Search Results

Search found 8647 results on 346 pages for 'intel cpu'.

Page 162/346 | < Previous Page | 158 159 160 161 162 163 164 165 166 167 168 169  | Next Page >

  • Java runs out of memory, even though I give it plenty!

    - by spitzanator
    Hey, folks. So, I'm running a java server (specifically Winstone: http://winstone.sourceforge.net/ ) Like this: java -server -Xmx12288M -jar /usr/share/java/winstone-0.9.10.jar --useSavedSessions=false --webappsDir=/var/servlets --commonLibFolder=/usr/share/java This has worked fine in the past, but now it needs to load a bunch more stuff into memory than it has before. The odd part is that, according to 'top', it has 15.0g of VIRT(ual memory) and it's RES(ident set) is 8.4g. Once it hits 8.4g, the CPU hangs at 100% (even though it's loading from disk), and eventually, I get Java's OutOfMemoryError. Presumably, the CPU hanging at 100% is Java doing garbage collection. So, my question is, what gives? I gave it 12 gigs of memory! And it's only using 8.2 gigs before it throws in the towel. What am I doing wrong? Oh, and I'm using java version "1.6.0_07" Java(TM) SE Runtime Environment (build 1.6.0_07-b06) Java HotSpot(TM) 64-Bit Server VM (build 10.0-b23, mixed mode) on Linux. Thanks, Matt

    Read the article

  • Thoughts on GoGrid vs EC2

    - by Jason
    I am currently hosting my SaaS application at GoGrid (Microsoft stack). Here's what I have: Database Server - physical box, 12 GB RAM, 2 X Quad Core CPU (2.13 GHz Xeon E5506) 2 Web / App servers - cloud servers, 2 GB RAM, 2 VCPUs 300 GB monthly bandwidth I am paying around $900 / month for this. My web / app servers are busting at the seams and need to be upgraded to 4 GB of RAM. I also need a firewall, and GoGrid just added this service for an additional $200. After the upgrade, I will be paying around $1,400. I started looking at Amazon EC2, specifically this config: Database server - "High Memory Double Extra Large Instance" - 34 GB RAM, 13 EC2 compute units 2 Web / App servers - "Large Instance" - 7.5 GB RAM, 4 EC2 compute units If I go with 1 year reserved instances, my upfront cost would be $4,500 and my monthly would be $700. This comes to $1,075 / month when amortized. Amazon also includes a firewall for free. Here are my questions: Do any of you have experience running a database (especially SQL Server) on an EC2 instance? How did it perform compared to a dedicated machine? One of my major concerns is with disk I/O. Amazon's description of a compute unit is fairly vague. Any ideas on how the CPU performance on the database servers would compare? I am hoping that the Amazon solution will provide significantly better performance than my current or even improved GoGrid setup. Having a virtual database server would also be nice in terms of availability. Right now I would be in serious trouble if I had any hardware issues. Thanks for any insight...

    Read the article

  • How to know if a device can be disabled or not?

    - by user326498
    I use the following code to enable/disable a device installed on my computer: SP_PROPCHANGE_PARAMS params; memset(&params, 0, sizeof(params)); devParams.cbSize = sizeof(devParams); params.ClassInstallHeader.cbSize = sizeof(params.ClassInstallHeader); params.ClassInstallHeader.InstallFunction = DIF_PROPERTYCHANGE; params.Scope = DICS_FLAG_GLOBAL; params.StateChange = DICS_DISABLE ; params.HwProfile = 0; // current profile if(!SetupDiSetClassInstallParams(m_hDev, &m_hDevInfo,&params.ClassInstallHeader,sizeof(SP_PROPCHANGE_PARAMS))) { dwErr = GetLastError(); return FALSE; } if(!SetupDiCallClassInstaller(DIF_PROPERTYCHANGE,m_hDev,&m_hDevInfo)) { dwErr = GetLastError(); return FALSE; } return TRUE; This code works perfectly only for those devices that can also be disabled by using Windows Device Manager, and won't work for some un-disabled devices such as my cpu device: Intel(R) Pentium(R) Dual CPU E2160 @ 1.80GHz. So the problem is how to determine if a device can be disabled or not programmatically? Is there any API to realize this goal? Thank you!

    Read the article

  • Reading same file from multiple threads in C#

    - by Gustavo Rubio
    Hi. I was googling for some advise about this and I found some links. The most obvious was this one but in the end what im wondering is how well my code is implemented. I have basically two classes. One is the Converter and the other is ConverterThread I create an instance of this Converter class that has a property ThreadNumber that tells me how many threads should be run at the same time (this is read from user) since this application will be used on multi-cpu systems (physically, like 8 cpu) so it is suppossed that this will speed up the import The Converter instance reads a file that can range from 100mb to 800mb and each line of this file is a tab-delimitted value record that is imported to another destination like a database. The ConverterThread class simply runs inside the thread (new Thread(ConverterThread.StartThread)) and has event notification so when its work is done it can notify the Converter class and then I can sum up the progress for all these threads and notify the user (in the GUI for example) about how many of these records have been imported and how many bytes have been read. It seems, however that I'm having some trouble because I get random errors about the file not being able to be read or that the sum of the progress (percentage) went above 100% which is not possible and I think that happens because threads are not being well managed and probably the information returned by the event is malformed (since it "travels" from one thread to another) Do you have any advise on better practices of implementation of threads so I can accomplish this? Thanks in advance.

    Read the article

  • Parsing data with Clojure, interval problem.

    - by Andrea Di Persio
    Hello! I'm writing a little parser in clojure for learning purpose. basically is a TSV file parser that need to be put in a database, but I added a complication. The complication itself is that in the same file there are more intervals. The file look like this: ###andreadipersio 2010-03-19 16:10:00### USER COMM PID PPID %CPU %MEM TIME root launchd 1 0 0.0 0.0 2:46.97 root DirectoryService 11 1 0.0 0.2 0:34.59 root notifyd 12 1 0.0 0.0 0:20.83 root diskarbitrationd 13 1 0.0 0.0 0:02.84` .... ###andreadipersio 2010-03-19 16:20:00### USER COMM PID PPID %CPU %MEM TIME root launchd 1 0 0.0 0.0 2:46.97 root DirectoryService 11 1 0.0 0.2 0:34.59 root notifyd 12 1 0.0 0.0 0:20.83 root diskarbitrationd 13 1 0.0 0.0 0:02.84 I ended up with this code: (defn is-header? "Return true if a line is header" [line] (> (count (re-find #"^\#{3}" line)) 0)) (defn extract-fields "Return regex matches" [line pattern] (rest (re-find pattern line))) (defn process-lines [lines] (map process-line lines)) (defn process-line [line] (if (is-header? line) (extract-fields line header-pattern)) (extract-fields line data-pattern)) My idea is that in 'process-line' interval need to be merged with data so I have something like this: ('andreadipersio', '2010-03-19', '16:10:00', 'root', 'launchd', 1, 0, 0.0, 0.0, '2:46.97') for every row till the next interval, but I can't figure how to make this happen. I tried with something like this: (def process-line [line] (if is-header? line) (def header-data (extract-fields line header-pattern))) (cons header-data (extract-fields line data-pattern))) But this doesn't work as excepted. Any hints? Thanks!

    Read the article

  • AnyCPU/x86/x64 for C# application and it's C++/CLI dependency

    - by Soonts
    I'm Windows developer, I'm using Microsoft visual studio 2008 SP1. My developer machine is 64 bit. The software I'm currently working on is managed .exe written in C#. Unfortunately, I was unable to solve the whole problem solely in C#. That's why I also developed a small managed DLL in C++/CLI. Both projects are in the same solution. My C# .exe build target is "Any CPU". When my C++ DLL build target is "x86", the DLL is not loaded. As far as I understood when I googled, the reason is C++/CLI language, unlike other .NET languages, compiles to the native code, not managed code. I switched the C++ DLL build target to x64, and everything works now. However, AFAIK everything will stop working as soon as my client will install my product on a 32-bit OS. I have to support Windows Vista and 7, both 32 and 64 bit versions of each of them. I don't want to fall back to 32 bits. That 250 lines of C++ code in my DLL is only 2% of my codebase. And that DLL is only used in several places, so in the typical usage scenario it's not even loaded. My DLL implements two COM objects with ATL, so I can't use "/clr:safe" project setting. Is there way to configure the solution and the projects so that C# project builds "Any CPU" version, the C++ project builds both 32 bit and 64 bit versions, then in the runtime when the managed .EXE is starting up, it uses either 32-bit DLL or 64-bit DLL depending on the OS? Or maybe there's some better solution I'm not aware of? Thanks in advance!

    Read the article

  • Update SQL Server 2000 to SQL Server 2008: Benefits please?

    - by Ciaran Archer
    Hi there I'm looking for the benefits of upgrading from SQL Server 2000 to 2008. I was wondering: What database features can we leverage with 2008 that we can't now? What new TSQL features can we look forward to using? What performance benefits can we expect to see? What else will make management go for it? And the converse: What problems can we expect to encounter? What other problems have people found when migrating? Why fix something that isn't (technically) broken? We work in a Java shop, so any .NET / CLR stuff won't rock our world. We also use Eclipse as our main development so any integration with Visual Studio won't be a plus. We do use SQL Server Management Studio however. Some background: Our main database machine is a 32bit Dell Intel Xeon MP CPU 2.0GHz, 40MB of RAM with Physical Address Extension running Windows Server 2003 Enterprise Edition. We will not be changing our hardware. Our databases in total are under a TB with some having more than 200 tables. But they are busy and during busy times we see 60-80% CPU utilisation. Apart form the fact that SQL Server 2000 is coming close to end of life, why should we upgrade? Any and all contributions are appreciated!

    Read the article

  • Am I a discoverer of a bug in the WPF engine?

    - by bitbonk
    We have a MFC 8 application compiled with /CLR that contains a larger amount of Windows Forms UserControls wich again contain WPF user controls using ElementHost. Due to the architecture of our software we can not use HwndHost directly. We observed an extremely strange behavior here that we can not make any sense of: When the CPU load is very high during startup of the application and there are a lot live of ElementHost instances, the whole property engine completely stops working. For example animations that usually just work fine now never update the values of the bound properties, they just stay at some random value after startup. When I set a property that is not bound to anything the value is correctly stored in the dependency property (calling the getter returns the new value) but the visual representation never reflects that. I set the background to red but the background color does not change. We tested this on a lot of different machines all running Windows XP SP2 and it is pretty reproducible. The funny thing here is, that there is in fact one situation where the bound properties actually pickup a new value from the animation and the visual gets updated based on the property values. It is when I resize the ElementHost or when I hide and reshow the parent native control. As soon as I do this, properties that are bound to an animation pickup a new value and the visuals rerender based on the new property values - but just once - if I want to see another update I have to resize the ElementHost. Do you have any explanation of what could be happening here or how I could approach this problem to find it out? What can I do to debug this? Is there a way I can get more information about what WPF actually does or where WPF might have crashed? To me it currently seems like a bug in WPF itself since it only happens at high CPU load at startup.

    Read the article

  • Drawing an image in Java, slow as hell on a netbook.

    - by Norswap
    In follow-up to my previous questions (especially this one : http://stackoverflow.com/questions/2684123/java-volatileimage-slower-than-bufferedimage), i have noticed that simply drawing an Image (it doesn't matter if it's buffered or volatile, since the computer has no accelerated memory*, and tests shows it's doesn't change anything), tends to be very long. (*) System.out.println(GraphicsEnvironment.getLocalGraphicsEnvironment() .getDefaultScreenDevice().getAvailableAcceleratedMemory()); --> 0 How long ? For a 500x400 image, about 0.04 seconds. This is only drawing the image on the backbuffer (obtained via buffer strategy). Now considering that world of warcraft runs on that netbook (tough it is quite laggy) and that online java games seems to have no problem whatsoever, this is quite thought provoking. I'm quite certain I didn't miss something obvious, I've searched extensively the web, but nothing will do. So do any of you java whiz have an idea of what obscure problem might be causing this (or maybe it is normal, tough I doubt it) ? PS : As I'm writing this I realized this might be cause by my Linux installation (archlinux) tough I have the correct Intel driver. But my computer normally has "Integrated Intel Graphics Media Accelerator 950", which would mean it should have accelerated video memory somehow. Any ideas about this side of things ?

    Read the article

  • Custom Controls Properties - C# , Forms - :(

    - by user353600
    Hi I m adding custom control to my flowlayoutpanel , its a sort of forex data , refresh every second , so on each timer tick , i m adding a control , changing controls button text , then adding it to flowlayout panel , i m doing it at each 100ms timer tick , it takeing tooo much CPU , here is my custom Control . public partial class UserControl1 : UserControl { public UserControl1() { InitializeComponent(); } private void UserControl1_Load(object sender, EventArgs e) { } public void displaydata(string name , string back3price , string back3 , string back2price , string back2 , string back1price , string back1 , string lay3price , string lay3 , string lay2price , string lay2 , string lay1price , string lay1 ) { lblrunnerName.Text = name.ToString(); btnback3.Text = back3.ToString() + "\n" + back3price.ToString(); btnback2.Text = back2.ToString() + "\n" + back2price.ToString(); btnback1.Text = back1.ToString() + "\n" + back1price.ToString(); btnlay1.Text = lay1.ToString() + "\n" + lay1price.ToString(); btnlay2.Text = lay2.ToString() + "\n" + lay2price.ToString(); btnlay3.Text = lay3.ToString() + "\n" + lay3price.ToString(); } and here is how i m adding control; private void timer1_Tick(object sender, EventArgs e) { localhost.marketData[] md; md = ser.getM1(); flowLayoutPanel1.Controls.Clear(); foreach (localhost.marketData item in md) { UserControl1 ur = new UserControl1(); ur.Name = item.runnerName + item.runnerID; ur.displaydata(item.runnerName, item.back3price, item.back3, item.back2price, item.back2, item.back1price, item.back1, item.lay3price, item.lay3, item.lay2price, item.lay2, item.lay1price, item.lay1); flowLayoutPanel1.SuspendLayout(); flowLayoutPanel1.Controls.Add(ur); flowLayoutPanel1.ResumeLayout(); } } now its happing on 10 times on each send , taking 60% of my Core2Duo cpu . is there any other way , i can just add contols first time , and then change the text of cutom controls buttons on runtime on each refresh or timer tick i m using c# .Net

    Read the article

  • Is there a reason why SSIS significantly slows down after a few minutes?

    - by Mark
    I'm running a fairly substantial SSIS package against SQL 2008 - and I'm getting the same results both in my dev environment (Win7-x64 + SQL-x64-Developer) and the production environment (Server 2008 x64 + SQL Std x64). The symptom is that initial data loading screams at between 50K - 500K records per second, but after a few minutes the speed drops off dramatically and eventually crawls embarrasingly slowly. The database is in Simple recovery model, the target tables are empty, and all of the prerequisites for minimally logged bulk inserts are being met. The data flow is a simple load from a RAW input file to a schema-matched table (i.e. no complex transforms of data, no sorting, no lookups, no SCDs, etc.) The problem has the following qualities and resiliences: Problem persists no matter what the target table is. RAM usage is lowish (45%) - there's plenty of spare RAM available for SSIS buffers or SQL Server to use. Perfmon shows buffers are not spooling, disk response times are normal, disk availability is high. CPU usage is low (hovers around 25% shared between sqlserver.exe and DtsDebugHost.exe) Disk activity primarily on TempDB.mdf, but I/O is very low (< 600 Kb/s) OLE DB destination and SQL Server Destination both exhibit this problem. To sum it up, I expect either disk, CPU or RAM to be exhausted before the package slows down, but instead its as if the SSIS package is taking an afternoon nap. SQL server remains responsive to other queries, and I can't find any performance counters or logged events that betray the cause of the problem. I'll gratefully reward any reasonable answers / suggestions.

    Read the article

  • What OpenGL functions are not GPU accelerated?

    - by Xavier Ho
    I was shocked when I read this (from the OpenGL wiki): glTranslate, glRotate, glScale Are these hardware accelerated? No, there are no known GPUs that execute this. The driver computes the matrix on the CPU and uploads it to the GPU. All the other matrix operations are done on the CPU as well : glPushMatrix, glPopMatrix, glLoadIdentity, glFrustum, glOrtho. This is the reason why these functions are considered deprecated in GL 3.0. You should have your own math library, build your own matrix, upload your matrix to the shader. For a very, very long time I thought most of the OpenGL functions use the GPU to do computation. I'm not sure if this is a common misconception, but after a while of thinking, this makes sense. Old OpenGL functions (2.x and older) are really not suitable for real-world applications, due to too many state switches. This makes me realise that, possibly, many OpenGL functions do not use the GPU at all. So, the question is: Which OpenGL function calls don't use the GPU? I believe knowing the answer to the above question would help me become a better programmer with OpenGL. Please do share some of your insights.

    Read the article

  • Boost threading/mutexs, why does this work?

    - by Flamewires
    Code: #include <iostream> #include "stdafx.h" #include <boost/thread.hpp> #include <boost/thread/mutex.hpp> using namespace std; boost::mutex mut; double results[10]; void doubler(int x) { //boost::mutex::scoped_lock lck(mut); results[x] = x*2; } int _tmain(int argc, _TCHAR* argv[]) { boost::thread_group thds; for (int x = 10; x>0; x--) { boost::thread *Thread = new boost::thread(&doubler, x); thds.add_thread(Thread); } thds.join_all(); for (int x = 0; x<10; x++) { cout << results[x] << endl; } return 0; } Output: 0 2 4 6 8 10 12 14 16 18 Press any key to continue . . . So...my question is why does this work(as far as i can tell, i ran it about 20 times), producing the above output, even with the locking commented out? I thought the general idea was: in each thread: calculate 2*x copy results to CPU register(s) store calculation in correct part of array copy results back to main(shared) memory I would think that under all but perfect conditions this would result in some part of the results array having 0 values. Is it only copying the required double of the array to a cpu register? Or is it just too short of a calculation to get preempted before it writes the result back to ram? Thanks.

    Read the article

  • What about parallelism across network using multiple PCs?

    - by MainMa
    Parallel computing is used more and more, and new framework features and shortcuts make it easier to use (for example Parallel extensions which are directly available in .NET 4). Now what about the parallelism across network? I mean, an abstraction of everything related to communications, creation of processes on remote machines, etc. Something like, in C#: NetworkParallel.ForEach(myEnumerable, () => { // Computing and/or access to web ressource or local network database here }); I understand that it is very different from the multi-core parallelism. The two most obvious differences would probably be: The fact that such parallel task will be limited to computing, without being able for example to use files stored locally (but why not a database?), or even to use local variables, because it would be rather two distinct applications than two threads of the same application, The very specific implementation, requiring not just a separate thread (which is quite easy), but spanning a process on different machines, then communicating with them over local network. Despite those differences, such parallelism is quite possible, even without speaking about distributed architecture. Do you think it will be implemented in a few years? Do you agree that it enables developers to easily develop extremely powerfull stuff with much less pain? Example: Think about a business application which extracts data from the database, transforms it, and displays statistics. Let's say this application takes ten seconds to load data, twenty seconds to transform data and ten seconds to build charts on a single machine in a company, using all the CPU, whereas ten other machines are used at 5% of CPU most of the time. In a such case, every action may be done in parallel, resulting in probably six to ten seconds for overall process instead of forty.

    Read the article

  • Recommendations for IPC between parent and child processes in .NET?

    - by Jeremy
    My .NET program needs to run an algorithm that makes heavy use of 3rd party libraries (32-bit), most of which are unmanaged code. I want to drive the CPU as hard as I can, so the code runs several threads in parallel to divide up the work. I find that running all these threads simultaneously results in temporary memory spikes, causing the process' virtual memory size to approach the 2 GB limit. This memory is released back pretty quickly, but occasionally if enough threads enter the wrong sections of code at once, the process crosses the "red line" and either the unmanaged code or the .NET code encounters an out of memory error. I can throttle back the number of threads but then my CPU usage is not as high as I would like. I am thinking of creating worker processes rather than worker threads to help avoid the out of memory errors, since doing so would give each thread of execution its own 2 GB of virtual address space (my box has lots of RAM). I am wondering what are the best/easiest methods to communicate the input and output between the processes in .NET? The file system is an obvious choice. I am used to shared memory, named pipes, and such from my UNIX background. Is there a Windows or .NET specific mechanism I should use?

    Read the article

  • What's the most trivial function that would benfit from being computed on a GPU?

    - by hanDerPeder
    Hi. I'm just starting out learning OpenCL. I'm trying to get a feel for what performance gains to expect when moving functions/algorithms to the GPU. The most basic kernel given in most tutorials is a kernel that takes two arrays of numbers and sums the value at the corresponding indexes and adds them to a third array, like so: __kernel void add(__global float *a, __global float *b, __global float *answer) { int gid = get_global_id(0); answer[gid] = a[gid] + b[gid]; } __kernel void sub(__global float* n, __global float* answer) { int gid = get_global_id(0); answer[gid] = n[gid] - 2; } __kernel void ranksort(__global const float *a, __global float *answer) { int gid = get_global_id(0); int gSize = get_global_size(0); int x = 0; for(int i = 0; i < gSize; i++){ if(a[gid] > a[i]) x++; } answer[x] = a[gid]; } I am assuming that you could never justify computing this on the GPU, the memory transfer would out weight the time it would take computing this on the CPU by magnitudes (I might be wrong about this, hence this question). What I am wondering is what would be the most trivial example where you would expect significant speedup when using a OpenCL kernel instead of the CPU?

    Read the article

  • Which OpenGL functions are not GPU-accelerated?

    - by Xavier Ho
    I was shocked when I read this (from the OpenGL wiki): glTranslate, glRotate, glScale Are these hardware accelerated? No, there are no known GPUs that execute this. The driver computes the matrix on the CPU and uploads it to the GPU. All the other matrix operations are done on the CPU as well : glPushMatrix, glPopMatrix, glLoadIdentity, glFrustum, glOrtho. This is the reason why these functions are considered deprecated in GL 3.0. You should have your own math library, build your own matrix, upload your matrix to the shader. For a very, very long time I thought most of the OpenGL functions use the GPU to do computation. I'm not sure if this is a common misconception, but after a while of thinking, this makes sense. Old OpenGL functions (2.x and older) are really not suitable for real-world applications, due to too many state switches. This makes me realise that, possibly, many OpenGL functions do not use the GPU at all. So, the question is: Which OpenGL function calls don't use the GPU? I believe knowing the answer to the above question would help me become a better programmer with OpenGL. Please do share some of your insights.

    Read the article

  • C Population Count of unsigned 64-bit integer with a maximum value of 15

    - by BitTwiddler1011
    I use a population count (hamming weight) function intensively in a windows c application and have to optimize it as much as possible in order to boost performance. More than half the cases where I use the function I only need to know the value to a maximum of 15. The software will run on a wide range of processors, both old and new. I already make use of the POPCNT instruction when Intel's SSE4.2 or AMD's SSE4a is present, but would like to optimize the software implementation (used as a fall back if no SSE4 is present) as much as possible. Currently I have the following software implementation of the function: inline int population_count64(unsigned __int64 w) { w -= (w 1) & 0x5555555555555555ULL; w = (w & 0x3333333333333333ULL) + ((w 2) & 0x3333333333333333ULL); w = (w + (w 4)) & 0x0f0f0f0f0f0f0f0fULL; return int(w * 0x0101010101010101ULL) 56; } So to summarize: (1) I would like to know if it is possible to optimize this for the case when I only want to know the value to a maximum of 15. (2) Is there a faster software implementation (for both Intel and AMD CPU's) than the function above?

    Read the article

  • Creative Gesture Camera in Processing

    - by user2892963
    I'm trying to use the creative gesture camera in Processing. I started with the Intel Perceptual Computing SDK, and ran into an issue. I want to get the hand openness, and I am running into some issues - no matter what, the hand.openness returns 0. It otherwise runs quite well... Some Sample code I'm trying to get to work: If you open your hand it starts printing to the console, close it and it stops. import intel.pcsdk.*; PXCUPipeline session; PXCMGesture.GeoNode hand = new PXCMGesture.GeoNode(); void setup() { session = new PXCUPipeline(this); if(!session.Init(PXCUPipeline.GESTURE)) exit(); } void draw() { background(0); if(session.AcquireFrame(false)) { if(session.QueryGeoNode(PXCMGesture.GeoNode.LABEL_BODY_HAND_PRIMARY|PXCMGesture.GeoNode.LABEL_OPEN, hand)) //Only when primary hand is open { rect(0, 0, 10, 10); println(hand.openness + " : " + frameCount); //Openness should be from 0 to 100 } session.ReleaseFrame(); } } Using the current version of Processing (2.0.3), Perceptual Computing SDK Version 7383.

    Read the article

  • How to speed up drawing of scaled image? Audio playback chokes during window resize.

    - by Paperflyer
    I am writing an audio player for OSX. One view is a custom view that displays a waveform. The waveform is stored as a instance variable of type NSImage with an NSBitmapImageRep. The view also displays a progress indicator (a thick red line). Therefore, it is updated/redrawn every 30 milliseconds. Since it takes a rather long time to recalculate the image, I do that in a background thread after every window resize and update the displayed image once the new image is ready. In the meantime, the original image is scaled to fit the view like this: // The drawing rectangle is slightly smaller than the view, defined by // the two margins. NSRect drawingRect; drawingRect.origin = NSMakePoint(sideEdgeMarginWidth, topEdgeMarginHeight); drawingRect.size = NSMakeSize([self bounds].size.width-2*sideEdgeMarginWidth, [self bounds].size.height-2*topEdgeMarginHeight); [waveform drawInRect:drawingRect fromRect:NSZeroRect operation:NSCompositeSourceOver fraction:1]; The view makes up the biggest part of the window. During live resize, audio starts choking. Selecting the "big" graphic card on my Macbook Pro makes it less bad, but not by much. CPU utilization is somewhere around 20-40% during live resizes. Instruments suggests that rescaling/redrawing of the image is the problem. Once I stop resizing the window, CPU utilization goes down and audio stops glitching. I already tried to disable image interpolation to speed up the drawing like this: [[NSGraphicsContext currentContext] setImageInterpolation:NSImageInterpolationNone]; That helps, but audio still chokes during live resizes. Do you have an idea how to improve this? The main thing is to prevent the audio from choking.

    Read the article

  • Database tables with dynamic information

    - by Tim Fennis
    I've googled this and found that it's almost impossible to create a database with dynamic collumns. I'll explain my problem first. I am making a webshop for a customer. It has multiple computer products for sale. CPU's HDD's RAM ect. All these products have different properties, a CPU has an FSB, RAM has a CAS latency. But this is very inconvenient because my orders table needs foreign keys to different tables which is impossible. An other option is to store all the product specific information in a varchar or blob field and let PHP figure it out. The problem with this solution is that the website needs a PC builder. A step-by-step guide to building your PC. So for instance if a customer decides he wants a new "i7 920" or whatever i want to be able to sellect all motherboards for socket 1366, which is impossible because all the data is stored in one field. I know it's possible to select all motherboards form the DB and let PHP figure out which ones are for socket 1366 but i was wondering, is there a better solution?

    Read the article

  • android service using SystemClock.elapsedRealTime() instead of SystemClock.uptimeMillis() works in emulator but not in samsung captivate ?

    - by Aleadam
    First question here in stackoverflow :) I'm running a little android 2.2 app to log cpu frequency usage. It is set up as a service that will write the data every 10 seconds using a new thread. The code for that part is very basic (see below). It works fine, except that it would not keep track of time while the phone is asleep (which, I know, is the expected behavior). Thus, I changed the code to use SystemClock.elapsedRealTime() instead. Problem is, in emulator both commands are equivalent, but in the phone the app will start the thread but it will never execute the mHandler.postAtTime command. Any advice regarding why this is happening or how to overcome the issue is greatly appreciated. PS: stopLog() is not being called. That's not the problem. mUpdateTimeTask = new Runnable() { public void run() { long millis = SystemClock.uptimeMillis() - mStartTime; int seconds = (int) (millis / 1000); int minutes = seconds / 60; seconds = seconds % 60; String freq = readCPU (); if (freq == null) Toast.makeText(CPU_log_Service.this, "CPU frequency is unreadable.\nPlease make sure the file has read rights.", Toast.LENGTH_LONG).show(); String str = new String ((minutes*60 + seconds) + ", " + freq + "\n"); if (!writeLog (str)) stopLog(); mHandler.postAtTime(this, mStartTime + (((minutes * 60) + seconds + 10) * 1000)); }}; mStartTime = SystemClock.uptimeMillis(); mHandler.removeCallbacks(mUpdateTimeTask); mHandler.postDelayed(mUpdateTimeTask, 100);

    Read the article

  • Retrieving values from a table in HTML using jQuery?

    - by Mo
    Hi i was just wondering whats the best way to retrieve the following labels and values from this HTMl code using jquery and storing them in to a array or hash map of some sort where i have for e.g "DataSet:" : "prod" or ["Dataset", "Prod"]? <table id="metric_summary"> <tbody> <tr class="editable_metrics"> <td><label>DataSet:</label></td> <td><input name="DataSet" value="prod"></td> </tr> <tr class="editable_metrics"> <td><label>HostGroup:</label></td> <td><input name="HostGroup" value="MONITOR-PORTAL-IAD"></td> </tr> <tr class="editable_metrics"> <td><label>Host:</label></td> <td><input name="Host" value="ALL"></td> </tr> <tr class="editable_metrics"> <td><label>Class:</label></td> <td><input name="Class" value="CPU"></td> </tr> <tr class="editable_metrics"> <td><label>Object:</label></td> <td><input name="Object" value="cpu"></td> </tr> <tr class="editable_metrics"> <td><label>Metric:</label></td> <td><input name="Metric" value="CapacityCPUUtilization"></td> </tr> thanks

    Read the article

  • Java: GatheringByteChannel advantages?

    - by Jason S
    I'm wondering when the GatheringByteChannel's write methods (taking in an array of ByteBuffers) have advantages over the "regular" WritableByteChannel write methods. I tried a test where I could use the regular vs. the gathering write method on a FileChannel, with approx 400KB/sec total in ByteBuffers of between 23-27 bytes in length in both cases. Gathering writes used an array of 64. The regular method used up approx 12% of my CPU, and the gathering method used up approx 16% of my CPU (worse than the regular method!) This tells me it's NOT useful to use gathering writes on a FileChannel around this range of operating parameters. Why would this be the case, and when would you ever use GatheringByteChannel? (on network I/O?) Relevant differences here: public void log(Queue<Packet> packets) throws IOException { if (this.gather) { int Nbuf = 64; ByteBuffer[] bbufs = new ByteBuffer[Nbuf]; int i = 0; Packet p; while ((p = packets.poll()) != null) { bbufs[i++] = p.getBuffer(); if (i == Nbuf) { this.fc.write(bbufs); i = 0; } } if (i > 0) { this.fc.write(bbufs, 0, i); } } else { Packet p; while ((p = packets.poll()) != null) { this.fc.write(p.getBuffer()); } } }

    Read the article

  • Solaris 11.1: Changes to included FOSS packages

    - by alanc
    Besides the documentation changes I mentioned last time, another place you can see Solaris 11.1 changes before upgrading is in the online package repository, now that the 11.1 packages have been published to http://pkg.oracle.com/solaris/release/, as the “0.175.1.0.0.24.2” branch. (Oracle Solaris Package Versioning explains what each field in that version string means.) When you’re ready to upgrade to the packages from either this repo, or the support repository, you’ll want to first read How to Update to Oracle Solaris 11.1 Using the Image Packaging System by Pete Dennis, as there are a couple issues you will need to be aware of to do that upgrade, several of which are due to changes in the Free and Open Source Software (FOSS) packages included with Solaris, as I’ll explain in a bit. Solaris 11 can update more readily than Solaris 10 In the Solaris 10 and older update models, the way the updates were built constrained what changes we could make in those releases. To change an existing SVR4 package in those releases, we created a Solaris Patch, which applied to a given version of the SVR4 package and replaced, added or deleted files in it. These patches were released via the support websites (originally SunSolve, now My Oracle Support) for applying to existing Solaris 10 installations, and were also merged into the install images for the next Solaris 10 update release. (This Solaris Patches blog post from Gerry Haskins dives deeper into that subject.) Some of the restrictions of this model were that package refactoring, changes to package dependencies, and even just changing the package version number, were difficult to do in this hybrid patch/OS update model. For instance, when Solaris 10 first shipped, it had the Xorg server from X11R6.8. Over the first couple years of update releases we were able to keep it up to date by replacing, adding, & removing files as necessary, taking it all the way up to Xorg server release 1.3 (new version numbering begun after the X11R7 split of the X11 tree into separate modules gave each module its own version). But if you run pkginfo on the SUNWxorg-server package, you’ll see it still displayed a version number of 6.8, confusing users as to which version was actually included. We stopped upgrading the Xorg server releases in Solaris 10 after 1.3, as later versions added new dependencies, such as HAL, D-Bus, and libpciaccess, which were very difficult to manage in this patching model. (We later got libpciaccess to work, but HAL & D-Bus would have been much harder due to the greater dependency tree underneath those.) Similarly, every time the GNOME team looked into upgrading Solaris 10 past GNOME 2.6, they found these constraints made it so difficult it wasn’t worthwhile, and eventually GNOME’s dependencies had changed enough it was completely infeasible. Fortunately, this worked out for both the X11 & GNOME teams, with our management making the business decision to concentrate on the “Nevada” branch for desktop users - first as Solaris Express Desktop Edition, and later as OpenSolaris, so we didn’t have to fight to try to make the package updates fit into these tight constraints. Meanwhile, the team designing the new packaging system for Solaris 11 was seeing us struggle with these problems, and making this much easier to manage for both the development teams and our users was one of their big goals for the IPS design they were working on. Now that we’ve reached the first update release to Solaris 11, we can start to see the fruits of their labors, with more FOSS updates in 11.1 than we had in many Solaris 10 update releases, keeping software more up to date with the upstream communities. Of course, just because we can more easily update now, doesn’t always mean we should or will do so, it just removes the package system limitations from forcing the decision for us. So while we’ve upgraded the X Window System in the 11.1 release from X11R7.6 to 7.7, the Solaris GNOME team decided it was not the right time to try to make the jump from GNOME 2 to GNOME 3, though they did update some individual components of the desktop, especially those with security fixes like Firefox. In other parts of the system, decisions as to what to update were prioritized based on how they affected other projects, or what customer requests we’d gotten for them. So with all that background in place, what packages did we actually update or add between Solaris 11.0 and 11.1? Core OS Functionality One of the FOSS changes with the biggest impact in this release is the upgrade from Grub Legacy (0.97) to Grub 2 (1.99) for the x64 platform boot loader. This is the cause of one of the upgrade quirks, since to go from Solaris 11.0 to 11.1 on x64 systems, you first need to update the Boot Environment tools (such as beadm) to a new version that can handle boot environments that use the Grub2 boot loader. System administrators can find the details they need to know about the new Grub in the Administering the GRand Unified Bootloader chapter of the Booting and Shutting Down Oracle Solaris 11.1 Systems guide. This change was necessary to be able to support new hardware coming into the x64 marketplace, including systems using UEFI firmware or booting off disk drives larger than 2 terabytes. For both platforms, Solaris 11.1 adds rsyslog as an optional alternative to the traditional syslogd, and OpenSCAP for checking security configuration settings are compliant with site policies. Note that the support repo actually has newer versions of BIND & fetchmail than the 11.1 release, as some late breaking critical fixes came through from the community upstream releases after the Solaris 11.1 release was frozen, and made their way to the support repository. These are responsible for the other big upgrade quirk in this release, in which to upgrade a system which already installed those versions from the support repo, you need to either wait for those packages to make their way to the 11.1 branch of the support repo, or follow the steps in the aforementioned upgrade walkthrough to let the package system know it's okay to temporarily downgrade those. Developer Stack While Solaris 11.0 included Python 2.7, many of the bundled python modules weren’t packaged for it yet, limiting its usability. For 11.1, many more of the python modules include 2.7 versions (enough that I filtered them out of the below table, but you can always search on the package repository server for them. For other language runtimes and development tools, 11.1 expands the use of IPS mediated links to choose which version of a package is the default when the packages are designed to allow multiple versions to install side by side. For instance, in Solaris 11.0, GNU automake 1.9 and 1.10 were provided, and developers had to run them as either automake-1.9 or automake-1.10. In Solaris 11.1, when automake 1.11 was added, also added was a /usr/bin/automake mediated link, which points to the automake-1.11 program by default, but can be changed to another version by running the pkg set-mediator command. Mediated links were also used for the Java runtime & development kits in 11.1, changing the default versions to the Java 7 releases (the 1.7.0.x package versions), while allowing admins to switch links such as /usr/bin/javac back to Java 6 if they need to for their site, to deal with Java 7 compatibility or other issues, without having to update each usage to use the full versioned /usr/jdk/jdk1.6.0_35/bin/javac paths for every invocation. Desktop Stack As I mentioned before, we upgraded from X11R7.6 to X11R7.7, since a pleasant coincidence made the X.Org release dates line up nicely with our feature & code freeze dates for this release. (Or perhaps it wasn’t so coincidental, after all, one of the benefits of being the person making the release is being able to decide what schedule is most convenient for you, and this one worked well for me.) For the table below, I’ve skipped listing the packages in which we use the X11 “katamari” version for the Solaris package version (mainly packages combining elements of multiple upstream modules with independent version numbers), since they just all changed from 7.6 to 7.7. In the graphics drivers, we worked with Intel to update the Intel Integrated Graphics Processor support to support 3D graphics and kernel mode setting on the Ivy Bridge chipsets, and updated Nvidia’s non-FOSS graphics driver from 280.13 to 295.20. Higher up in the desktop stack, PulseAudio was added for audio support, and liblouis for Braille support, and the GNOME applications were built to use them. The Mozilla applications, Firefox & Thunderbird moved to the current Extended Support Release (ESR) versions, 10.x for each, to bring up-to-date security fixes without having to be on Mozilla’s agressive 6 week feature cycle release train. Detailed list of changes This table shows most of the changes to the FOSS packages between Solaris 11.0 and 11.1. As noted above, some were excluded for clarity, or to reduce noise and duplication. All the FOSS packages which didn't change the version number in their packaging info are not included, even if they had updates to fix bugs, security holes, or add support for new hardware or new features of Solaris. Package11.011.1 archiver/unrar 3.8.5 4.1.4 audio/sox 14.3.0 14.3.2 backup/rdiff-backup 1.2.1 1.3.3 communication/im/pidgin 2.10.0 2.10.5 compress/gzip 1.3.5 1.4 compress/xz not included 5.0.1 database/sqlite-3 3.7.6.3 3.7.11 desktop/remote-desktop/tigervnc 1.0.90 1.1.0 desktop/window-manager/xcompmgr 1.1.5 1.1.6 desktop/xscreensaver 5.12 5.15 developer/build/autoconf 2.63 2.68 developer/build/autoconf/xorg-macros 1.15.0 1.17 developer/build/automake-111 not included 1.11.2 developer/build/cmake 2.6.2 2.8.6 developer/build/gnu-make 3.81 3.82 developer/build/imake 1.0.4 1.0.5 developer/build/libtool 1.5.22 2.4.2 developer/build/makedepend 1.0.3 1.0.4 developer/documentation-tool/doxygen 1.5.7.1 1.7.6.1 developer/gnu-binutils 2.19 2.21.1 developer/java/jdepend not included 2.9 developer/java/jdk-6 1.6.0.26 1.6.0.35 developer/java/jdk-7 1.7.0.0 1.7.0.7 developer/java/jpackage-utils not included 1.7.5 developer/java/junit 4.5 4.10 developer/lexer/jflex not included 1.4.1 developer/parser/byaccj not included 1.14 developer/parser/java_cup not included 0.10 developer/quilt 0.47 0.60 developer/versioning/git 1.7.3.2 1.7.9.2 developer/versioning/mercurial 1.8.4 2.2.1 developer/versioning/subversion 1.6.16 1.7.5 diagnostic/constype 1.0.3 1.0.4 diagnostic/nmap 5.21 5.51 diagnostic/scanpci 0.12.1 0.13.1 diagnostic/wireshark 1.4.8 1.8.2 diagnostic/xload 1.1.0 1.1.1 editor/gnu-emacs 23.1 23.4 editor/vim 7.3.254 7.3.600 file/lndir 1.0.2 1.0.3 image/editor/bitmap 1.0.5 1.0.6 image/gnuplot 4.4.0 4.6.0 image/library/libexif 0.6.19 0.6.21 image/library/libpng 1.4.8 1.4.11 image/library/librsvg 2.26.3 2.34.1 image/xcursorgen 1.0.4 1.0.5 library/audio/pulseaudio not included 1.1 library/cacao 2.3.0.0 2.3.1.0 library/expat 2.0.1 2.1.0 library/gc 7.1 7.2 library/graphics/pixman 0.22.0 0.24.4 library/guile 1.8.4 1.8.6 library/java/javadb 10.5.3.0 10.6.2.1 library/java/subversion 1.6.16 1.7.5 library/json-c not included 0.9 library/libedit not included 3.0 library/libee not included 0.3.2 library/libestr not included 0.1.2 library/libevent 1.3.5 1.4.14.2 library/liblouis not included 2.1.1 library/liblouisxml not included 2.1.0 library/libtecla 1.6.0 1.6.1 library/libtool/libltdl 1.5.22 2.4.2 library/nspr 4.8.8 4.8.9 library/openldap 2.4.25 2.4.30 library/pcre 7.8 8.21 library/perl-5/subversion 1.6.16 1.7.5 library/python-2/jsonrpclib not included 0.1.3 library/python-2/lxml 2.1.2 2.3.3 library/python-2/nose not included 1.1.2 library/python-2/pyopenssl not included 0.11 library/python-2/subversion 1.6.16 1.7.5 library/python-2/tkinter-26 2.6.4 2.6.8 library/python-2/tkinter-27 2.7.1 2.7.3 library/security/nss 4.12.10 4.13.1 library/security/openssl 1.0.0.5 (1.0.0e) 1.0.0.10 (1.0.0j) mail/thunderbird 6.0 10.0.6 network/dns/bind 9.6.3.4.3 9.6.3.7.2 package/pkgbuild not included 1.3.104 print/filter/enscript not included 1.6.4 print/filter/gutenprint 5.2.4 5.2.7 print/lp/filter/foomatic-rip 3.0.2 4.0.15 runtime/java/jre-6 1.6.0.26 1.6.0.35 runtime/java/jre-7 1.7.0.0 1.7.0.7 runtime/perl-512 5.12.3 5.12.4 runtime/python-26 2.6.4 2.6.8 runtime/python-27 2.7.1 2.7.3 runtime/ruby-18 1.8.7.334 1.8.7.357 runtime/tcl-8/tcl-sqlite-3 3.7.6.3 3.7.11 security/compliance/openscap not included 0.8.1 security/nss-utilities 4.12.10 4.13.1 security/sudo 1.8.1.2 1.8.4.5 service/network/dhcp/isc-dhcp 4.1 4.1.0.6 service/network/dns/bind 9.6.3.4.3 9.6.3.7.2 service/network/ftp (ProFTPD) 1.3.3.0.5 1.3.3.0.7 service/network/samba 3.5.10 3.6.6 shell/conflict 0.2004.9.1 0.2010.6.27 shell/pipe-viewer 1.1.4 1.2.0 shell/zsh 4.3.12 4.3.17 system/boot/grub 0.97 1.99 system/font/truetype/liberation 1.4 1.7.2 system/library/freetype-2 2.4.6 2.4.9 system/library/libnet 1.1.2.1 1.1.5 system/management/cim/pegasus 2.9.1 2.11.0 system/management/ipmitool 1.8.10 1.8.11 system/management/wbem/wbemcli 1.3.7 1.3.9.1 system/network/routing/quagga 0.99.8 0.99.19 system/rsyslog not included 6.2.0 terminal/luit 1.1.0 1.1.1 text/convmv 1.14 1.15 text/gawk 3.1.5 3.1.8 text/gnu-grep 2.5.4 2.10 web/browser/firefox 6.0.2 10.0.6 web/browser/links 1.0 1.0.3 web/java-servlet/tomcat 6.0.33 6.0.35 web/php-53 not included 5.3.14 web/php-53/extension/php-apc not included 3.1.9 web/php-53/extension/php-idn not included 0.2.0 web/php-53/extension/php-memcache not included 3.0.6 web/php-53/extension/php-mysql not included 5.3.14 web/php-53/extension/php-pear not included 5.3.14 web/php-53/extension/php-suhosin not included 0.9.33 web/php-53/extension/php-tcpwrap not included 1.1.3 web/php-53/extension/php-xdebug not included 2.2.0 web/php-common not included 11.1 web/proxy/squid 3.1.8 3.1.18 web/server/apache-22 2.2.20 2.2.22 web/server/apache-22/module/apache-sed 2.2.20 2.2.22 web/server/apache-22/module/apache-wsgi not included 3.3 x11/diagnostic/xev 1.1.0 1.2.0 x11/diagnostic/xscope 1.3 1.3.1 x11/documentation/xorg-docs 1.6 1.7 x11/keyboard/xkbcomp 1.2.3 1.2.4 x11/library/libdmx 1.1.1 1.1.2 x11/library/libdrm 2.4.25 2.4.32 x11/library/libfontenc 1.1.0 1.1.1 x11/library/libfs 1.0.3 1.0.4 x11/library/libice 1.0.7 1.0.8 x11/library/libsm 1.2.0 1.2.1 x11/library/libx11 1.4.4 1.5.0 x11/library/libxau 1.0.6 1.0.7 x11/library/libxcb 1.7 1.8.1 x11/library/libxcursor 1.1.12 1.1.13 x11/library/libxdmcp 1.1.0 1.1.1 x11/library/libxext 1.3.0 1.3.1 x11/library/libxfixes 4.0.5 5.0 x11/library/libxfont 1.4.4 1.4.5 x11/library/libxft 2.2.0 2.3.1 x11/library/libxi 1.4.3 1.6.1 x11/library/libxinerama 1.1.1 1.1.2 x11/library/libxkbfile 1.0.7 1.0.8 x11/library/libxmu 1.1.0 1.1.1 x11/library/libxmuu 1.1.0 1.1.1 x11/library/libxpm 3.5.9 3.5.10 x11/library/libxrender 0.9.6 0.9.7 x11/library/libxres 1.0.5 1.0.6 x11/library/libxscrnsaver 1.2.1 1.2.2 x11/library/libxtst 1.2.0 1.2.1 x11/library/libxv 1.0.6 1.0.7 x11/library/libxvmc 1.0.6 1.0.7 x11/library/libxxf86vm 1.1.1 1.1.2 x11/library/mesa 7.10.2 7.11.2 x11/library/toolkit/libxaw7 1.0.9 1.0.11 x11/library/toolkit/libxt 1.0.9 1.1.3 x11/library/xtrans 1.2.6 1.2.7 x11/oclock 1.0.2 1.0.3 x11/server/xdmx 1.10.3 1.12.2 x11/server/xephyr 1.10.3 1.12.2 x11/server/xorg 1.10.3 1.12.2 x11/server/xorg/driver/xorg-input-keyboard 1.6.0 1.6.1 x11/server/xorg/driver/xorg-input-mouse 1.7.1 1.7.2 x11/server/xorg/driver/xorg-input-synaptics 1.4.1 1.6.2 x11/server/xorg/driver/xorg-input-vmmouse 12.7.0 12.8.0 x11/server/xorg/driver/xorg-video-ast 0.91.10 0.93.10 x11/server/xorg/driver/xorg-video-ati 6.14.1 6.14.4 x11/server/xorg/driver/xorg-video-cirrus 1.3.2 1.4.0 x11/server/xorg/driver/xorg-video-dummy 0.3.4 0.3.5 x11/server/xorg/driver/xorg-video-intel 2.10.0 2.18.0 x11/server/xorg/driver/xorg-video-mach64 6.9.0 6.9.1 x11/server/xorg/driver/xorg-video-mga 1.4.13 1.5.0 x11/server/xorg/driver/xorg-video-openchrome 0.2.904 0.2.905 x11/server/xorg/driver/xorg-video-r128 6.8.1 6.8.2 x11/server/xorg/driver/xorg-video-trident 1.3.4 1.3.5 x11/server/xorg/driver/xorg-video-vesa 2.3.0 2.3.1 x11/server/xorg/driver/xorg-video-vmware 11.0.3 12.0.2 x11/server/xserver-common 1.10.3 1.12.2 x11/server/xvfb 1.10.3 1.12.2 x11/server/xvnc 1.0.90 1.1.0 x11/session/sessreg 1.0.6 1.0.7 x11/session/xauth 1.0.6 1.0.7 x11/session/xinit 1.3.1 1.3.2 x11/transset 0.9.1 1.0.0 x11/trusted/trusted-xorg 1.10.3 1.12.2 x11/x11-window-dump 1.0.4 1.0.5 x11/xclipboard 1.1.1 1.1.2 x11/xclock 1.0.5 1.0.6 x11/xfd 1.1.0 1.1.1 x11/xfontsel 1.0.3 1.0.4 x11/xfs 1.1.1 1.1.2 P.S. To get the version numbers for this table, I ran a quick perl script over the output from: % pkg contents -H -r -t depend -a type=incorporate -o fmri \ `pkg contents -H -r -t depend -a type=incorporate -o fmri [email protected],5.11-0.175.1.0.0.24` \ | sort /tmp/11.1 % pkg contents -H -r -t depend -a type=incorporate -o fmri \ `pkg contents -H -r -t depend -a type=incorporate -o fmri [email protected],5.11-0.175.0.0.0.2` \ | sort /tmp/11.0

    Read the article

< Previous Page | 158 159 160 161 162 163 164 165 166 167 168 169  | Next Page >