Search Results

Search found 12857 results on 515 pages for 'spatial index'.

Page 163/515 | < Previous Page | 159 160 161 162 163 164 165 166 167 168 169 170  | Next Page >

  • Hello, T4MVC &ndash; Goodbye, ASP.NET MVC &ldquo;magic strings&rdquo;

    - by Brian Schroer
    I’m working on my first ASP.NET MVC project, and I really, really like MVC. I hate all of the “magic strings”, though: <div id="logindisplay"> <% Html.RenderPartial("LogOnUserControl"); %> </div> <div id="menucontainer"> <ul id="menu"> <li><%=Html.ActionLink("Find Dinner", "Index", "Dinners")%></li> <li><%=Html.ActionLink("Host Dinner", "Create", "Dinners")%></li> <li><%=Html.ActionLink("About", "About", "Home")%></li> </ul> </div> They’re prone to misspelling (causing errors that won’t be caught until runtime), there’s duplication, there’s no Intellisense, and they’re not friendly to refactoring tools.   I had started down the path of creating static classes with constants for the strings, e.g.: <li><%=Html.ActionLink("Find Dinner", DinnerControllerActions.Index, Controllers.Dinner)%></li> …but that was pretty tedious.   Then I discovered T4MVC (http://mvccontrib.codeplex.com/wikipage?title=T4MVC). Just add its T4MVC.tt and T4MVC.settings.t4 files to the root of your MVC application, and it magically (and this time, it’s good magic) generates code that allows you to replace the first code sample above with this: <div id="logindisplay"> <% Html.RenderPartial(MVC.Shared.Views.LogOnUserControl); %> </div> <div id="menucontainer"> <ul id="menu"> <li><%=Html.ActionLink("Find Dinner", MVC.Dinners.Index())%></li> <li><%=Html.ActionLink("Host Dinner", MVC.Dinners.Create())%></li> <li><%=Html.ActionLink("About", MVC.Home.About())%></li> </ul> </div> It gives you a strongly-typed alternative to magic strings for all of these scenarios: Html.Action Html.ActionLink Html.RenderAction Html.RenderPartial Html.BeginForm Url.Action Ajax.ActionLink view names inside controllers But wait, there’s more! It even gives you static helpers for image and script links, e.g.: <img src="<%= Links.Content.nerd_jpg %>" />   <script src="<%= Links.Scripts.Map_js %>" type="text/javascript"></script> …instead of: <img src="/Content/nerd.jpg" />   <script src="/Scripts/Map.js" type="text/javascript"></script>   Thanks to David Ebbo for creating this great tool. You can watch an eight and a half minute video about T4MVC on Channel 9 via this link: http://channel9.msdn.com/posts/jongalloway/Jon-Takes-Five-with-David-Ebbo-on-T4MVC/. You can download T4MVC from its CodePlex page: http://mvccontrib.codeplex.com/wikipage?title=T4MVC.

    Read the article

  • What's New in Oracle's EPM System?

    - by jmorourke
    Oracle’s EPM System R11.1.2.2  is now generally available to customers and partners on the download center.  Although the release number doesn’t sound significant, this is a major release of Oracle’s Hyperion EPM Suite with new modules as well as significant enhancements across the suite.  This release was announced back on April 4th as part of Oracle’s Business Analytics Strategy launch, so analytics is a key aspect of the release.  But the three biggest pieces of news in this release are Oracle Hyperion Planning support for the Exalytics In-Memory Machine, the new Project Financial Planning Application and the new Account Reconciliations Manager module. The Oracle Exalytics In-Memory Machine was announced back in October 2011, at Oracle OpenWorld.  It’s the latest installment from Oracle in a line of engineered systems that combine Oracle Sun hardware, with Oracle database and application technologies – in solutions that are designed to provide high scalability and performance for specific tasks.  Exalytics is the first engineered system specifically designed for high performance analytics.  Running in-memory versions of Oracle Essbase, as well as the Oracle TimesTen database and Oracle BI tools, Exalytics provides speed of thought response times for complex analytic processes with advanced visualizations.  Early adopter customers have achieved 5X to 100X faster interactivity and 6X to 10X faster planning cycles.  Hyperion Planning running with Oracle Exalytics will support enterprise-wide planning, budgeting and forecasting with more detailed data, with hundreds to thousands of users across an organization getting speed of thought performance. The new Hyperion Project Financial Planning application delivered with EPM 11.1.2.2 is also great news for Oracle customers.  This application follows on the heels of other special-purpose planning applications that Oracle has delivered for Workforce and Capital Asset planning.  It allows Project Managers to identify project-related expenses and revenues, plan and propose new projects, and track results over time. Finance Managers can evaluate and compare different projects, manage the funding process, monitor and report the actual financial results and impacts of projects and project portfolios. This new application is applicable to capital projects, contract projects and indirect projects like IT and HR projects across all industries.  This application is a great complement to existing Project Management applications, and helps bridge the gap between these applications, and the financial planning and budgeting process. Account reconciliations has to be one of the biggest bottlenecks and risks in the financial close and reporting process, and many organizations rely on spreadsheets and manual processes to perform this critical process.  To help address this problem, Oracle developed an Account Reconciliation Manager module that is being delivered as part of Oracle Hyperion Financial Close Management.   This module helps automate and streamline account reconciliations and eliminates the chances for errors, omissions and fraud.  But unlike standalone account reconciliation packages, it’s integrated with the rest of the Oracle Hyperion Financial Close suite, and can integrate balances from any source system.  This can help alleviate a major bottleneck in the financial close process, increase accuracy and reduce risk, and can complement existing investments in Hyperion Financial Management, as well as Oracle and non-Oracle transaction processing systems. Other enhancements in this release include an enhanced Web 2.0 interface for Hyperion Planning and Hyperion Financial Management (HFM), configurable dimensionality in HFM, new Predictive Planning feature in Hyperion Planning, new Detailed Profitability feature in Hyperion Profitability and Cost Management, new Smart View interface for Hyperion Strategic Finance, and integration of the Hyperion applications with JD Edwards Financials. For more information about Oracle EPM System R11.1.2.2 check out the links below: Press Release:  http://www.oracle.com/us/corporate/press/1575775 Product Information on O.com:  http://www.oracle.com/us/solutions/business-analytics/overview/index.html Product Information on OTN:  http://www.oracle.com/technetwork/middleware/epm/downloads/index.html Webcast Replay:  http://www.oracle.com/us/go/index.html?Src=7317510&Act=65&pcode=WWMK11054701MPP046 Please contact me if you have any questions or need additional information – [email protected]

    Read the article

  • Improving the running time of Breadth First Search and Adjacency List creation

    - by user45957
    We are given an array of integers where all elements are between 0-9. have to start from the 1st position and reach end in minimum no of moves such that we can from an index i move 1 position back and forward i.e i-1 and i+1 and jump to any index having the same value as index i. Time Limit : 1 second Max input size : 100000 I have tried to solve this problem use a single source shortest path approach using Breadth First Search and though BFS itself is O(V+E) and runs in time the adjacency list creation takes O(n2) time and therefore overall complexity becomes O(n2). is there any way i can decrease the time complexity of adjacency list creation? or is there a better and more efficient way of solving the problem? int main(){ vector<int> v; string str; vector<int> sets[10]; cin>>str; int in; for(int i=0;i<str.length();i++){ in=str[i]-'0'; v.push_back(in); sets[in].push_back(i); } int n=v.size(); if(n==1){ cout<<"0\n"; return 0; } if(v[0]==v[n-1]){ cout<<"1\n"; return 0; } vector<int> adj[100001]; for(int i=0;i<10;i++){ for(int j=0;j<sets[i].size();j++){ if(sets[i][j]>0) adj[sets[i][j]].push_back(sets[i][j]-1); if(sets[i][j]<n-1) adj[sets[i][j]].push_back(sets[i][j]+1); for(int k=j+1;k<sets[i].size();k++){ if(abs(sets[i][j]-sets[i][k])!=1){ adj[sets[i][j]].push_back(sets[i][k]); adj[sets[i][k]].push_back(sets[i][j]); } } } } queue<int> q; q.push(0); int dist[100001]; bool visited[100001]={false}; dist[0]=0; visited[0]=true; int c=0; while(!q.empty()){ int dq=q.front(); q.pop(); c++; for(int i=0;i<adj[dq].size();i++){ if(visited[adj[dq][i]]==false){ dist[adj[dq][i]]=dist[dq]+1; visited[adj[dq][i]]=true; q.push(adj[dq][i]); } } } cout<<dist[n-1]<<"\n"; return 0; }

    Read the article

  • GoldenGate 12c - MySQL Active-Active Replication Setup

    - by Jinyu Wang-Oracle
    Active-active  (also called Master-Master or Bi-Directional) replication captures data changes from two or more systems and replicat the changes to synchronize the data.  Active-Active replication is often needed for high availability, load balancing and scaling out purposes.   Oracle GoldenGate is known to be one of the first and the best replication tool handling active-active replications. As of Oracle GoldenGate 12c, it provides (Refer to Oracle GoldenGate 12.1.2 Documentation - Configuring Oracle GoldenGate for Active-Active High Availability for more information) the followings: Robust loop-back prevention Comprehensive conflict resolution and detection support Heterogeneous support across different database versions and operation systems.  Oracle GoldenGate supports active-active configurations for DB2 on z/OS, LUW, and IBM i, MySQL, Oracle, SQL/MX,SQL Server, Sybase, and Teradata. However, the setup is different from database to database. In this example, I will show you how to setup an active-active data replication between two MySQL database instances. The example setup below is to have active-active replication between MySQL 5.5 and MySQL 5.6 instances and is shown as follows: MySQL 5.5 (Manager Port: 15105)  Extract EXTRACT demoex01 SETENV (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.5.38/data/mysql.sock') DBOPTIONS CONNECTIONPORT 3305 DBOPTIONS HOST oraclelinux6.localdomain SOURCEDB test USERID root, PASSWORD mysql EXTTRAIL ./dirdat/extract/de TRANLOGOPTIONS ALTLOGDEST "/home/oracle/software/mysql_5.5.38/data/binlog/bin-log.index" FILTERTABLE test.checkpoint_tbl REPORTROLLOVER AT 05:30 ON saturday TABLE test.TCUSTMER; TABLE test.TCUSTORD; Pump EXTRACT demopm01 RMTHOST localhost, MGRPORT 15106, COMPRESS, TIMEOUT 30 RMTTRAIL ./dirdat/replicat/ps PASSTHRU TABLE test.TCUSTMER; TABLE test.TCUSTORD; Replicat replicat demorp01 setenv (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.5.38/data/mysql.sock') dboptions host oraclelinux6.localdomain, connectionport 3305 targetdb test, userid root, password mysql sourcedefs ./dirdat/replicat/democust.def discardfile ./dirrpt/demprp01.dsc, purge REPERROR (DEFAULT, ABEND) REPERROR(1062, IGNORE) map test.TCUSTMER, target test.TCUSTMER,colmap(usedefaults, region_code="region code"); map test.TCUSTORD, target test.TCUSTORD; MySQL 5.6 (Manager Port: 15106) Replicat replicat demorp01 setenv (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.6.19/data/mysql.sock') dboptions host oraclelinux6.localdomain, connectionport 3306 targetdb test, userid root, password mysql --assumetargetdefs sourcedefs ./dirdat/replicat/democust.def discardfile ./dirrpt/demprp01.dsc, purge map test.TCUSTMER, target test.TCUSTMER, colmap(usedefaults, "region code"=region_code); map test.TCUSTORD, target test.TCUSTORD; Extract EXTRACT demoex01 SETENV (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.6.19/data/mysql.sock') DBOPTIONS CONNECTIONPORT 3306 DBOPTIONS HOST oraclelinux6.localdomain SOURCEDB test USERID root, USERID mysql EXTTRAIL ./dirdat/extract/de TRANLOGOPTIONS ALTLOGDEST "/usr/local/mysql56/data/binlog/bin-log.index" FILTERTABLE test.checkpoint_tbl TABLE test.TCUSTMER; TABLE test.TCUSTORD; Pump EXTRACT demopm01 RMTHOST localhost, MGRPORT 15105, COMPRESS, TIMEOUT 30 RMTTRAIL ./dirdat/replicat/ps PASSTHRU TABLE test.TCUSTMER; TABLE test.TCUSTORD; The setup parameters are quite self-explanatory. The key setup is to avoid the replication data  looping. Oracle GoldenGate for MySQL uses the information in the replication checkpoint table to identify the transaction applied by replicats and thus avoid extracting those transactions by Oracle GoldenGate extracts. The example setup in the extract in MySQL 5.5 instance is shown as follows.  TRANLOGOPTIONS ALTLOGDEST "/home/oracle/software/mysql_5.5.38/data/binlog/bin-log.index" FILTERTABLE test.checkpoint_tbl Setting up an active-active replication is often more complicated than this and requires the following additional considerations. I would elaborate on this in the follow-up discussions. 

    Read the article

  • Writing an unthemed view while still using Orchard shapes and helpers

    - by Bertrand Le Roy
    This quick tip will show how you can write a custom view for a custom controller action in Orchard that does not use the current theme, but that still retains the ability to use shapes, as well as zones, Script and Style helpers. The controller action, first, needs to opt out of theming: [Themed(false)] public ActionResult Index() {} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Then, we still want to use a shape as the view model, because Clay is so awesome: private readonly dynamic _shapeFactory; public MyController(IShapeFactory shapeFactory) { _shapeFactory = shapeFactory; } [Themed(false)] public ActionResult Index() { return View(_shapeFactory.MyShapeName( Foo: 42, Bar: "baz" )); } As you can see, we injected a shape factory, and that enables us to build our shape from our action and inject that into the view as the model. Finally, in the view (that would in Views/MyController/Index.cshtml here), just use helpers as usual. The only gotcha is that you need to use “Layout” in order to declare zones, and that two of those zones, Head and Tail, are mandatory for the top and bottom scripts and stylesheets to be injected properly. Names are important here. @{ Style.Include("somestylesheet.css"); Script.Require("jQuery"); Script.Include("somescript.js"); using(Script.Foot()) { <script type="text/javascript"> $(function () { // Do stuff }) </script> } } <!DOCTYPE html> <html> <head> <title>My unthemed page</title> @Display(Layout.Head) </head> <body> <h1>My unthemed page</h1> <div>@Model.Foo is the answer.</div> </body> @Display(Layout.Tail) </html> Note that if you define your own zones using @Display(Layout.SomeZone) in your view, you can perfectly well send additional shapes to them from your controller action, if you injected an instance of IWorkContextAccessor: _workContextAccessor.GetContext().Layout .SomeZone.Add(_shapeFactory.SomeOtherShape()); Of course, you’ll need to write a SomeOtherShape.cshtml template for that shape but I think this is pretty neat.

    Read the article

  • Octree subdivision problem

    - by ChaosDev
    Im creating octree manually and want function for effectively divide all nodes and their subnodes - For example - I press button and subnodes divided - press again - all subnodes divided again. Must be like - 1 - 8 - 64. The problem is - i dont understand how organize recursive loops for that. OctreeNode in my unoptimized implementation contain pointers to subnodes(childs),parent,extra vector(contains dublicates of child),generation info and lots of information for drawing. class gOctreeNode { //necessary fields gOctreeNode* FrontBottomLeftNode; gOctreeNode* FrontBottomRightNode; gOctreeNode* FrontTopLeftNode; gOctreeNode* FrontTopRightNode; gOctreeNode* BackBottomLeftNode; gOctreeNode* BackBottomRightNode; gOctreeNode* BackTopLeftNode; gOctreeNode* BackTopRightNode; gOctreeNode* mParentNode; std::vector<gOctreeNode*> m_ChildsVector; UINT mGeneration; bool mSplitted; bool isSplitted(){return m_Splitted;} .... //unnecessary fields }; DivideNode of Octree class fill these fields, set mSplitted to true, and prepare for correctly drawing. Octree contains basic nodes(m_nodes). Basic node can be divided, but now I want recursivly divide already divided basic node with 8 subnodes. So I write this function. void DivideAllChildCells(int ix,int ih,int id) { std::vector<gOctreeNode*> nlist; std::vector<gOctreeNode*> dlist; int index = (ix * m_Height * m_Depth) + (ih * m_Depth) + (id * 1);//get index of specified node gOctreeNode* baseNode = m_nodes[index].get(); nlist.push_back(baseNode->FrontTopLeftNode); nlist.push_back(baseNode->FrontTopRightNode); nlist.push_back(baseNode->FrontBottomLeftNode); nlist.push_back(baseNode->FrontBottomRightNode); nlist.push_back(baseNode->BackBottomLeftNode); nlist.push_back(baseNode->BackBottomRightNode); nlist.push_back(baseNode->BackTopLeftNode); nlist.push_back(baseNode->BackTopRightNode); bool cont = true; UINT d = 0;//additional recursive loop param (?) UINT g = 0;//additional recursive loop param (?) LoopNodes(d,g,nlist,dlist); //Divide resulting nodes for(UINT i = 0; i < dlist.size(); i++) { DivideNode(dlist[i]); } } And now, back to the main question,I present LoopNodes, which must do all work for giving dlist nodes for splitting. void LoopNodes(UINT& od,UINT& og,std::vector<gOctreeNode*>& nlist,std::vector<gOctreeNode*>& dnodes) { //od++;//recursion depth bool f = false; //pass through childs for(UINT i = 0; i < 8; i++) { if(nlist[i]->isSplitted())//if node splitted and have childs { //pass forward through tree for(UINT j = 0; j < 8; j++) { nlist[j] = nlist[j]->m_ChildsVector[j];//set pointers to these childs } LoopNodes(od,og,nlist,dnodes); } else //if no childs { //add to split vector dnodes.push_back(nlist[i]); } } } This version of loop nodes works correctly for 2(or 1?) generations after - this will not divide neightbours nodes, only some corners. I need correct algorithm. Screenshot All I need - is correct version of LoopNodes, which can add all nodes for DivideNode.

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • SSI: Failed String Comparison with CGI Environment Variable [migrated]

    - by Calyo Delphi
    I am currently working on developing a personal website. It's not my first time doing this, but this is my first major foray into implementing SSI. I've run myself into a wall, however, with an if-else directive that uses one of the CGI environment variables as part of its comparison. Even after some limited attempts at debugging, all of the output and documentation that I have means that the comparisons being made should fail outright. This is not the case, and the wrong evaluation is being made by the if-else directive. Here's the code in the file index.shtml: <head> <!--#set var="page" value="Home" --> <!--#include file="headlinks.shtml" --> <style> img#ref { float: right; margin-left: 8px; border-width: 0px; } </style> </head> Here's the code in the file headlinks.shtml: <title><!--#echo var="page" --> &ndash; <!--#echo var="HTTP_HOST" --></title> <!--#set var="docroot" value="${DOCUMENT_ROOT}" --> <!--#echo var="docroot" --> <!--#if expr="( $docroot != '/Applications/MAMP/htdocs' ) || ( $docroot != '/home/dragarch/public_html' )" --> <link rel="stylesheet" type="text/css" href="../style.css"> <link rel="shortcut icon" type="image/svg+xml" href="../favicon.svg" /> <!--#else --> <link rel="stylesheet" type="text/css" href="style.css"> <link rel="shortcut icon" type="image/svg+xml" href="favicon.svg" /> <!--#endif --> And here's the output for the file index.shtml: <title>Home &ndash; dragarch</title> /Applications/MAMP/htdocs <link rel="stylesheet" type="text/css" href="../style.css"> <link rel="shortcut icon" type="image/svg+xml" href="../favicon.svg" /> Both style.css and favicon.svg are in the document root with index.shtml, so the if directive should fail and default to the output of the else directive. As you can see, while the document root (which is currently the MAMP htdocs folder on my own notebook) is correct according to the output of the echo directive, the comparison in the if-else directive fails to compare the strings properly. I'm using this page for my documentation: http://httpd.apache.org/docs/2.2/mod/mod_include.html I'm at a complete loss as to why this is the case, and need a bit of help here. EDIT: I should note that dragarch is a hostname that I configured in /etc/hosts to point to 127.0.0.1 so I could test the site without having to use localhost. It has no real effect on the functionality of anything, other than to just act as a prettier hostname to use.

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • Image manipulation

    - by portoalet
    Hi, I am just wondering what kind of computing/programming language/frameworks are needed to produce images such as the one in http://www.erdas.com/ ? Programmatically, how does one produce the general spatial analysis images ? ps: I use java most of the time. Thanks

    Read the article

  • Create a user-defined aggregate without SQL CLR

    - by David Pfeffer
    I am planning on deploying a database to SQL Azure, so I cannot use the SQL CLR. However, I have a need to create an aggregate function -- in my case, I need to STUnion a bunch of Geography objects together. (Azure is expected to support Spatial by June.) Is there another way to accomplish this, without making use of the CLR, in a query? Or do I have to create a UDF that will take a table as a parameter and return the aggregate?

    Read the article

  • Using fft2 with reshaping for an RGB filter

    - by Mahmoud Aladdin
    I want to apply a filter on an image, for example, blurring filter [[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]]. Also, I'd like to use the approach that convolution in Spatial domain is equivalent to multiplication in Frequency domain. So, my algorithm will be like. Load Image. Create Filter. convert both Filter & Image to Frequency domains. multiply both. reconvert the output to Spatial Domain and that should be the required output. The following is the basic code I use, the image is loaded and displayed as cv.cvmat object. Image is a class of my creation, it has a member image which is an object of scipy.matrix and toFrequencyDomain(size = None) uses spf.fftshift(spf.fft2(self.image, size)) where spf is scipy.fftpack and dotMultiply(img) uses scipy.multiply(self.image, image) f = Image.fromMatrix([[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]]) lena = Image.fromFile("Test/images/lena.jpg") print lena.image.shape lenaf = lena.toFrequencyDomain(lena.image.shape) ff = f.toFrequencyDomain(lena.image.shape) lenafm = lenaf.dotMultiplyImage(ff) lenaff = lenafm.toTimeDomain() lena.display() lenaff.display() So, the previous code works pretty well, if I told OpenCV to load the image via GRAY_SCALE. However, if I let the image to be loaded in color ... lena.image.shape will be (512, 512, 3) .. so, it gives me an error when using scipy.fttpack.ftt2 saying "When given, Shape and Axes should be of same length". What I tried next was converted my filter to 3-D .. as [[[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]], [[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]], [[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]]] And, not knowing what the axes argument do, I added it with random numbers as (-2, -1, -1), (-1, -1, -2), .. etc. until it gave me the correct filter output shape for the dotMultiply to work. But, of course it wasn't the correct value. Things were totally worse. My final trial, was using fft2 function on each of the components 2-D matrices, and then re-making the 3-D one, using the following code. # Spiltting the 3-D matrix to three 2-D matrices. for i, row in enumerate(self.image): r.append(list()) g.append(list()) b.append(list()) for pixel in row: r[i].append(pixel[0]) g[i].append(pixel[1]) b[i].append(pixel[2]) rfft = spf.fftshift(spf.fft2(r, size)) gfft = spf.fftshift(spf.fft2(g, size)) bfft = spf.fftshift(spf.fft2(b, size)) newImage.image = sp.asarray([[[rfft[i][j], gfft[i][j], bfft[i][j]] for j in xrange(len(rfft[i]))] for i in xrange(len(rfft))] ) return newImage Any help on what I made wrong, or how can I achieve that for both GreyScale and Coloured pictures.

    Read the article

  • what is common GIS method?

    - by smile
    hello every one I want to know what is the main methods that used in GIS to connect between the location and their information (spatial access methodes) SAM. I read in some web sites two methods are: vector raster is that methods related what I want??? thank you ^_^

    Read the article

  • Finding all areas that intersect with a point and vice-versa - PostGIS

    - by ForeignerBR
    I'm developing a project using PostGIS to hold spatial data where I have records that hold geometry point data and records that hold geometry area data. To solve my problem I'm looking for two queries that can take geographic shapes rather than geometric shapes as parameters. For query A I need it to return all points that intersect with a given area. For query B I need it to return all areas that intersect with a given point.

    Read the article

  • 3D array initialization

    - by xdevel2000
    I need to represent some spatial points: x,y,z when I try to initialize the array like this: int[][][] points { { {100, 120, 10}, {100, 120, 18}, ... } } I got an error: Uncompilable source code - not a statement where is the error?

    Read the article

  • Is it possible to see the underlying implementation of built in functions of matlab?

    - by user198729
    I'm using this example code to grayscale an image,but the result is not right: I = imread('coins.png'); level = graythresh(I); BW = im2bw(I,level); imshow(BW) Where to see how graythresh is actually implemented? BTW,is there a reason for using matlab feels so alike with python? Or is it known that graythresh doesn't work well for images with little spatial resolution(like 62*21 ones)?

    Read the article

  • IPhone geo tagging data (SQLite or CoreData)

    - by user267980
    Hi. I'm about to build an app that has a database of places that has a location (lon/lat) and i'm about to build the dataModel. Actualy the app is very simple and all i want is to be able to fetch all places around the user (say in a radius of 30miles). Is it better to user SQLite (is there any geo-spatial extension out there)? I'll have around 5000 places in the database and i'm wondering where i can ask a database without affecting performances.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Creating a thematic map

    - by jsharma
    This post describes how to create a simple thematic map, just a state population layer, with no underlying map tile layer. The map shows states color-coded by total population. The map is interactive with info-windows and can be panned and zoomed. The sample code demonstrates the following: Displaying an interactive vector layer with no background map tile layer (i.e. purpose and use of the Universe object) Using a dynamic (i.e. defined via the javascript client API) color bucket style Dynamically changing a layer's rendering style Specifying which attribute value to use in determining the bucket, and hence style, for a feature (FoI) The result is shown in the screenshot below. The states layer was defined, and stored in the user_sdo_themes view of the mvdemo schema, using MapBuilder. The underlying table is defined as SQL> desc states_32775  Name                                      Null?    Type ----------------------------------------- -------- ----------------------------  STATE                                              VARCHAR2(26)  STATE_ABRV                                         VARCHAR2(2) FIPSST                                             VARCHAR2(2) TOTPOP                                             NUMBER PCTSMPLD                                           NUMBER LANDSQMI                                           NUMBER POPPSQMI                                           NUMBER ... MEDHHINC NUMBER AVGHHINC NUMBER GEOM32775 MDSYS.SDO_GEOMETRY We'll use the TOTPOP column value in the advanced (color bucket) style for rendering the states layers. The predefined theme (US_STATES_BI) is defined as follows. SQL> select styling_rules from user_sdo_themes where name='US_STATES_BI'; STYLING_RULES -------------------------------------------------------------------------------- <?xml version="1.0" standalone="yes"?> <styling_rules highlight_style="C.CB_QUAL_8_CLASS_DARK2_1"> <hidden_info> <field column="STATE" name="Name"/> <field column="POPPSQMI" name="POPPSQMI"/> <field column="TOTPOP" name="TOTPOP"/> </hidden_info> <rule column="TOTPOP"> <features style="states_totpop"> </features> <label column="STATE_ABRV" style="T.BLUE_SERIF_10"> 1 </label> </rule> </styling_rules> SQL> The theme definition specifies that the state, poppsqmi, totpop, state_abrv, and geom columns will be queried from the states_32775 table. The state_abrv value will be used to label the state while the totpop value will be used to determine the color-fill from those defined in the states_totpop advanced style. The states_totpop style, which we will not use in our demo, is defined as shown below. SQL> select definition from user_sdo_styles where name='STATES_TOTPOP'; DEFINITION -------------------------------------------------------------------------------- <?xml version="1.0" ?> <AdvancedStyle> <BucketStyle> <Buckets default_style="C.S02_COUNTRY_AREA"> <RangedBucket seq="0" label="10K - 5M" low="10000" high="5000000" style="C.SEQ6_01" /> <RangedBucket seq="1" label="5M - 12M" low="5000001" high="1.2E7" style="C.SEQ6_02" /> <RangedBucket seq="2" label="12M - 20M" low="1.2000001E7" high="2.0E7" style="C.SEQ6_04" /> <RangedBucket seq="3" label="&gt; 20M" low="2.0000001E7" high="5.0E7" style="C.SEQ6_05" /> </Buckets> </BucketStyle> </AdvancedStyle> SQL> The demo defines additional advanced styles via the OM.style object and methods and uses those instead when rendering the states layer.   Now let's look at relevant snippets of code that defines the map extent and zoom levels (i.e. the OM.universe),  loads the states predefined vector layer (OM.layer), and sets up the advanced (color bucket) style. Defining the map extent and zoom levels. function initMap() {   //alert("Initialize map view");     // define the map extent and number of zoom levels.   // The Universe object is similar to the map tile layer configuration   // It defines the map extent, number of zoom levels, and spatial reference system   // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined   // The Universe must be defined when there is no underlying map tile layer.   // When there is a map tile layer then that defines the map extent, srid, and zoom levels.      var uni= new OM.universe.Universe(     {         srid : 32775,         bounds : new OM.geometry.Rectangle(                         -3280000, 170000, 2300000, 3200000, 32775),         numberOfZoomLevels: 8     }); The srid specifies the spatial reference system which is Equal-Area Projection (United States). SQL> select cs_name from cs_srs where srid=32775 ; CS_NAME --------------------------------------------------- Equal-Area Projection (United States) The bounds defines the map extent. It is a Rectangle defined using the lower-left and upper-right coordinates and srid. Loading and displaying the states layer This is done in the states() function. The full code is at the end of this post, however here's the snippet which defines the states VectorLayer.     // States is a predefined layer in user_sdo_themes     var  layer2 = new OM.layer.VectorLayer("vLayer2",     {         def:         {             type:OM.layer.VectorLayer.TYPE_PREDEFINED,             dataSource:"mvdemo",             theme:"us_states_bi",             url: baseURL,             loadOnDemand: false         },         boundingTheme:true      }); The first parameter is a layer name, the second is an object literal for a layer config. The config object has two attributes: the first is the layer definition, the second specifies whether the layer is a bounding one (i.e. used to determine the current map zoom and center such that the whole layer is displayed within the map window) or not. The layer config has the following attributes: type - specifies whether is a predefined one, a defined via a SQL query (JDBC), or in a json-format file (DATAPACK) theme - is the predefined theme's name url - is the location of the mapviewer server loadOnDemand - specifies whether to load all the features or just those that lie within the current map window and load additional ones as needed on a pan or zoom The code snippet below dynamically defines an advanced style and then uses it, instead of the 'states_totpop' style, when rendering the states layer. // override predefined rendering style with programmatic one    var theRenderingStyle =      createBucketColorStyle('YlBr5', colorSeries, 'States5', true);   // specify which attribute is used in determining the bucket (i.e. color) to use for the state   // It can be an array because the style could be a chart type (pie/bar)   // which requires multiple attribute columns     // Use the STATE.TOTPOP column (aka attribute) value here    layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); The style itself is defined in the createBucketColorStyle() function. Dynamically defining an advanced style The advanced style used here is a bucket color style, i.e. a color style is associated with each bucket. So first we define the colors and then the buckets.     numClasses = colorSeries[colorName].classes;    // create Color Styles    for (var i=0; i < numClasses; i++)    {         theStyles[i] = new OM.style.Color(                      {fill: colorSeries[colorName].fill[i],                        stroke:colorSeries[colorName].stroke[i],                       strokeOpacity: useGradient? 0.25 : 1                      });    }; numClasses is the number of buckets. The colorSeries array contains the color fill and stroke definitions and is: var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": {   classes:3,                  fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8],                  stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6]   }, "YlBl5": {   classes:5,                  fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494],                  stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85]   }, //multi-hue color scheme #11 YlBr.  "YlBr3": {classes:3,                  fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E],                  stroke:[0xE6DEA9, 0xE5B047, 0xC5360D]   }, "YlBr5": {classes:5,                  fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404],                  stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04]     }, etc. Next we create the bucket style.    bucketStyleDef = {       numClasses : colorSeries[colorName].classes, //      classification: 'custom',  //since we are supplying all the buckets //      buckets: theBuckets,       classification: 'logarithmic',  // use a logarithmic scale       styles: theStyles,       gradient:  useGradient? 'linear' : 'off' //      gradient:  useGradient? 'radial' : 'off'     };    theBucketStyle = new OM.style.BucketStyle(bucketStyleDef);    return theBucketStyle; A BucketStyle constructor takes a style definition as input. The style definition specifies the number of buckets (numClasses), a classification scheme (which can be equal-ranged, logarithmic scale, or custom), the styles for each bucket, whether to use a gradient effect, and optionally the buckets (required when using a custom classification scheme). The full source for the demo <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Oracle Maps V2 Thematic Map Demo</title> <script src="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js" type="text/javascript"> </script> <script type="text/javascript"> //var $j = jQuery.noConflict(); var baseURL="http://localhost:8080/mapviewer"; // location of mapviewer OM.gv.proxyEnabled =false; // no mvproxy needed OM.gv.setResourcePath(baseURL+"/jslib/v2/images/"); // location of resources for UI elements like nav panel buttons var map = null; // the client mapviewer object var statesLayer = null, stateCountyLayer = null; // The vector layers for states and counties in a state var layerName="States"; // initial map center and zoom var mapCenterLon = -20000; var mapCenterLat = 1750000; var mapZoom = 2; var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,32775); var currentPalette = null, currentStyle=null; // set an onchange listener for the color palette select list // initialize the map // load and display the states layer $(document).ready( function() { $("#demo-htmlselect").change(function() { var theColorScheme = $(this).val(); useSelectedColorScheme(theColorScheme); }); initMap(); states(); } ); /** * color series from ColorBrewer site (http://colorbrewer2.org/). */ var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": { classes:3, fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8], stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6] }, "YlBl5": { classes:5, fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494], stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85] }, //multi-hue color scheme #11 YlBr. "YlBr3": {classes:3, fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E], stroke:[0xE6DEA9, 0xE5B047, 0xC5360D] }, "YlBr5": {classes:5, fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404], stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04] }, // single-hue color schemes (blues, greens, greys, oranges, reds, purples) "Purples5": {classes:5, fill:[0xf2f0f7, 0xcbc9e2, 0x9e9ac8, 0x756bb1, 0x54278f], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Blues5": {classes:5, fill:[0xEFF3FF, 0xbdd7e7, 0x68aed6, 0x3182bd, 0x18519C], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greens5": {classes:5, fill:[0xedf8e9, 0xbae4b3, 0x74c476, 0x31a354, 0x116d2c], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greys5": {classes:5, fill:[0xf7f7f7, 0xcccccc, 0x969696, 0x636363, 0x454545], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Oranges5": {classes:5, fill:[0xfeedde, 0xfdb385, 0xfd8d3c, 0xe6550d, 0xa63603], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Reds5": {classes:5, fill:[0xfee5d9, 0xfcae91, 0xfb6a4a, 0xde2d26, 0xa50f15], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] } }; function createBucketColorStyle( colorName, colorSeries, rangeName, useGradient) { var theBucketStyle; var bucketStyleDef; var theStyles = []; var theColors = []; var aBucket, aStyle, aColor, aRange; var numClasses ; numClasses = colorSeries[colorName].classes; // create Color Styles for (var i=0; i < numClasses; i++) { theStyles[i] = new OM.style.Color( {fill: colorSeries[colorName].fill[i], stroke:colorSeries[colorName].stroke[i], strokeOpacity: useGradient? 0.25 : 1 }); }; bucketStyleDef = { numClasses : colorSeries[colorName].classes, // classification: 'custom', //since we are supplying all the buckets // buckets: theBuckets, classification: 'logarithmic', // use a logarithmic scale styles: theStyles, gradient: useGradient? 'linear' : 'off' // gradient: useGradient? 'radial' : 'off' }; theBucketStyle = new OM.style.BucketStyle(bucketStyleDef); return theBucketStyle; } function initMap() { //alert("Initialize map view"); // define the map extent and number of zoom levels. // The Universe object is similar to the map tile layer configuration // It defines the map extent, number of zoom levels, and spatial reference system // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined // The Universe must be defined when there is no underlying map tile layer. // When there is a map tile layer then that defines the map extent, srid, and zoom levels. var uni= new OM.universe.Universe( { srid : 32775, bounds : new OM.geometry.Rectangle( -3280000, 170000, 2300000, 3200000, 32775), numberOfZoomLevels: 8 }); map = new OM.Map( document.getElementById('map'), { mapviewerURL: baseURL, universe:uni }) ; var navigationPanelBar = new OM.control.NavigationPanelBar(); map.addMapDecoration(navigationPanelBar); } // end initMap function states() { //alert("Load and display states"); layerName = "States"; if(statesLayer) { // states were already visible but the style may have changed // so set the style to the currently selected one var theData = $('#demo-htmlselect').val(); setStyle(theData); } else { // States is a predefined layer in user_sdo_themes var layer2 = new OM.layer.VectorLayer("vLayer2", { def: { type:OM.layer.VectorLayer.TYPE_PREDEFINED, dataSource:"mvdemo", theme:"us_states_bi", url: baseURL, loadOnDemand: false }, boundingTheme:true }); // add drop shadow effect and hover style var shadowFilter = new OM.visualfilter.DropShadow({opacity:0.5, color:"#000000", offset:6, radius:10}); var hoverStyle = new OM.style.Color( {stroke:"#838383", strokeThickness:2}); layer2.setHoverStyle(hoverStyle); layer2.setHoverVisualFilter(shadowFilter); layer2.enableFeatureHover(true); layer2.enableFeatureSelection(false); layer2.setLabelsVisible(true); // override predefined rendering style with programmatic one var theRenderingStyle = createBucketColorStyle('YlBr5', colorSeries, 'States5', true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state // It can be an array because the style could be a chart type (pie/bar) // which requires multiple attribute columns // Use the STATE.TOTPOP column (aka attribute) value here layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); currentPalette = "YlBr5"; var stLayerIdx = map.addLayer(layer2); //alert('State Layer Idx = ' + stLayerIdx); map.setMapCenter(mpoint); map.setMapZoomLevel(mapZoom) ; // display the map map.init() ; statesLayer=layer2; // add rt-click event listener to show counties for the state layer2.addListener(OM.event.MouseEvent.MOUSE_RIGHT_CLICK,stateRtClick); } // end if } // end states function setStyle(styleName) { // alert("Selected Style = " + styleName); // there may be a counties layer also displayed. // that wll have different bucket ranges so create // one style for states and one for counties var newRenderingStyle = null; if (layerName === "States") { if(/3/.test(styleName)) { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States3', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties3', false); } else { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States5', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties5', false); } statesLayer.setRenderingStyle(newRenderingStyle, ["TOTPOP"]); if (stateCountyLayer) stateCountyLayer.setRenderingStyle(currentStyle, ["TOTPOP"]); } } // end setStyle function stateRtClick(evt){ var foi = evt.feature; //alert('Rt-Click on State: ' + foi.attributes['_label_'] + // ' with pop ' + foi.attributes['TOTPOP']); // display another layer with counties info // layer may change on each rt-click so create and add each time. var countyByState = null ; // the _label_ attribute of a feature in this case is the state abbreviation // we will use that to query and get the counties for a state var sqlText = "select totpop,geom32775 from counties_32775_moved where state_abrv="+ "'"+foi.getAttributeValue('_label_')+"'"; // alert(sqlText); if (currentStyle === null) currentStyle = createBucketColorStyle('YlBr5', colorSeries, 'Counties5', false); /* try a simple style instead new OM.style.ColorStyle( { stroke: "#B8F4FF", fill: "#18E5F4", fillOpacity:0 } ); */ // remove existing layer if any if(stateCountyLayer) map.removeLayer(stateCountyLayer); countyByState = new OM.layer.VectorLayer("stCountyLayer", {def:{type:OM.layer.VectorLayer.TYPE_JDBC, dataSource:"mvdemo", sql:sqlText, url:baseURL}}); // url:baseURL}, // renderingStyle:currentStyle}); countyByState.setVisible(true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state countyByState.setRenderingStyle(currentStyle, ["TOTPOP"]); var ctLayerIdx = map.addLayer(countyByState); // alert('County Layer Idx = ' + ctLayerIdx); //map.addLayer(countyByState); stateCountyLayer = countyByState; } // end stateRtClick function useSelectedColorScheme(theColorScheme) { if(map) { // code to update renderStyle goes here //alert('will try to change render style'); setStyle(theColorScheme); } else { // do nothing } } </script> </head> <body bgcolor="#b4c5cc" style="height:100%;font-family:Arial,Helvetica,Verdana"> <h3 align="center">State population thematic map </h3> <div id="demo" style="position:absolute; left:68%; top:44px; width:28%; height:100%"> <HR/> <p/> Choose Color Scheme: <select id="demo-htmlselect"> <option value="YlBl3"> YellowBlue3</option> <option value="YlBr3"> YellowBrown3</option> <option value="YlBl5"> YellowBlue5</option> <option value="YlBr5" selected="selected"> YellowBrown5</option> <option value="Blues5"> Blues</option> <option value="Greens5"> Greens</option> <option value="Greys5"> Greys</option> <option value="Oranges5"> Oranges</option> <option value="Purples5"> Purples</option> <option value="Reds5"> Reds</option> </select> <p/> </div> <div id="map" style="position:absolute; left:10px; top:50px; width:65%; height:75%; background-color:#778f99"></div> <div style="position:absolute;top:85%; left:10px;width:98%" class="noprint"> <HR/> <p> Note: This demo uses HTML5 Canvas and requires IE9+, Firefox 10+, or Chrome. No map will show up in IE8 or earlier. </p> </div> </body> </html>

    Read the article

  • jqGrid (Delete row) - How to send additional POST data???

    - by ronanray
    Hi experts, I'm having problem with jqGrid delete mechanism as it only send "oper" and "id" parameters in form of POST data (id is the primary key of the table). The problem is, I need to delete a row based on the id and another column value, let's say user_id. How to add this user_id to the POST data??? I can summarize the issue as the following: How to get the cell value (user_id) of the selected row? AND, how to add that user_id to the POST data so it can be retrieved from the code behind where the actual delete process takes place. Sample codes: jQuery("#tags").jqGrid({ url: "subgrid.process.php, editurl: "subgrid.process.php?, datatype: "json", mtype: "POST", colNames:['id','user_id','status_type_id'], colModel:[{name:'id', index:'id', width:100, editable:true}, {name:'user_id', index:'user_id', width:200, editable:true}, {name:'status_type_id', index:'status_type_id', width:200} ], pager: '#pagernav2', rowNum:10, rowList:[10,20,30,40,50,100], sortname: 'id', sortorder: "asc", caption: "Test", height: 200 }); jQuery("#tags").jqGrid('navGrid','#pagernav2', {add:true,edit:false,del:true,search:false}, {}, {mtype:"POST",closeAfterAdd:true,reloadAfterSubmit:true}, // add options {mtype:"POST",reloadAfterSubmit:true}, // del options {} // search options ); Help....

    Read the article

  • apache htaccess rewrite rules make redirection loop

    - by Ali
    Hi guys, Have a very strange problem with Apache .htaccess URL Rewriting and Redirection. Here's my setup: I have a zend application with a single point of entry (index.php) directly under my apache document root (call this the "public" folder). I also have all other public files (images, js, css, etc.) under the public folder. Here, I also have a wordpress blog under the "blog" folder. There's an empty test folder too The Problem When I go to mydomain.com/blog, I get redirected to http://www.theredpin.com/blog (correctly), then to http://www.theredpin.com/blog/ (just with an extra / at end), finally to http://theredpin.com/blog/ -- and we're back where we started. The loop continues. What I don't understand is why would wordpress try to remove the www? I'm guessing it's wordpress because my empty test folder acts just fine! PLEASE HELP. I"M REALLY DESPERATE :( Thank you very much Other things that happen: When I go to mydomain.com, i correctly get redirected to www.mydomain.com When I go to www.mydomain.com, i correctly stay where I am When I go to www.mydomain.com/test or mydomain.com/test, behaviour is correct. Setup So my .htaccess file does the following: If there's no www., then add it and do a 301 redirect. Here's the code I use RewriteCond %{HTTP_HOST} ^mydomain.com [NC] RewriteRule ^(.*)$ http://www.mydomain.com/$1 [L,R=301] If the request is NOT for a resource (image, etc.), or the blog, then load zend application by rewriting to index.php RewriteRule !((^blog(/)?.*$)|(.(js|ico|gif|jpg|jpeg|png|css|cur|JPG|html|txt))$) index.php Thanks again for all your help!!! Ali

    Read the article

< Previous Page | 159 160 161 162 163 164 165 166 167 168 169 170  | Next Page >