP EVENT SESSION [' + [EES].[name]                          + '] ON SERVER; -- This WILL drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP; ' + CHAR(10)                   + '-- DROP EVENT SESSION [' + [EES].[name]                   + '] ON SERVER; -- This WILL stop and drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.'         END AS DROP_Session FROM    [sys].[server_event_sessions] AS EES         LEFT JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name] WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) ORDER BY SessionState GO I have excluded the system_health and AlwaysOn sessions as I don’t want to accidentally execute the drop script for these sessions that are created as part of the SQL Server installation. It is possible to recreate the sessions but that is a whole lot of aggravation I’d rather avoid. The second piece of code gathers details of running XE sessions only and provides information on the Events being collected, any predicates that are set on those events, the actions that are set to be collected, where the collected information is being logged and if that logging is to a file target, where that file is located. /**********************************************/ /***    Running Session summary                ***/ /***                                        ***/ /***    Details key values of XE sessions     ***/ /***    that are in a running state            ***/ /***                                        ***/ /***        Jonathan Allen - @fatherjack    ***/ /***        June 2013                        ***/ /***                                        ***/ /**********************************************/ SELECT  [EES].[name] AS [Session Name - running sessions] ,         [EESE].[name] AS [Event Name] ,         COALESCE([EESE].[predicate], 'unfiltered') AS [Event Predicate Filter(s)] ,         [EESA].[Action] AS [Event Action(s)] ,         [EEST].[Target] AS [Session Target(s)] ,         ISNULL([EESF].[value], 'No file target in use') AS [File_Target_UNC] -- select * FROM    [sys].[server_event_sessions] AS EES         INNER JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name]         INNER JOIN [sys].[server_event_session_events] AS [EESE] ON [EES].[event_session_id] = [EESE].[event_session_id]         LEFT JOIN [sys].[server_event_session_fields] AS EESF ON ( [EES].[event_session_id] = [EESF].[event_session_id]                                                               AND [EESF].[name] = 'filename'                                                               )         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + sest.name                                         FROM    [sys].[server_event_session_targets]                                                 AS SEST                                         WHERE   [EES].[event_session_id] = [SEST].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Target]                     ) AS EEST         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + [sesa].NAME                                         FROM    [sys].[server_event_session_actions]                                                 AS sesa                                         WHERE   [sesa].[event_session_id] = [EES].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Action]                     ) AS EESA WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) /*Optional to exclude 'out-of-the-box' traces*/ I hope that these scripts are useful to you and I would be obliged if you would keep my name in the script comments. I have no problem with you using it in production or personal circumstances, however it has no warranty or guarantee. Don’t use it unless you understand it and are happy with what it is going to do. I am not ever responsible for the consequences of executing this script on your servers.

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • Learnings from trying to write better software: Loud errors from the very start

    - by theo.spears
    Microsoft made a very small number of backwards incompatible changes between .NET 1.1 and 2.0, because they wanted to make it as easy and safe as possible to port applications to the new runtime. (Here’s a list.) However, one thing they did change was what happens when a background thread fails with an unhanded exception - in .NET 1.1 nothing happened, the thread terminated, and the application continued oblivious. Try the same trick in .NET 2.0 and the entire application, including all threads, will rudely terminate. There are three reasons for this. Firstly if a background thread has crashed, it may have left the entire application in an inconsistent state, in a way that will affect other threads. It’s better to terminate the entire application than continue and have the application perform actions based on a broken state, for example take customer orders, or write corrupt files to disk.  Secondly, during software development, it is far better for errors to be loud and obtrusive. Even if you have unit tests and integration tests (and you should), a key part of ensuring software works properly is to actually try using it, both through systematic testing and through the casual use all software gets by its developers during use. Subtle errors are easy to miss if you are not actually doing real work using the application, loud errors are obvious. Thirdly, and most importantly, even if catching and swallowing exceptions indiscriminately doesn't cause any problems in your application, the presence of unexpected exceptions shows you do not fully understand the behavior of your code. The currently released version of your application may be absolutely correct. However, because your mental model of the behavior is wrong, any future change you make to the program could and probably will introduce critical errors.  This applies to more than just exceptions causing threads to exit, any unexpected state should make the application blow up in an un-ignorable way. The worst thing you can do is silently swallow errors and continue. And let's be clear, writing to a log file does not count as blowing up in an un-ignorable way.  This is all simple as long as the call stack only contains your code, but when your functions start to be called by third party or .NET framework code, it's surprisingly easy for exceptions to start vanishing. Let's look at two examples.   1. Windows forms drag drop events  Usually if you throw an exception from a winforms event handler it will bring up the "application has crashed" dialog with abort and continue options. This is a good default behavior - the error is big and loud, but it is possible for the user to ignore the error and hopefully save their data, if somehow this bug makes it past testing. However drag and drop are different - throw an exception from one of these and it will just be silently swallowed with no explanation.  By the way, it's not just drag and drop events. Timer events do it too.  You can research how exceptions are treated in different handlers and code appropriately, but the safest and most user friendly approach is to always catch exceptions in your event handlers and show your own error message. I'll talk about one good approach to handling these exceptions at the end of this post.   2. SSMS integration for SQL Tab Magic  A while back wrote an SSMS add-in called SQL Tab Magic (learn more about the process here). It works by listening to certain SSMS events and remembering what documents are opened and closed. I deployed it internally and it was used for a few months by a number of people without problems, so I was reasonably confident in its quality. Before releasing I made a few cleanups, including introducing error reporting. Bam. A few days later I was looking at over 1,000 error reports in my inbox. In turns out I wasn't handling table designers properly. The exceptions were there, but again SSMS was helpfully swallowing them all for me, so I was blissfully unaware. Had I made my errors loud from the start, I would have noticed these issues long before and fixed them.   Handling exceptions  Now you are systematically catching exceptions throughout your application, you need to do something with them. I've tried 3 options: log them, alert the user, and automatically send them home.  There are a few good options for logging in .NET. The most widespread is Apache log4net, which provides a very capable and configurable logging framework. There is also NLog which has a compatible interface, with a greater emphasis on fluent rather than XML configuration.  Alerting the user serves two purposes. Firstly it means they understand their action has failed to they don't just assume it worked (Silent file copy failure is a problem if you then delete the originals) or that they should keep waiting for a background task to complete. Secondly, it means the users can report the bug to your support team, and then you can fix it. This means the message you show the user should contain the information you need as a developer to identify and fix it. And the user will probably just send you a screenshot of the dialog, so it shouldn't be hidden by scroll bars.  This leads us to the third option, automatically sending error reports home. By automatic I mean with minimal effort on the part of the user, rather than doing it silently behind their backs. The advantage of this is you can send back far more detailed and precise information than you can expect a user to include in an email, and by making it easier to report errors, you make it more likely users will do so.  We do this using a great tool called SmartAssembly (full disclosure: this is a product made by Red Gate). It captures complete stack traces including the values of all local variables and then allows the user to send all this information back with a single click. We also capture log files to help understand what lead up to the error. We then use the free SmartAssembly Sync for Jira to dedupe these reports and raise them as bugs in our bug tracking system.  The combined effect of loud errors during development and then automatic error reporting once software is deployed allows us to find and fix more bugs, correct misunderstandings on how our software works, and overall is a key piece in delivering higher quality software. However it is no substitute for having motivated cunning testers in the building - and we're looking to hire more of those too.   If you found this post interesting you should follow me on twitter.  

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

  • How should I change my Graph structure (very slow insertion)?

    - by Nazgulled
    Hi, This program I'm doing is about a social network, which means there are users and their profiles. The profiles structure is UserProfile. Now, there are various possible Graph implementations and I don't think I'm using the best one. I have a Graph structure and inside, there's a pointer to a linked list of type Vertex. Each Vertex element has a value, a pointer to the next Vertex and a pointer to a linked list of type Edge. Each Edge element has a value (so I can define weights and whatever it's needed), a pointer to the next Edge and a pointer to the Vertex owner. I have a 2 sample files with data to process (in CSV style) and insert into the Graph. The first one is the user data (one user per line); the second one is the user relations (for the graph). The first file is quickly inserted into the graph cause I always insert at the head and there's like ~18000 users. The second file takes ages but I still insert the edges at the head. The file has about ~520000 lines of user relations and takes between 13-15mins to insert into the Graph. I made a quick test and reading the data is pretty quickly, instantaneously really. The problem is in the insertion. This problem exists because I have a Graph implemented with linked lists for the vertices. Every time I need to insert a relation, I need to lookup for 2 vertices, so I can link them together. This is the problem... Doing this for ~520000 relations, takes a while. How should I solve this? Solution 1) Some people recommended me to implement the Graph (the vertices part) as an array instead of a linked list. This way I have direct access to every vertex and the insertion is probably going to drop considerably. But, I don't like the idea of allocating an array with [18000] elements. How practically is this? My sample data has ~18000, but what if I need much less or much more? The linked list approach has that flexibility, I can have whatever size I want as long as there's memory for it. But the array doesn't, how am I going to handle such situation? What are your suggestions? Using linked lists is good for space complexity but bad for time complexity. And using an array is good for time complexity but bad for space complexity. Any thoughts about this solution? Solution 2) This project also demands that I have some sort of data structures that allows quick lookup based on a name index and an ID index. For this I decided to use Hash Tables. My tables are implemented with separate chaining as collision resolution and when a load factor of 0.70 is reach, I normally recreate the table. I base the next table size on this http://planetmath.org/encyclopedia/GoodHashTablePrimes.html. Currently, both Hash Tables hold a pointer to the UserProfile instead of duplication the user profile itself. That would be stupid, changing data would require 3 changes and it's really dumb to do it that way. So I just save the pointer to the UserProfile. The same user profile pointer is also saved as value in each Graph Vertex. So, I have 3 data structures, one Graph and two Hash Tables and every single one of them point to the same exact UserProfile. The Graph structure will serve the purpose of finding the shortest path and stuff like that while the Hash Tables serve as quick index by name and ID. What I'm thinking to solve my Graph problem is to, instead of having the Hash Tables value point to the UserProfile, I point it to the corresponding Vertex. It's still a pointer, no more and no less space is used, I just change what I point to. Like this, I can easily and quickly lookup for each Vertex I need and link them together. This will insert the ~520000 relations pretty quickly. I thought of this solution because I already have the Hash Tables and I need to have them, then, why not take advantage of them for indexing the Graph vertices instead of the user profile? It's basically the same thing, I can still access the UserProfile pretty quickly, just go to the Vertex and then to the UserProfile. But, do you see any cons on this second solution against the first one? Or only pros that overpower the pros and cons on the first solution? Other Solution) If you have any other solution, I'm all ears. But please explain the pros and cons of that solution over the previous 2. I really don't have much time to be wasting with this right now, I need to move on with this project, so, if I'm doing to do such a change, I need to understand exactly what to change and if that's really the way to go. Hopefully no one fell asleep reading this and closed the browser, sorry for the big testament. But I really need to decide what to do about this and I really need to make a change. P.S: When answering my proposed solutions, please enumerate them as I did so I know exactly what are you talking about and don't confuse my self more than I already am.

    Read the article

  • MySQL MyISAM table performance... painfully, painfully slow

    - by Salman A
    I've got a table structure that can be summarized as follows: pagegroup * pagegroupid * name has 3600 rows page * pageid * pagegroupid * data references pagegroup; has 10000 rows; can have anything between 1-700 rows per pagegroup; the data column is of type mediumtext and the column contains 100k - 200kbytes data per row userdata * userdataid * pageid * column1 * column2 * column9 references page; has about 300,000 rows; can have about 1-50 rows per page The above structure is pretty straight forwad, the problem is that that a join from userdata to page group is terribly, terribly slow even though I have indexed all columns that should be indexed. The time needed to run a query for such a join (userdata inner_join page inner_join pagegroup) exceeds 3 minutes. This is terribly slow considering the fact that I am not selecting the data column at all. Example of the query that takes too long: SELECT userdata.column1, pagegroup.name FROM userdata INNER JOIN page USING( pageid ) INNER JOIN pagegroup USING( pagegroupid ) Please help by explaining why does it take so long and what can i do to make it faster. Edit #1 Explain returns following gibberish: id select_type table type possible_keys key key_len ref rows Extra 1 SIMPLE userdata ALL pageid 372420 1 SIMPLE page eq_ref PRIMARY,pagegroupid PRIMARY 4 topsecret.userdata.pageid 1 1 SIMPLE pagegroup eq_ref PRIMARY PRIMARY 4 topsecret.page.pagegroupid 1 Edit #2 SELECT u.field2, p.pageid FROM userdata u INNER JOIN page p ON u.pageid = p.pageid; /* 0.07 sec execution, 6.05 sec fecth */ id select_type table type possible_keys key key_len ref rows Extra 1 SIMPLE u ALL pageid 372420 1 SIMPLE p eq_ref PRIMARY PRIMARY 4 topsecret.u.pageid 1 Using index SELECT p.pageid, g.pagegroupid FROM page p INNER JOIN pagegroup g ON p.pagegroupid = g.pagegroupid; /* 9.37 sec execution, 60.0 sec fetch */ id select_type table type possible_keys key key_len ref rows Extra 1 SIMPLE g index PRIMARY PRIMARY 4 3646 Using index 1 SIMPLE p ref pagegroupid pagegroupid 5 topsecret.g.pagegroupid 3 Using where Moral of the story Keep medium/long text columns in a separate table if you run into performance problems such as this one.

    Read the article

  • Ada and 'The Book'

    - by Phil Factor
    The long friendship between Charles Babbage and Ada Lovelace created one of the most exciting and mysterious of collaborations ever to have resulted in a technological breakthrough. The fireworks that created by the collision of two prodigious mathematical and creative talents resulted in an invention, the Analytical Engine, which went on to change society fundamentally. However, beyond that, we just don't know what the bulk of their collaborative work was about:;  it was done in strictest secrecy. Even the known outcome of their friendship, the first programmable computer, was shrouded in mystery. At the time, nobody, except close friends and family, had any idea of Ada Byron's contribution to the invention of the ‘Engine’, and how to program it. Her great insight was published in August 1843, under the initials AAL, standing for Ada Augusta Lovelace, her title then being the Countess of Lovelace. It was contained in a lengthy ‘note’ to her translation of a publication that remains the best description of Babbage's amazing Analytical Engine. The secret identity of the person behind those enigmatic initials was finally revealed by Prince de Polignac who, seventy years later, wrote to Ada's daughter to seek confirmation that her mother had, indeed, been the author of the brilliant sentences that described so accurately how Babbage's mechanical computer could be programmed with punch-cards. L.F. Menabrea's paper on the Analytical Engine first appeared in the 'Bibliotheque Universelle de Geneve' in October 1842, and Ada translated it anonymously for Taylor's 'Scientific Memoirs'. Charles Babbage was surprised that she had not written an original paper as she already knew a surprising amount about the way the machine worked. He persuaded her to at least write some explanatory notes. These notes ended up extending to four times the length of the original article and represented the first published account of how a machine could be programmed to perform any calculation. Her example of programming the Bernoulli sequence would have worked on the Analytical engine had the device’s construction been completed, and gave Ada an unassailable claim to have invented the art of programming. What was the reason for Ada's secrecy? She was the only legitimate child of Lord Byron, who was probably the best known celebrity of the age, so she was already famous. She was a senior aristocrat, with titles, a fortune in money and vast estates in the Midlands. She had political influence, and was the cousin of Lord Melbourne, who was the Prime Minister at that time. She was friendly with the young Queen Victoria. Her mathematical activities were a pastime, and not one that would be considered by others to be in keeping with her roles and responsibilities. You wouldn't dare to dream up a fictional heroine like Ada. She was dazzlingly beautiful and talented. She could speak several languages fluently, and play some musical instruments with professional skill. Contemporary accounts refer to her being 'accomplished in science, art and literature'. On top of that, she was a brilliant mathematician, a talent inherited from her mother, Annabella Milbanke. In her mother's circle of literary and scientific friends was Charles Babbage, and Ada's friendship with him dates from her teenage zest for Mathematics. She was one of the first people he'd ever met who understood what he had attempted to achieve with the 'Difference Engine', and with whom he could converse as intellectual equals. He arranged for her to have an education from the most talented academics in the country. Ada melted the heart of the cantankerous genius to the point that he became a faithful and loyal father-figure to her. She was one of the very few who could grasp the principles of the later, and very different, ‘Analytical Engine’ which was designed from the start to tackle a variety of tasks. Sadly, Ada Byron's life ended less than a decade after completing the work that assured her long-term fame, in November 1852. She was dying of cancer, her gambling habits had caused her to run up huge debts, she'd had more than one affairs, and she was being blackmailed. Her brilliant but unempathic mother was nursing her in her final illness, destroying her personal letters and records, and repaying her debts. Her husband was distraught but helpless. Charles Babbage, however, maintained his steadfast paternalistic friendship to the end. She appointed her loyal friend to be her executor. For years, she and Babbage had been working together on a secret project, known only as 'The Book'. We have a clue to what it was in a letter written by her nine years earlier, on 11th August 1843. It was a joint project by herself and Lord Lovelace, her husband, and was intended to involve Babbage's 'undivided energies'. It involved 'consulting your Engine' (it required Babbage’s computer). The letter gives no hint about the project except for the high-minded nature of its purpose, and its highly mathematical nature.  From then on, the surviving correspondence between the two gives only veiled references to 'The Book'. There isn't much, since Babbage later destroyed any letters that could have damaged her reputation within the Establishment. 'I cannot spare the book today, which I am very sorry for. At the moment I want it for constant reference, but I think you can have it tomorrow' (Oct 1844)  And 'I will send you the book directly, and you can say, when you receive it, how long you will want to keep it'. (Nov 1844)  The two of them were obviously intent on the work: She writes, four years later, 'I have an engagement for Wednesday which will prevent me from attending to your wishes about the book' (Dec 1848). This was something that they both needed to work on, but could not do in parallel: 'I will send the book on Tuesday, and it can be left with you till Friday' (11 Feb 1849). After six years work, it had been so well-handled that it was beginning to fall apart: 'Don't forget the new cover you promised for the book. The poor book is very shabby and wants one' (20 Sept 1849). So what was going on? The word 'book' was not a code-word: it was a real book, probably a 'printer's blank', plain paper, but properly bound so printers and publishers could show off how the published work might look. The hints from the correspondence are of advanced mathematics. It is obvious that the book was travelling between them, back and forth, each one working on it for less than a week before passing it back. Ada and her husband were certainly involved in gambling large sums of money on the horses, and so most biographers have concluded that the three of them were trying to calculate the mathematical odds on the horses. This theory has three large problems. Firstly, Ada's original letter proposing the project refers to its high-minded nature. Babbage was temperamentally opposed to gambling and would scarcely have given so much time to the project, even though he was devoted to Ada. Secondly, Babbage would have very soon have realized the hopelessness of trying to beat the bookies. This sort of betting never attracts his type of intellectual background. The third problem is that any work on calculating the odds on horses would not need a well-thumbed book to pass back and forth between them; they would have not had to work in series. The original project was instigated by Ada, along with her husband, William King-Noel, 1st Earl of Lovelace. Charles Babbage was invited to join the project after the couple had come up with the idea. What could William have contributed? One might assume that William was a Bertie Wooster character, addicted only to the joys of the turf, but this was far from the truth. He was a scientist, a Cambridge graduate who was later elected to be a Fellow of the Royal Society. After Eton, he went to Trinity College, Cambridge. On graduation, he entered the diplomatic service and acted as secretary under Lord Nugent, who was Lord Commissioner of the Ionian Islands. William was very friendly with Babbage too, able to discuss scientific matters on equal terms. He was a capable engineer who invented a process for bending large timbers by the application of steam heat. He delivered a paper to the Institution of Civil Engineers in 1849, and received praise from the great engineer, Isambard Kingdom Brunel. As well as being Lord Lieutenant of the County of Surrey for most of Victoria's reign, he had time for a string of scientific and engineering achievements. Whatever the project was, it is unlikely that William was a junior partner. After Ada's death, the project disappeared. Then, two years later, Babbage, through one of his occasional outbursts of temper, demonstrated that he was able to decrypt one of the most powerful of secret codes, Vigenère's autokey cipher.  All contemporary diplomatic and military messages used a variant of this cipher. Babbage had made three important discoveries, namely, the mathematical law of this cipher, the principle of the key periodicity, and the technique of the symmetry of position. The technique is now known as the Kasiski examination, also called the Kasiski test, but Babbage got there first. At one time, he listed amongst his future projects, the writing of a book 'The Philosophy of Decyphering', but it never came to anything. This discovery was going to change the course of history, since it was used to decipher the Russians’ military dispatches in the Crimean war. Babbage himself played a role during the Crimean War as a cryptographical adviser to his friend, Rear-Admiral Sir Francis Beaufort of the Admiralty. This is as much as we can be certain about in trying to make sense of the bulk of the time that Charles Babbage and Ada Lovelace worked together. Nine years of intensive work, involving the 'Engine' and a great deal of mathematics and research seems to have been lost: or has it? I've argued in the past http://www.simple-talk.com/community/blogs/philfactor/archive/2008/06/13/59614.aspx that the cracking of the Vigenère autokey cipher, was a fundamental motive behind the British Government's support and funding of the 'Difference Engine'. The Duke of Wellington, whose understanding of the military significance of being able to read enemy dispatches, was the most steadfast advocate of the project. If the three friends were actually doing the work of cracking codes by mathematical techniques that used the techniques of key periodicity, and symmetry of position (the use of a book being passed quickly to and fro is very suggestive), intending to then use the 'Engine' to do the routine cracking of each dispatch, then this is a rather different story. The project was Ada and William's idea. (William had served in the diplomatic service and would be familiar with the use of codes). This makes Ada Lovelace the initiator of a project which, by giving both Britain, and probably the USA, a diplomatic and military advantage in the second part of the Nineteenth century, changed world history. Ada would never have wanted any credit for cracking the cipher, and developing the method that rendered all contemporary military and diplomatic ciphering techniques nugatory; quite the reverse. And it is clear from the gaps in the record of the letters between the collaborators that the evidence was destroyed, probably on her request by her irascible but intensely honorable executor, Charles Babbage. Charles Babbage toyed with the idea of going public, but the Crimean war put an end to that. The British Government had a valuable secret, and intended to keep it that way. Ada and Charles had quite often discussed possible moneymaking projects that would fund the development of the Analytic Engine, the first programmable computer, but their secret work was never in the running as a potential cash cow. I suspect that the British Government was, even then, working on the concealment of a discovery whose value to the nation depended on it remaining so. The success of code-breaking in the Crimean war, and the American Civil war, led to the British and Americans  subsequently giving much more weight and funding to the science of decryption. Paradoxically, this makes Ada's contribution even closer to the creation of Colossus, the first digital computer, at Bletchley Park, specifically to crack the Nazi’s secret codes.

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • Operator of the week - Assert

    - by Fabiano Amorim
    Well my friends, I was wondering how to help you in a practical way to understand execution plans. So I think I'll talk about the Showplan Operators. Showplan Operators are used by the Query Optimizer (QO) to build the query plan in order to perform a specified operation. A query plan will consist of many physical operators. The Query Optimizer uses a simple language that represents each physical operation by an operator, and each operator is represented in the graphical execution plan by an icon. I'll try to talk about one operator every week, but so as to avoid having to continue to write about these operators for years, I'll mention only of those that are more common: The first being the Assert. The Assert is used to verify a certain condition, it validates a Constraint on every row to ensure that the condition was met. If, for example, our DDL includes a check constraint which specifies only two valid values for a column, the Assert will, for every row, validate the value passed to the column to ensure that input is consistent with the check constraint. Assert  and Check Constraints: Let's see where the SQL Server uses that information in practice. Take the following T-SQL: IF OBJECT_ID('Tab1') IS NOT NULL   DROP TABLE Tab1 GO CREATE TABLE Tab1(ID Integer, Gender CHAR(1))  GO  ALTER TABLE TAB1 ADD CONSTRAINT ck_Gender_M_F CHECK(Gender IN('M','F'))  GO INSERT INTO Tab1(ID, Gender) VALUES(1,'X') GO To the command above the SQL Server has generated the following execution plan: As we can see, the execution plan uses the Assert operator to check that the inserted value doesn't violate the Check Constraint. In this specific case, the Assert applies the rule, 'if the value is different to "F" and different to "M" than return 0 otherwise returns NULL'. The Assert operator is programmed to show an error if the returned value is not NULL; in other words, the returned value is not a "M" or "F". Assert checking Foreign Keys Now let's take a look at an example where the Assert is used to validate a foreign key constraint. Suppose we have this  query: ALTER TABLE Tab1 ADD ID_Genders INT GO  IF OBJECT_ID('Tab2') IS NOT NULL   DROP TABLE Tab2 GO CREATE TABLE Tab2(ID Integer PRIMARY KEY, Gender CHAR(1))  GO  INSERT INTO Tab2(ID, Gender) VALUES(1, 'F') INSERT INTO Tab2(ID, Gender) VALUES(2, 'M') INSERT INTO Tab2(ID, Gender) VALUES(3, 'N') GO  ALTER TABLE Tab1 ADD CONSTRAINT fk_Tab2 FOREIGN KEY (ID_Genders) REFERENCES Tab2(ID) GO  INSERT INTO Tab1(ID, ID_Genders, Gender) VALUES(1, 4, 'X') Let's look at the text execution plan to see what these Assert operators were doing. To see the text execution plan just execute SET SHOWPLAN_TEXT ON before run the insert command. |--Assert(WHERE:(CASE WHEN NOT [Pass1008] AND [Expr1007] IS NULL THEN (0) ELSE NULL END))      |--Nested Loops(Left Semi Join, PASSTHRU:([Tab1].[ID_Genders] IS NULL), OUTER REFERENCES:([Tab1].[ID_Genders]), DEFINE:([Expr1007] = [PROBE VALUE]))           |--Assert(WHERE:(CASE WHEN [Tab1].[Gender]<>'F' AND [Tab1].[Gender]<>'M' THEN (0) ELSE NULL END))           |    |--Clustered Index Insert(OBJECT:([Tab1].[PK]), SET:([Tab1].[ID] = RaiseIfNullInsert([@1]),[Tab1].[ID_Genders] = [@2],[Tab1].[Gender] = [Expr1003]), DEFINE:([Expr1003]=CONVERT_IMPLICIT(char(1),[@3],0)))           |--Clustered Index Seek(OBJECT:([Tab2].[PK]), SEEK:([Tab2].[ID]=[Tab1].[ID_Genders]) ORDERED FORWARD) Here we can see the Assert operator twice, first (looking down to up in the text plan and the right to left in the graphical plan) validating the Check Constraint. The same concept showed above is used, if the exit value is "0" than keep running the query, but if NULL is returned shows an exception. The second Assert is validating the result of the Tab1 and Tab2 join. It is interesting to see the "[Expr1007] IS NULL". To understand that you need to know what this Expr1007 is, look at the Probe Value (green text) in the text plan and you will see that it is the result of the join. If the value passed to the INSERT at the column ID_Gender exists in the table Tab2, then that probe will return the join value; otherwise it will return NULL. So the Assert is checking the value of the search at the Tab2; if the value that is passed to the INSERT is not found  then Assert will show one exception. If the value passed to the column ID_Genders is NULL than the SQL can't show a exception, in that case it returns "0" and keeps running the query. If you run the INSERT above, the SQL will show an exception because of the "X" value, but if you change the "X" to "F" and run again, it will show an exception because of the value "4". If you change the value "4" to NULL, 1, 2 or 3 the insert will be executed without any error. Assert checking a SubQuery: The Assert operator is also used to check one subquery. As we know, one scalar subquery can't validly return more than one value: Sometimes, however, a  mistake happens, and a subquery attempts to return more than one value . Here the Assert comes into play by validating the condition that a scalar subquery returns just one value. Take the following query: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    |--Assert(WHERE:(CASE WHEN NOT [Pass1016] AND [Expr1015] IS NULL THEN (0) ELSE NULL END))        |--Nested Loops(Left Semi Join, PASSTHRU:([tempdb].[dbo].[Tab1].[ID_TipoSexo] IS NULL), OUTER REFERENCES:([tempdb].[dbo].[Tab1].[ID_TipoSexo]), DEFINE:([Expr1015] = [PROBE VALUE]))              |--Assert(WHERE:([Expr1017]))             |    |--Compute Scalar(DEFINE:([Expr1017]=CASE WHEN [tempdb].[dbo].[Tab1].[Sexo]<>'F' AND [tempdb].[dbo].[Tab1].[Sexo]<>'M' THEN (0) ELSE NULL END))              |         |--Clustered Index Insert(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]), SET:([tempdb].[dbo].[Tab1].[ID_TipoSexo] = [Expr1008],[tempdb].[dbo].[Tab1].[Sexo] = [Expr1009],[tempdb].[dbo].[Tab1].[ID] = [Expr1003]))              |              |--Top(TOP EXPRESSION:((1)))              |                   |--Compute Scalar(DEFINE:([Expr1008]=[Expr1014], [Expr1009]='F'))              |                        |--Nested Loops(Left Outer Join)              |                             |--Compute Scalar(DEFINE:([Expr1003]=getidentity((1856985942),(2),NULL)))              |                             |    |--Constant Scan              |                             |--Assert(WHERE:(CASE WHEN [Expr1013]>(1) THEN (0) ELSE NULL END))              |                                  |--Stream Aggregate(DEFINE:([Expr1013]=Count(*), [Expr1014]=ANY([tempdb].[dbo].[Tab1].[ID_TipoSexo])))             |                                       |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]))              |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[Tab2].[PK__Tab2__3214EC27755C58E5]), SEEK:([tempdb].[dbo].[Tab2].[ID]=[tempdb].[dbo].[Tab1].[ID_TipoSexo]) ORDERED FORWARD)  You can see from this text showplan that SQL Server as generated a Stream Aggregate to count how many rows the SubQuery will return, This value is then passed to the Assert which then does its job by checking its validity. Is very interesting to see that  the Query Optimizer is smart enough be able to avoid using assert operators when they are not necessary. For instance: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1 WHERE ID = 1), 'F') INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT TOP 1 ID_TipoSexo FROM Tab1), 'F')  For both these INSERTs, the Query Optimiser is smart enough to know that only one row will ever be returned, so there is no need to use the Assert. Well, that's all folks, I see you next week with more "Operators". Cheers, Fabiano

    Read the article

  • Converting projects to use Automatic NuGet restore

    - by terje
    Originally posted on: http://geekswithblogs.net/terje/archive/2014/06/11/converting-projects-to-use-automatic-nuget-restore.aspxDownload tool In version 2.7 of NuGet automatic nuget restore was introduced, meaning you no longer need to distort your msbuild project files with nuget target information.   Visual Studio and TFS 2013 build have this enabled by default.  However, if your project was created before this was introduced, and/or if you have used the “Enable NuGet Package Restore” afterwards, you now have a series of unwanted things in your projects, and a series of project files that have been modified – and – you no longer neither want nor need this !  You might also get into some unwanted issues due to these modifications.  This is a MSBuild modification that was needed only before NuGet 2.7 ! So: DON’T USE THIS FUNCTION !!! There is an issue https://nuget.codeplex.com/workitem/4019 on this on the NuGet project site to get this function removed, renamed or at least moved farther away from the top level (please help vote it up!).  The response seems to be that it WILL BE removed, around version 3.0. This function does nothing you need after the introduction of NuGet 2.7.  What is also unfortunate is the naming of it – it implies that it is needed, it is not, and what is worse, there is no corresponding function to remove what it does ! So to fix this use the tool named IFix, that will fix this issue for you   - all free of course, and the code is open source.  Also report issues there:  https://github.com/OsirisTerje/IFix    IFix information DOWNLOAD HERE This command line tool installs using an MSI, and add itself to the system path.  If you work in a team, you will probably need to use the  tool multiple times.  Anyone in the team may at any time use the “Enable NuGet Package Restore” function and mess up your project again.  The IFix program can be run either in a  check modus, where it does not write anything back – it only checks if you have any issues, or in a Fix mode, where it will also perform the necessary fixes for you. The IFix program is used like this: IFix <command> [-c/--check] [-f/--fix]  [-v/--verbose] The command in this case is “nugetrestore”.  It will do a check from the location where it is being called, and run through all subfolders from that location. So  “IFix nugetrestore  --check” , will do the check ,  and “IFix nugetrestore  --fix”  will perform the changes, for all files and folders below the current working directory. (Note that --check  can be replaced with only –c, and --fix with –f, and so on. ) BEWARE: When you run the fix option, all solutions to be affected must be closed in Visual Studio ! So, if you just want to DO it, then: IFix nugetrestore --check to see if you have issues then IFix nugetrestore  --fix to fix them. How does it work IFix nugetrestore  checks and optionally fixes four issues that the older enabling of nuget restore did.  The issues are related to the MSBuild projess, and are: Deleting the nuget.targets file. Deleting the nuget.exe that is located under the .nuget folder Removing all references to nuget.targets in the solution file Removing all properties and target imports of nuget.targets inside the csproj files. IFix fixes these issues in the same sequence. The first step, removing the nuget.targets file is the most critical one, and all instances of the nuget.targets file within the scope of a solution has to be removed, and in addition it has to be done with the solution closed in Visual Studio.  If Visual Studio finds a nuget.targets file, the csproj files will be automatically messed up again. This means the removal process above might need to be done multiple times, specially when you’re working with a team, and that solution context menu still has the “Enable NuGet Package Restore” function.  Someone on the team might inadvertently do this at any time. It can be a good idea to add this check to a checkin policy – if you run TFS standard version control, but that will have no effect if you use TFS Git version control of course. So, better be prepared to run the IFix check from time to time. Or, even better, install IFix on your build servers, and add a call to IFix nugetrestore --check in the TFS Build script.    How does it look As a first example I have run the IFix program from the top of a set of git repositories, so it spans multiple repositories with multiple solutions. The result from the check option is as follows: We see the four red lines, there is one for each of the four checks we talked about in the previous section. The fact that they are red, means we have that particular issue. The first section (above the first red text line) is the nuget targets section.  Notice  No.1, it says it has found no paths to copy.  What IFix does here is to check if there are any defined paths to other nuget galleries.  If there are, then those are copied over to the nuget.config file, where is where it should be in version 2.7 and above.   No.2 says it has found the particular nuget.targets file,  No.3  states it HAS found some other nuget galleries defines in the targets file, which then it would like to copy to the config.file. No.4 is the section for nuget.exe files, and list those it has found, and which it would like to delete. No 5 states it has found a reference to nuget.targets in the solution file.  This reference comes from the fact that the .nuget folder is a solution folder, and the items within are described in the solution file. It then checks the csproj files, and as can be seen from the last red line, it ha found issues in 96 out of 198 csproj files.  There are two possible issues in a csproj files.  No.6 is the first one, and the most common and most important one, an “Import project” section.  This is the section that calls the nuget.targets files.  No.7 is another issue, which seems to sometimes be there, sometimes not, it is a RestorePackages property, which also should go away. Now, if we run the IFix nugetrestore –fix command, and then the check again after that, the result is: All green !

    Read the article

  • Table Variables: an empirical approach.

    - by Phil Factor
    It isn’t entirely a pleasant experience to publish an article only to have it described on Twitter as ‘Horrible’, and to have it criticized on the MVP forum. When this happened to me in the aftermath of publishing my article on Temporary tables recently, I was taken aback, because these critics were experts whose views I respect. What was my crime? It was, I think, to suggest that, despite the obvious quirks, it was best to use Table Variables as a first choice, and to use local Temporary Tables if you hit problems due to these quirks, or if you were doing complex joins using a large number of rows. What are these quirks? Well, table variables have advantages if they are used sensibly, but this requires some awareness by the developer about the potential hazards and how to avoid them. You can be hit by a badly-performing join involving a table variable. Table Variables are a compromise, and this compromise doesn’t always work out well. Explicit indexes aren’t allowed on Table Variables, so one cannot use covering indexes or non-unique indexes. The query optimizer has to make assumptions about the data rather than using column distribution statistics when a table variable is involved in a join, because there aren’t any column-based distribution statistics on a table variable. It assumes a reasonably even distribution of data, and is likely to have little idea of the number of rows in the table variables that are involved in queries. However complex the heuristics that are used might be in determining the best way of executing a SQL query, and they most certainly are, the Query Optimizer is likely to fail occasionally with table variables, under certain circumstances, and produce a Query Execution Plan that is frightful. The experienced developer or DBA will be on the lookout for this sort of problem. In this blog, I’ll be expanding on some of the tests I used when writing my article to illustrate the quirks, and include a subsequent example supplied by Kevin Boles. A simplified example. We’ll start out by illustrating a simple example that shows some of these characteristics. We’ll create two tables filled with random numbers and then see how many matches we get between the two tables. We’ll forget indexes altogether for this example, and use heaps. We’ll try the same Join with two table variables, two table variables with OPTION (RECOMPILE) in the JOIN clause, and with two temporary tables. It is all a bit jerky because of the granularity of the timing that isn’t actually happening at the millisecond level (I used DATETIME). However, you’ll see that the table variable is outperforming the local temporary table up to 10,000 rows. Actually, even without a use of the OPTION (RECOMPILE) hint, it is doing well. What happens when your table size increases? The table variable is, from around 30,000 rows, locked into a very bad execution plan unless you use OPTION (RECOMPILE) to provide the Query Analyser with a decent estimation of the size of the table. However, if it has the OPTION (RECOMPILE), then it is smokin’. Well, up to 120,000 rows, at least. It is performing better than a Temporary table, and in a good linear fashion. What about mixed table joins, where you are joining a temporary table to a table variable? You’d probably expect that the query analyzer would throw up its hands and produce a bad execution plan as if it were a table variable. After all, it knows nothing about the statistics in one of the tables so how could it do any better? Well, it behaves as if it were doing a recompile. And an explicit recompile adds no value at all. (we just go up to 45000 rows since we know the bigger picture now)   Now, if you were new to this, you might be tempted to start drawing conclusions. Beware! We’re dealing with a very complex beast: the Query Optimizer. It can come up with surprises What if we change the query very slightly to insert the results into a Table Variable? We change nothing else and just measure the execution time of the statement as before. Suddenly, the table variable isn’t looking so much better, even taking into account the time involved in doing the table insert. OK, if you haven’t used OPTION (RECOMPILE) then you’re toast. Otherwise, there isn’t much in it between the Table variable and the temporary table. The table variable is faster up to 8000 rows and then not much in it up to 100,000 rows. Past the 8000 row mark, we’ve lost the advantage of the table variable’s speed. Any general rule you may be formulating has just gone for a walk. What we can conclude from this experiment is that if you join two table variables, and can’t use constraints, you’re going to need that Option (RECOMPILE) hint. Count Dracula and the Horror Join. These tables of integers provide a rather unreal example, so let’s try a rather different example, and get stuck into some implicit indexing, by using constraints. What unusual words are contained in the book ‘Dracula’ by Bram Stoker? Here we get a table of all the common words in the English language (60,387 of them) and put them in a table. We put them in a Table Variable with the word as a primary key, a Table Variable Heap and a Table Variable with a primary key. We then take all the distinct words used in the book ‘Dracula’ (7,558 of them). We then create a table variable and insert into it all those uncommon words that are in ‘Dracula’. i.e. all the words in Dracula that aren’t matched in the list of common words. To do this we use a left outer join, where the right-hand value is null. The results show a huge variation, between the sublime and the gorblimey. If both tables contain a Primary Key on the columns we join on, and both are Table Variables, it took 33 Ms. If one table contains a Primary Key, and the other is a heap, and both are Table Variables, it took 46 Ms. If both Table Variables use a unique constraint, then the query takes 36 Ms. If neither table contains a Primary Key and both are Table Variables, it took 116383 Ms. Yes, nearly two minutes!! If both tables contain a Primary Key, one is a Table Variables and the other is a temporary table, it took 113 Ms. If one table contains a Primary Key, and both are Temporary Tables, it took 56 Ms.If both tables are temporary tables and both have primary keys, it took 46 Ms. Here we see table variables which are joined on their primary key again enjoying a  slight performance advantage over temporary tables. Where both tables are table variables and both are heaps, the query suddenly takes nearly two minutes! So what if you have two heaps and you use option Recompile? If you take the rogue query and add the hint, then suddenly, the query drops its time down to 76 Ms. If you add unique indexes, then you've done even better, down to half that time. Here are the text execution plans.So where have we got to? Without drilling down into the minutiae of the execution plans we can begin to create a hypothesis. If you are using table variables, and your tables are relatively small, they are faster than temporary tables, but as the number of rows increases you need to do one of two things: either you need to have a primary key on the column you are using to join on, or else you need to use option (RECOMPILE) If you try to execute a query that is a join, and both tables are table variable heaps, you are asking for trouble, well- slow queries, unless you give the table hint once the number of rows has risen past a point (30,000 in our first example, but this varies considerably according to context). Kevin’s Skew In describing the table-size, I used the term ‘relatively small’. Kevin Boles produced an interesting case where a single-row table variable produces a very poor execution plan when joined to a very, very skewed table. In the original, pasted into my article as a comment, a column consisted of 100000 rows in which the key column was one number (1) . To this was added eight rows with sequential numbers up to 9. When this was joined to a single-tow Table Variable with a key of 2 it produced a bad plan. This problem is unlikely to occur in real usage, and the Query Optimiser team probably never set up a test for it. Actually, the skew can be slightly less extreme than Kevin made it. The following test showed that once the table had 54 sequential rows in the table, then it adopted exactly the same execution plan as for the temporary table and then all was well. Undeniably, real data does occasionally cause problems to the performance of joins in Table Variables due to the extreme skew of the distribution. We've all experienced Perfectly Poisonous Table Variables in real live data. As in Kevin’s example, indexes merely make matters worse, and the OPTION (RECOMPILE) trick does nothing to help. In this case, there is no option but to use a temporary table. However, one has to note that once the slight de-skew had taken place, then the plans were identical across a huge range. Conclusions Where you need to hold intermediate results as part of a process, Table Variables offer a good alternative to temporary tables when used wisely. They can perform faster than a temporary table when the number of rows is not great. For some processing with huge tables, they can perform well when only a clustered index is required, and when the nature of the processing makes an index seek very effective. Table Variables are scoped to the batch or procedure and are unlikely to hang about in the TempDB when they are no longer required. They require no explicit cleanup. Where the number of rows in the table is moderate, you can even use them in joins as ‘Heaps’, unindexed. Beware, however, since, as the number of rows increase, joins on Table Variable heaps can easily become saddled by very poor execution plans, and this must be cured either by adding constraints (UNIQUE or PRIMARY KEY) or by adding the OPTION (RECOMPILE) hint if this is impossible. Occasionally, the way that the data is distributed prevents the efficient use of Table Variables, and this will require using a temporary table instead. Tables Variables require some awareness by the developer about the potential hazards and how to avoid them. If you are not prepared to do any performance monitoring of your code or fine-tuning, and just want to pummel out stuff that ‘just runs’ without considering namby-pamby stuff such as indexes, then stick to Temporary tables. If you are likely to slosh about large numbers of rows in temporary tables without considering the niceties of processing just what is required and no more, then temporary tables provide a safer and less fragile means-to-an-end for you.

    Read the article

  • Who writes the words? A rant with graphs.

    - by Roger Hart
    If you read my rant, you'll know that I'm getting a bit of a bee in my bonnet about user interface text. But rather than just yelling about the way the world should be (short version: no UI text would suck), it seemed prudent to actually gather some data. Rachel Potts has made an excellent first foray, by conducting a series of interviews across organizations about how they write user interface text. You can read Rachel's write up here. She presents the facts as she found them, and doesn't editorialise. The result is insightful, but impartial isn't really my style. So here's a rant with graphs. My method, and how it sucked I sent out a short survey. Survey design is one of my hobby-horses, and since some smartarse in the comments will mention it if I don't, I'll step up and confess: I did not design this one well. It was potentially ambiguous, implicitly excluded people, and since I only really advertised it on Twitter and a couple of mailing lists the sample will be chock full of biases. Regardless, these were the questions: What do you do? Select the option that best describes your role What kind of software does your organization make? (optional) In your organization, who writes the text on your software user interfaces? (for example: button names, static text, tooltips, and so on) Tick all that apply. In your organization who is responsible for user interface text? Who "owns" it? The most glaring issue (apart from question 3 being a bit broken) was that I didn't make it clear that I was asking about applications. Desktop, mobile, or web, I wouldn't have minded. In fact, it might have been interesting to categorize and compare. But a few respondents commented on the seeming lack of relevance, since they didn't really make software. There were some other issues too. It wasn't the best survey. So, you know, pinch of salt time with what follows. Despite this, there were 100 or so respondents. This post covers the overview, and you can look at the raw data in this spreadsheet What did people do? Boring graph number one: I wasn't expecting that. Given I pimped the survey on twitter and a couple of Tech Comms discussion lists, I was more banking on and even Content Strategy/Tech Comms split. What the "Others" specified: Three people chipped in with Technical Writer. Author, apparently, doesn't cut it. There's a "nobody reads the instructions" joke in there somewhere, I'm sure. There were a couple of hybrid roles, including Tech Comms and Testing, which sounds gruelling and thankless. There was also, an Intranet Manager, a Creative Director, a Consultant, a CTO, an Information Architect, and a Translator. That's a pretty healthy slice through the industry. Who wrote UI text? Boring graph number two: Annoyingly, I made this a "tick all that apply" question, so I can't make crude and inflammatory generalizations about percentages. This is more about who gets involved in user interface wording. So don't panic about the number of developers writing UI text. First off, it just means they're involved. Second, they might be good at it. What? It could happen. Ours are involved - they write a placeholder and flag it to me for changes. Sometimes I don't make any. It's also not surprising that there's so much UX in the mix. Some of that will be people taking care, and crafting an understandable interface. Some of it will be whatever text goes on the wireframe making it into production. I'm going to assume that's what happened at eBay, when their iPhone app purportedly shipped with the placeholder text "Some crappy content goes here". Ahem. Listing all 17 "other" responses would make this post lengthy indeed, but you can read them in the raw data spreadsheet. The award for the approach that sounds the most like a good idea yet carries the highest risk of ending badly goes to whoever offered up "External agencies using focus groups". If you're reading this, and that actually works, leave a comment. I'm fascinated. Who owned UI text Stop. Bar chart time: Wow. Let's cut to the chase, and by "chase", I mean those inflammatory generalizations I was talking about: In around 60% of cases the person responsible for user interface text probably lacks the relevant expertise. Even in the categories I count as being likely to have relevant skills (Marketing Copywriters, Content Strategists, Technical Authors, and User Experience Designers) there's a case for each role being unsuited, as you'll see in Rachel's blog post So it's not as simple as my headline. Does that mean that you personally, Mr Developer reading this, write bad button names? Of course not. I know nothing about you. It rather implies that as a category, the majority of people looking after UI text have neither communication nor user experience as their primary skill set, and as such will probably only be good at this by happy accident. I don't have a way of measuring those frequency of those accidents. What the Others specified: I don't know who owns it. I assume the project manager is responsible. "copywriters" when they wish to annoy me. the client's web maintenance person, often PR or MarComm That last one chills me to the bone. Still, at least nobody said "the work experience kid". You can see the rest in the spreadsheet. My overwhelming impression here is of user interface text as an unloved afterthought. There were fewer "nobody" responses than I expected, and a much broader split. But the relative predominance of developers owning and writing UI text suggests to me that organizations don't see it as something worth dedicating attention to. If true, that's bothersome. Because the words on the screen, particularly the names of things, are fundamental to the ability to understand an use software. It's also fascinating that Technical Authors and Content Strategists are neck and neck. For such a nascent discipline, Content Strategy appears to have made a mark on software development. Or my sample is skewed. But it feels like a bit of validation for my rant: Content Strategy is eating Tech Comms' lunch. That's not a bad thing. Well, not if the UI text is getting done well. And that's the caveat to this whole post. I couldn't care less who writes UI text, provided they consider the user and don't suck at it. I care that it may be falling by default to people poorly disposed to doing it right. And I care about that because so much user interface text sucks. The most interesting question Was one I forgot to ask. It's this: Does your organization have technical authors/writers? Like a lot of survey data, that doesn't tell you much on its own. But once we get a bit dimensional, it become more interesting. So taken with the other questions, this would have let me find out what I really want to know: What proportion of organizations have Tech Comms professionals but don't use them for UI text? Who writes UI text in their place? Why this happens? It's possible (feasible is another matter) that hundreds of companies have tech authors who don't work on user interfaces because they've empirically discovered that someone else, say the Marketing Copywriter, is better at it. And once we've all finished laughing, I'll point out that I've met plenty of tech authors who just aren't used to thinking about users at the point of need in the way UI text and embedded user assistance require. If you've got what I regard, perhaps unfairly, as the bad kind of tech author - the old-school kind with the thousand-page pdf and the grammar obsession - if you've got one of those then you probably are better off getting the UX folk or the copywriters to do your UI text. At the very least, they'll derive terminology from user research.

    Read the article

  • Database Migration Scripts: Getting from place A to place B

    - by Phil Factor
    We’ll be looking at a typical database ‘migration’ script which uses an unusual technique to migrate existing ‘de-normalised’ data into a more correct form. So, the book-distribution business that uses the PUBS database has gradually grown organically, and has slipped into ‘de-normalisation’ habits. What’s this? A new column with a list of tags or ‘types’ assigned to books. Because books aren’t really in just one category, someone has ‘cured’ the mismatch between the database and the business requirements. This is fine, but it is now proving difficult for their new website that allows searches by tags. Any request for history book really has to look in the entire list of associated tags rather than the ‘Type’ field that only keeps the primary tag. We have other problems. The TypleList column has duplicates in there which will be affecting the reporting, and there is the danger of mis-spellings getting there. The reporting system can’t be persuaded to do reports based on the tags and the Database developers are complaining about the unCoddly things going on in their database. In your version of PUBS, this extra column doesn’t exist, so we’ve added it and put in 10,000 titles using SQL Data Generator. /* So how do we refactor this database? firstly, we create a table of all the tags. */IF  OBJECT_ID('TagName') IS NULL OR OBJECT_ID('TagTitle') IS NULL  BEGIN  CREATE TABLE  TagName (TagName_ID INT IDENTITY(1,1) PRIMARY KEY ,     Tag VARCHAR(20) NOT NULL UNIQUE)  /* ...and we insert into it all the tags from the list (remembering to take out any leading spaces */  INSERT INTO TagName (Tag)     SELECT DISTINCT LTRIM(x.y.value('.', 'Varchar(80)')) AS [Tag]     FROM     (SELECT  Title_ID,          CONVERT(XML, '<list><i>' + REPLACE(TypeList, ',', '</i><i>') + '</i></list>')          AS XMLkeywords          FROM   dbo.titles)g    CROSS APPLY XMLkeywords.nodes('/list/i/text()') AS x ( y )  /* we can then use this table to provide a table that relates tags to articles */  CREATE TABLE TagTitle   (TagTitle_ID INT IDENTITY(1, 1),   [title_id] [dbo].[tid] NOT NULL REFERENCES titles (Title_ID),   TagName_ID INT NOT NULL REFERENCES TagName (Tagname_ID)   CONSTRAINT [PK_TagTitle]       PRIMARY KEY CLUSTERED ([title_id] ASC, TagName_ID)       ON [PRIMARY])        CREATE NONCLUSTERED INDEX idxTagName_ID  ON  TagTitle (TagName_ID)  INCLUDE (TagTitle_ID,title_id)        /* ...and it is easy to fill this with the tags for each title ... */        INSERT INTO TagTitle (Title_ID, TagName_ID)    SELECT DISTINCT Title_ID, TagName_ID      FROM        (SELECT  Title_ID,          CONVERT(XML, '<list><i>' + REPLACE(TypeList, ',', '</i><i>') + '</i></list>')          AS XMLkeywords          FROM   dbo.titles)g    CROSS APPLY XMLkeywords.nodes('/list/i/text()') AS x ( y )    INNER JOIN TagName ON TagName.Tag=LTRIM(x.y.value('.', 'Varchar(80)'))    END    /* That's all there was to it. Now we can select all titles that have the military tag, just to try things out */SELECT Title FROM titles  INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID  INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  WHERE tagname.tag='Military'/* and see the top ten most popular tags for titles */SELECT Tag, COUNT(*) FROM titles  INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID  INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  GROUP BY Tag ORDER BY COUNT(*) DESC/* and if you still want your list of tags for each title, then here they are */SELECT title_ID, title, STUFF(  (SELECT ','+tagname.tag FROM titles thisTitle    INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID    INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  WHERE ThisTitle.title_id=titles.title_ID  FOR XML PATH(''), TYPE).value('.', 'varchar(max)')  ,1,1,'')    FROM titles  ORDER BY title_ID So we’ve refactored our PUBS database without pain. We’ve even put in a check to prevent it being re-run once the new tables are created. Here is the diagram of the new tag relationship We’ve done both the DDL to create the tables and their associated components, and the DML to put the data in them. I could have also included the script to remove the de-normalised TypeList column, but I’d do a whole lot of tests first before doing that. Yes, I’ve left out the assertion tests too, which should check the edge cases and make sure the result is what you’d expect. One thing I can’t quite figure out is how to deal with an ordered list using this simple XML-based technique. We can ensure that, if we have to produce a list of tags, we can get the primary ‘type’ to be first in the list, but what if the entire order is significant? Thank goodness it isn’t in this case. If it were, we might have to revisit a string-splitter function that returns the ordinal position of each component in the sequence. You’ll see immediately that we can create a synchronisation script for deployment from a comparison tool such as SQL Compare, to change the schema (DDL). On the other hand, no tool could do the DML to stuff the data into the new table, since there is no way that any tool will be able to work out where the data should go. We used some pretty hairy code to deal with a slightly untypical problem. We would have to do this migration by hand, and it has to go into source control as a batch. If most of your database changes are to be deployed by an automated process, then there must be a way of over-riding this part of the data synchronisation process to do this part of the process taking the part of the script that fills the tables, Checking that the tables have not already been filled, and executing it as part of the transaction. Of course, you might prefer the approach I’ve taken with the script of creating the tables in the same batch as the data conversion process, and then using the presence of the tables to prevent the script from being re-run. The problem with scripting a refactoring change to a database is that it has to work both ways. If we install the new system and then have to rollback the changes, several books may have been added, or had their tags changed, in the meantime. Yes, you have to script any rollback! These have to be mercilessly tested, and put in source control just in case of the rollback of a deployment after it has been in place for any length of time. I’ve shown you how to do this with the part of the script .. /* and if you still want your list of tags for each title, then here they are */SELECT title_ID, title, STUFF(  (SELECT ','+tagname.tag FROM titles thisTitle    INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID    INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  WHERE ThisTitle.title_id=titles.title_ID  FOR XML PATH(''), TYPE).value('.', 'varchar(max)')  ,1,1,'')    FROM titles  ORDER BY title_ID …which would be turned into an UPDATE … FROM script. UPDATE titles SET  typelist= ThisTaglistFROM     (SELECT title_ID, title, STUFF(    (SELECT ','+tagname.tag FROM titles thisTitle      INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID      INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID    WHERE ThisTitle.title_id=titles.title_ID    ORDER BY CASE WHEN tagname.tag=titles.[type] THEN 1 ELSE 0  END DESC    FOR XML PATH(''), TYPE).value('.', 'varchar(max)')    ,1,1,'')  AS ThisTagList  FROM titles)fINNER JOIN Titles ON f.title_ID=Titles.title_ID You’ll notice that it isn’t quite a round trip because the tags are in a different order, though we’ve managed to make sure that the primary tag is the first one as originally. So, we’ve improved the database for the poor book distributors using PUBS. It is not a major deal but you’ve got to be prepared to provide a migration script that will go both forwards and backwards. Ideally, database refactoring scripts should be able to go from any version to any other. Schema synchronization scripts can do this pretty easily, but no data synchronisation scripts can deal with serious refactoring jobs without the developers being able to specify how to deal with cases like this.

    Read the article

  • Beyond Cloud Technology, Enabling A More Agile and Responsive Organization

    - by sxkumar
    This is the second part of the blog “Clouds, Clouds Everywhere But not a Drop of Rain”. In the first part,  I was sharing with you how a broad-based transformation makes cloud more than a technology initiative, I will describe in this section how it requires people (organizational) and process changes as well, and these changes are as critical as is the choice of right tools and technology. People: Most IT organizations have a fairly complex organizational structure. There are different groups, managing different pieces of the puzzle, and yet, they don't always work together. Provisioning a new application therefore may require a request to float endlessly through system administrators, DBAs and middleware admin worlds – resulting in long delays and constant finger pointing.  Cloud users expect end-to-end automation - which requires these silos to be greatly simplified, if not completely eliminated.  Most customers I talk to acknowledge this problem but are quick to admit that such a transformation is hard. As hard as it may be, I am afraid that the status quo is no longer an option. Sticking to an organizational structure that was created ages back will not only impede cloud adoption,  it also risks making the IT skills increasingly irrelevant in a world that is rapidly moving towards converged applications and infrastructure.   Process: Most IT organizations today operate with a mindset that they must fully "control" access to any and all types of IT services. This in turn leads to people clinging on to outdated manual approval processes .  While requiring approvals for scarce resources makes sense, insisting that every single request must be manually approved defeats the very purpose of cloud. Not only this causes delays, thereby at least partially negating the agility benefits, it also results in gross inefficiency. In a cloud environment, self-service access should be governed by policies, quotas that the administrators can define upfront . For a cloud initiative to be successful, IT organizations MUST be ready to empower users by giving them real control rather than insisting on brokering every single interaction between users and the cloud resources. Technology: From a technology perspective, cloud is about consolidation, standardization and automation. A consolidated and standardized infrastructure helps increase utilization and reduces cost. Additionally, it  enables a much higher degree of automation - thereby providing users the required agility while minimizing operational costs.  Obviously, automation is the key to cloud. Unfortunately it hasn’t received as much attention within enterprises as it should have.  Many organizations are just now waking up to the criticality of automation and it still often gets relegated to back burner in favor of other "high priority" projects. However, it is important to understand that without the right type and level of automation, cloud will remain a distant dream for most enterprises. This in turn makes the choice of the cloud management software extremely critical.  For a cloud management software to be effective in an enterprise environment, it must meet the following qualifications: Broad and Deep Solution It should offer a broad and deep solution to enable the kind of broad-based transformation we are talking about.  Its footprint must cover physical and virtual systems, as well as infrastructure, database and application tiers. Too many enterprises choose to equate cloud with virtualization. While virtualization is a critical component of a cloud solution, it is just a component and not the whole solution. Similarly, too many people tend to equate cloud with Infrastructure-as-a-Service (IaaS). While it is perfectly reasonable to treat IaaS as a starting point, it is important to realize that it is just the first stepping stone - and on its own it can only provide limited business benefits. It is actually the higher level services, such as (application) platform and business applications, that will bring about a more meaningful transformation to your enterprise. Run and Manage Efficiently Your Mission Critical Applications It should not only be able to run your mission critical applications, it should do so better than before.  For enterprises, applications and data are the critical business assets  As such, if you are building a cloud platform that cannot run your ERP application, it isn't truly a "enterprise cloud".  Also, be wary of  vendors who try to sell you the idea that your applications must be written in a certain way to be able to run on the cloud. That is nothing but a bogus, self-serving argument. For the cloud to be meaningful to enterprises, it should adopt to your applications - and not the other way around.  Automated, Integrated Set of Cloud Management Capabilities At the root of many of the problems plaguing enterprise IT today is complexity. A complex maze of tools and technology, coupled with archaic  processes, results in an environment which is inflexible, inefficient and simply too hard to manage. Management tool consolidation, therefore, is key to the success of your cloud as tool proliferation adds to complexity, encourages compartmentalization and defeats the very purpose that you are building the cloud for. Decision makers ought to be extra cautious about vendors trying to sell them a "suite" of disparate and loosely integrated products as a cloud solution.  An effective enterprise cloud management solution needs to provide a tightly integrated set of capabilities for all aspects of cloud lifecycle management. A simple question to ask: will your environment be more or less complex after you implement your cloud? More often than not, the answer will surprise you.  At Oracle, we have understood these challenges and have been working hard to create cloud solutions that are relevant and meaningful for enterprises.  And we have been doing it for much longer than you may think. Oracle was one of the very first enterprise software companies to make our products available on the Amazon Cloud. As far back as in 2007, we created new cloud solutions such as Cloud Database Backup that are helping customers like Amazon save millions every year.  Our cloud solution portfolio is also the broadest and most deep in the industry  - covering public, private, hybrid, Infrastructure, platform and applications clouds. It is no coincidence therefore that the Oracle Cloud today offers the most comprehensive set of public cloud services in the industry.  And to a large part, this has been made possible thanks to our years on investment in creating cloud enabling technologies. I will dedicated the third and final part of the blog “Clouds, Clouds Everywhere But not a Drop of Rain” to Oracle Cloud Technologies Building Blocks and how they mapped into our vision of Enterprise Cloud. Stay Tuned.

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • SSAS: Using fake dimension and scopes for dynamic ranges

    - by DigiMortal
    In one of my BI projects I needed to find count of objects in income range. Usual solution with range dimension was useless because range where object belongs changes in time. These ranges depend on calculation that is done over incomes measure so I had really no option to use some classic solution. Thanks to SSAS forums I got my problem solved and here is the solution. The problem – how to create dynamic ranges? I have two dimensions in SSAS cube: one for invoices related to objects rent and the other for objects. There is measure that sums invoice totals and two calculations. One of these calculations performs some computations based on object income and some other object attributes. Second calculation uses first one to define income ranges where object belongs. What I need is query that returns me how much objects there are in each group. I cannot use dimension for range because on one date object may belong to one range and two days later to another income range. By example, if object is not rented out for two days it makes no money and it’s income stays the same as before. If object is rented out after two days it makes some income and this income may move it to another income range. Solution – fake dimension and scopes Thanks to Gerhard Brueckl from pmOne I got everything work fine after some struggling with BI Studio. The original discussion he pointed out can be found from SSAS official forums thread Create a banding dimension that groups by a calculated measure. Solution was pretty simple by nature – we have to define fake dimension for our range and use scopes to assign values for object count measure. Object count measure is primitive – it just counts objects and that’s it. We will use it to find out how many objects belong to one or another range. We also need table for fake ranges and we have to fill it with ranges used in ranges calculation. After creating the table and filling it with ranges we can add fake range dimension to our cube. Let’s see now how to solve the problem step-by-step. Solving the problem Suppose you have ranges calculation defined like this: CASE WHEN [Measures].[ComplexCalc] < 0 THEN 'Below 0'WHEN [Measures].[ComplexCalc] >=0 AND  [Measures].[ComplexCalc] <=50 THEN '0 - 50'...END Let’s create now new table to our analysis database and name it as FakeIncomeRange. Here is the definition for table: CREATE TABLE [FakeIncomeRange] (     [range_id] [int] IDENTITY(1,1) NOT NULL,     [range_name] [nvarchar](50) NOT NULL,     CONSTRAINT [pk_fake_income_range] PRIMARY KEY CLUSTERED      (         [range_id] ASC     ) ) Don’t forget to fill this table with range labels you are using in ranges calculation. To use ranges from table we have to add this table to our data source view and create new dimension. We cannot bind this table to other tables but we have to leave it like it is. Our dimension has two attributes: ID and Name. The next thing to create is calculation that returns objects count. This calculation is also fake because we override it’s values for all ranges later. Objects count measure can be defined as calculation like this: COUNT([Object].[Object].[Object].members) Now comes the most crucial part of our solution – defining the scopes. Based on data used in this posting we have to define scope for each of our ranges. Here is the example for first range. SCOPE([FakeIncomeRange].[Name].&[Below 0], [Measures].[ObjectCount])     This=COUNT(            FILTER(                [Object].[Object].[Object].members,                 [Measures].[ComplexCalc] < 0          )     ) END SCOPE To get these scopes defined in cube we need MDX script blocks for each line given here. Take a look at the screenshot to get better idea what I mean. This example is given from SQL Server books online to avoid conflicts with NDA. :) From previous example the lines (MDX scripts) are: Line starting with SCOPE Block for This = Line with END SCOPE And now it is time to deploy and process our cube. Although you may see examples where there are semicolons in the end of statements you don’t need them. Visual Studio BI tools generate separate command from each script block so you don’t need to worry about it.

    Read the article

  • User roles in GWT applications

    - by csaffi
    Hi everybody, I'm wondering if you could suggest me any way to implement "user roles" in GWT applications. I would like to implement a GWT application where users log in and are assigned "roles". Based on their role, they would be able to see and use different application areas. Here are two possible solution I thought: 1) A possible solution could be to make an RPC call to the server during onModuleLoad. This RPC call would generate the necessary Widgets and/or place them on a panel and then return this panel to the client end. 2) Another possible solution could be to make an RPC call on login retrieving from server users roles and inspecting them to see what the user can do. What do you think about? Thank you very much in advance for your help!

    Read the article

  • Useful Tips for BizTalk 2006 to BizTalk 2009 Porting

    - by Arvind Chaudhary
    BizTalk projects require some manual intervention in order to upgrade them. Execute the following steps to port a BizTalk solution / project: Open the project’s solution file (.sln) using a text editor – NotePad++ is recommended. Remove all the contents (in red below) between (not including) the following elements: GlobalSection(ProjectConfigurationPlatforms) = postSolution           {5C48CB6B-AE6F-4288-A8EE-46E352BB730C}.Debug|.NET.ActiveCfg = Debug|Any CPU           {5C48CB6B-AE6F-4288-A8EE-46E352BB730C}.Debug|.NET.Build.0 = Debug|Any CPU           {5C48CB6B-AE6F-4288-A8EE-46E352BB730C}.Debug|Any CPU.ActiveCfg = Debug|Any CPU           {5C48CB6B-AE6F-4288-A8EE-46E352BB730C}.Debug|Any CPU.Build.0 = Debug|Any CPU           … EndGlobalSection           You should see the following once you have removed the contents:      GlobalSection(ProjectConfigurationPlatforms) = postSolution                EndGlobalSection            Note: There should not be any   For each BizTalk project (.btproj) in the solution (.sln) find and replace the following in the .btproj file: ‘Name = “Debug”’ with ‘Name = “Development”’ ‘Name = “Release”’ with ‘Name = “Deployment”’ “bin\Debug” with “bin\Development” “bin\Release” with “bin\Deployment” Save the file.

    Read the article

  • Cut Caseload Costs, Speed Service Delivery For Social Services

    - by michael.seback
    Lower Caseload Costs, Speedier Service Delivery with New Oracle Social Services Solution Oracle has just introduced a new solution for social services agencies that's designed to help case workers address the challenges of rising workloads and growing demands by citizens for additional services. In the past, IT departments developed custom software in an effort to meet program outcomes. "Because this capability is out of the box with the Oracle solution, there's less complexity for organizations and an overall lower total cost of ownership," says Kimberly Ellison-Taylor, Oracle's executive director of health and human services. "Self service brings costs down to just pennies per interaction and makes it possible for clients to receive government services more quickly," Ellison-Taylor says. read more

    Read the article

  • And the Winners of Fusion Middleware Innovation Awards in Data Integration are…

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} At OpenWorld, we announced the winners of Fusion Middleware Innovation Awards 2012. Raymond James and Morrison Supermarkets were selected for the data integration category for their innovative use of Oracle’s data integration products and the great results they have achieved. In this blog I would like to briefly introduce you to these award winning projects. Raymond James is a diversified financial services company, which provides financial planning, wealth management, investment banking, and asset management. They are using Oracle GoldenGate and Oracle Data Integrator to feed their operational data store (ODS), which supports application services across the enterprise. A major requirement for their project was low data latency, as key decisions are made based on the data in the ODS. They were able to fulfill this requirement due to the Oracle Data Integrator’s integrated solution with Oracle GoldenGate. Oracle GoldenGate captures changed data from different systems including Oracle Database, HP NonStop and Microsoft SQL Server into a single data store on SQL Server 2008. Oracle Data Integrator provides data transformations for the ODS. Leveraging ODI’s integration with GoldenGate, Raymond James now sees a 9 second median latency (from source commit to ODS target commit). The ODS solution delivers high quality, accurate data for consuming applications such as Raymond James’ next generation client and portfolio management systems as well as real-time operational reporting. It enables timely information for making better decisions. There are more benefits Raymond James achieved with this implementation of Oracle’s data integration solution. The software developers and architects of this solution, Tim Garrod and Ryan Fonnett, have told us during their presentation at OpenWorld that they also reduced application complexity significantly while improving developer productivity through trusted operational services. They were able to utilize CDC to generate alerts for business users, and for applications (for example for cache hydration mechanisms). One cool innovation example among many in this project is that using ODI's flexible architecture, Tim and Ryan could build 24/7 self-healing processes. And these processes have hardly failed. Integration processes fixes the errors itself. Pretty amazing; and a great solution for environments that need such reliability and availability. (You can see Tim and Ryan’s photo with the Innovation Award above.) The other winner of this year in the data integration category, Morrison Supermarkets, is the UK’s 4th largest grocery retailer. The company has been migrating all their legacy applications on to a new-world application set based on Oracle and consolidating all BI on to a single Oracle platform. The company recently implemented Oracle Exadata as the data warehouse engine and uses Oracle Business Intelligence EE. Their goal with deploying GoldenGate and ODI was to provide BI data to the enterprise in a way that it also supports operational decision making requirements from a wide range of Oracle based ERP applications such as E-Business Suite, PeopleSoft, Oracle Retail Suite. They use GoldenGate’s log-based change data capture capabilities and Oracle Data Integrator to populate the Oracle Retail Data Model. The electronic point of sale (EPOS) integration solution they built processes over 80 million transactions/day at busy periods in near real time (15 mins). It provides valuable insight to Retail and Commercial teams for both intra-day and historical trend analysis. As I mentioned in yesterday’s blog, the right data integration platform can transform the business. Here is another example: The point-of-sale integration enabled the grocery chain to optimize its stock management, leading to another award: Morrisons won the Grocer 33 award in 2012 - beating all other major UK supermarkets in product availability. Congratulations, Morrisons,on another award! Celebrating the innovation and the success of our customers with Oracle’s data integration products was definitely a highlight of Oracle OpenWorld for me. I look forward to hearing more from Raymond James, Morrisons, and the other customers that presented their data integration projects at OpenWorld, on how they are creating more value for their organizations.

    Read the article

  • Simultaneously calling multiple methods on a WCF service from silverlight

    - by ola karlsson
    A while back I had to debug some performance issues in an existing Silverlight app, as the problem / solution was a bit obscure and finding info about it was quite tricky, I thought I’d share, maybe it can help the next person with this problem. The App On start, the app would do a number of calls to different methods on a WCF service, this to populate the UI with the necessary data. Recently one of those services had been changed and was now taking quite a bit longer than it used to. This was resulting in quite a long loading time for the whole UI, which was set up so it wouldn’t let the user interact with anything, until all the service calls had finished. First I broke out the longer running service call from the others, then removed the constraint that it had to be loaded for the UI in general to become responsive. I also added a loading indicator just on that area of the UI, thinking that the main UI would load while this particular section could keep loading independently. The Problem However this is where things started to get a bit strange. I found that even after these changes, the main UI wouldn’t activate until the long running call returned. So now, I did what I should have done to start with, I got Fiddler out and had a look at what was really happening. What I found was that, once the call to the long running service method was placed, all subsequent call were waiting for that one to return before executing. Not having really worked with WCF previously or knowing much about it in general, I was stumped… I knew of the issues where Silverlight is restricted by the browsers networking features in regards to number of simultaneous connections etc. However that just didn’t seem to be the issue here, you can clearly see in Fiddler that there’s numerous calls, but they’re just not returning. I thought of the problem maybe being in the WCF service, but the calls were really not that complicated and surely the service should be able to handle a lot more than what I was throwing at it! So I did what every developer does in this type of scenario, I hit the search engines. I did a whole bunch of searching on things like “multiple simultaneous WCF calls from Silverlight” and “Calling long running WCF services from Silverlight” etc. etc. This however, pretty much got me nowhere, I found a whole heap of resources on how to do WCF calls from Silverlight but most of them were very basic and of no use what so ever. The fog is clearing It wasn’t until I came across the term “ WCF blocking calls” and started incorporating that in my searches I started to get somewhere. Those searches quite quickly brought me to the following thread in the Silverlight forum “Long-running WCF call blocking subsequent calls” which discussed the exact problem I was facing and the best part, one of the guys there had the solution! The short answer is in the forum post and the guys answering, has also done a more extensive blog post about it called “Silverlight, WCF, and ASP.Net Configuration Gotchas” which covers it very well.  So come on what’s the solution?! I heard you ask, unless you’ve already gone to the links and looked it up ;) The Solution Well, it turns out that the issue is founded in a mix of Silverlight, Asp.Net and WCF, basically if you’re doing multiple calls to a single WCF web-service and you have Asp.Net session state enabled, the calls will be executed sequentially by the service, hence any long running calls will block subsequent ones. So why is Asp.Net session state effecting us, we’re working in Silverlight, right? We'll as mentioned earlier, by default Silverlight uses the browsers networking stack when doing service calls, hence to the WCF service, the call looks like it might as well be coming from a normal Asp.Net. To get around this, we look to a feature introduced in Silverlight 3, namely the Client HTTP Stack. The Client HTTP Stack to the rescue By using the following syntax (for example in our App.xaml.cs, Application_Startup method) WebRequest.RegisterPrefix("http://", WebRequestCreator.ClientHttp); we can set our Silverlight application to use the Client HTTP Stack, which incidentally solves our problem! By using Silverlights own networking stack, rather than that of the browser, we get around the Asp.Net - WCF session state issue. The above code specifies that all calls to addresses starting with “http://” should go through the client stack, this can actually be set more granular and you can specify it to be used only for certain domains etc. Summary The actual solution is well covered in the forum and blog posts I link to above. This post is more about sharing my experience, hopefully helping to spread the word about this and maybe make it a bit easier for the next poor guy with this issue to find the solution. Until next time, Ola

    Read the article

  • Autocad on linux ubuntu 11.10!

    - by gabriel
    I am trying 3 years now installing autocad,3ds max and revit architecture on ubuntu with the help of wine!Every year i am very optimistic cause i see the new wine versions already improved.So, now i am starting again in a clean ubuntu install to install the autocad 2013 with the wine version wine1.4.I am not trying to have an answer only for me but i want all this ubuntu community try for this and finally we can achieve that!The winetricks have already net framework 4 to install which is the reason i have not already ran in the pas autocad.So, i would like to remove completely my windows 7 partition from my pc and go on a linux machine without loosing the powerfull architectural programms.I know all about blender and staff so i just want you to help find a solution on that because i know there is a solution!Maybe i will have to learn all the c++ or python etc staff.But i am sure that a solution can come with the help of all of us!Any suggestion about this problem will be very nice and helpfull. Thanks in advance! Gabriel

    Read the article

  • Pella Increases Online Appointment Scheduling and Rapidly Personalizes and Updates Marketing Initiatives

    - by Michael Snow
    Originally posted on Oracle Customers page.Oracle Customer: Pella CorporationLocation:  Pella, IowaIndustry: Industrial Manufacturing Employees:  7,100 Pella Corporation is an innovative leader in creating a better view for homes and businesses by designing, testing, manufacturing, and installing quality windows and doors for new construction, remodeling, and replacement applications. A family-owned company, Pella has an 88-year history of innovation and, today, is the second-largest manufacturer in the country of windows and doors, including patio, entry, and storm doors. The company has 10 manufacturing facilities in United States and window and door showrooms across the United States and Canada. In-home consultations are an important part of Pella’s sales process. Several years ago, the company launched an online appointment scheduling tool to improve customer convenience. While the functionality worked well, the company wanted to increase online conversion rates and decrease the number of incomplete, online appointment schedules. It also wanted to give its business analysts and other line-of-business personnel the ability to update the scheduling tool and interface quickly, without needing IT team intervention and recoding, to better capitalize on opportunities and personalize the interface for specific markets. Pella also looked to reduce IT complexity by selecting a system that integrated easily with its Oracle E-Business Suite Release 12.1 enterprise applications.Pella, which has a large Oracle footprint, selected Oracle WebCenter Sites as the foundation for its new, real-time appointment scheduling application. It used the solution to re-engineer the scheduling process and the information required to set up an appointment. Just a few months after launch, it is seeing improvement in the number of appointments booked online and experiencing fewer abandoned appointments during the scheduling process. As important, Pella can now quickly and easily make changes to images, video, and content displayed on the scheduling tool interface, delivering greater business agility. Previously, such changes required a developer and weeks of coding and testing. Today, a member of Pella’s business analyst team can complete the changes in hours. This capability enables Pella to personalize the Web experience for customers. For example, it can display different products or images for clients in different regions.The solution is also highly scalable. Pella is using Oracle WebCenter Sites for appointment scheduling now and plans to migrate Pella.com, its configurator tool, and dealer microsites onto the platform. Further, Pella plans to leverage the solution to optimize mobile devices. “Moving ahead, we expect to extensively leverage Oracle WebCenter Sites to gain greater flexibility in updating the Web experience, thanks to the ability to make updates quickly without developer resources. Segmentation and targeting capabilities will allow us to create a more personalized experience across both traditional and mobile platforms,” said Teri Lancaster, IT manager, customer experience applications, Pella Corporation. A word from Pella Corporation "Oracle WebCenter Sites?from the start?delivered important benefits. We’ve redesigned the online scheduling process and are seeing more potential customers completing consultation bookings online. More important, the solution opens a world of other possibilities as we plan to migrate Pella.com and our dealer microsites to the platform, and leverage it to optimize the Web experience for our mobile devices.” – Teri Lancaster, IT Manager, Customer Experience Applications, Pella Corporation Oracle Product and Services Oracle WebCenter Sites Why Oracle Pella has a long-standing relationship with Oracle. “We look to Oracle first for a solution. Our Oracle account team came to us with several solutions, and Oracle WebCenter Sites delivered the scalability, ease-of-use, flexibility, and scalability that we required for the appointment scheduling initiative and other Web projects on the horizon, including migrating Pella.com and optimizing our site for mobile platforms,”said Teri Lancaster, IT manager, customer experience applications, Pella Corporation. Implementation Process The Pella implementation team, working with Oracle partner Element Solutions, LLC, integrated the appointment setting application with Pella.com as well as the company’s Oracle E-Business Suite customer relationship management applications. Using Oracle WebCenter Site’s development tools and subversion capabilities to develop the application, the Element Solutions and Pella teams could work remotely and collaboratively, accelerating deployment. Pella went live with the new scheduling tool in just six months. Partner Oracle PartnerElement Solutions, LLC Element Solutions was instrumental at every major stage of the project, including design creation and approval, development, training, and rollout. “Element Solutions was a vital partner for our Oracle WebCenter Sites initiative. The team provided guidance, and more important, critical knowledge transfer at every stage?which equipped us to get the most out of this powerful and versatile solution. We were definitely collaboration partners,” Lancaster said. Resources Pella Corporation Upgrades Enterprise Applications to Continue to Improve Manufacturing Efficiency Thousands of Customers Successfully and Smoothly Upgrade to Oracle E-Business Suite 12.1 for New Functionality, Lower Operating Costs and Improved Shared Operations Managing the Virtual World

    Read the article

  • Ubuntu for Android on the ASUS Transformer Prime

    - by sola
    I would like to use Ubuntu on my Transformer Prime in parallel with Android (not as a dual booting solution, I want to be able to switch between them instantaniously). I am aware of the traditional chrooting/VNC solution but I heard that it performs very poorly so I would like to use Ubuntu For Android (UFA) which has been announced recently by Canonical. That looks like a polished, highly integrated solution for Android devices. The Prime would be the ideal device for Ubuntu For Android since it has a powerful processor (Tegra3) capable of running a lot of processes in parallel on its 4 cores. Does anyone know if Canonical or anybody else is working on supporting UFA on the ASUS Transformer Prime? As far as I understand, the X11 driver is available for Tegra3 so, the biggest hurdle may be easily overcome.

    Read the article

  • ReSharper File Location

    - by Ben Griswold
    By default, the ReSharper cache is stored in the solution folder.  It’s one extra folder and one extra .user file.  It’s no big deal but it does clutter up your solution a bit – especially since the files provide no real value. I prefer to store the ReSharper cache in the system Temp folder.  This setting is available by visiting ReSharper > Options > Environment > General. Just update where you’d like to store the ReSharper cache and you’re good to go.  Note, the .user file continues to linger around the solution folder but at least the _ReSharper.SolutionName folder is moved out of sight.

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >