Search Results

Search found 13275 results on 531 pages for 'deep copy'.

Page 167/531 | < Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >

  • Pure sine wave inverter

    - by Nick
    Not exactly programming (sorry) but I think it's pretty close and can be of interest to other programmers. I'm trying to setup a battery power station so that I can work from anywhere. I go surfing a lot and my idea is to be able to work from wherever I can park my car (given there's coverage). So, I'm getting a deep cycle battery, a 240V charger (I'm in Australia), and an inverter. At the back of my laptop it says 19V and 4.62A. From the people I've spoken to that means it consumes about 90W at most. So my inverter needs to be able to output about 100W. Most of them seem to be 200W and up so this shouldn't be a problem. I want to be able run my laptop for 10 hours (plus the 2 hours I get from the laptop battery) straight. According to the people I've spoken to and from what I gather online I need a battery that has the amp hours for my "amp draw". I have no idea how to calculate this but I've been guesstimating. Most deep cycle batteries seem to be classified using amp hours (Ah)... 35Ah, 50Ah, 75Ah, 100Ah, and so on. However the amp hours on those batteries is for a 240V and I seem to be using 19V. According to an expert I spoke to you'd need a 100Ah battery to power a 5A appliance at 240V for 10 hours (you only get about 50% useful power). That to me is 5A * 240V = 100Ah battery. So, naive as I might be I take 240V and divide that by my 19V and reach the conclusion that I can get away with a battery that's about 12 times smaller than that 100Ah. The expert told me I needed a 50Ah battery so that's probably what I'll be getting, but it would be interesting to know what I theoretically would need to power my laptop for 10 hours. As for charging the battery the expert I spoke to said I needed a 3-5A charger to be able to charge that 50Ah battery from flat to full in about 10 hours (I will just leave it plugged in over night). Now to my question. The expert said it's not a matter of "if" more like a guaranteed "when" my computer will stuff up if I don't use a "pure sine wave inverter". From what I gather the power that comes out of that battery is not as clean as the power we get in the socket at home. Apparently it's "square" and the one in the socket is nice and smooth. I've already got an inverter, but it's not "pure". Do I really need to buy the $200-300 pure sine wave inverter or can I get away with something else? Perhaps the laptop adapter that sits in the middle of my laptop power cable already fixes that wave to be nice and smooth? Thanks!

    Read the article

  • C#, Java, or SharePoint to learn

    - by bmw0128
    I know a bit of each of these, but none enough to pass technical phone screens/interviews. I am looking for a job, and I'll take anything, almost anywhere (in the US). Any opinions on which I should take on and do a deep dive? I do not which technology, I am wondering if one is better than the other when trying to get a job, more in the entry/mid level skill level. I am currently in the Bay Area, but will go anywhere.

    Read the article

  • Getting up to speed on modern architecture

    - by Matt Thrower
    Hi, I don't have any formal qualifications in computer science, rather I taught myself classic ASP back in the days of the dotcom boom and managed to get myself a job and my career developed from there. I was a confident and, I think, pretty good programmer in ASP 3 but as others have observed one of the problems with classic ASP was that it did a very good job of hiding the nitty-gritty of http so you could become quite competent as a programmer on the basis of relatively poor understanding of the technology you were working with. When I changed on to .NET at first I treated it like classic ASP, developing stand-alone applications as individual websites simply because I didn't know any better at the time. I moved jobs at this point and spent the next several years working on a single site whose architecture relied heavily on custom objects: in other words I gained a lot of experience working with .NET as a middle-tier development tool using a quite old-fashioned approach to OO design along the lines of the classic "car" class example that's so often used to teach OO. Breaking down programs into blocks of functionality and basing your classes and methods around that. Although we worked under an Agile approach to manage the work the whole setup was classic client/server stuff. That suited me and I gradually got to grips with .NET and started using it far more in the manner that it should be, and I began to see the power inherent in the technology and precisely why it was so much better than good old ASP 3. In my latest job I have found myself suddenly dropped in at the deep end with two quite young, skilled and very cutting-edge programmers. They've built a site architecture which is modelling along a lot of stuff which is new to me and which, in truth I'm having a lot of trouble understanding. The application is built on a cloud computing model with multi-tenancy and the architecture is all loosely coupled using a lot of interfaces, factories and the like. They use nHibernate a lot too. Shortly after I joined, both these guys left and I'm now supposedly the senior developer on a system whose technology and architecture I don't really understand and I have no-one to ask questions of. Except you, the internet. Frankly I feel like I've been pitched in at the deep end and I'm sinking. I'm not sure if this is because I lack the educational background to understand this stuff, if I'm simply not mathematically minded enough for modern computing (my maths was never great - my approach to design is often to simply debug until it works, then refactor until it looks neat), or whether I've simply been presented with too much of too radical a nature at once. But the only way to find out which it is is to try and learn it. So can anyone suggest some good places to start? Good books, tutorials or blogs? I've found a lot of internet material simply presupposes a level of understanding that I just don't have. Your advice is much appreciated. Help a middle-aged, stuck in the mud developer get enthusastic again! Please!

    Read the article

  • What is the meaning of this C++ Error std::length_error

    - by Janusz
    While running my program I get this Error: terminate called after throwing an instance of 'std::length_error' what(): basic_string::_S_create Abort trap I know that you can't do much without the code but I think that error is to deep in the code to copy all of it. Maybe I can figure it out if I understand what this error means. Is this a sign for an issue with reading or writing at the wrong memory address? Is there something I can do to get more information about the problem from my program?

    Read the article

  • Erroneous/Incorrect C2248 error using Visual Studio 2010

    - by Dylan Bourque
    I'm seeing what I believe to be an erroneous/incorrect compiler error using the Visual Studio 2010 compiler. I'm in the process of up-porting our codebase from Visual Studio 2005 and I ran across a construct that was building correctly before but now generates a C2248 compiler error. Obviously, the code snippet below has been generic-ized, but it is a compilable example of the scenario. The ObjectPtr<T> C++ template comes from our codebase and is the source of the error in question. What appears to be happening is that the compiler is generating a call to the copy constructor for ObjectPtr<T> when it shouldn't (see my comment block in the SomeContainer::Foo() method below). For this code construct, there is a public cast operator for SomeUsefulData * on ObjectPtr<SomeUsefulData> but it is not being chosen inside the true expression if the ?: operator. Instead, I get the two errors in the block quote below. Based on my knowledge of C++, this code should compile. Has anyone else seen this behavior? If not, can someone point me to a clarification of the compiler resolution rules that would explain why it's attempting to generate a copy of the object in this case? Thanks in advance, Dylan Bourque Visual Studio build output: c:\projects\objectptrtest\objectptrtest.cpp(177): error C2248: 'ObjectPtr::ObjectPtr' : cannot access private member declared in class 'ObjectPtr' with [ T=SomeUsefulData ] c:\projects\objectptrtest\objectptrtest.cpp(25) : see declaration of 'ObjectPtr::ObjectPtr' with [ T=SomeUsefulData ] c:\projects\objectptrtest\objectptrtest.cpp(177): error C2248: 'ObjectPtr::ObjectPtr' : cannot access private member declared in class 'ObjectPtr' with [ T=SomeUsefulData ] c:\projects\objectptrtest\objectptrtest.cpp(25) : see declaration of 'ObjectPtr::ObjectPtr' with [ T=SomeUsefulData ] Below is a minimal, compilable example of the scenario: #include <stdio.h> #include <tchar.h> template<class T> class ObjectPtr { public: ObjectPtr<T> (T* pObj = NULL, bool bShared = false) : m_pObject(pObj), m_bObjectShared(bShared) {} ~ObjectPtr<T> () { Detach(); } private: // private, unimplemented copy constructor and assignment operator // to guarantee that ObjectPtr<T> objects are not copied ObjectPtr<T> (const ObjectPtr<T>&); ObjectPtr<T>& operator = (const ObjectPtr<T>&); public: T * GetObject () { return m_pObject; } const T * GetObject () const { return m_pObject; } bool HasObject () const { return (GetObject()!=NULL); } bool IsObjectShared () const { return m_bObjectShared; } void ObjectShared (bool bShared) { m_bObjectShared = bShared; } bool IsNull () const { return !HasObject(); } void Attach (T* pObj, bool bShared = false) { Detach(); if (pObj != NULL) { m_pObject = pObj; m_bObjectShared = bShared; } } void Detach (T** ppObject = NULL) { if (ppObject != NULL) { *ppObject = m_pObject; m_pObject = NULL; m_bObjectShared = false; } else { if (HasObject()) { if (!IsObjectShared()) delete m_pObject; m_pObject = NULL; m_bObjectShared = false; } } } void Detach (bool bDeleteIfNotShared) { if (HasObject()) { if (bDeleteIfNotShared && !IsObjectShared()) delete m_pObject; m_pObject = NULL; m_bObjectShared = false; } } bool IsEqualTo (const T * pOther) const { return (GetObject() == pOther); } public: T * operator -> () { ASSERT(HasObject()); return m_pObject; } const T * operator -> () const { ASSERT(HasObject()); return m_pObject; } T & operator * () { ASSERT(HasObject()); return *m_pObject; } const T & operator * () const { ASSERT(HasObject()); return (const C &)(*m_pObject); } operator T * () { return m_pObject; } operator const T * () const { return m_pObject; } operator bool() const { return (m_pObject!=NULL); } ObjectPtr<T>& operator = (T * pObj) { Attach(pObj, false); return *this; } bool operator == (const T * pOther) const { return IsEqualTo(pOther); } bool operator == (T * pOther) const { return IsEqualTo(pOther); } bool operator != (const T * pOther) const { return !IsEqualTo(pOther); } bool operator != (T * pOther) const { return !IsEqualTo(pOther); } bool operator == (const ObjectPtr<T>& other) const { return IsEqualTo(other.GetObject()); } bool operator != (const ObjectPtr<T>& other) const { return !IsEqualTo(other.GetObject()); } bool operator == (int pv) const { return (pv==NULL)? IsNull() : (LPVOID(m_pObject)==LPVOID(pv)); } bool operator != (int pv) const { return !(*this == pv); } private: T * m_pObject; bool m_bObjectShared; }; // Some concrete type that holds useful data class SomeUsefulData { public: SomeUsefulData () {} ~SomeUsefulData () {} }; // Some concrete type that holds a heap-allocated instance of // SomeUsefulData class SomeContainer { public: SomeContainer (SomeUsefulData* pUsefulData) { m_pData = pUsefulData; } ~SomeContainer () { // nothing to do here } public: bool EvaluateSomeCondition () { // fake condition check to give us an expression // to use in ?: operator below return true; } SomeUsefulData* Foo () { // this usage of the ?: operator generates a C2248 // error b/c it's attempting to call the copy // constructor on ObjectPtr<T> return EvaluateSomeCondition() ? m_pData : NULL; /**********[ DISCUSSION ]********** The following equivalent constructs compile w/out error and behave correctly: (1) explicit cast to SomeUsefulData* as a comiler hint return EvaluateSomeCondition() ? (SomeUsefulData *)m_pData : NULL; (2) if/else instead of ?: if (EvaluateSomeCondition()) return m_pData; else return NULL; (3) skip the condition check and return m_pData as a SomeUsefulData* directly return m_pData; **********[ END DISCUSSION ]**********/ } private: ObjectPtr<SomeUsefulData> m_pData; }; int _tmain(int argc, _TCHAR* argv[]) { return 0; }

    Read the article

  • How to build a tree from a list of items and their children recursively in php?

    - by k1lljoy
    I have a list of items stored in the DB, simplified schema is like this: id, parent, name I need to generate a tree structure (in a form of a multi-dimensional array) that can be infinite levels deep. Top level items would have parent = 0. Next level down would have parent equal to the the id of the parent item, fairly straight forward. What would be the best way to do this, while consuming as little resources as possible?

    Read the article

  • Nonblocking io webserver/framework for java

    - by SeekingNonblockingIo
    Does anyone know of any node.js style webserver framework for java? I realized that having nonblocking callback behavior while handling a web request will require deep support at the webserver level. I am interested in node.js, but when I have a web server that ends up persisting data, I would like to take advantage of the static type system that Java offers. However, I want the scalability of non-blocking io.

    Read the article

  • Downsides to immutable objects in Java?

    - by parkr
    The advantages of immutable objects in Java seem clear: consistent state automatic thread safety simplicity You can favour immutability by using private final fields and constructor injection. But, what are the downsides to favouring immutable objects in Java? i.e. incompatibility with ORM or web presentation tools? Inflexible design? Implementation complexities? Is it possible to design a large-scale system (deep object graph) that predominately uses immutable objects?

    Read the article

  • Return current web path in PHP

    - by BenTheDesigner
    Hi All Currently developing a PHP framework and have ran into my first problem. I need to be able to drop the framework into any folder on a server, no matter how many folders deep, and need to find that directory to use as a base URL. For example, it currently works if I put the framework in the root of the server (http://cms.dev/), but if I were to put it in http://cms.dev/folder/ it does not work. Please advise, any comments welcome. BenTheDesigner

    Read the article

  • Create a class that inherets DrawableGameComponent in XNA as a CLASS with custom functions

    - by user3675013
    using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Media; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; namespace TileEngine { class Renderer : DrawableGameComponent { public Renderer(Game game) : base(game) { } SpriteBatch spriteBatch ; protected override void LoadContent() { base.LoadContent(); } public override void Draw(GameTime gameTime) { base.Draw(gameTime); } public override void Update(GameTime gameTime) { base.Update(gameTime); } public override void Initialize() { base.Initialize(); } public RenderTarget2D new_texture(int width, int height) { Texture2D TEX = new Texture2D(GraphicsDevice, width, height); //create the texture to render to RenderTarget2D Mine = new RenderTarget2D(GraphicsDevice, width, height); GraphicsDevice.SetRenderTarget(Mine); //set the render device to the reference provided //maybe base.draw can be used with spritebatch. Idk. We'll see if the order of operation //works out. Wish I could call base.draw here. return Mine; //I'm hoping that this returns the same instance and not a copy. } public void draw_texture(int width, int height, RenderTarget2D Mine) { GraphicsDevice.SetRenderTarget(null); //Set the renderer to render to the backbuffer again Rectangle drawrect = new Rectangle(0, 0, width, height); //Set the rendering size to what we want spriteBatch.Begin(); //This uses spritebatch to draw the texture directly to the screen spriteBatch.Draw(Mine, drawrect, Color.White); //This uses the color white spriteBatch.End(); //ends the spritebatch //Call base.draw after this since it doesn't seem to recognize inside the function //maybe base.draw can be used with spritebatch. Idk. We'll see if the order of operation //works out. Wish I could call base.draw here. } } } I solved a previous issue where I wasn't allowed to access GraphicsDevice outside the main Default 'main' class Ie "Game" or "Game1" etc. Now I have a new issue. FYi no one told me that it would be possible to use GraphicsDevice References to cause it to not be null by using the drawable class. (hopefully after this last bug is solved it doesn't still return null) Anyways at present the problem is that I can't seem to get it to initialize as an instance in my main program. Ie Renderer tileClipping; and I'm unable to use it such as it is to be noted i haven't even gotten to testing these two steps below but before it compiled but when those functions of this class were called it complained that it can't render to a null device. Which meant that the device wasn't being initialized. I had no idea why. It took me hours to google this. I finally figured out the words I needed.. which were "do my rendering in XNA in a seperate class" now I haven't used the addcomponent function because I don't want it to only run these functions automatically and I want to be able to call the custom ones. In a nutshell what I want is: *access to rendering targets and graphics device OUTSIDE default class *passing of Rendertarget2D (which contain textures and textures should automatically be passed with a rendering target? ) *the device should be passed to this function as well OR the device should be passed to this function as a byproduct of passing the rendertarget (which is automatically associated with the render device it was given originally) *I'm assuming I'm dealing with abstracted pointers here so when I pass a class object or instance, I should be recieving the SAME object , I referenced, and not a copy that has only the lifespan of the function running. *the purpose for all these options: I want to initialize new 2d textures on the fly to customize tileclipping and even the X , y Offsets of where a WHOLE texture will be rendered, and the X and Y offsets of where tiles will be rendered ON that surface. This is why. And I'll be doing region based lighting effects per tile or even per 8X8 pixel spaces.. we'll see I'll also be doing sprite rotations on the whole texture then copying it again to a circular masked texture, and then doing a second copy for only solid tiles for masked rotated collisions on sprites. I'll be checking the masked pixels for my collision, and using raycasting possibly to check for collisions on those areas. The sprite will stay in the center, when this rotation happens. Here is a detailed diagram: http://i.stack.imgur.com/INf9K.gif I'll be using texture2D for steps 4-6 I suppose for steps 1 as well. Now ontop of that, the clipping size (IE the sqaure rendered) will be able to be shrunk or increased, on a per frame basis Therefore I can't use the same static size for my main texture2d and I can't use just the backbuffer Or we get the annoying flicker. Also I will have multiple instances of the renderer class so that I can freely pass textures around as if they are playing cards (in a sense) layering them ontop of eachother, cropping them how i want and such. and then using spritebatch to simply draw them at the locations I want. Hopefully this makes sense, and yes I will be planning on using alpha blending but only after all tiles have been drawn.. The masked collision is important and Yes I am avoiding using math on the tile rendering and instead resorting to image manipulation in video memory which is WHY I need this to work the way I'm intending it to work and not in the default way that XNA seems to handle graphics. Thanks to anyone willing to help. I hate the code form offered, because then I have to rely on static presence of an update function. What if I want to kill that update function or that object, but have it in memory, but just have it temporarily inactive? I'm making the assumption here the update function of one of these gamecomponents is automatic ? Anyways this is as detailed as I can make this post hopefully someone can help me solve the issue. Instead of tell me "derrr don't do it this wayyy" which is what a few people told me (but they don't understand the actual goal I have in mind) I'm trying to create basically a library where I can copy images freely no matter the size, i just have to specify the size in the function then as long as a reference to that object exists it should be kept alive? right? :/ anyways.. Anything else? I Don't know. I understand object oriented coding but I don't understand this XNA It's beggining to feel impossible to do anything custom in it without putting ALL my rendering code into the draw function of the main class tileClipping.new_texture(GraphicsDevice, width, height) tileClipping.Draw_texture(...)

    Read the article

  • Do not filter outlinks in Nutch?

    - by sigpwned
    I'm currently trying to perform a deep crawl within a small list of sites. To accomplish this, I updated conf/domain-urlfilter.txt with the domains of the sites I wish to scrape, which worked nicely. However, I found that not only were the links crawled at every step filtered, but the outlinks captured from each page crawled were filtered as well. Is there a way to avoid filtering captured outlinks while still filtering crawled URLs?

    Read the article

  • About Sdram software :Self-refresh mode

    - by student_pdas
    For power management we have to put system in deep sleep(system sleep) mode and for this we have to put SDRAM in self refresh mode. Can anyone tell the steps to set SDARM in self refresh mode. I tried SDRAM configuration register's ,I found that the SDRAM do goes to self-refresh mode[we probed the SD clk out] however system crashes in some scenarios while coming out of sleep.

    Read the article

  • Can I use custom image as map with Silverlight 3?

    - by TaRCiN
    I have to develop a silverlight application which will run intranet. It will show local town map and have some images over the map like pushpins. I can use Deep Zoom for map application. But adding images and events for images is not supported. For silverlight 2, there is DeepEarth api for this. But How can I do this with Silverlight 3?

    Read the article

  • Selector for a range of ids

    - by Kiffin
    I need to select all span tag elements within a div with an id list_{[0-9]}+ having the following form: <div id="list_1234" ...> <!-- can be nested multiple levels deep --> ... <span class="list_span">Hello</span> </div> How can I do that, e.g. without using jQuery? Is that possible?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Java Cloud Service Integration to REST Service

    - by Jani Rautiainen
    Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance. This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance. In this article a custom application integrating with REST service will be implemented. We will use REST services provided by Taleo as an example; however the same approach will work with any REST service. In this example the data from the REST service is used to populate a dynamic table. Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration.Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source.The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the "Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud" link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guideFor details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Access to a local database The database associated with the JCS instance cannot be connected to with JDBC.  Since creating ADFbc business component requires a JDBC connection we will need access to a local database. 3rd party libraries This example will use some 3rd party libraries for implementing the REST service call and processing the input / output content. Other libraries may also be used, however these are tested to work. Jersey 1.x Jersey library will be used as a client to make the call to the REST service. JCS documentation for supported specifications states: Java API for RESTful Web Services (JAX-RS) 1.1 So Jersey 1.x will be used. Download the single-JAR Jersey bundle; in this example Jersey 1.18 JAR bundle is used. Json-simple Jjson-simple library will be used to process the json objects. Download the  JAR file; in this example json-simple-1.1.1.jar is used. Accessing data in Taleo Before implementing the application it is beneficial to familiarize oneself with the data in Taleo. Easiest way to do this is by using a RESTClient on your browser. Once added to the browser you can access the UI: The client can be used to call the REST services to test the URLs and data before adding them into the application. First derive the base URL for the service this can be done with: Method: GET URL: https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/<company name> The response will contain the base URL to be used for the service calls for the company. Next obtain authentication token with: Method: POST URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/login?orgCode=<company>&userName=<user name>&password=<password> The response includes an authentication token that can be used for few hours to authenticate with the service: {   "response": {     "authToken": "webapi26419680747505890557"   },   "status": {     "detail": {},     "success": true   } } To authenticate the service calls navigate to "Headers -> Custom Header": And add a new request header with: Name: Cookie Value: authToken=webapi26419680747505890557 Once authentication token is defined the tool can be used to invoke REST services; for example: Method: GET URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/object/candidate/search.xml?status=16 This data will be used on the application to be created. For details on the Taleo REST services refer to the Taleo Business Edition REST API Guide. Create Application First Fusion Web Application is created and configured. Start JDeveloper and click "New Application": Application Name: JcsRestDemo Application Package Prefix: oracle.apps.jcs.test Application Template: Fusion Web Application (ADF) Configure Local Cloud Connection Follow the steps documented in the "Java Cloud Service ADF Web Application" article to configure a local database connection needed to create the ADFbc objects. Configure Libraries Add the 3rd party libraries into the class path. Create the following directory and copy the jar files into it: <JDEV_USER_HOME>/JcsRestDemo/lib  Select the "Model" project, navigate "Application -> Project Properties -> Libraries and Classpath -> Add JAR / Directory" and add the 2 3rd party libraries: Accessing Data from Taleo To access data from Taleo using the REST service the 3rd party libraries will be used. 2 Java classes are implemented, one representing the Candidate object and another for accessing the Taleo repository Candidate Candidate object is a POJO object used to represent the candidate data obtained from the Taleo repository. The data obtained will be used to populate the ADFbc object used to display the data on the UI. The candidate object contains simply the variables we obtain using the REST services and the getters / setters for them: Navigate "New -> General -> Java -> Java Class", enter "Candidate" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content: import oracle.jbo.domain.Number; public class Candidate { private Number candId; private String firstName; private String lastName; public Candidate() { super(); } public Candidate(Number candId, String firstName, String lastName) { super(); this.candId = candId; this.firstName = firstName; this.lastName = lastName; } public void setCandId(Number candId) { this.candId = candId; } public Number getCandId() { return candId; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getFirstName() { return firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getLastName() { return lastName; } } Taleo Repository Taleo repository class will interact with the Taleo REST services. The logic will query data from Taleo and populate Candidate objects with the data. The Candidate object will then be used to populate the ADFbc object used to display data on the UI. Navigate "New -> General -> Java -> Java Class", enter "TaleoRepository" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import com.sun.jersey.api.client.Client; import com.sun.jersey.api.client.ClientResponse; import com.sun.jersey.api.client.WebResource; import com.sun.jersey.core.util.MultivaluedMapImpl; import java.io.StringReader; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.Map; import javax.ws.rs.core.MediaType; import javax.ws.rs.core.MultivaluedMap; import oracle.jbo.domain.Number; import org.json.simple.JSONArray; import org.json.simple.JSONObject; import org.json.simple.parser.JSONParser; /** * This class interacts with the Taleo REST services */ public class TaleoRepository { /** * Connection information needed to access the Taleo services */ String _company = null; String _userName = null; String _password = null; /** * Jersey client used to access the REST services */ Client _client = null; /** * Parser for processing the JSON objects used as * input / output for the services */ JSONParser _parser = null; /** * The base url for constructing the REST URLs. This is obtained * from Taleo with a service call */ String _baseUrl = null; /** * Authentication token obtained from Taleo using a service call. * The token can be used to authenticate on subsequent * service calls. The token will expire in 4 hours */ String _authToken = null; /** * Static url that can be used to obtain the url used to construct * service calls for a given company */ private static String _taleoUrl = "https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/"; /** * Default constructor for the repository * Authentication details are passed as parameters and used to generate * authentication token. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * * @param company the company for which the service calls are made * @param userName the user name to authenticate with * @param password the password to authenticate with. */ public TaleoRepository(String company, String userName, String password) { super(); _company = company; _userName = userName; _password = password; _client = Client.create(); _parser = new JSONParser(); _baseUrl = getBaseUrl(); } /** * This obtains the base url for a company to be used * to construct the urls for service calls * @return base url for the service calls */ private String getBaseUrl() { String result = null; if (null != _baseUrl) { result = _baseUrl; } else { try { String company = _company; WebResource resource = _client.resource(_taleoUrl + company); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("URL"); } catch (Exception ex) { ex.printStackTrace(); } } return result; } /** * Generates authentication token, that can be used to authenticate on * subsequent service calls. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * @return authentication token that can be used to authenticate on * subsequent service calls */ private String login() { String result = null; try { MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("orgCode", _company); formData.add("userName", _userName); formData.add("password", _password); WebResource resource = _client.resource(_baseUrl + "login"); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).post(ClientResponse.class, formData); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("authToken"); } catch (Exception ex) { throw new RuntimeException("Unable to login ", ex); } if (null == result) throw new RuntimeException("Unable to login "); return result; } /** * Releases a authentication token. Each call to login must be followed * by call to logout after the processing is done. This is required as * the tokens are limited to 20 per user and if not released the tokens * will only expire after 4 hours. * @param authToken */ private void logout(String authToken) { WebResource resource = _client.resource(_baseUrl + "logout"); resource.header("cookie", "authToken=" + authToken).post(ClientResponse.class); } /** * This method is used to obtain a list of candidates using a REST * service call. At this example the query is hard coded to query * based on status. The url constructed to access the service is: * <_baseUrl>/object/candidate/search.xml?status=16 * @return List of candidates obtained with the service call */ public List<Candidate> getCandidates() { List<Candidate> result = new ArrayList<Candidate>(); try { // First login, note that in finally block we must have logout _authToken = "authToken=" + login(); /** * Construct the URL, the resulting url will be: * <_baseUrl>/object/candidate/search.xml?status=16 */ MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("status", "16"); JSONArray searchResults = (JSONArray)getTaleoResource("object/candidate/search", "searchResults", formData); /** * Process the results, the resulting JSON object is something like * this (simplified for readability): * * { * "response": * { * "searchResults": * [ * { * "candidate": * { * "candId": 211, * "firstName": "Mary", * "lastName": "Stochi", * logic here will find the candidate object(s), obtain the desired * data from them, construct a Candidate object based on the data * and add it to the results. */ for (Object object : searchResults) { JSONObject temp = (JSONObject)object; JSONObject candidate = (JSONObject)findObject(temp, "candidate"); Long candIdTemp = (Long)candidate.get("candId"); Number candId = (null == candIdTemp ? null : new Number(candIdTemp)); String firstName = (String)candidate.get("firstName"); String lastName = (String)candidate.get("lastName"); result.add(new Candidate(candId, firstName, lastName)); } } catch (Exception ex) { ex.printStackTrace(); } finally { if (null != _authToken) logout(_authToken); } return result; } /** * Convenience method to construct url for the service call, invoke the * service and obtain a resource from the response * @param path the path for the service to be invoked. This is combined * with the base url to construct a url for the service * @param resource the key for the object in the response that will be * obtained * @param parameters any parameters used for the service call. The call * is slightly different depending whether parameters exist or not. * @return the resource from the response for the service call */ private Object getTaleoResource(String path, String resource, MultivaluedMap<String, String> parameters) { Object result = null; try { WebResource webResource = _client.resource(_baseUrl + path); ClientResponse response = null; if (null == parameters) response = webResource.header("cookie", _authToken).get(ClientResponse.class); else response = webResource.queryParams(parameters).header("cookie", _authToken).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); result = findObject(jsonObject, resource); } catch (Exception ex) { ex.printStackTrace(); } return result; } /** * Convenience method to recursively find a object with an key * traversing down from a given root object. This will traverse a * JSONObject / JSONArray recursively to find a matching key, if found * the object with the key is returned. * @param root root object which contains the key searched for * @param key the key for the object to search for * @return the object matching the key */ private Object findObject(Object root, String key) { Object result = null; if (root instanceof JSONObject) { JSONObject rootJSON = (JSONObject)root; if (rootJSON.containsKey(key)) { result = rootJSON.get(key); } else { Iterator children = rootJSON.entrySet().iterator(); while (children.hasNext()) { Map.Entry entry = (Map.Entry)children.next(); Object child = entry.getValue(); if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } } else if (root instanceof JSONArray) { JSONArray rootJSON = (JSONArray)root; for (Object child : rootJSON) { if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } return result; } }   Creating Business Objects While JCS application can be created without a local database, the local database is required when using ADFbc objects even if database objects are not referred. For this example we will create a "Transient" view object that will be programmatically populated based the data obtained from Taleo REST services. Creating ADFbc objects Choose the "Model" project and navigate "New -> Business Tier : ADF Business Components : View Object". On the "Initialize Business Components Project" choose the local database connection created in previous step. On Step 1 enter "JcsRestDemoVO" on the "Name" and choose "Rows populated programmatically, not based on query": On step 2 create the following attributes: CandId Type: Number Updatable: Always Key Attribute: checked Name Type: String Updatable: Always On steps 3 and 4 accept defaults and click "Next".  On step 5 check the "Application Module" checkbox and enter "JcsRestDemoAM" as the name: Click "Finish" to generate the objects. Populating the VO To display the data on the UI the "transient VO" is populated programmatically based on the data obtained from the Taleo REST services. Open the "JcsRestDemoVOImpl.java". Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import java.sql.ResultSet; import java.util.List; import java.util.ListIterator; import oracle.jbo.server.ViewObjectImpl; import oracle.jbo.server.ViewRowImpl; import oracle.jbo.server.ViewRowSetImpl; // --------------------------------------------------------------------- // --- File generated by Oracle ADF Business Components Design Time. // --- Tue Feb 18 09:40:25 PST 2014 // --- Custom code may be added to this class. // --- Warning: Do not modify method signatures of generated methods. // --------------------------------------------------------------------- public class JcsRestDemoVOImpl extends ViewObjectImpl { /** * This is the default constructor (do not remove). */ public JcsRestDemoVOImpl() { } @Override public void executeQuery() { /** * For some reason we need to reset everything, otherwise * 2nd entry to the UI screen may fail with * "java.util.NoSuchElementException" in createRowFromResultSet * call to "candidates.next()". I am not sure why this is happening * as the Iterator is new and "hasNext" is true at the point * of the execution. My theory is that since the iterator object is * exactly the same the VO cache somehow reuses the iterator including * the pointer that has already exhausted the iterable elements on the * previous run. Working around the issue * here by cleaning out everything on the VO every time before query * is executed on the VO. */ getViewDef().setQuery(null); getViewDef().setSelectClause(null); setQuery(null); this.reset(); this.clearCache(); super.executeQuery(); } /** * executeQueryForCollection - overridden for custom java data source support. */ protected void executeQueryForCollection(Object qc, Object[] params, int noUserParams) { /** * Integrate with the Taleo REST services using TaleoRepository class. * A list of candidates matching a hard coded query is obtained. */ TaleoRepository repository = new TaleoRepository(<company>, <username>, <password>); List<Candidate> candidates = repository.getCandidates(); /** * Store iterator for the candidates as user data on the collection. * This will be used in createRowFromResultSet to create rows based on * the custom iterator. */ ListIterator<Candidate> candidatescIterator = candidates.listIterator(); setUserDataForCollection(qc, candidatescIterator); super.executeQueryForCollection(qc, params, noUserParams); } /** * hasNextForCollection - overridden for custom java data source support. */ protected boolean hasNextForCollection(Object qc) { boolean result = false; /** * Determines whether there are candidates for which to create a row */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); result = candidates.hasNext(); /** * If all candidates to be created indicate that processing is done */ if (!result) { setFetchCompleteForCollection(qc, true); } return result; } /** * createRowFromResultSet - overridden for custom java data source support. */ protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet resultSet) { /** * Obtain the next candidate from the collection and create a row * for it. */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); ViewRowImpl row = createNewRowForCollection(qc); try { Candidate candidate = candidates.next(); row.setAttribute("CandId", candidate.getCandId()); row.setAttribute("Name", candidate.getFirstName() + " " + candidate.getLastName()); } catch (Exception e) { e.printStackTrace(); } return row; } /** * getQueryHitCount - overridden for custom java data source support. */ public long getQueryHitCount(ViewRowSetImpl viewRowSet) { /** * For this example this is not implemented rather we always return 0. */ return 0; } } Creating UI Choose the "ViewController" project and navigate "New -> Web Tier : JSF : JSF Page". On the "Create JSF Page" enter "JcsRestDemo" as name and ensure that the "Create as XML document (*.jspx)" is checked.  Open "JcsRestDemo.jspx" and navigate to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1" and drag & drop the VO to the "<af:form> " as a "ADF Read-only Table": Accept the defaults in "Edit Table Columns". To execute the query navigate to to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1 -> Operations -> Execute" and drag & drop the operation to the "<af:form> " as a "Button": Deploying to JCS Follow the same steps as documented in previous article"Java Cloud Service ADF Web Application". Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsRestDemo-ViewController-context-root/faces/JcsRestDemo.jspx The UI displays a list of candidates obtained from the Taleo REST Services: Summary In this article we learned how to integrate with REST services using Jersey library in JCS. In future articles various other integration techniques will be covered.

    Read the article

  • Windows installation repair option not showing up

    - by Carl
    I'm trying to repair an existing Windows XP installation. Following the instructions from http://www.microsoft.com/windowsxp/using/helpandsupport/learnmore/tips/doug92.mspx this should work: When the Press any key to boot from CD message is displayed on your screen, press a key to start your computer from the Windows XP CD. Press ENTER when you see the message To setup Windows XP now, and then press ENTER displayed on the Welcome to Setup screen. Do not choose the option to press R to use the Recovery Console. In the Windows XP Licensing Agreement, press F8 to agree to the license agreement. Make sure that your current installation of Windows XP is selected in the box, and then press R to repair Windows XP. Follow the instructions on the screen to complete Setup. On step 5 pressing R does nothing and there is nothing on the screen saying it would. When I just select to install I get a message that a previous installation is there and proceeding will destroy it and installed applications, I can optionally select a directory other than c:\windows, and I can optionally format before continuing. I had tried to go from SP2-SP3. It failed, and then I couldn't get to Safe Mode. I put the SP1 disk back in to do a repair, and I don't see that option. (I don't have an SP2 boot/install disk, I just have the non-boot upgrade package.) UPDATE: Upon loading the Recovery Console, I get a message saying The system registry does not appear to have an active ControlSet key. The system registry may be damaged. You can try restarting it with the Last Known Good configuration or you can try repairing the installation of Windows using the setup program's repair and recovery options. I then did bootcfg /scan - "successful" ... Total installs: 1 ... [1] c:\windows - with the c:\windows command prompt below it. bootcfg /list gives [1] Windows XP Pro; OS Load Options /noexecute=optin /fastdetect; OS Location: c:\windows I followed the instructions at http://michaelstevenstech.com/XPrepairinstall.htm - "Warning 2" link copy E:\i386\ntldr C:\ copy E:\i386\ntdetect.com C:\ attrib -h -r -s C:\boot.ini del C:\boot.ini BootCfg /Rebuild I added /fastdetect when it asked for options. I re-ran Windows setup - no change - no repair option. UPDATE: I followed the procedure at http://support.microsoft.com/default.aspx?scid=kb;en-us;307545 I rebooted. I now get a quick message on bootup to select the boot - 1: [blank] ; Windows XP Professional ; Windows Recover Console. The "1: " is new. The rest is the way it was when all was okay. Selecting 1: and the next one gives the same result - I get to a login icon, and then it asks for a password, with the blinking cursor, but I can't type anything. I reboot with the Windows CD. Now I see a repair option for installation "1: " I selected R on that, and it did "Setup is copying files..." and rebooted when it was done. Then it booted, and I got a window saying "Setup will complete in approximately 39 minutes." That's where I am now. I wasn't expecting this last part - I did a repair several months ago and I don't recall that. UPDATE: Booted up. Asked if I wanted to register Windows online. All my icons are there, and the old desktop documents. Good. All the applications I tried from the Start Menu work (tested a few), except Corel Photopaint - I get registry entry not found errors. Windows ran for a while, then froze. The mouse and keyboard don't work. Pressing the power button got Windows to shut down. I probably need to put SP2 on it, and then all the updates for my laptop for XP Pro SP2 (drivers), there's a bunch. The mouse and keyboard quit working again. That wasn't a problem when I first set up this laptop. I've ran 4 times now. Two mouse/keyboards hangs by pressing Ctrl-C (to copy text from a notepad document), and two by selecting Start-Run (wasn't able to type anything in the box).

    Read the article

< Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >