Search Results

Search found 47615 results on 1905 pages for 'make it useful keep it simple'.

Page 163/1905 | < Previous Page | 159 160 161 162 163 164 165 166 167 168 169 170  | Next Page >

  • looking for a good programming problem solving tool

    - by ctilley79
    Years ago when I was in school my computer science department used a website that had many different problem solving questions typically used in computer programming. They were ordered in difficulty and you were presented the solution after you attempted the problem. The site was used in competitions and was very useful for training purposes. Since I am trying to brush up on my algorithm skills, a good tool like this would be very useful. Does anyone know of a site similar to this in "modern" times?

    Read the article

  • WordPress plugin for handling User Submitted Posts

    - by Ravish
    User Submitted Posts plugin is a highly useful form, which can be embedded on the desired areas of your WordPress site using a shortcode. User Submitted Posts plugin will allow you to customize the fields in the form like title, or tags. It provides you with useful tools to control uploads. Why you need this? [...] Related posts:Insights WordPress Plugin For Efficient Blogging WordPress User related Plug-ins AddInto Social Bookmarking plugin for WordPress & Blogger

    Read the article

  • Announcing StorageTek VSM 6 and VLE Capacity Increase

    - by uwes
    Announcing Increased Capacity on StorageTek Virtual Storage Manager System 6 (VSM6) and StorageTek Virtual Library Extension (VLE)! StorageTek Virtual Storage Manager System 6 (VSM 6) and the StorageTek Virtual Library Extension (VLE) makes data management simple for the mainframe data center - Simple to deploy, simple to manage, and simple to scale.  With this announcement, StorageTek VSM 6 as well as StorageTek VLE capacity scaling increases by 33% for StorageTek VSM 6 and 21% for StorageTek VLE.  This significant capacity increase can provide increased consolidation potential for multiple VSM 4/5’s into a single VSM 6. In addition to the StorageTek VSM 6 and VLE capacity increases we are announcing End of Life (EOL) for previous generation StorageTek VSM 6 and VLE part numbers.   Please read the Sales Bulletin on Oracle HW TRC for more details. (If you are not registered on Oracle HW TRC, click here ... and follow the instructions..) For More Information Go To: Oracle.com Tape Page Oracle Technology Network Tape Page

    Read the article

  • Block Google requests to 16k using pf firewall

    - by atmosx
    I'd like to block access to Google search using PF after the threshold of 17500 requests (connection established) in 24h, from a host running FreeBSD 9. What I came up with, after reading pf-faq is this rule: pass out on $net proto tcp from any to 'www.google.com' port www flags S/SA keep state (max-src-conn 200, max-src-conn-rate 17500/86400) NOTE: 86400 are 24h in seconds. The rule should work, but PF is smart enough to know that www.google.com resolves in 5 different IPs. So my pfctl -sr output gives me this: pass out on vte0 inet proto tcp from any to 173.194.44.81 port = http flags S/SA keep state (source-track rule, max-src-conn 200, max-src-conn-rate 17500/86400, src.track 86400) pass out on vte0 inet proto tcp from any to 173.194.44.82 port = http flags S/SA keep state (source-track rule, max-src-conn 200, max-src-conn-rate 17500/86400, src.track 86400) pass out on vte0 inet proto tcp from any to 173.194.44.83 port = http flags S/SA keep state (source-track rule, max-src-conn 200, max-src-conn-rate 17500/86400, src.track 86400) pass out on vte0 inet proto tcp from any to 173.194.44.80 port = http flags S/SA keep state (source-track rule, max-src-conn 200, max-src-conn-rate 17500/86400, src.track 86400) pass out on vte0 inet proto tcp from any to 173.194.44.84 port = http flags S/SA keep state (source-track rule, max-src-conn 200, max-src-conn-rate 17500/86400, src.track 86400) PF creates 5 different rules, 1 for each IP that Google resolves. However I have the sense - without being 100% sure, I didn't had the chance to test it - that the number 17500/86400 applies for each IP. If that's the case - please confirm - then it's not what I want. In pf-faq there's another option called source-track-global: source-track This option enables the tracking of number of states created per source IP address. This option has two formats: + source-track rule - The maximum number of states created by this rule is limited by the rule's max-src-nodes and max-src-states options. Only state entries created by this particular rule count toward the rule's limits. + source-track global - The number of states created by all rules that use this option is limited. Each rule can specify different max-src-nodes and max-src-states options, however state entries created by any participating rule count towards each individual rule's limits. The total number of source IP addresses tracked globally can be controlled via the src-nodes runtime option. I tried to apply source-track-global in the above rule without success. How can I use this option in order to achieve my goal? Any thoughts or comments are more than welcome since I'm an amateur and don't fully understand PF yet. Thanks

    Read the article

  • Tuning Red Gate: #4 of Some

    - by Grant Fritchey
    First time connecting to these servers directly (keys to the kingdom, bwa-ha-ha-ha. oh, excuse me), so I'm going to take a look at the server properties, just to see if there are any issues there. Max memory is set, cool, first possible silly mistake clear. In fact, these look to be nicely set up. Oh, I'd like to see the ANSI Standards set by default, but it's not a big deal. The default location for database data is the F:\ drive, where I saw all the activity last time. Cool, the people maintaining the servers in our company listen, parallelism threshold is set to 35 and optimize for ad hoc is enabled. No shocks, no surprises. The basic setup is appropriate. On to the problem database. Nothing wrong in the properties. The database is in SIMPLE recovery, but I think it's a reporting system, so no worries there. Again, I'd prefer to see the ANSI settings for connections, but that's the worst thing I can see. Time to look at the queries, tables, indexes and statistics because all the information I've collected over the last several days suggests that we're not looking at a systemic problem (except possibly not enough memory), but at the traditional tuning issues. I just want to note that, I started looking at the system, not the queries. So should you when tuning your environment. I know, from the data collected through SQL Monitor, what my top poor performing queries are, and the most frequently called, etc. I'm starting with the most frequently called. I'm going to get the execution plan for this thing out of the cache (although, with the cache dumping constantly, I might not get it). And it's not there. Called 1.3 million times over the last 3 days, but it's not in cache. Wow. OK. I'll see what's in cache for this database: SELECT  deqs.creation_time,         deqs.execution_count,         deqs.max_logical_reads,         deqs.max_elapsed_time,         deqs.total_logical_reads,         deqs.total_elapsed_time,         deqp.query_plan,         SUBSTRING(dest.text, (deqs.statement_start_offset / 2) + 1,                   (deqs.statement_end_offset - deqs.statement_start_offset) / 2                   + 1) AS QueryStatement FROM    sys.dm_exec_query_stats AS deqs         CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest         CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp WHERE   dest.dbid = DB_ID('Warehouse') AND deqs.statement_end_offset > 0 AND deqs.statement_start_offset > 0 ORDER BY deqs.max_logical_reads DESC ; And looking at the most expensive operation, we have our first bad boy: Multiple table scans against very large sets of data and a sort operation. a sort operation? It's an insert. Oh, I see, the table is a heap, so it's doing an insert, then sorting the data and then inserting into the primary key. First question, why isn't this a clustered index? Let's look at some more of the queries. The next one is deceiving. Here's the query plan: You're thinking to yourself, what's the big deal? Well, what if I told you that this thing had 8036318 reads? I know, you're looking at skinny little pipes. Know why? Table variable. Estimated number of rows = 1. Actual number of rows. well, I'm betting several more than one considering it's read 8 MILLION pages off the disk in a single execution. We have a serious and real tuning candidate. Oh, and I missed this, it's loading the table variable from a user defined function. Let me check, let me check. YES! A multi-statement table valued user defined function. And another tuning opportunity. This one's a beauty, seriously. Did I also mention that they're doing a hash against all the columns in the physical table. I'm sure that won't lead to scans of a 500,000 row table, no, not at all. OK. I lied. Of course it is. At least it's on the top part of the Loop which means the scan is only executed once. I just did a cursory check on the next several poor performers. all calling the UDF. I think I found a big tuning opportunity. At this point, I'm typing up internal emails for the company. Someone just had their baby called ugly. In addition to a series of suggested changes that we need to implement, I'm also apologizing for being such an unkind monster as to question whether that third eye & those flippers belong on such an otherwise lovely child.

    Read the article

  • How to restore your production database without needing additional storage

    - by David Atkinson
    Production databases can get very large. This in itself is to be expected, but when a copy of the database is needed the database must be restored, requiring additional and costly storage.  For example, if you want to give each developer a full copy of your production server, you'll need n times the storage cost for your n-developer team. The same is true for any test databases that are created during the course of your project lifecycle. If you've read my previous blog posts, you'll be aware that I've been focusing on the database continuous integration theme. In my CI setup I create a "production"-equivalent database directly from its source control representation, and use this to test my upgrade scripts. Despite this being a perfectly valid and practical thing to do as part of a CI setup, it's not the exact equivalent to running the upgrade script on a copy of the actual production database. So why shouldn't I instead simply restore the most recent production backup as part of my CI process? There are two reasons why this would be impractical. 1. My CI environment isn't an exact copy of my production environment. Indeed, this would be the case in a perfect world, and it is strongly recommended as a good practice if you follow Jez Humble and David Farley's "Continuous Delivery" teachings, but in practical terms this might not always be possible, especially where storage is concerned. It may just not be possible to restore a huge production database on the environment you've been allotted. 2. It's not just about the storage requirements, it's also the time it takes to do the restore. The whole point of continuous integration is that you are alerted as early as possible whether the build (yes, the database upgrade script counts!) is broken. If I have to run an hour-long restore each time I commit a change to source control I'm just not going to get the feedback quickly enough to react. So what's the solution? Red Gate has a technology, SQL Virtual Restore, that is able to restore a database without using up additional storage. Although this sounds too good to be true, the explanation is quite simple (although I'm sure the technical implementation details under the hood are quite complex!) Instead of restoring the backup in the conventional sense, SQL Virtual Restore will effectively mount the backup using its HyperBac technology. It creates a data and log file, .vmdf, and .vldf, that becomes the delta between the .bak file and the virtual database. This means that both read and write operations are permitted on a virtual database as from SQL Server's point of view it is no different from a conventional database. Instead of doubling the storage requirements upon a restore, there is no 'duplicate' storage requirements, other than the trivially small virtual log and data files (see illustration below). The benefit is magnified the more databases you mount to the same backup file. This technique could be used to provide a large development team a full development instance of a large production database. It is also incredibly easy to set up. Once SQL Virtual Restore is installed, you simply run a conventional RESTORE command to create the virtual database. This is what I have running as part of a nightly "release test" process triggered by my CI tool. RESTORE DATABASE WidgetProduction_virtual FROM DISK=N'C:\WidgetWF\ProdBackup\WidgetProduction.bak' WITH MOVE N'WidgetProduction' TO N'C:\WidgetWF\ProdBackup\WidgetProduction_WidgetProduction_Virtual.vmdf', MOVE N'WidgetProduction_log' TO N'C:\WidgetWF\ProdBackup\WidgetProduction_log_WidgetProduction_Virtual.vldf', NORECOVERY, STATS=1, REPLACE GO RESTORE DATABASE mydatabase WITH RECOVERY   Note the only change from what you would do normally is the naming of the .vmdf and .vldf files. SQL Virtual Restore intercepts this by monitoring the extension and applies its magic, ensuring the 'virtual' restore happens rather than the conventional storage-heavy restore. My automated release test then applies the upgrade scripts to the virtual production database and runs some validation tests, giving me confidence that were I to run this on production for real, all would go smoothly. For illustration, here is my 8Gb production database: And its corresponding backup file: Here are the .vldf and .vmdf files, which represent the only additional used storage for the new database following the virtual restore.   The beauty of this product is its simplicity. Once it is installed, the interaction with the backup and virtual database is exactly the same as before, as the clever stuff is being done at a lower level. SQL Virtual Restore can be downloaded as a fully functional 14-day trial. Technorati Tags: SQL Server

    Read the article

  • I thought everyone did it like this – Training Session Code Management

    - by Fatherjack
    One of an occasional series of blogs about things that I do that perhaps others don’t. From very early on in my dealings with SQL Server Management Studio I started using Solutions and Projects. This means that I started using them when writing sessions and it wasn’t until speaking with someone at PASS Summit 2013 that I found out that this was a process that was unheard of by some people. So, here we go, a run through how I create and manage code and other documents that I use in presentations. For people unsure what solutions and projects are; • Solution – a container for one or more projects. • Project – a container for files, .sql files are grouped as Queries, all other files are stored as Misc. How do I start? Open Management Studio as normal, and then click File | New and select Project This will bring up the New Project dialog box and you can select/add details as necessary in the places indicated. If this is the first project you are creating then be sure to select the Create directory for solution check box (4). If know in advance that you are going to have more than one project in the solution then you may want to edit the Solution name (3) as by default it will take the name of the project that you enter at (2). This will lead you to the following folder structure (depending on the location that you chose in 3) above. In SSMS you need to turn on the Solution Explorer, either via the View menu or pressing Ctrl + Alt + L                   This will bring up a dockable window that will let you quickly access the files that you choose to include in the Solution.                     Can we get to work and write some code yet please? Yes, we can. As with many Microsoft products there are several ways to go about this, let’s look at the easiest way when creating new code. When writing a presentation I usually start from the position we are currently in – a brand new solution and project with no code. Later on we will look at incorporating existing code files into the Project where we need it. Right-click on the Project name and choose Add New Query           As soon as you click this you will be prompted to select the sql server that you want to connect to and once you have done that you will have your new query open in the text editor and the Solution Explorer will now look like this, showing your server connection and your new query.               And the Project folder will look like this         Now once you have written your code don’t press save, choose Save As and give the code a better name than QueryX.sql. SSMS will interpret this as a request to rename Query1 and your Project and the Project folder will show that SQLQuery1.sql no longer exists but there is now a file named as you requested. If you happen to click save in error then right-click the query in the project and choose rename.               You can then alter the name as you like, even when open in the SSMS text editor, and the file will be renamed. When creating a set of scripts for a presentation I name files with a numeric prefix so that when they are sorted by name they are in the order that I need to use them during the session. I love this idea but I’ve got loads of existing scripts I want to put in Projects Excellent, adding existing files to a project is easy, let’s consider that you have query files in your My Documents folder and you want to bring them into the Project we have just created. Right-click on the Project and choose Add | Existing Item           Navigate to the location of your chosen file and select it. The file will open in SSMS text editor and the Project will be updated to show that the selected query is now part of your project. If you look in Windows Explorer you will see that the query file has been copied into the Project folder, the original file still remains in your My Documents (or wherever it existed). I’ll leave it as an exercise for the reader to explore creating further Projects within a solution but will happily answer questions if you get into difficulties. What other advantages do I get from this? Well, as all your code is neatly in one Solution folder and the folder contains only files that are pertinent to the session you are presenting then it makes it very easy to share this code, simply copy the whole folder onto a USB stick, Blog, FTP location, wherever you choose and it’s all there in one self-contained parcel. You don’t have to limit yourself to .sql query files, you can add any sort of document via the Add Existing Item method, just try it out. Right-click on the protect and choose Add | Existing Item           Change the file type filter.                       You can multi select items here using Ctrl as you click each item you want. When you are done, click the Add button and the items will be brought into your project.                 Again, using this process means the files are copied into the project folder, leaving you original files untouched in their original location. Once they are here you can double click them in the SSMS Solution Explorer to open them, for files with a specific file type then the appropriate application will be launched – ie Word, Excel etc. However, if the files are something that the SSMS Text editor can display then they will open in a tab in SSMS. Try it out with a text file or even a PS1 file … This sounds excellent but what do I need to watch out for? One big thing to consider when working like this is the version of SSMS that you are using. There is something fundamentally different between the different versions in the way that the project (.ssmssqlproj) and solution (.sqlsuo and .ssmssln) files are formatted. If you create a solution in an older version of SSMS and then open it in a newer version you will be given the option to upgrade it. Once you do this upgrade then the older version of SSMS will not be able to open the solution any more. Now this ranks as more of an annoyance than disaster as the files within the projects are not affected in any way, you would just have to delete the files mentioned and recreate the solution in the older version again. Summary So, here we have seen how using SSMS Projects and Solutions can help keep related code files (and other document types) together in a neat structure so that they can be quickly navigated during a presentation and it also makes it incredibly simple to distribute your code and share it with others. I hope this is of use to you and helps you bring more order into your sql files, whether you are a person that does technical presentations or not, having your code grouped and managed can make for a lot of advantages as your code library expands.  

    Read the article

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • Six Cool PHP Tricks You May Not Know

    <b>PHP Builder:</b> "Over the years I've come across some useful tricks in PHP that are not obvious, but are worth mentioning. This is not meant to be a comprehensive list of all the useful tricks that you can do with PHP."

    Read the article

  • Last day of early bird for PowerPivot Workshop in Dublin #ppws

    - by Marco Russo (SQLBI)
    The early bird discount for the PowerPivot Workshop in Dublin will expire today, Friday 11 March. There is also an upcoming workshop in Copenhagen (March 21-22, 2011) and a PowerPivot workshop in Zurich on April 4-5, 2011. I and Alberto are preparing new material in these days: something will integrate the workshop, other will be useful useful for future blog posts. We are discovering many new areas where the Vertipaq engine is really interesting for doing jobs he was probably not tought for! More...(read more)

    Read the article

  • Anyone know a way to find out number of Twitter followers for a particular account on any given date?

    - by mejpark
    Hello. I manage two corporate Twitter accounts and two personal Twitter accounts, and it would be really useful to know how many followers each account has at the end of each week. I'm using TweetStats.com to gather statistics at the moment, but the follower stats functionality isn't granular enough to determine the precise number of followers. Does anyone know of any useful and free tools that can provide the exact number of followers for a specific Twitter account on any given date? Thank you, Mike.

    Read the article

  • Inside Red Gate - Project teams

    - by Simon Cooper
    Within each division in Red Gate, development effort is structured around one or more project teams; currently, each division contains 2-3 separate teams. These are self contained units responsible for a particular development project. Project team structure The typical size of a development team varies, but is normally around 4-7 people - one project manager, two developers, one or two testers, a technical author (who is responsible for the text within the application, website content, and help documentation) and a user experience designer (who designs and prototypes the UIs) . However, team sizes can vary from 3 up to 12, depending on the division and project. As an rule, all the team sits together in the same area of the office. (Again, this is my experience of what happens. I haven't worked in the DBA division, and SQL Tools might have changed completely since I moved to .NET. As I mentioned in my previous post, each division is free to structure itself as it sees fit.) Depending on the project, and the other needs in the division, the tech author and UX designer may be shared between several projects. Generally, developers and testers work on one project at a time. If the project is a simple point release, then it might not need a UX designer at all. However, if it's a brand new product, then a UX designer and tech author will be involved right from the start. Developers, testers, and the project manager will normally stay together in the same team as they work on different projects, unless there's a good reason to split or merge teams for a particular project. Technical authors and UX designers will normally go wherever they are needed in the division, depending on what each project needs at the time. In my case, I was working with more or less the same people for over 2 years, all the way through SQL Compare 7, 8, and Schema Compare for Oracle. This helped to build a great sense of camaraderie wihin the team, and helped to form and maintain a team identity. This, in turn, meant we worked very well together, and so the final result was that much better (as well as making the work more fun). How is a project started and run? The product manager within each division collates user feedback and ideas, does lots of research, throws in a few ideas from people within the company, and then comes up with a list of what the division should work on in the next few years. This is split up into projects, and after each project is greenlit (I'll be discussing this later on) it is then assigned to a project team, as and when they become available (I'm sure there's lots of discussions and meetings at this point that I'm not aware of!). From that point, it's entirely up to the project team. Just as divisions are autonomous, project teams are also given a high degree of autonomy. All the teams in Red Gate use some sort of vaguely agile methodology; most use some variations on SCRUM, some have experimented with Kanban. Some store the project progress on a whiteboard, some use our bug tracker, others use different methods. It all depends on what the team members think will work best for them to get the best result at the end. From that point, the project proceeds as you would expect; code gets written, tests pass and fail, discussions about how to resolve various problems are had and decided upon, and out pops a new product, new point release, new internal tool, or whatever the project's goal was. The project manager ensures that everyone works together without too much bloodshed and that thrown missiles are constrained to Nerf bullets, the developers write the code, the testers ensure it actually works, and the tech author and UX designer ensure that people will be able to use the final product to solve their problem (after all, developers make lousy UI designers and technical authors). Projects in Red Gate last a relatively short amount of time; most projects are less than 6 months. The longest was 18 months. This has evolved as the company has grown, and I suspect is a side effect of the type of software Red Gate produces. As an ISV, we sell packaged software; we only get revenue when customers purchase the ready-made tools. As a result, we only get a sellable piece of software right at the end of a project. Therefore, the longer the project lasts, the more time and money has to be invested by the company before we get any revenue from it, and the riskier the project becomes. This drives the average project time down. Small project teams are the core of how Red Gate produces software, and are what the whole development effort of the company is built around. In my next post, I'll be looking at the office itself, and how all 200 of us manage to fit on two floors of a small office building.

    Read the article

  • How should I implement a command processing application?

    - by Nini Michaels
    I want to make a simple, proof-of-concept application (REPL) that takes a number and then processes commands on that number. Example: I start with 1. Then I write "add 2", it gives me 3. Then I write "multiply 7", it gives me 21. Then I want to know if it is prime, so I write "is prime" (on the current number - 21), it gives me false. "is odd" would give me true. And so on. Now, for a simple application with few commands, even a simple switch would do for processing the commands. But if I want extensibility, how would I need to implement the functionality? Do I use the command pattern? Do I build a simple parser/interpreter for the language? What if I want more complex commands, like "multiply 5 until >200" ? What would be an easy way to extend it (add new commands) without recompiling? Edit: to clarify a few things, my end goal would not be to make something similar to WolframAlpha, but rather a list (of numbers) processor. But I want to start slowly at first (on single numbers). I'm having in mind something similar to the way one would use Haskell to process lists, but a very simple version. I'm wondering if something like the command pattern (or equivalent) would suffice, or if I have to make a new mini-language and a parser for it to achieve my goals?

    Read the article

  • Breaking through the class sealing

    - by Jason Crease
    Do you understand 'sealing' in C#?  Somewhat?  Anyway, here's the lowdown. I've done this article from a C# perspective, but I've occasionally referenced .NET when appropriate. What is sealing a class? By sealing a class in C#, you ensure that you ensure that no class can be derived from that class.  You do this by simply adding the word 'sealed' to a class definition: public sealed class Dog {} Now writing something like " public sealed class Hamster: Dog {} " you'll get a compile error like this: 'Hamster: cannot derive from sealed type 'Dog' If you look in an IL disassembler, you'll see a definition like this: .class public auto ansi sealed beforefieldinit Dog extends [mscorlib]System.Object Note the addition of the word 'sealed'. What about sealing methods? You can also seal overriding methods.  By adding the word 'sealed', you ensure that the method cannot be overridden in a derived class.  Consider the following code: public class Dog : Mammal { public sealed override void Go() { } } public class Mammal { public virtual void Go() { } } In this code, the method 'Go' in Dog is sealed.  It cannot be overridden in a subclass.  Writing this would cause a compile error: public class Dachshund : Dog { public override void Go() { } } However, we can 'new' a method with the same name.  This is essentially a new method; distinct from the 'Go' in the subclass: public class Terrier : Dog { public new void Go() { } } Sealing properties? You can also seal seal properties.  You add 'sealed' to the property definition, like so: public sealed override string Name {     get { return m_Name; }     set { m_Name = value; } } In C#, you can only seal a property, not the underlying setters/getters.  This is because C# offers no override syntax for setters or getters.  However, in underlying IL you seal the setter and getter methods individually - a property is just metadata. Why bother sealing? There are a few traditional reasons to seal: Invariance. Other people may want to derive from your class, even though your implementation may make successful derivation near-impossible.  There may be twisted, hacky logic that could never be second-guessed by another developer.  By sealing your class, you're protecting them from wasting their time.  The CLR team has sealed most of the framework classes, and I assume they did this for this reason. Security.  By deriving from your type, an attacker may gain access to functionality that enables him to hack your system.  I consider this a very weak security precaution. Speed.  If a class is sealed, then .NET doesn't need to consult the virtual-function-call table to find the actual type, since it knows that no derived type can exist.  Therefore, it could emit a 'call' instead of 'callvirt' or at least optimise the machine code, thus producing a performance benefit.  But I've done trials, and have been unable to demonstrate this If you have an example, please share! All in all, I'm not convinced that sealing is interesting or important.  Anyway, moving-on... What is automatically sealed? Value types and structs.  If they were not always sealed, all sorts of things would go wrong.  For instance, structs are laid-out inline within a class.  But what if you assigned a substruct to a struct field of that class?  There may be too many fields to fit. Static classes.  Static classes exist in C# but not .NET.  The C# compiler compiles a static class into an 'abstract sealed' class.  So static classes are already sealed in C#. Enumerations.  The CLR does not track the types of enumerations - it treats them as simple value types.  Hence, polymorphism would not work. What cannot be sealed? Interfaces.  Interfaces exist to be implemented, so sealing to prevent implementation is dumb.  But what if you could prevent interfaces from being extended (i.e. ban declarations like "public interface IMyInterface : ISealedInterface")?  There is no good reason to seal an interface like this.  Sealing finalizes behaviour, but interfaces have no intrinsic behaviour to finalize Abstract classes.  In IL you can create an abstract sealed class.  But C# syntax for this already exists - declaring a class as a 'static', so it forces you to declare it as such. Non-override methods.  If a method isn't declared as override it cannot be overridden, so sealing would make no difference.  Note this is stated from a C# perspective - the words are opposite in IL.  In IL, you have four choices in total: no declaration (which actually seals the method), 'virtual' (called 'override' in C#), 'sealed virtual' ('sealed override' in C#) and 'newslot virtual' ('new virtual' or 'virtual' in C#, depending on whether the method already exists in a base class). Methods that implement interface methods.  Methods that implement an interface method must be virtual, so cannot be sealed. Fields.  A field cannot be overridden, only hidden (using the 'new' keyword in C#), so sealing would make no sense.

    Read the article

  • Developing a SQL Server Function in a Test-Harness.

    - by Phil Factor
    /* Many times, it is a lot quicker to take some pain up-front and make a proper development/test harness for a routine (function or procedure) rather than think ‘I’m feeling lucky today!’. Then, you keep code and harness together from then on. Every time you run the build script, it runs the test harness too.  The advantage is that, if the test harness persists, then it is much less likely that someone, probably ‘you-in-the-future’  unintentionally breaks the code. If you store the actual code for the procedure as well as the test harness, then it is likely that any bugs in functionality will break the build rather than to introduce subtle bugs later on that could even slip through testing and get into production.   This is just an example of what I mean.   Imagine we had a database that was storing addresses with embedded UK postcodes. We really wouldn’t want that. Instead, we might want the postcode in one column and the address in another. In effect, we’d want to extract the entire postcode string and place it in another column. This might be part of a table refactoring or int could easily be part of a process of importing addresses from another system. We could easily decide to do this with a function that takes in a table as its parameter, and produces a table as its output. This is all very well, but we’d need to work on it, and test it when you make an alteration. By its very nature, a routine like this either works very well or horribly, but there is every chance that you might introduce subtle errors by fidding with it, and if young Thomas, the rather cocky developer who has just joined touches it, it is bound to break.     right, we drop the function we’re developing and re-create it. This is so we avoid the problem of having to change CREATE to ALTER when working on it. */ IF EXISTS(SELECT * FROM sys.objects WHERE name LIKE ‘ExtractPostcode’                                      and schema_name(schema_ID)=‘Dbo’)     DROP FUNCTION dbo.ExtractPostcode GO   /* we drop the user-defined table type and recreate it */ IF EXISTS(SELECT * FROM sys.types WHERE name LIKE ‘AddressesWithPostCodes’                                    and schema_name(schema_ID)=‘Dbo’)   DROP TYPE dbo.AddressesWithPostCodes GO /* we drop the user defined table type and recreate it */ IF EXISTS(SELECT * FROM sys.types WHERE name LIKE ‘OutputFormat’                                    and schema_name(schema_ID)=‘Dbo’)   DROP TYPE dbo.OutputFormat GO   /* and now create the table type that we can use to pass the addresses to the function */ CREATE TYPE AddressesWithPostCodes AS TABLE ( AddressWithPostcode_ID INT IDENTITY PRIMARY KEY, –because they work better that way! Address_ID INT NOT NULL, –the address we are fixing TheAddress VARCHAR(100) NOT NULL –The actual address ) GO CREATE TYPE OutputFormat AS TABLE (   Address_ID INT PRIMARY KEY, –the address we are fixing   TheAddress VARCHAR(1000) NULL, –The actual address   ThePostCode VARCHAR(105) NOT NULL – The Postcode )   GO CREATE FUNCTION ExtractPostcode(@AddressesWithPostCodes AddressesWithPostCodes READONLY)  /** summary:   > This Table-valued function takes a table type as a parameter, containing a table of addresses along with their integer IDs. Each address has an embedded postcode somewhere in it but not consistently in a particular place. The routine takes out the postcode and puts it in its own column, passing back a table where theinteger key is accompanied by the address without the (first) postcode and the postcode. If no postcode, then the address is returned unchanged and the postcode will be a blank string Author: Phil Factor Revision: 1.3 date: 20 May 2014 example:      – code: returns:   > Table of  Address_ID, TheAddress and ThePostCode. **/     RETURNS @FixedAddresses TABLE   (   Address_ID INT, –the address we are fixing   TheAddress VARCHAR(1000) NULL, –The actual address   ThePostCode VARCHAR(105) NOT NULL – The Postcode   ) AS – body of the function BEGIN DECLARE @BlankRange VARCHAR(10) SELECT  @BlankRange = CHAR(0)+‘- ‘+CHAR(160) INSERT INTO @FixedAddresses(Address_ID, TheAddress, ThePostCode) SELECT Address_ID,          CASE WHEN start>0 THEN REPLACE(STUFF([Theaddress],start,matchlength,”),‘  ‘,‘ ‘)             ELSE TheAddress END            AS TheAddress,        CASE WHEN Start>0 THEN SUBSTRING([Theaddress],start,matchlength-1) ELSE ” END AS ThePostCode FROM (–we have a derived table with the results we need for the chopping SELECT MAX(PATINDEX([matched],‘ ‘+[Theaddress] collate SQL_Latin1_General_CP850_Bin)) AS start,         MAX( CASE WHEN PATINDEX([matched],‘ ‘+[Theaddress] collate SQL_Latin1_General_CP850_Bin)>0 THEN TheLength ELSE 0 END) AS matchlength,        MAX(TheAddress) AS TheAddress,        Address_ID FROM (SELECT –first the match, then the length. There are three possible valid matches         ‘%['+@BlankRange+'][A-Z][0-9] [0-9][A-Z][A-Z]%’, 7 –seven character postcode       UNION ALL SELECT ‘%['+@BlankRange+'][A-Z][A-Z0-9][A-Z0-9] [0-9][A-Z][A-Z]%’, 8       UNION ALL SELECT ‘%['+@BlankRange+'][A-Z][A-Z][A-Z0-9][A-Z0-9] [0-9][A-Z][A-Z]%’, 9)      AS f(Matched,TheLength) CROSS JOIN  @AddressesWithPostCodes GROUP BY [address_ID] ) WORK; RETURN END GO ——————————-end of the function————————   IF NOT EXISTS (SELECT * FROM sys.objects WHERE name LIKE ‘ExtractPostcode’)   BEGIN   RAISERROR (‘There was an error creating the function.’,16,1)   RETURN   END   /* now the job is only half done because we need to make sure that it works. So we now load our sample data, making sure that for each Sample, we have what we actually think the output should be. */ DECLARE @InputTable AddressesWithPostCodes INSERT INTO  @InputTable(Address_ID,TheAddress) VALUES(1,’14 Mason mews, Awkward Hill, Bibury, Cirencester, GL7 5NH’), (2,’5 Binney St      Abbey Ward    Buckinghamshire      HP11 2AX UK’), (3,‘BH6 3BE 8 Moor street, East Southbourne and Tuckton W     Bournemouth UK’), (4,’505 Exeter Rd,   DN36 5RP Hawerby cum BeesbyLincolnshire UK’), (5,”), (6,’9472 Lind St,    Desborough    Northamptonshire NN14 2GH  NN14 3GH UK’), (7,’7457 Cowl St, #70      Bargate Ward  Southampton   SO14 3TY UK’), (8,”’The Pippins”, 20 Gloucester Pl, Chirton Ward,   Tyne & Wear   NE29 7AD UK’), (9,’929 Augustine lane,    Staple Hill Ward     South Gloucestershire      BS16 4LL UK’), (10,’45 Bradfield road, Parwich   Derbyshire    DE6 1QN UK’), (11,’63A Northampton St,   Wilmington    Kent   DA2 7PP UK’), (12,’5 Hygeia avenue,      Loundsley Green WardDerbyshire    S40 4LY UK’), (13,’2150 Morley St,Dee Ward      Dumfries and Galloway      DG8 7DE UK’), (14,’24 Bolton St,   Broxburn, Uphall and Winchburg    West Lothian  EH52 5TL UK’), (15,’4 Forrest St,   Weston-Super-Mare    North Somerset       BS23 3HG UK’), (16,’89 Noon St,     Carbrooke     Norfolk       IP25 6JQ UK’), (17,’99 Guthrie St,  New Milton    Hampshire     BH25 5DF UK’), (18,’7 Richmond St,  Parkham       Devon  EX39 5DJ UK’), (19,’9165 laburnum St,     Darnall Ward  Yorkshire, South     S4 7WN UK’)   Declare @OutputTable  OutputFormat  –the table of what we think the correct results should be Declare @IncorrectRows OutputFormat –done for error reporting   –here is the table of what we think the output should be, along with a few edge cases. INSERT INTO  @OutputTable(Address_ID,TheAddress, ThePostcode)     VALUES         (1, ’14 Mason mews, Awkward Hill, Bibury, Cirencester, ‘,‘GL7 5NH’),         (2, ’5 Binney St   Abbey Ward    Buckinghamshire      UK’,‘HP11 2AX’),         (3, ’8 Moor street, East Southbourne and Tuckton W    Bournemouth UK’,‘BH6 3BE’),         (4, ’505 Exeter Rd,Hawerby cum Beesby   Lincolnshire UK’,‘DN36 5RP’),         (5, ”,”),         (6, ’9472 Lind St,Desborough    Northamptonshire NN14 3GH UK’,‘NN14 2GH’),         (7, ’7457 Cowl St, #70    Bargate Ward  Southampton   UK’,‘SO14 3TY’),         (8, ”’The Pippins”, 20 Gloucester Pl, Chirton Ward,Tyne & Wear   UK’,‘NE29 7AD’),         (9, ’929 Augustine lane,  Staple Hill Ward     South Gloucestershire      UK’,‘BS16 4LL’),         (10, ’45 Bradfield road, ParwichDerbyshire    UK’,‘DE6 1QN’),         (11, ’63A Northampton St,Wilmington    Kent   UK’,‘DA2 7PP’),         (12, ’5 Hygeia avenue,    Loundsley Green WardDerbyshire    UK’,‘S40 4LY’),         (13, ’2150 Morley St,     Dee Ward      Dumfries and Galloway      UK’,‘DG8 7DE’),         (14, ’24 Bolton St,Broxburn, Uphall and Winchburg    West Lothian  UK’,‘EH52 5TL’),         (15, ’4 Forrest St,Weston-Super-Mare    North Somerset       UK’,‘BS23 3HG’),         (16, ’89 Noon St,  Carbrooke     Norfolk       UK’,‘IP25 6JQ’),         (17, ’99 Guthrie St,      New Milton    Hampshire     UK’,‘BH25 5DF’),         (18, ’7 Richmond St,      Parkham       Devon  UK’,‘EX39 5DJ’),         (19, ’9165 laburnum St,   Darnall Ward  Yorkshire, South     UK’,‘S4 7WN’)       insert into @IncorrectRows(Address_ID,TheAddress, ThePostcode)        SELECT Address_ID,TheAddress,ThePostCode FROM dbo.ExtractPostcode(@InputTable)       EXCEPT     SELECT Address_ID,TheAddress,ThePostCode FROM @outputTable; If @@RowCount>0        Begin        PRINT ‘The following rows gave ‘;     SELECT Address_ID,TheAddress,ThePostCode FROM @IncorrectRows        RAISERROR (‘These rows gave unexpected results.’,16,1);     end   /* For tear-down, we drop the user defined table type */ IF EXISTS(SELECT * FROM sys.types WHERE name LIKE ‘OutputFormat’                                    and schema_name(schema_ID)=‘Dbo’)   DROP TYPE dbo.OutputFormat GO /* once this is working, the development work turns from a chore into a delight and one ends up hitting execute so much more often to catch mistakes as soon as possible. It also prevents a wildly-broken routine getting into a build! */

    Read the article

  • PowerPivot, Parent/Child and Unary Operators

    - by AlbertoFerrari
    Following my last post about parent/child hierarchies in PowerPivot, I worked a bit more to implement a very useful feature of Parent/Child hierarchies in SSAS which is obviously missing in PowerPivot, i.e. unary operators. A unary operator is simply the aggregation function that needs to be used to aggregate values of children over their parent. Unary operators are very useful in accountings where you might have incomes and expenses in the same hierarchy and, at the total level, you want to subtract...(read more)

    Read the article

  • Handling Indirection and keeping layers of method calls, objects, and even xml files straight

    - by Cervo
    How do you keep everything straight as you trace deeply into a piece of software through multiple method calls, object constructors, object factories, and even spring wiring. I find that 4 or 5 method calls are easy to keep in my head, but once you are going to 8 or 9 calls deep it gets hard to keep track of everything. Are there strategies for keeping everything straight? In particular, I might be looking for how to do task x, but then as I trace down (or up) I lose track of that goal, or I find multiple layers need changes, but then I lose track of which changes as I trace all the way down. Or I have tentative plans that I find out are not valid but then during the tracing I forget that the plan is invalid and try to consider the same plan all over again killing time.... Is there software that might be able to help out? grep and even eclipse can help me to do the actual tracing from a call to the definition but I'm more worried about keeping track of everything including the de-facto plan for what has to change (which might vary as you go down/up and realize the prior plan was poor). In the past I have dealt with a few big methods that you trace and pretty much can figure out what is going on within a few calls. But now there are dozens of really tiny methods, many just a single call to another method/constructor and it is hard to keep track of them all.

    Read the article

  • Converting Encrypted Values

    - by Johnm
    Your database has been protecting sensitive data at rest using the cell-level encryption features of SQL Server for quite sometime. The employees in the auditing department have been inviting you to their after-work gatherings and buying you drinks. Thousands of customers implicitly include you in their prayers of thanks giving as their identities remain safe in your company's database. The cipher text resting snuggly in a column of the varbinary data type is great for security; but it can create some interesting challenges when interacting with other data types such as the XML data type. The XML data type is one that is often used as a message type for the Service Broker feature of SQL Server. It also can be an interesting data type to capture for auditing or integrating with external systems. The challenge that cipher text presents is that the need for decryption remains even after it has experienced its XML metamorphosis. Quite an interesting challenge nonetheless; but fear not. There is a solution. To simulate this scenario, we first will want to create a plain text value for us to encrypt. We will do this by creating a variable to store our plain text value: -- set plain text value DECLARE @PlainText NVARCHAR(255); SET @PlainText = 'This is plain text to encrypt'; The next step will be to create a variable that will store the cipher text that is generated from the encryption process. We will populate this variable by using a pre-defined symmetric key and certificate combination: -- encrypt plain text value DECLARE @CipherText VARBINARY(MAX); OPEN SYMMETRIC KEY SymKey     DECRYPTION BY CERTIFICATE SymCert     WITH PASSWORD='mypassword2010';     SET @CipherText = EncryptByKey                          (                            Key_GUID('SymKey'),                            @PlainText                           ); CLOSE ALL SYMMETRIC KEYS; The value of our newly generated cipher text is 0x006E12933CBFB0469F79ABCC79A583--. This will be important as we reference our cipher text later in this post. Our final step in preparing our scenario is to create a table variable to simulate the existence of a table that contains a column used to hold encrypted values. Once this table variable has been created, populate the table variable with the newly generated cipher text: -- capture value in table variable DECLARE @tbl TABLE (EncVal varbinary(MAX)); INSERT INTO @tbl (EncVal) VALUES (@CipherText); We are now ready to experience the challenge of capturing our encrypted column in an XML data type using the FOR XML clause: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT               EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); If you add the SELECT @XML statement at the end of this portion of the code you will see the contents of the XML data in its raw format: <root>   <MYTABLE EncVal="AG4Skzy/sEafeavMeaWDBwEAAACE--" /> </root> Strangely, the value that is captured appears nothing like the value that was created through the encryption process. The result being that when this XML is converted into a readable data set the encrypted value will not be able to be decrypted, even with access to the symmetric key and certificate used to perform the decryption. An immediate thought might be to convert the varbinary data type to either a varchar or nvarchar before creating the XML data. This approach makes good sense. The code for this might look something like the following: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT              CONVERT(NVARCHAR(MAX),EncVal) AS EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); However, this results in the following error: Msg 9420, Level 16, State 1, Line 26 XML parsing: line 1, character 37, illegal xml character A quick query that returns CONVERT(NVARCHAR(MAX),EncVal) reveals that the value that is causing the error looks like something off of a genuine Chinese menu. While this situation does present us with one of those spine-tingling, expletive-generating challenges, rest assured that this approach is on the right track. With the addition of the "style" argument to the CONVERT method, our solution is at hand. When dealing with converting varbinary data types we have three styles available to us: - The first is to not include the style parameter, or use the value of "0". As we see, this style will not work for us. - The second option is to use the value of "1" will keep our varbinary value including the "0x" prefix. In our case, the value will be 0x006E12933CBFB0469F79ABCC79A583-- - The third option is to use the value of "2" which will chop the "0x" prefix off of our varbinary value. In our case, the value will be 006E12933CBFB0469F79ABCC79A583-- Since we will want to convert this back to varbinary when reading this value from the XML data we will want the "0x" prefix, so we will want to change our code as follows: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT              CONVERT(NVARCHAR(MAX),EncVal,1) AS EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); Once again, with the inclusion of the SELECT @XML statement at the end of this portion of the code you will see the contents of the XML data in its raw format: <root>   <MYTABLE EncVal="0x006E12933CBFB0469F79ABCC79A583--" /> </root> Nice! We are now cooking with gas. To continue our scenario, we will want to parse the XML data into a data set so that we can glean our freshly captured cipher text. Once we have our cipher text snagged we will capture it into a variable so that it can be used during decryption: -- read back xml DECLARE @hdoc INT; DECLARE @EncVal NVARCHAR(MAX); EXEC sp_xml_preparedocument @hDoc OUTPUT, @xml; SELECT @EncVal = EncVal FROM OPENXML (@hdoc, '/root/MYTABLE') WITH ([EncVal] VARBINARY(MAX) '@EncVal'); EXEC sp_xml_removedocument @hDoc; Finally, the decryption of our cipher text using the DECRYPTBYKEYAUTOCERT method and the certificate utilized to perform the encryption earlier in our exercise: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                            CERT_ID('AuditLogCert'),                            N'mypassword2010',                            @EncVal                           )                     ) EncVal; Ah yes, another hurdle presents itself! The decryption produced the value of NULL which in cryptography means that either you don't have permissions to decrypt the cipher text or something went wrong during the decryption process (ok, sometimes the value is actually NULL; but not in this case). As we see, the @EncVal variable is an nvarchar data type. The third parameter of the DECRYPTBYKEYAUTOCERT method requires a varbinary value. Therefore we will need to utilize our handy-dandy CONVERT method: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                             CERT_ID('AuditLogCert'),                             N'mypassword2010',                             CONVERT(VARBINARY(MAX),@EncVal)                           )                     ) EncVal; Oh, almost. The result remains NULL despite our conversion to the varbinary data type. This is due to the creation of an varbinary value that does not reflect the actual value of our @EncVal variable; but rather a varbinary conversion of the variable itself. In this case, something like 0x3000780030003000360045003--. Considering the "style" parameter got us past XML challenge, we will want to consider its power for this challenge as well. Knowing that the value of "1" will provide us with the actual value including the "0x", we will opt to utilize that value in this case: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                            CERT_ID('SymCert'),                            N'mypassword2010',                            CONVERT(VARBINARY(MAX),@EncVal,1)                           )                     ) EncVal; Bingo, we have success! We have discovered what happens with varbinary data when captured as XML data. We have figured out how to make this data useful post-XML-ification. Best of all we now have a choice in after-work parties now that our very happy client who depends on our XML based interface invites us for dinner in celebration. All thanks to the effective use of the style parameter.

    Read the article

  • To Bit or Not To Bit

    - by Johnm
    'Twas a long day of troubleshooting and firefighting and now, with most of the office vacant, you face a blank scripting window to create a new table in his database. Many questions circle your mind like dirty water gurgling down the bathtub drain: "How normalized should this table be?", "Should I use an identity column?", "NVarchar or Varchar?", "Should this column be NULLABLE?", "I wonder what apple blue cheese bacon cheesecake tastes like?" Well, there are times when the mind goes it's own direction. A Bit About Bit At some point during your table creation efforts you will encounter the decision of whether to use the bit data type for a column. The bit data type is an integer data type that recognizes only the values of 1, 0 and NULL as valid. This data type is often utilized to store yes/no or true/false values. An example of its use would be a column called [IsGasoline] which would be intended to contain the value of 1 if the row's subject (a car) had a gasoline engine and a 0 if the subject did not have a gasoline engine. The bit data type can even be found in some of the system tables of SQL Server. For example, the sysssispackages table in the msdb database which contains SQL Server Integration Services Package information for the packages stored in SQL Server. This table contains a column called [IsEncrypted]. A value of 1 indicates that the package has been encrypted while the value of 0 indicates that it is not. I have learned that the most effective way to disperse the crowd that surrounds the office coffee machine is to engage into SQL Server debates. The bit data type has been one of the most reoccurring, as well as the most enjoyable, of these topics. It contains a practical side and a philosophical side. Practical Consideration This data type certainly has its place and is a valuable option for database design; but it is often used in situations where the answer is really not a pure true/false response. In addition, true/false values are not very informative or scalable. Let's use the previously noted [IsGasoline] column for illustration. While on the surface it appears to be a rather simple question when evaluating a car: "Does the car have a gasoline engine?" If the person entering data is entering a row for a Jeep Liberty, the response would be a 1 since it has a gasoline engine. If the person is entering data is entering a row for a Chevrolet Volt, the response would be a 0 since it is an electric engine. What happens when a person is entering a row for the gasoline/electric hybrid Toyota Prius? Would one person's conclusion be consistent with another person's conclusion? The argument could be made that the current intent for the database is to be used only for pure gasoline and pure electric engines; but this is where the scalability issue comes into play. With the use of a bit data type a database modification and data conversion would be required if the business decided to take on hybrid engines. Whereas, alternatively, if the int data type were used as a foreign key to a reference table containing the engine type options, the change to include the hybrid option would only require an entry into the reference table. Philosophical Consideration Since the bit data type is often used for true/false or yes/no data (also called Boolean) it presents a philosophical conundrum of what to do about the allowance of the NULL value. The inclusion of NULL in a true/false or yes/no response simply violates the logical principle of bivalence which states that "every proposition is either true or false". If NULL is not true, then it must be false. The mathematical laws of Boolean logic support this concept by stating that the only valid values of this scenario are 1 and 0. There is another way to look at this conundrum: NULL is also considered to be the absence of a response. In other words, it is the equivalent to "undecided". Anyone who watches the news can tell you that polls always include an "undecided" option. This could be considered a valid option in the world of yes/no/dunno. Through out all of these considerations I have discovered one absolute certainty: When you have found a person, or group of persons, who are willing to entertain a philosophical debate of the bit data type, you have found some true friends.

    Read the article

  • Learnings from trying to write better software: Loud errors from the very start

    - by theo.spears
    Microsoft made a very small number of backwards incompatible changes between .NET 1.1 and 2.0, because they wanted to make it as easy and safe as possible to port applications to the new runtime. (Here’s a list.) However, one thing they did change was what happens when a background thread fails with an unhanded exception - in .NET 1.1 nothing happened, the thread terminated, and the application continued oblivious. Try the same trick in .NET 2.0 and the entire application, including all threads, will rudely terminate. There are three reasons for this. Firstly if a background thread has crashed, it may have left the entire application in an inconsistent state, in a way that will affect other threads. It’s better to terminate the entire application than continue and have the application perform actions based on a broken state, for example take customer orders, or write corrupt files to disk.  Secondly, during software development, it is far better for errors to be loud and obtrusive. Even if you have unit tests and integration tests (and you should), a key part of ensuring software works properly is to actually try using it, both through systematic testing and through the casual use all software gets by its developers during use. Subtle errors are easy to miss if you are not actually doing real work using the application, loud errors are obvious. Thirdly, and most importantly, even if catching and swallowing exceptions indiscriminately doesn't cause any problems in your application, the presence of unexpected exceptions shows you do not fully understand the behavior of your code. The currently released version of your application may be absolutely correct. However, because your mental model of the behavior is wrong, any future change you make to the program could and probably will introduce critical errors.  This applies to more than just exceptions causing threads to exit, any unexpected state should make the application blow up in an un-ignorable way. The worst thing you can do is silently swallow errors and continue. And let's be clear, writing to a log file does not count as blowing up in an un-ignorable way.  This is all simple as long as the call stack only contains your code, but when your functions start to be called by third party or .NET framework code, it's surprisingly easy for exceptions to start vanishing. Let's look at two examples.   1. Windows forms drag drop events  Usually if you throw an exception from a winforms event handler it will bring up the "application has crashed" dialog with abort and continue options. This is a good default behavior - the error is big and loud, but it is possible for the user to ignore the error and hopefully save their data, if somehow this bug makes it past testing. However drag and drop are different - throw an exception from one of these and it will just be silently swallowed with no explanation.  By the way, it's not just drag and drop events. Timer events do it too.  You can research how exceptions are treated in different handlers and code appropriately, but the safest and most user friendly approach is to always catch exceptions in your event handlers and show your own error message. I'll talk about one good approach to handling these exceptions at the end of this post.   2. SSMS integration for SQL Tab Magic  A while back wrote an SSMS add-in called SQL Tab Magic (learn more about the process here). It works by listening to certain SSMS events and remembering what documents are opened and closed. I deployed it internally and it was used for a few months by a number of people without problems, so I was reasonably confident in its quality. Before releasing I made a few cleanups, including introducing error reporting. Bam. A few days later I was looking at over 1,000 error reports in my inbox. In turns out I wasn't handling table designers properly. The exceptions were there, but again SSMS was helpfully swallowing them all for me, so I was blissfully unaware. Had I made my errors loud from the start, I would have noticed these issues long before and fixed them.   Handling exceptions  Now you are systematically catching exceptions throughout your application, you need to do something with them. I've tried 3 options: log them, alert the user, and automatically send them home.  There are a few good options for logging in .NET. The most widespread is Apache log4net, which provides a very capable and configurable logging framework. There is also NLog which has a compatible interface, with a greater emphasis on fluent rather than XML configuration.  Alerting the user serves two purposes. Firstly it means they understand their action has failed to they don't just assume it worked (Silent file copy failure is a problem if you then delete the originals) or that they should keep waiting for a background task to complete. Secondly, it means the users can report the bug to your support team, and then you can fix it. This means the message you show the user should contain the information you need as a developer to identify and fix it. And the user will probably just send you a screenshot of the dialog, so it shouldn't be hidden by scroll bars.  This leads us to the third option, automatically sending error reports home. By automatic I mean with minimal effort on the part of the user, rather than doing it silently behind their backs. The advantage of this is you can send back far more detailed and precise information than you can expect a user to include in an email, and by making it easier to report errors, you make it more likely users will do so.  We do this using a great tool called SmartAssembly (full disclosure: this is a product made by Red Gate). It captures complete stack traces including the values of all local variables and then allows the user to send all this information back with a single click. We also capture log files to help understand what lead up to the error. We then use the free SmartAssembly Sync for Jira to dedupe these reports and raise them as bugs in our bug tracking system.  The combined effect of loud errors during development and then automatic error reporting once software is deployed allows us to find and fix more bugs, correct misunderstandings on how our software works, and overall is a key piece in delivering higher quality software. However it is no substitute for having motivated cunning testers in the building - and we're looking to hire more of those too.   If you found this post interesting you should follow me on twitter.  

    Read the article

< Previous Page | 159 160 161 162 163 164 165 166 167 168 169 170  | Next Page >