Search Results

Search found 18854 results on 755 pages for 'mr null'.

Page 167/755 | < Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Why is syslog so much slower than file IO?

    - by ceving
    I wrote a simple test program to measure the performance of the syslog function. This are the results of my test system: (Debian 6.0.2 with Linux 2.6.32-5-amd64) Test Case Calls Payload Duration Thoughput [] [MB] [s] [MB/s] -------------------- ---------- ---------- ---------- ---------- syslog 200000 10.00 7.81 1.28 syslog %s 200000 10.00 9.94 1.01 write /dev/null 200000 10.00 0.03 343.93 printf %s 200000 10.00 0.13 76.29 The test program did 200000 system calls writing 50 Bytes of data during each call. Why is Syslog more than ten times slower than file IO? This is the program I used to perform the test: #include <fcntl.h> #include <stdio.h> #include <string.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <syslog.h> #include <unistd.h> const int iter = 200000; const char msg[] = "123456789 123456789 123456789 123456789 123456789"; struct timeval t0; struct timeval t1; void start () { gettimeofday (&t0, (void*)0); } void stop () { gettimeofday (&t1, (void*)0); } void report (char *action) { double dt = (double)t1.tv_sec - (double)t0.tv_sec + 1e-6 * ((double)t1.tv_usec - (double)t0.tv_usec); double mb = 1e-6 * sizeof (msg) * iter; if (action == NULL) printf ("Test Case Calls Payload Duration Thoughput \n" " [] [MB] [s] [MB/s] \n" "-------------------- ---------- ---------- ---------- ----------\n"); else { if (strlen (action) > 20) action[20] = 0; printf ("%-20s %-10d %-10.2f %-10.2f %-10.2f\n", action, iter, mb, dt, mb / dt); } } void test_syslog () { int i; openlog ("test_syslog", LOG_PID | LOG_NDELAY, LOG_LOCAL0); start (); for (i = 0; i < iter; i++) syslog (LOG_DEBUG, msg); stop (); closelog (); report ("syslog"); } void test_syslog_format () { int i; openlog ("test_syslog", LOG_PID | LOG_NDELAY, LOG_LOCAL0); start (); for (i = 0; i < iter; i++) syslog (LOG_DEBUG, "%s", msg); stop (); closelog (); report ("syslog %s"); } void test_write_devnull () { int i, fd; fd = open ("/dev/null", O_WRONLY); start (); for (i = 0; i < iter; i++) write (fd, msg, sizeof(msg)); stop (); close (fd); report ("write /dev/null"); } void test_printf () { int i; FILE *fp; fp = fopen ("/tmp/test_printf", "w"); start (); for (i = 0; i < iter; i++) fprintf (fp, "%s", msg); stop (); fclose (fp); report ("printf %s"); } int main (int argc, char **argv) { report (NULL); test_syslog (); test_syslog_format (); test_write_devnull (); test_printf (); }

    Read the article

  • JGoodies HashMap

    - by JohnMcClane
    Hi, I'm trying to build a chart program using presentation model. Using JGoodies for data binding was relatively easy for simple types like strings or numbers. But I can't figure out how to use it on a hashmap. I'll try to explain how the chart works and what my problem is: A chart consists of DataSeries, a DataSeries consists of DataPoints. I want to have a data model and to be able to use different views on the same model (e.g. bar chart, pie chart,...). Each of them consists of three classes. For example: DataPointModel: holds the data model (value, label, category) DataPointViewModel: extends JGoodies PresentationModel. wraps around DataPointModel and holds view properties like font and color. DataPoint: abstract class, extends JComponent. Different Views must subclass and implement their own ui. Binding and creating the data model was easy, but i don't know how to bind my data series model. package at.onscreen.chart; import java.beans.PropertyChangeListener; import java.beans.PropertyChangeSupport; import java.beans.PropertyVetoException; import java.util.Collection; import java.util.HashMap; import java.util.Iterator; public class DataSeriesModel { public static String PROPERTY_DATAPOINT = "dataPoint"; public static String PROPERTY_DATAPOINTS = "dataPoints"; public static String PROPERTY_LABEL = "label"; public static String PROPERTY_MAXVALUE = "maxValue"; /** * holds the data points */ private HashMap dataPoints; /** * the label for the data series */ private String label; /** * the maximum data point value */ private Double maxValue; /** * the model supports property change notification */ private PropertyChangeSupport propertyChangeSupport; /** * default constructor */ public DataSeriesModel() { this.maxValue = Double.valueOf(0); this.dataPoints = new HashMap(); this.propertyChangeSupport = new PropertyChangeSupport(this); } /** * constructor * @param label - the series label */ public DataSeriesModel(String label) { this.dataPoints = new HashMap(); this.maxValue = Double.valueOf(0); this.label = label; this.propertyChangeSupport = new PropertyChangeSupport(this); } /** * full constructor * @param label - the series label * @param dataPoints - an array of data points */ public DataSeriesModel(String label, DataPoint[] dataPoints) { this.dataPoints = new HashMap(); this.propertyChangeSupport = new PropertyChangeSupport(this); this.maxValue = Double.valueOf(0); this.label = label; for (int i = 0; i < dataPoints.length; i++) { this.addDataPoint(dataPoints[i]); } } /** * full constructor * @param label - the series label * @param dataPoints - a collection of data points */ public DataSeriesModel(String label, Collection dataPoints) { this.dataPoints = new HashMap(); this.propertyChangeSupport = new PropertyChangeSupport(this); this.maxValue = Double.valueOf(0); this.label = label; for (Iterator it = dataPoints.iterator(); it.hasNext();) { this.addDataPoint(it.next()); } } /** * adds a new data point to the series. if the series contains a data point with same id, it will be replaced by the new one. * @param dataPoint - the data point */ public void addDataPoint(DataPoint dataPoint) { String category = dataPoint.getCategory(); DataPoint oldDataPoint = this.getDataPoint(category); this.dataPoints.put(category, dataPoint); this.setMaxValue(Math.max(this.maxValue, dataPoint.getValue())); this.propertyChangeSupport.firePropertyChange(PROPERTY_DATAPOINT, oldDataPoint, dataPoint); } /** * returns the data point with given id or null if not found * @param uid - the id of the data point * @return the data point or null if there is no such point in the table */ public DataPoint getDataPoint(String category) { return this.dataPoints.get(category); } /** * removes the data point with given id from the series, if present * @param category - the data point to remove */ public void removeDataPoint(String category) { DataPoint dataPoint = this.getDataPoint(category); this.dataPoints.remove(category); if (dataPoint != null) { if (dataPoint.getValue() == this.getMaxValue()) { Double maxValue = Double.valueOf(0); for (Iterator it = this.iterator(); it.hasNext();) { DataPoint itDataPoint = it.next(); maxValue = Math.max(itDataPoint.getValue(), maxValue); } this.setMaxValue(maxValue); } } this.propertyChangeSupport.firePropertyChange(PROPERTY_DATAPOINT, dataPoint, null); } /** * removes all data points from the series * @throws PropertyVetoException */ public void removeAll() { this.setMaxValue(Double.valueOf(0)); this.dataPoints.clear(); this.propertyChangeSupport.firePropertyChange(PROPERTY_DATAPOINTS, this.getDataPoints(), null); } /** * returns the maximum of all data point values * @return the maximum of all data points */ public Double getMaxValue() { return this.maxValue; } /** * sets the max value * @param maxValue - the max value */ protected void setMaxValue(Double maxValue) { Double oldMaxValue = this.getMaxValue(); this.maxValue = maxValue; this.propertyChangeSupport.firePropertyChange(PROPERTY_MAXVALUE, oldMaxValue, maxValue); } /** * returns true if there is a data point with given category * @param category - the data point category * @return true if there is a data point with given category, otherwise false */ public boolean contains(String category) { return this.dataPoints.containsKey(category); } /** * returns the label for the series * @return the label for the series */ public String getLabel() { return this.label; } /** * returns an iterator over the data points * @return an iterator over the data points */ public Iterator iterator() { return this.dataPoints.values().iterator(); } /** * returns a collection of the data points. the collection supports removal, but does not support adding of data points. * @return a collection of data points */ public Collection getDataPoints() { return this.dataPoints.values(); } /** * returns the number of data points in the series * @return the number of data points */ public int getSize() { return this.dataPoints.size(); } /** * adds a PropertyChangeListener * @param listener - the listener */ public void addPropertyChangeListener(PropertyChangeListener listener) { this.propertyChangeSupport.addPropertyChangeListener(listener); } /** * removes a PropertyChangeListener * @param listener - the listener */ public void removePropertyChangeListener(PropertyChangeListener listener) { this.propertyChangeSupport.removePropertyChangeListener(listener); } } package at.onscreen.chart; import java.beans.PropertyVetoException; import java.util.Collection; import java.util.Iterator; import com.jgoodies.binding.PresentationModel; public class DataSeriesViewModel extends PresentationModel { /** * default constructor */ public DataSeriesViewModel() { super(new DataSeriesModel()); } /** * constructor * @param label - the series label */ public DataSeriesViewModel(String label) { super(new DataSeriesModel(label)); } /** * full constructor * @param label - the series label * @param dataPoints - an array of data points */ public DataSeriesViewModel(String label, DataPoint[] dataPoints) { super(new DataSeriesModel(label, dataPoints)); } /** * full constructor * @param label - the series label * @param dataPoints - a collection of data points */ public DataSeriesViewModel(String label, Collection dataPoints) { super(new DataSeriesModel(label, dataPoints)); } /** * full constructor * @param model - the data series model */ public DataSeriesViewModel(DataSeriesModel model) { super(model); } /** * adds a data point to the series * @param dataPoint - the data point */ public void addDataPoint(DataPoint dataPoint) { this.getBean().addDataPoint(dataPoint); } /** * returns true if there is a data point with given category * @param category - the data point category * @return true if there is a data point with given category, otherwise false */ public boolean contains(String category) { return this.getBean().contains(category); } /** * returns the data point with given id or null if not found * @param uid - the id of the data point * @return the data point or null if there is no such point in the table */ public DataPoint getDataPoint(String category) { return this.getBean().getDataPoint(category); } /** * returns a collection of the data points. the collection supports removal, but does not support adding of data points. * @return a collection of data points */ public Collection getDataPoints() { return this.getBean().getDataPoints(); } /** * returns the label for the series * @return the label for the series */ public String getLabel() { return this.getBean().getLabel(); } /** * sets the max value * @param maxValue - the max value */ public Double getMaxValue() { return this.getBean().getMaxValue(); } /** * returns the number of data points in the series * @return the number of data points */ public int getSize() { return this.getBean().getSize(); } /** * returns an iterator over the data points * @return an iterator over the data points */ public Iterator iterator() { return this.getBean().iterator(); } /** * removes all data points from the series * @throws PropertyVetoException */ public void removeAll() { this.getBean().removeAll(); } /** * removes the data point with given id from the series, if present * @param category - the data point to remove */ public void removeDataPoint(String category) { this.getBean().removeDataPoint(category); } } package at.onscreen.chart; import java.beans.PropertyChangeEvent; import java.beans.PropertyChangeListener; import java.beans.PropertyVetoException; import java.util.Collection; import java.util.Iterator; import javax.swing.JComponent; public abstract class DataSeries extends JComponent implements PropertyChangeListener { /** * the model */ private DataSeriesViewModel model; /** * default constructor */ public DataSeries() { this.model = new DataSeriesViewModel(); this.model.addPropertyChangeListener(this); this.createComponents(); } /** * constructor * @param label - the series label */ public DataSeries(String label) { this.model = new DataSeriesViewModel(label); this.model.addPropertyChangeListener(this); this.createComponents(); } /** * full constructor * @param label - the series label * @param dataPoints - an array of data points */ public DataSeries(String label, DataPoint[] dataPoints) { this.model = new DataSeriesViewModel(label, dataPoints); this.model.addPropertyChangeListener(this); this.createComponents(); } /** * full constructor * @param label - the series label * @param dataPoints - a collection of data points */ public DataSeries(String label, Collection dataPoints) { this.model = new DataSeriesViewModel(label, dataPoints); this.model.addPropertyChangeListener(this); this.createComponents(); } /** * full constructor * @param model - the model */ public DataSeries(DataSeriesViewModel model) { this.model = model; this.model.addPropertyChangeListener(this); this.createComponents(); } /** * creates, binds and configures UI components. * data point properties can be created here as components or be painted in paintComponent. */ protected abstract void createComponents(); @Override public void propertyChange(PropertyChangeEvent evt) { this.repaint(); } /** * adds a data point to the series * @param dataPoint - the data point */ public void addDataPoint(DataPoint dataPoint) { this.model.addDataPoint(dataPoint); } /** * returns true if there is a data point with given category * @param category - the data point category * @return true if there is a data point with given category, otherwise false */ public boolean contains(String category) { return this.model.contains(category); } /** * returns the data point with given id or null if not found * @param uid - the id of the data point * @return the data point or null if there is no such point in the table */ public DataPoint getDataPoint(String category) { return this.model.getDataPoint(category); } /** * returns a collection of the data points. the collection supports removal, but does not support adding of data points. * @return a collection of data points */ public Collection getDataPoints() { return this.model.getDataPoints(); } /** * returns the label for the series * @return the label for the series */ public String getLabel() { return this.model.getLabel(); } /** * sets the max value * @param maxValue - the max value */ public Double getMaxValue() { return this.model.getMaxValue(); } /** * returns the number of data points in the series * @return the number of data points */ public int getDataPointCount() { return this.model.getSize(); } /** * returns an iterator over the data points * @return an iterator over the data points */ public Iterator iterator() { return this.model.iterator(); } /** * removes all data points from the series * @throws PropertyVetoException */ public void removeAll() { this.model.removeAll(); } /** * removes the data point with given id from the series, if present * @param category - the data point to remove */ public void removeDataPoint(String category) { this.model.removeDataPoint(category); } /** * returns the data series view model * @return - the data series view model */ public DataSeriesViewModel getViewModel() { return this.model; } /** * returns the data series model * @return - the data series model */ public DataSeriesModel getModel() { return this.model.getBean(); } } package at.onscreen.chart.builder; import java.util.Collection; import net.miginfocom.swing.MigLayout; import at.onscreen.chart.DataPoint; import at.onscreen.chart.DataSeries; import at.onscreen.chart.DataSeriesViewModel; public class BuilderDataSeries extends DataSeries { /** * default constructor */ public BuilderDataSeries() { super(); } /** * constructor * @param label - the series label */ public BuilderDataSeries(String label) { super(label); } /** * full constructor * @param label - the series label * @param dataPoints - an array of data points */ public BuilderDataSeries(String label, DataPoint[] dataPoints) { super(label, dataPoints); } /** * full constructor * @param label - the series label * @param dataPoints - a collection of data points */ public BuilderDataSeries(String label, Collection dataPoints) { super(label, dataPoints); } /** * full constructor * @param model - the model */ public BuilderDataSeries(DataSeriesViewModel model) { super(model); } @Override protected void createComponents() { this.setLayout(new MigLayout()); /* * * I want to add a new BuilderDataPoint for each data point in the model. * I want the BuilderDataPoints to be synchronized with the model. * e.g. when a data point is removed from the model, the BuilderDataPoint shall be removed * from the BuilderDataSeries * */ } } package at.onscreen.chart.builder; import javax.swing.JFormattedTextField; import javax.swing.JTextField; import at.onscreen.chart.DataPoint; import at.onscreen.chart.DataPointModel; import at.onscreen.chart.DataPointViewModel; import at.onscreen.chart.ValueFormat; import com.jgoodies.binding.adapter.BasicComponentFactory; import com.jgoodies.binding.beans.BeanAdapter; public class BuilderDataPoint extends DataPoint { /** * default constructor */ public BuilderDataPoint() { super(); } /** * constructor * @param category - the category */ public BuilderDataPoint(String category) { super(category); } /** * constructor * @param value - the value * @param label - the label * @param category - the category */ public BuilderDataPoint(Double value, String label, String category) { super(value, label, category); } /** * full constructor * @param model - the model */ public BuilderDataPoint(DataPointViewModel model) { super(model); } @Override protected void createComponents() { BeanAdapter beanAdapter = new BeanAdapter(this.getModel(), true); ValueFormat format = new ValueFormat(); JFormattedTextField value = BasicComponentFactory.createFormattedTextField(beanAdapter.getValueModel(DataPointModel.PROPERTY_VALUE), format); this.add(value, "w 80, growx, wrap"); JTextField label = BasicComponentFactory.createTextField(beanAdapter.getValueModel(DataPointModel.PROPERTY_LABEL)); this.add(label, "growx, wrap"); JTextField category = BasicComponentFactory.createTextField(beanAdapter.getValueModel(DataPointModel.PROPERTY_CATEGORY)); this.add(category, "growx, wrap"); } } To sum it up: I need to know how to bind a hash map property to JComponent.components property. JGoodies is in my opinion not very well documented, I spent a long time searching through the internet, but I did not find any solution to my problem. Hope you can help me.

    Read the article

  • Problems Allocating Objects of Derived Class Where Base Class has Abstract Virtual Functions

    - by user1743901
    I am trying to get this Zombie/Human agent based simulation running, but I am having problems with these derived classes (Human and Zombie) who have parent class "Creature". I have 3 virtual functions declared in "Creature" and all three of these are re-declared AND DEFINED in both "Human" and "Zombie". But for some reason when I have my program call "new" to allocate memory for objects of type Human or Zombie, it complains about the virtual functions being abstract. Here's the code: definitions.h #ifndef definitions_h #define definitions_h class Creature; class Item; class Coords; class Grid { public: Creature*** cboard; Item*** iboard; int WIDTH; int HEIGHT; Grid(int WIDTHVALUE, int HEIGHTVALUE); void FillGrid(); //initializes grid object with humans and zombies void Refresh(); //calls Creature::Die(),Move(),Attack(),Breed() on every square void UpdateBuffer(char** buffer); bool isEmpty(int startx, int starty, int dir); char CreatureType(int xcoord, int ycoord); char CreatureType(int startx, int starty, int dir); }; class Random { public: int* rptr; void Print(); Random(int MIN, int MAX, int LEN); ~Random(); private: bool alreadyused(int checkthis, int len, int* rptr); bool isClean(); int len; }; class Coords { public: int x; int y; int MaxX; int MaxY; Coords() {x=0; y=0; MaxX=0; MaxY=0;} Coords(int X, int Y, int WIDTH, int HEIGHT) {x=X; y=Y; MaxX=WIDTH; MaxY=HEIGHT; } void MoveRight(); void MoveLeft(); void MoveUp(); void MoveDown(); void MoveUpRight(); void MoveUpLeft(); void MoveDownRight(); void MoveDownLeft(); void MoveDir(int dir); void setx(int X) {x=X;} void sety(int Y) {y=Y;} }; class Creature { public: bool alive; Coords Location; char displayletter; Creature() {Location.x=0; Location.y=0;} Creature(int i, int j) {Location.setx(i); Location.sety(j);} virtual void Attack() =0; virtual void AttackCreature(Grid G, int attackdirection) =0; virtual void Breed() =0; void Die(); void Move(Grid G); int DecideSquare(Grid G); void MoveTo(Grid G, int dir); }; class Human : public Creature { public: bool armed; //if armed, chances of winning fight increased for next fight bool vaccinated; //if vaccinated, no chance of getting infected int bitecount; //if a human is bitten, bite count is set to a random number int breedcount; //if a human goes x steps without combat, will breed if next to a human int starvecount; //if a human does not eat in x steps, will die Human() {displayletter='H';} Human(int i, int j) {displayletter='H';} void Attack(Grid G); void AttackCreature(Grid G, int attackdirection); void Breed(Grid G); //will breed after x steps and next to human int DecideAttack(Grid G); }; class Zombie : public Creature { public: Zombie() {displayletter='Z';} Zombie(int i, int j) {displayletter='Z';} void Attack(Grid G); void AttackCreature(Grid G, int attackdirection); void Breed() {} //does nothing int DecideAttack(Grid G); void AttackCreature(Grid G, int attackdirection); }; class Item { }; #endif definitions.cpp #include <cstdlib> #include "definitions.h" Random::Random(int MIN, int MAX, int LEN) //constructor { len=LEN; rptr=new int[LEN]; //allocate array of given length for (int i=0; i<LEN; i++) { int random; do { random = rand() % (MAX-MIN+1) + MIN; } while (alreadyused(random,LEN,rptr)); rptr[i]=random; } } bool Random::alreadyused(int checkthis, int len, int* rptr) { for (int i=0; i<len; i++) { if (rptr[i]==checkthis) return 1; } return 0; } Random::~Random() { delete rptr; } Grid::Grid(int WIDTHVALUE, int HEIGHTVALUE) { WIDTH = WIDTHVALUE; HEIGHT = HEIGHTVALUE; //builds 2d array of creature pointers cboard = new Creature**[WIDTH]; for(int i=0; i<WIDTH; i++) { cboard[i] = new Creature*[HEIGHT]; } //builds 2d array of item pointers iboard = new Item**[WIDTH]; for (int i=0; i<WIDTH; i++) { iboard[i] = new Item*[HEIGHT]; } } void Grid::FillGrid() { /* For each creature pointer in grid, randomly selects whether to initalize as zombie, human, or empty square. This methodology can be changed to initialize different creature types with different probabilities */ int random; for (int i=0; i<WIDTH; i++) { for (int j=0; j<HEIGHT; j++) { Random X(1,100,1); //create a single random integer from [1,100] at X.rptr random=*(X.rptr); if (random < 20) cboard[i][j] = new Human(i,j); else if (random < 40) cboard[i][j] = new Zombie(i,j); else cboard[i][j] = NULL; } } //at this point every creature pointer should be pointing to either //a zombie, human, or NULL with varying probabilities } void Grid::UpdateBuffer(char** buffer) { for (int i=0; i<WIDTH; i++) { for (int j=0; j<HEIGHT; j++) { if (cboard[i][j]) buffer[i][j]=cboard[i][j]->displayletter; else buffer[i][j]=' '; } } } bool Grid::isEmpty(int startx, int starty, int dir) { Coords StartLocation(startx,starty,WIDTH,HEIGHT); switch(dir) { case 1: StartLocation.MoveUp(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 2: StartLocation.MoveUpRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 3: StartLocation.MoveRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 4: StartLocation.MoveDownRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 5: StartLocation.MoveDown(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 6: StartLocation.MoveDownLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 7: StartLocation.MoveLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 8: StartLocation.MoveUpLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; } return 1; } char Grid::CreatureType(int xcoord, int ycoord) { if (cboard[xcoord][ycoord]) //if there is a creature at location xcoord,ycoord return (cboard[xcoord][ycoord]->displayletter); else //if pointer at location xcoord,ycoord is null, return null char return '\0'; } char Grid::CreatureType(int startx, int starty, int dir) { Coords StartLocation(startx,starty,WIDTH,HEIGHT); switch(dir) { case 1: StartLocation.MoveUp(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 2: StartLocation.MoveUpRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 3: StartLocation.MoveRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 4: StartLocation.MoveDownRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 5: StartLocation.MoveDown(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 6: StartLocation.MoveDownLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 7: StartLocation.MoveLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 8: StartLocation.MoveUpLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); } //if function hasn't returned by now, square being looked at is pointer to null return '\0'; //return null char } void Coords::MoveRight() {(x==MaxX)? (x=0):(x++);} void Coords::MoveLeft() {(x==0)? (x=MaxX):(x--);} void Coords::MoveUp() {(y==0)? (y=MaxY):(y--);} void Coords::MoveDown() {(y==MaxY)? (y=0):(y++);} void Coords::MoveUpRight() {MoveUp(); MoveRight();} void Coords::MoveUpLeft() {MoveUp(); MoveLeft();} void Coords::MoveDownRight() {MoveDown(); MoveRight();} void Coords::MoveDownLeft() {MoveDown(); MoveLeft();} void Coords::MoveDir(int dir) { switch(dir) { case 1: MoveUp(); break; case 2: MoveUpRight(); break; case 3: MoveRight(); break; case 4: MoveDownRight(); break; case 5: MoveDown(); break; case 6: MoveDownLeft(); break; case 7: MoveLeft(); break; case 8: MoveUpLeft(); break; case 0: break; } } void Creature::Move(Grid G) { int movedir=DecideSquare(G); MoveTo(G,movedir); } int Creature::DecideSquare(Grid G) { Random X(1,8,8); //X.rptr now points to 8 unique random integers from [1,8] for (int i=0; i<8; i++) { int dir=X.rptr[i]; if (G.isEmpty(Location.x,Location.y,dir)) return dir; } return 0; } void Creature::MoveTo(Grid G, int dir) { Coords OldLocation=Location; Location.MoveDir(dir); G.cboard[Location.x][Location.y]=this; //point new location to this creature G.cboard[OldLocation.x][OldLocation.y]=NULL; //point old location to NULL } void Creature::Die() { if (!alive) { delete this; this=NULL; } } void Human::Breed(Grid G) { if (!breedcount) { Coords BreedLocation=Location; Random X(1,8,8); for (int i=0; i<8; i++) { BreedLocation.MoveDir(X.rptr[i]); if (!G.cboard[BreedLocation.x][BreedLocation.y]) { G.cboard[BreedLocation.x][BreedLocation.y])=new Human(BreedLocation.x,BreedLocation.y); return; } } } } int Human::DecideAttack(Grid G) { Coords AttackLocation=Location; Random X(1,8,8); int attackdir; for (int i=0; i<8; i++) { attackdir=X.rptr[i]; switch(G.CreatureType(Location.x,Location.y,attackdir)) { case 'H': break; case 'Z': return attackdir; case '\0': break; default: break; } } return 0; //no zombies! } int AttackRoll(int para1, int para2) { //outcome 1: Zombie wins, human dies //outcome 2: Human wins, zombie dies //outcome 3: Human wins, zombie dies, but human is bitten Random X(1,100,1); int roll= *(X.rptr); if (roll < para1) return 1; else if (roll < para2) return 2; else return 3; } void Human::AttackCreature(Grid G, int attackdirection) { Coords AttackLocation=Location; AttackLocation.MoveDir(attackdirection); int para1=33; int para2=33; if (vaccinated) para2=101; //makes attackroll > para 2 impossible, never gets infected if (armed) para1-=16; //reduces chance of zombie winning fight int roll=AttackRoll(para1,para2); //outcome 1: Zombie wins, human dies //outcome 2: Human wins, zombie dies //outcome 3: Human wins, zombie dies, but human is bitten switch(roll) { case 1: alive=0; //human (this) dies return; case 2: G.cboard[AttackLocation.x][AttackLocation.y]->alive=0; return; //zombie dies case 3: G.cboard[AttackLocation.x][AttackLocation.y]->alive=0; //zombie dies Random X(3,7,1); //human is bitten bitecount=*(X.rptr); return; } } int Zombie::DecideAttack(Grid G) { Coords AttackLocation=Location; Random X(1,8,8); int attackdir; for (int i=0; i<8; i++) { attackdir=X.rptr[i]; switch(G.CreatureType(Location.x,Location.y,attackdir)) { case 'H': return attackdir; case 'Z': break; case '\0': break; default: break; } } return 0; //no zombies! } void Zombie::AttackCreature(Grid G, int attackdirection) { int reversedirection; if (attackdirection < 9 && attackdirection>0) { (attackdirection<5)? (reversedirection=attackdirection+4):(reversedirection=attackdirection-4); } else reversedirection=0; //this should never happen //when a zombie attacks a human, the Human::AttackZombie() function is called //in the "reverse" direction, utilizing that function that has already been written Coords ZombieLocation=Location; Coords HumanLocation=Location; HumanLocation.MoveDir(attackdirection); if (G.cboard[HumanLocation.x][HumanLocation.y]) //if there is a human there, which there should be G.cboard[HumanLocation.x][HumanLocation.y]->AttackCreature(G,reversedirection); } void Zombie::Attack(Grid G) { int attackdirection=DecideAttack(G); AttackCreature(G,attackdirection); } main.cpp #include <cstdlib> #include <iostream> #include "definitions.h" using namespace std; int main(int argc, char *argv[]) { Grid G(500,500); system("PAUSE"); return EXIT_SUCCESS; }

    Read the article

  • How to create managed properties at site collection level in SharePoint2013

    - by ybbest
    In SharePoint2013, you can create managed properties at site collection. Today, I’d like to show you how to do so through PowerShell. 1. Define your managed properties and crawled properties and managed property Type in an external csv file. PowerShell script will read this file and create the managed and the mapping. 2. As you can see I also defined variant Type, this is because you need the variant type to create the crawled property. In order to have the crawled properties, you need to do a full crawl and also make sure you have data populated for your custom column. However, if you do not want to a full crawl to create those crawled properties, you can create them yourself by using the PowerShell; however you need to make sure the crawled properties you created have the same name if created by a full crawl. Managed properties type: Text = 1 Integer = 2 Decimal = 3 DateTime = 4 YesNo = 5 Binary = 6 Variant Type: Text = 31 Integer = 20 Decimal = 5 DateTime = 64 YesNo = 11 3. You can use the following script to create your managed properties at site collection level, the differences for creating managed property at site collection level is to pass in the site collection id. param( [string] $siteUrl="http://SP2013/", [string] $searchAppName = "Search Service Application", $ManagedPropertiesList=(IMPORT-CSV ".\ManagedProperties.csv") ) Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue $searchapp = $null function AppendLog { param ([string] $msg, [string] $msgColor) $currentDateTime = Get-Date $msg = $msg + " --- " + $currentDateTime if (!($logOnly -eq $True)) { # write to console Write-Host -f $msgColor $msg } # write to log file Add-Content $logFilePath $msg } $scriptPath = Split-Path $myInvocation.MyCommand.Path $logFilePath = $scriptPath + "\CreateManagedProperties_Log.txt" function CreateRefiner {param ([string] $crawledName, [string] $managedPropertyName, [Int32] $variantType, [Int32] $managedPropertyType,[System.GUID] $siteID) $cat = Get-SPEnterpriseSearchMetadataCategory –Identity SharePoint -SearchApplication $searchapp $crawledproperty = Get-SPEnterpriseSearchMetadataCrawledProperty -Name $crawledName -SearchApplication $searchapp -SiteCollection $siteID if($crawledproperty -eq $null) { Write-Host AppendLog "Creating Crawled Property for $managedPropertyName" Yellow $crawledproperty = New-SPEnterpriseSearchMetadataCrawledProperty -SearchApplication $searchapp -VariantType $variantType -SiteCollection $siteID -Category $cat -PropSet "00130329-0000-0130-c000-000000131346" -Name $crawledName -IsNameEnum $false } $managedproperty = Get-SPEnterpriseSearchMetadataManagedProperty -Identity $managedPropertyName -SearchApplication $searchapp -SiteCollection $siteID -ErrorAction SilentlyContinue if($managedproperty -eq $null) { Write-Host AppendLog "Creating Managed Property for $managedPropertyName" Yellow $managedproperty = New-SPEnterpriseSearchMetadataManagedProperty -Name $managedPropertyName -Type $managedPropertyType -SiteCollection $siteID -SearchApplication $searchapp -Queryable:$true -Retrievable:$true -FullTextQueriable:$true -RemoveDuplicates:$false -RespectPriority:$true -IncludeInMd5:$true } $mappedProperty = $crawledproperty.GetMappedManagedProperties() | ?{$_.Name -eq $managedProperty.Name } if($mappedProperty -eq $null) { Write-Host AppendLog "Creating Crawled -> Managed Property mapping for $managedPropertyName" Yellow New-SPEnterpriseSearchMetadataMapping -CrawledProperty $crawledproperty -ManagedProperty $managedproperty -SearchApplication $searchapp -SiteCollection $siteID } $mappedProperty = $crawledproperty.GetMappedManagedProperties() | ?{$_.Name -eq $managedProperty.Name } #Get-FASTSearchMetadataCrawledPropertyMapping -ManagedProperty $managedproperty } $searchapp = Get-SPEnterpriseSearchServiceApplication $searchAppName $site= Get-SPSite $siteUrl $siteId=$site.id Write-Host "Start creating Managed properties" $i = 1 FOREACH ($property in $ManagedPropertiesList) { $propertyName=$property.managedPropertyName $crawledName=$property.crawledName $managedPropertyType=$property.managedPropertyType $variantType=$property.variantType Write-Host $managedPropertyType Write-Host "Processing managed property $propertyName $($i)..." $i++ CreateRefiner $crawledName $propertyName $variantType $managedPropertyType $siteId Write-Host "Managed property created " $propertyName } Key Concepts Crawled Properties: Crawled properties are discovered by the search index service component when crawling content. Managed Properties: Properties that are part of the Search user experience, which means they are available for search results, advanced search, and so on, are managed properties. Mapping Crawled Properties to Managed Properties: To make a crawled property available for the Search experience—to make it available for Search queries and display it in Advanced Search and search results—you must map it to a managed property. References Administer search in SharePoint 2013 Preview Managing Metadata New-SPEnterpriseSearchMetadataCrawledProperty New-SPEnterpriseSearchMetadataManagedProperty Remove-SPEnterpriseSearchMetadataManagedProperty Overview of crawled and managed properties in SharePoint 2013 Preview Remove-SPEnterpriseSearchMetadataManagedProperty SharePoint 2013 – Search Service Application

    Read the article

  • Thinktecture.IdentityModel: Comparing Strings without leaking Timinig Information

    - by Your DisplayName here!
    Paul Hill commented on a recent post where I was comparing HMACSHA256 signatures. In a nutshell his complaint was that I am leaking timing information while doing so – or in other words, my code returned faster with wrong (or partially wrong) signatures than with the correct signature. This can be potentially used for timing attacks like this one. I think he got a point here, especially in the era of cloud computing where you can potentially run attack code on the same physical machine as your target to do high resolution timing analysis (see here for an example). It turns out that it is not that easy to write a time-constant string comparer due to all sort of (unexpected) clever optimization mechanisms in the CLR. With the help and feedback of Paul and Shawn I came up with this: Structure the code in a way that the CLR will not try to optimize it In addition turn off optimization (just in case a future version will come up with new optimization methods) Add a random sleep when the comparison fails (using Shawn’s and Stephen’s nice Random wrapper for RNGCryptoServiceProvider). You can find the full code in the Thinktecture.IdentityModel download. [MethodImpl(MethodImplOptions.NoOptimization)] public static bool IsEqual(string s1, string s2) {     if (s1 == null && s2 == null)     {         return true;     }       if (s1 == null || s2 == null)     {         return false;     }       if (s1.Length != s2.Length)     {         return false;     }       var s1chars = s1.ToCharArray();     var s2chars = s2.ToCharArray();       int hits = 0;     for (int i = 0; i < s1.Length; i++)     {         if (s1chars[i].Equals(s2chars[i]))         {             hits += 2;         }         else         {             hits += 1;         }     }       bool same = (hits == s1.Length * 2);       if (!same)     {         var rnd = new CryptoRandom();         Thread.Sleep(rnd.Next(0, 10));     }       return same; }

    Read the article

  • Algorithm for querying linearly through a non-linear list of questions

    - by JoshLeaves
    For a multiplayers trivia game, I need to supply my users with a new quizz in a desired subject (Science, Maths, Litt. and such) at the start of every game. I've generated about 5K quizzes for each subject and filled my database with them. So my 'Quizzes' database looks like this: |ID |Subject |Question +-----+------------+---------------------------------- | 23 |Science | What's water? | 42 |Maths | What's 2+2? | 99 |Litt. | Who wrote "Pride and Prejudice"? | 123 |Litt. | Who wrote "On The Road"? | 146 |Maths | What's 2*2? | 599 |Science | You know what's cool? |1042 |Maths | What's the Fibonacci Sequence? |1056 |Maths | What's 42? And so on... (Much more detailed/complex but I'll keep the exemple simple) As you can see, due to technical constraints (MongoDB), my IDs are not linear but I can use them as an increasing suite. So far, my algorithm to ensure two users get a new quizz when they play together is the following: // Take the last played quizzes by P1 and P2 var q_one = player_one.getLastPlayedQuizz('Maths'); var q_two = player_two.getLastPlayedQuizz('Maths'); // If both of them never played in the subject, return first quizz in the list if ((q_one == NULL) && (q_two == NULL)) return QuizzDB.findOne({subject: 'Maths'}); // If one of them never played, play the next quizz for the other player // This quizz is found by asking for the first quizz in the desired subject where // the ID is greater than the last played quizz's ID (if the last played quizz ID // is 42, this will return 146 following the above example database) if (q_one == NULL) return QuizzDB.findOne({subject: 'Maths', ID > q_two}); if (q_two == NULL) return QuizzDB.findOne({subject: 'Maths', ID > q_one}); // And if both of them have a lastPlayedQuizz, we return the next quizz for the // player whose lastPlayedQuizz got the higher ID if (q_one > q_two) return QuizzDB.findOne({subject: 'Maths', ID > q_one}); else return QuizzDB.findOne({subject: 'Maths', ID > q_two}); Now here comes the real problem: Once I get to the end of my database (let's say, P1's last played quizz in 'Maths' is 1056, P2's is 146 and P3 is 1042), following my algorithm, P1's ID is the highest so I ask for the next question in 'Maths' where ID is superior to 1056. There is nothing, so I roll back to the beginning of my quizz list (with a random skipper to avoid having the first question always show up). P1 and P2's last played will then be 42 and they will start fresh from the beginning of the list. However, if P1 (42) plays against P3 (1042), the resulting ID will be 1056...which P1 already played two games ago. Basically, players who just "rolled back" to the beginning of the list will be brought back to the end of the list by players who still haven't rolled back. The rollback WILL happen in the end, but it'll take time and there'll be a "bottleneck" at the beginning and at the end. Thus my question: What would be the best algorith to avoid this bottleneck and ensure players don't get stuck endlessly on the same quizzes? Also bear in mind that I've got some technical constraints: I can't get a random question in a subject (ie: no "QuizzDB.findOne({subject: 'Maths'}).skip(random());"). It's cool to skip on one to twenty records, but the MongoDB documentation warns against skipping too many documents. I would like to avoid building an array of every quizz played by each player and find the next non-played in the database with a $nin. Thanks for your help

    Read the article

  • SQLAuthority News – Monthly list of Puzzles and Solutions on SQLAuthority.com

    - by pinaldave
    This month has been very interesting month for SQLAuthority.com we had multiple and various puzzles which everybody participated and lots of interesting conversation which we have shared. Let us start in latest puzzles and continue going down. There are few answers also posted on facebook as well. SQL SERVER – Puzzle Involving NULL – Resolve – Error – Operand data type void type is invalid for sum operator This puzzle involves NULL and throws an error. The challenge is to resolve the error. There are multiple ways to resolve this error. Readers has contributed various methods. Few of them even have supplied the answer why this error is showing up. NULL are very important part of the database and if one of the column has NULL the result can be totally different than the one expected. SQL SERVER – T-SQL Scripts to Find Maximum between Two Numbers I modified script provided by friend to find greatest number between two number. My script has small bug in it. However, lots of readers have suggested better scripts. Madhivanan has written blog post on the subject over here. SQL SERVER – BI Quiz Hint – Performance Tuning Cubes – Hints This quiz is hosted on my friend Jacob‘s site. I have written many hints how one can tune cubes. Now one can take part here and win exciting prizes. SQL SERVER – Solution – Generating Zero Without using Any Numbers in T-SQL Madhivanan has asked very interesting question on his blog about How to Generate Zero without using Any Numbers in T-SQL. He has demonstrated various methods how one can generate Zero. I asked the same question on blog and got many interesting answers which I have shared. SQL SERVER – Solution – Puzzle – Statistics are not Updated but are Created Once I have to accept that this was most difficult puzzle. In this puzzle I have asked even though settings are correct, why statistics of the tables are not getting updated. In this puzzle one is tested with various concepts 1) Indexes, 2) Statistics, 3) database settings etc. There are multiple ways of solving this puzzles. It was interesting as many took interest but only few got it right. SQL SERVER – Question to You – When to use Function and When to use Stored Procedure This is rather straight forward question and not the typical puzzle. The answers from readers are great however, still there is chance of more detailed answers. SQL SERVER – Selecting Domain from Email Address I wrote on selecting domains from email addresses. Madhivanan makes puzzle out of a simple question. He wrote a follow-up post over here. In his post he writes various way how one can find email addresses from list of domains. Well, this is not a puzzle but amazing Guest Post by Feodor Georgiev who has written on subject Job Interviewing the Right Way (and for the Right Reasons). An article which everyone should read. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • FTP Upload ftpWebRequest Proxy

    - by Rodney Vinyard
    Searchable:   FTP Upload ftpWebRequest Proxy FTP command is not supported when using HTTP proxy     In the article below I will cover 2 topics   1.       C# & Windows Command-Line FTP Upload with No Proxy Server   2.       C# & Windows Command-Line FTP Upload with Proxy Server   Not covered here: Secure FTP / SFTP   Sample Attributes: ·         UploadFilePath = “\\servername\folder\file.name” ·         Proxy Server = “ftp://proxy.server/” ·         FTP Target Server = ftp.target.com ·         FTP User = “User” ·         FTP Password = “Password” with No Proxy Server ·         Windows Command-Line > ftp ftp.target.com > ftp User: User > ftp Password: Password > ftp put \\servername\folder\file.name > ftp dir           (result: file.name listed) > ftp del file.name > ftp dir           (result: file.name deleted) > ftp quit   ·         C#   //----------------- //Start FTP via _TargetFtpProxy //----------------- string relPath = Path.GetFileName(\\servername\folder\file.name);   //result: relPath = “file.name”   FtpWebRequest ftpWebRequest = (FtpWebRequest)WebRequest.Create("ftp.target.com/file.name); ftpWebRequest.Method = WebRequestMethods.Ftp.UploadFile;   //----------------- //user - password //----------------- ftpWebRequest.Credentials = new NetworkCredential("user, "password");   //----------------- // set proxy = null! //----------------- ftpWebRequest.Proxy = null;   //----------------- // Copy the contents of the file to the request stream. //----------------- StreamReader sourceStream = new StreamReader(“\\servername\folder\file.name”);   byte[] fileContents = Encoding.UTF8.GetBytes(sourceStream.ReadToEnd()); sourceStream.Close(); ftpWebRequest.ContentLength = fileContents.Length;     //----------------- // transer the stream stream. //----------------- Stream requestStream = ftpWebRequest.GetRequestStream(); requestStream.Write(fileContents, 0, fileContents.Length); requestStream.Close();   //----------------- // Look at the response results //----------------- FtpWebResponse response = (FtpWebResponse)ftpWebRequest.GetResponse();   Console.WriteLine("Upload File Complete, status {0}", response.StatusDescription);   with Proxy Server ·         Windows Command-Line > ftp proxy.server > ftp User: [email protected] > ftp Password: Password > ftp put \\servername\folder\file.name > ftp dir           (result: file.name listed) > ftp del file.name > ftp dir           (result: file.name deleted) > ftp quit   ·         C#   //----------------- //Start FTP via _TargetFtpProxy //----------------- string relPath = Path.GetFileName(\\servername\folder\file.name);   //result: relPath = “file.name”   FtpWebRequest ftpWebRequest = (FtpWebRequest)WebRequest.Create("ftp://proxy.server/" + relPath); ftpWebRequest.Method = WebRequestMethods.Ftp.UploadFile;   //----------------- //user - password //----------------- ftpWebRequest.Credentials = new NetworkCredential("[email protected], "password");   //----------------- // set proxy = null! //----------------- ftpWebRequest.Proxy = null;   //----------------- // Copy the contents of the file to the request stream. //----------------- StreamReader sourceStream = new StreamReader(“\\servername\folder\file.name”);   byte[] fileContents = Encoding.UTF8.GetBytes(sourceStream.ReadToEnd()); sourceStream.Close(); ftpWebRequest.ContentLength = fileContents.Length;     //----------------- // transer the stream stream. //----------------- Stream requestStream = ftpWebRequest.GetRequestStream(); requestStream.Write(fileContents, 0, fileContents.Length); requestStream.Close();   //----------------- // Look at the response results //----------------- FtpWebResponse response = (FtpWebResponse)ftpWebRequest.GetResponse();   Console.WriteLine("Upload File Complete, status {0}", response.StatusDescription);

    Read the article

  • SQL SERVER – Introduction to LEAD and LAG – Analytic Functions Introduced in SQL Server 2012

    - by pinaldave
    SQL Server 2012 introduces new analytical function LEAD() and LAG(). This functions accesses data from a subsequent row (for lead) and previous row (for lag) in the same result set without the use of a self-join . It will be very difficult to explain this in words so I will attempt small example to explain you this function. Instead of creating new table, I will be using AdventureWorks sample database as most of the developer uses that for experiment. Let us fun following query. USE AdventureWorks GO SELECT s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty, LEAD(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID ) LeadValue, LAG(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID ) LagValue FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty GO Above query will give us following result. When we look at above resultset it is very clear that LEAD function gives us value which is going to come in next line and LAG function gives us value which was encountered in previous line. If we have to generate the same result without using this function we will have to use self join. In future blog post we will see the same. Let us explore this function a bit more. This function not only provide previous or next line but it can also access any line before or after using offset. Let us fun following query, where LEAD and LAG function accesses the row with offset of 2. USE AdventureWorks GO SELECT s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty, LEAD(SalesOrderDetailID,2) OVER (ORDER BY SalesOrderDetailID ) LeadValue, LAG(SalesOrderDetailID,2) OVER (ORDER BY SalesOrderDetailID ) LagValue FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty GO Above query will give us following result. You can see the LEAD and LAG functions  now have interval of  rows when they are returning results. As there is interval of two rows the first two rows in LEAD function and last two rows in LAG function will return NULL value. You can easily replace this NULL Value with any other default value by passing third parameter in LEAD and LAG function. Let us fun following query. USE AdventureWorks GO SELECT s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty, LEAD(SalesOrderDetailID,2,0) OVER (ORDER BY SalesOrderDetailID ) LeadValue, LAG(SalesOrderDetailID,2,0) OVER (ORDER BY SalesOrderDetailID ) LagValue FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty GO Above query will give us following result, where NULL are now replaced with value 0. Just like any other analytic function we can easily partition this function as well. Let us see the use of PARTITION BY in this clause. USE AdventureWorks GO SELECT s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty, LEAD(SalesOrderDetailID) OVER (PARTITION BY SalesOrderID ORDER BY SalesOrderDetailID ) LeadValue, LAG(SalesOrderDetailID) OVER (PARTITION BY SalesOrderID ORDER BY SalesOrderDetailID ) LagValue FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty GO Above query will give us following result, where now the data is partitioned by SalesOrderID and LEAD and LAG functions are returning the appropriate result in that window. As now there are smaller partition in my query, you will see higher presence of NULL. In future blog post we will see how this functions are compared to SELF JOIN. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Function, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to create managed properties at site collection level in SharePoint2013

    - by ybbest
    In SharePoint2013, you can create managed properties at site collection. Today, I’d like to show you how to do so through PowerShell. 1. Define your managed properties and crawled properties and managed property Type in an external csv file. PowerShell script will read this file and create the managed and the mapping. 2. As you can see I also defined variant Type, this is because you need the variant type to create the crawled property. In order to have the crawled properties, you need to do a full crawl and also make sure you have data populated for your custom column. However, if you do not want to a full crawl to create those crawled properties, you can create them yourself by using the PowerShell; however you need to make sure the crawled properties you created have the same name if created by a full crawl. Managed properties type: Text = 1 Integer = 2 Decimal = 3 DateTime = 4 YesNo = 5 Binary = 6 Variant Type: Text = 31 Integer = 20 Decimal = 5 DateTime = 64 YesNo = 11 3. You can use the following script to create your managed properties at site collection level, the differences for creating managed property at site collection level is to pass in the site collection id. param( [string] $siteUrl="http://SP2013/", [string] $searchAppName = "Search Service Application", $ManagedPropertiesList=(IMPORT-CSV ".\ManagedProperties.csv") ) Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue $searchapp = $null function AppendLog { param ([string] $msg, [string] $msgColor) $currentDateTime = Get-Date $msg = $msg + " --- " + $currentDateTime if (!($logOnly -eq $True)) { # write to console Write-Host -f $msgColor $msg } # write to log file Add-Content $logFilePath $msg } $scriptPath = Split-Path $myInvocation.MyCommand.Path $logFilePath = $scriptPath + "\CreateManagedProperties_Log.txt" function CreateRefiner {param ([string] $crawledName, [string] $managedPropertyName, [Int32] $variantType, [Int32] $managedPropertyType,[System.GUID] $siteID) $cat = Get-SPEnterpriseSearchMetadataCategory –Identity SharePoint -SearchApplication $searchapp $crawledproperty = Get-SPEnterpriseSearchMetadataCrawledProperty -Name $crawledName -SearchApplication $searchapp -SiteCollection $siteID if($crawledproperty -eq $null) { Write-Host AppendLog "Creating Crawled Property for $managedPropertyName" Yellow $crawledproperty = New-SPEnterpriseSearchMetadataCrawledProperty -SearchApplication $searchapp -VariantType $variantType -SiteCollection $siteID -Category $cat -PropSet "00130329-0000-0130-c000-000000131346" -Name $crawledName -IsNameEnum $false } $managedproperty = Get-SPEnterpriseSearchMetadataManagedProperty -Identity $managedPropertyName -SearchApplication $searchapp -SiteCollection $siteID -ErrorAction SilentlyContinue if($managedproperty -eq $null) { Write-Host AppendLog "Creating Managed Property for $managedPropertyName" Yellow $managedproperty = New-SPEnterpriseSearchMetadataManagedProperty -Name $managedPropertyName -Type $managedPropertyType -SiteCollection $siteID -SearchApplication $searchapp -Queryable:$true -Retrievable:$true -FullTextQueriable:$true -RemoveDuplicates:$false -RespectPriority:$true -IncludeInMd5:$true } $mappedProperty = $crawledproperty.GetMappedManagedProperties() | ?{$_.Name -eq $managedProperty.Name } if($mappedProperty -eq $null) { Write-Host AppendLog "Creating Crawled -> Managed Property mapping for $managedPropertyName" Yellow New-SPEnterpriseSearchMetadataMapping -CrawledProperty $crawledproperty -ManagedProperty $managedproperty -SearchApplication $searchapp -SiteCollection $siteID } $mappedProperty = $crawledproperty.GetMappedManagedProperties() | ?{$_.Name -eq $managedProperty.Name } #Get-FASTSearchMetadataCrawledPropertyMapping -ManagedProperty $managedproperty } $searchapp = Get-SPEnterpriseSearchServiceApplication $searchAppName $site= Get-SPSite $siteUrl $siteId=$site.id Write-Host "Start creating Managed properties" $i = 1 FOREACH ($property in $ManagedPropertiesList) { $propertyName=$property.managedPropertyName $crawledName=$property.crawledName $managedPropertyType=$property.managedPropertyType $variantType=$property.variantType Write-Host $managedPropertyType Write-Host "Processing managed property $propertyName $($i)..." $i++ CreateRefiner $crawledName $propertyName $variantType $managedPropertyType $siteId Write-Host "Managed property created " $propertyName } Key Concepts Crawled Properties: Crawled properties are discovered by the search index service component when crawling content. Managed Properties: Properties that are part of the Search user experience, which means they are available for search results, advanced search, and so on, are managed properties. Mapping Crawled Properties to Managed Properties: To make a crawled property available for the Search experience—to make it available for Search queries and display it in Advanced Search and search results—you must map it to a managed property. References Administer search in SharePoint 2013 Preview Managing Metadata

    Read the article

  • How to Open Any Folder as a Project in the NetBeans Platform

    - by Geertjan
    Typically, as described in the NetBeans Project Type Tutorial, you'll define a project type based on the presence of a file (e.g., "project.xml" or "customer.txt" or something like that) in a folder. I.e., if the file is there, then its parent, i.e., the folder that contains the file, is a project and should be opened in your application. However, in some scenarios (as with the HTML5 project type introduced in NetBeans IDE 7.3), the user should be able to open absolutely any folder at all into the application. How to create a project type that is that liberal? Here you go, the only condition that needs to be true is that the selected item in the "Open Project" dialog is a folder, as defined in the "isProject" method below. Nothing else. That's it. If you select a folder, it will be opened in your application, displaying absolutely everything as-is (since below there's no ProjectLogicalView defined): import java.beans.PropertyChangeListener; import java.io.IOException; import javax.swing.Icon; import org.netbeans.api.project.Project; import org.netbeans.api.project.ProjectInformation; import org.netbeans.spi.project.ProjectFactory; import org.netbeans.spi.project.ProjectState; import org.openide.filesystems.FileObject; import org.openide.loaders.DataFolder; import org.openide.loaders.DataObjectNotFoundException; import org.openide.nodes.FilterNode; import org.openide.util.Exceptions; import org.openide.util.ImageUtilities; import org.openide.util.Lookup; import org.openide.util.lookup.Lookups; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = ProjectFactory.class) public class FolderProjectFactory implements ProjectFactory { @Override public boolean isProject(FileObject projectDirectory) { return DataFolder.findFolder(projectDirectory) != null; } @Override public Project loadProject(FileObject dir, ProjectState state) throws IOException { return isProject(dir) ? new FolderProject(dir) : null; } @Override public void saveProject(Project prjct) throws IOException, ClassCastException { // leave unimplemented for the moment } private class FolderProject implements Project { private final FileObject projectDir; private Lookup lkp; private FolderProject(FileObject dir) { this.projectDir = dir; } @Override public FileObject getProjectDirectory() { return projectDir; } @Override public Lookup getLookup() { if (lkp == null) { lkp = Lookups.fixed(new Object[]{ new Info(), }); } return lkp; } private final class Info implements ProjectInformation { @Override public Icon getIcon() { Icon icon = null; try { icon = ImageUtilities.image2Icon( new FilterNode(DataFolder.find( getProjectDirectory()).getNodeDelegate()).getIcon(1)); } catch (DataObjectNotFoundException ex) { Exceptions.printStackTrace(ex); } return icon; } @Override public String getName() { return getProjectDirectory().getName(); } @Override public String getDisplayName() { return getName(); } @Override public void addPropertyChangeListener(PropertyChangeListener pcl) { //do nothing, won't change } @Override public void removePropertyChangeListener(PropertyChangeListener pcl) { //do nothing, won't change } @Override public Project getProject() { return FolderProject.this; } } } } Even the ProjectInformation implementation really isn't needed at all, since it provides nothing more than the icon in the "Open Project" dialog, the rest (i.e., the display name in the "Open Project" dialog) is provided by default regardless of whether you have a ProjectInformation implementation or not.

    Read the article

  • Session Sharing with another User on *NIX and Windows

    - by Giri Mandalika
    Oracle Solaris Since Solaris is not widely known for its graphical interface, let's just focus on sharing a terminal session in read-only mode with another user on the same system. Here is an example. eg., % finger Login Name TTY Idle When Where root Super-User pts/1 Sat 16:57 dhcp-amer-vpn-rmdc-a sunperf ??? pts/2 4 Sat 16:41 pitcher.sfbay.sun.com In this example, two users root and sunperf are connected to the same system from two different terminals pts/1 and pts/2 respectively. If the root user wants to show something to sunperf user -- what s/he is doing in her/his terminal, for example, it can be accomplished with the following command. script -a /dev/null | tee -a <target_terminal eg., # script -a /dev/null | tee -a /dev/pts/2 Script started, file is /dev/null # # uptime 5:04pm up 1 day(s), 2:56, 2 users, load average: 0.81, 0.81, 0.81 # # isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32 # # exit Script done, file is /dev/null After the script .. | tee .. command, sunperf user should be able to see the root user's stdin and stdout contents in her/his own terminal until the script session exits in root user's terminal. Since this kind of sharing is based on capturing and redirecting the contents to the target terminal, the users on the receiving end won't be able to see whatever is being edited on initiators' terminal [using editors such as vi]. Also it is not possible to share the session with any connected user on the system unless the initiator has the necessary permissions and privileges. The script utility records everything printed in a terminal session, while the tee utility replicates the contents of the screen capture on to the standard output of the target terimal. The tee utility does not buffer the output - so, the screen capture from the initiators' terminal appears almost right away in the target terminal. Though I never tested, this technique may work on all *NIX and Linux flavors with little or no changes. Also there might be other ways to accomplish this. [Thanks to Sujeet for sharing this tip] Microsoft Windows Most of the Windows users may rely on VNC services to share a desktop session. Another way to share the desktop session is to use the Remote Desktop Connection (RDC) client. Here are the steps. Connect to the target Windows system using Remote Desktop Connection client Launch Windows Task Manager Navigate to the "Users" tab Find the user session that you want to connect to and have full control over as the other user who is currently holding that session Select the user name in Windows Task Manager, right click and choose the option "Remote Control" A window pops up on the other user's session with the message "<USER is requesting to control your session remotely. Do you accept the request?" Once the other user says "Yes", you will be granted access to that session. Since then both users should be able to see the same screen and even control the session from their respective workstations.

    Read the article

  • rotate player based off of joystick

    - by pengume
    Hey everyone I have this game that i am making in android and I have a touch screen joystick that moves the player around based on the joysticks position. I cant figure out how to also get the player to rotate at the same angle of the joystick. so when the joystick is to the left the players bitmap is rotated to the left as well. Maybe someone here has some sample code I could look at here is the joysticks class that I am using. `public class GameControls implements OnTouchListener { public float initx = DroidzActivity.screenWidth - 45; //255; // 320 og 425 public float inity = DroidzActivity.screenHeight - 45;//425; // 480 og 267 public Point _touchingPoint = new Point( DroidzActivity.screenWidth - 45, DroidzActivity.screenHeight - 45); public Point _pointerPosition = new Point(DroidzActivity.screenWidth - 100, DroidzActivity.screenHeight - 100); // ogx 220 ogy 150 private Boolean _dragging = false; private boolean attackMode = false; @Override public boolean onTouch(View v, MotionEvent event) { update(event); return true; } private MotionEvent lastEvent; public boolean ControlDragged; private static double angle; public void update(MotionEvent event) { if (event == null && lastEvent == null) { return; } else if (event == null && lastEvent != null) { event = lastEvent; } else { lastEvent = event; } // drag drop if (event.getAction() == MotionEvent.ACTION_DOWN) { if ((int) event.getX() > 0 && (int) event.getX() < 50 && (int) event.getY() > DroidzActivity.screenHeight - 160 && (int) event.getY() < DroidzActivity.screenHeight - 0) { setAttackMode(true); } else { _dragging = true; } } else if (event.getAction() == MotionEvent.ACTION_UP) { if(isAttackMode()){ setAttackMode(false); } _dragging = false; } if (_dragging) { ControlDragged = true; // get the pos _touchingPoint.x = (int) event.getX(); _touchingPoint.y = (int) event.getY(); // Log.d("GameControls", "x = " + _touchingPoint.x + " y = " //+ _touchingPoint.y); // bound to a box if (_touchingPoint.x < DroidzActivity.screenWidth - 75) { // og 400 _touchingPoint.x = DroidzActivity.screenWidth - 75; } if (_touchingPoint.x > DroidzActivity.screenWidth - 15) {// og 450 _touchingPoint.x = DroidzActivity.screenWidth - 15; } if (_touchingPoint.y < DroidzActivity.screenHeight - 75) {// og 240 _touchingPoint.y = DroidzActivity.screenHeight - 75; } if (_touchingPoint.y > DroidzActivity.screenHeight - 15) {// og 290 _touchingPoint.y = DroidzActivity.screenHeight - 15; } // get the angle setAngle(Math.atan2(_touchingPoint.y - inity, _touchingPoint.x - initx) / (Math.PI / 180)); // Move the ninja in proportion to how far // the joystick is dragged from its center _pointerPosition.y += Math.sin(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // og 180 70 _pointerPosition.x += Math.cos(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // make the pointer go thru if (_pointerPosition.x > DroidzActivity.screenWidth) { _pointerPosition.x = 0; } if (_pointerPosition.x < 0) { _pointerPosition.x = DroidzActivity.screenWidth; } if (_pointerPosition.y > DroidzActivity.screenHeight) { _pointerPosition.y = 0; } if (_pointerPosition.y < 0) { _pointerPosition.y = DroidzActivity.screenHeight; } } else if (!_dragging) { ControlDragged = false; // Snap back to center when the joystick is released _touchingPoint.x = (int) initx; _touchingPoint.y = (int) inity; // shaft.alpha = 0; } } public void setAttackMode(boolean attackMode) { this.attackMode = attackMode; } public boolean isAttackMode() { return attackMode; } public void setAngle(double angle) { this.angle = angle; } public static double getAngle() { return angle; } }` I should also note that the player has animations based on when he is moving or attacking.

    Read the article

  • Vertical Scrolling In Tile Based XNA Platformer

    - by alec100_94
    I'm making a 2D platformer in XNA 4.0. I have created a working tile engine, which works well for my purposes, and Horizontal Scrolling works flawlessly, however I am having great trouble with Vertical scrolling. I Basically want the camera to scroll up (world to scroll down) when the player reaches a certain Y co-ordinate, and I would also like to automatically scroll back down if coming down, and that co-ordinate is passed. My biggest problem is I have no real way of detecting the direction the player is moving in using only the Y Co-ord. Here Is My Code Code For The Camera Class (which appears to be a very different approach to most camera classes I have seen). using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; namespace Marvin { class Camera : TileEngine { public static bool startReached; public static bool endReached; public static void MoveRight(float speed = 2) { //Moves The Position of Each Tile Right foreach (Tile t in tiles) { if(t!=null) { t.position.X -= speed; } } } public static void MoveLeft(float speed = 2) { //Moves The Position of Each Tile Right foreach (Tile t in tiles) { if(t!=null) { t.position.X += speed; } } } public static void MoveUp(float speed = 2) { foreach (Tile t in tiles) { if(t!=null) { t.position.Y += speed; } } } public static void MoveDown(float speed = 2) { foreach (Tile t in tiles) { if(t!=null) { t.position.Y -= speed; } } } public static void Restrain() { if(tiles.Last().position.X<Main.graphics.PreferredBackBufferWidth-tiles.Last().size.X) { MoveLeft(); endReached = true; } else { endReached = false; } if(tiles[1].position.X>0) { MoveRight(); startReached = true;} else { startReached = false; } } } } Here is My Player Code for Left and Right Scrolling/Moving if (Main.currentKeyState.IsKeyDown(Keys.Right)) { Camera.MoveRight(); if(Camera.endReached) { MoveRight(2); } else { if(marvin.GetRectangle().X!=Main.graphics.PreferredBackBufferWidth-(marvin.GetRectangle().X+marvin.GetRectangle().Width)) { MoveRight(2); Camera.MoveLeft(); } } } if(Main.currentKeyState.IsKeyDown(Keys.Left)) { Camera.MoveLeft(); if(Camera.startReached) { MoveLeft(2); } else { if(marvin.GetRectangle().X!=Main.graphics.PreferredBackBufferWidth-(marvin.GetRectangle().X+marvin.GetRectangle().Width)) { MoveLeft(2); Camera.MoveRight(); } } } Camera.Restrain(); if(marvin.GetRectangle().X>Main.graphics.PreferredBackBufferWidth-marvin.GetRectangle().Width) { MoveLeft(2); } if(marvin.GetRectangle().X<0) { MoveRight(2); } And Here Is My Player Jumping/Falling Code which may cause some conflicts with the vertical camera movement. if (!jumping) { if(!TileEngine.TopOfTileCollidingWith(footBounds)) { MoveDown(5); } else { if(marvin.GetRectangle().Y != TileEngine.LastPlatformStoodOnTop()-marvin.GetRectangle().Height) { float difference = (TileEngine.LastPlatformStoodOnTop()-marvin.GetRectangle().Height) - (marvin.GetRectangle().Y); marvin.SetRectangle(marvin.GetRectangle().X,(int)(marvin.GetRectangle().Y+difference)); armR.SetRectangle(armR.GetRectangle().X,(int)(armR.GetRectangle().Y+difference)); armL.SetRectangle(armL.GetRectangle().X,(int)(armL.GetRectangle().Y+difference)); eyeL.SetRectangle(eyeL.GetRectangle().X,(int)(eyeL.GetRectangle().Y+difference)); eyeR.SetRectangle(eyeR.GetRectangle().X,(int)(eyeR.GetRectangle().Y+difference)); } } } if (Main.currentKeyState.IsKeyDown(Keys.Up) && Main.previousKeyState.IsKeyUp(Keys.Up) && TileEngine.TopOfTileCollidingWith(footBounds)) { jumping = true; } if(jumping) { if(TileEngine.LastPlatformStoodOnTop()>0 && (TileEngine.LastPlatformStoodOnTop() - footBounds.Bottom)<120) { MoveUp(5); } else { jumping = false; } } All player code I have tried for vertical movements has failed, or caused weird results (like falling through platforms), and most have been a variation on the method I described above, hence I have not included it. I would really appreciate some help implementing a simple vertical scrolling into this game, Thanks.

    Read the article

  • Child transforms problem when loading 3DS models using assimp

    - by MhdSyrwan
    I'm trying to load a textured 3d model into my scene using assimp model loader. The problem is that child meshes are not situated correctly (they don't have the correct transformations). In brief: all the mTansform matrices are identity matrices, why would that be? I'm using this code to render the model: void recursive_render (const struct aiScene *sc, const struct aiNode* nd, float scale) { unsigned int i; unsigned int n=0, t; aiMatrix4x4 m = nd->mTransformation; m.Scaling(aiVector3D(scale, scale, scale), m); // update transform m.Transpose(); glPushMatrix(); glMultMatrixf((float*)&m); // draw all meshes assigned to this node for (; n < nd->mNumMeshes; ++n) { const struct aiMesh* mesh = scene->mMeshes[nd->mMeshes[n]]; apply_material(sc->mMaterials[mesh->mMaterialIndex]); if (mesh->HasBones()){ printf("model has bones"); abort(); } if(mesh->mNormals == NULL) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); } if(mesh->mColors[0] != NULL) { glEnable(GL_COLOR_MATERIAL); } else { glDisable(GL_COLOR_MATERIAL); } for (t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; GLenum face_mode; switch(face->mNumIndices) { case 1: face_mode = GL_POINTS; break; case 2: face_mode = GL_LINES; break; case 3: face_mode = GL_TRIANGLES; break; default: face_mode = GL_POLYGON; break; } glBegin(face_mode); for(i = 0; i < face->mNumIndices; i++)// go through all vertices in face { int vertexIndex = face->mIndices[i];// get group index for current index if(mesh->mColors[0] != NULL) Color4f(&mesh->mColors[0][vertexIndex]); if(mesh->mNormals != NULL) if(mesh->HasTextureCoords(0))//HasTextureCoords(texture_coordinates_set) { glTexCoord2f(mesh->mTextureCoords[0][vertexIndex].x, 1 - mesh->mTextureCoords[0][vertexIndex].y); //mTextureCoords[channel][vertex] } glNormal3fv(&mesh->mNormals[vertexIndex].x); glVertex3fv(&mesh->mVertices[vertexIndex].x); } glEnd(); } } // draw all children for (n = 0; n < nd->mNumChildren; ++n) { recursive_render(sc, nd->mChildren[n], scale); } glPopMatrix(); } What's the problem in my code ? I've added some code to abort the program if there's any bone in the meshes, but the program doesn't abort, this means : no bones, is that normal? if (mesh->HasBones()){ printf("model has bones"); abort(); } Note: I am using openGL & SFML & assimp

    Read the article

  • T-SQL (SCD) Slowly Changing Dimension Type 2 using a merge statement

    - by AtulThakor
    Working on stored procedure recently which loads records into a data warehouse I found that the existing record was being expired using an update statement followed by an insert to add the new active record. Playing around with the merge statement you can actually expire the current record and insert a new record within one clean statement. This is how the statement works, we do the normal merge statement to insert a record when there is no match, if we match the record we update the existing record by expiring it and deactivating. At the end of the merge statement we use the output statement to output the staging values for the update,  we wrap the whole merge statement within an insert statement and add new rows for the records which we inserted. I’ve added the full script at the bottom so you can paste it and play around.   1: INSERT INTO ExampleFactUpdate 2: (PolicyID, 3: Status) 4: SELECT -- these columns are returned from the output statement 5: PolicyID, 6: Status 7: FROM 8: ( 9: -- merge statement on unique id in this case Policy_ID 10: MERGE dbo.ExampleFactUpdate dp 11: USING dbo.ExampleStag s 12: ON dp.PolicyID = s.PolicyID 13: WHEN NOT MATCHED THEN -- when we cant match the record we insert a new record record and this is all that happens 14: INSERT (PolicyID,Status) 15: VALUES (s.PolicyID, s.Status) 16: WHEN MATCHED --if it already exists 17: AND ExpiryDate IS NULL -- and the Expiry Date is null 18: THEN 19: UPDATE 20: SET 21: dp.ExpiryDate = getdate(), --we set the expiry on the existing record 22: dp.Active = 0 -- and deactivate the existing record 23: OUTPUT $Action MergeAction, s.PolicyID, s.Status -- the output statement returns a merge action which can 24: ) MergeOutput -- be insert/update/delete, on our example where a record has been updated (or expired in our case 25: WHERE -- we'll filter using a where clause 26: MergeAction = 'Update'; -- here   Complete source for example 1: if OBJECT_ID('ExampleFactUpdate') > 0 2: drop table ExampleFactUpdate 3:  4: Create Table ExampleFactUpdate( 5: ID int identity(1,1), 3: go 6: PolicyID varchar(100), 7: Status varchar(100), 8: EffectiveDate datetime default getdate(), 9: ExpiryDate datetime, 10: Active bit default 1 11: ) 12:  13:  14: insert into ExampleFactUpdate( 15: PolicyID, 16: Status) 17: select 18: 1, 19: 'Live' 20:  21: /*Create Staging Table*/ 22: if OBJECT_ID('ExampleStag') > 0 23: drop table ExampleStag 24: go 25:  26: /*Create example fact table */ 27: Create Table ExampleStag( 28: PolicyID varchar(100), 29: Status varchar(100)) 30:  31: --add some data 32: insert into ExampleStag( 33: PolicyID, 34: Status) 35: select 36: 1, 37: 'Lapsed' 38: union all 39: select 40: 2, 41: 'Quote' 42:  43: select * 44: from ExampleFactUpdate 45:  46: select * 47: from ExampleStag 48:  49:  50: INSERT INTO ExampleFactUpdate 51: (PolicyID, 52: Status) 53: SELECT -- these columns are returned from the output statement 54: PolicyID, 55: Status 56: FROM 57: ( 58: -- merge statement on unique id in this case Policy_ID 59: MERGE dbo.ExampleFactUpdate dp 60: USING dbo.ExampleStag s 61: ON dp.PolicyID = s.PolicyID 62: WHEN NOT MATCHED THEN -- when we cant match the record we insert a new record record and this is all that happens 63: INSERT (PolicyID,Status) 64: VALUES (s.PolicyID, s.Status) 65: WHEN MATCHED --if it already exists 66: AND ExpiryDate IS NULL -- and the Expiry Date is null 67: THEN 68: UPDATE 69: SET 70: dp.ExpiryDate = getdate(), --we set the expiry on the existing record 71: dp.Active = 0 -- and deactivate the existing record 72: OUTPUT $Action MergeAction, s.PolicyID, s.Status -- the output statement returns a merge action which can 73: ) MergeOutput -- be insert/update/delete, on our example where a record has been updated (or expired in our case 74: WHERE -- we'll filter using a where clause 75: MergeAction = 'Update'; -- here 76:  77:  78: select * 79: from ExampleFactUpdate 80: 

    Read the article

  • Examples of bad variable names and reasons [on hold]

    - by user470184
    I'll start with a class in the jdk package : public final class Sdp { should be : public final class SocketsDirectProtocol { Sdp is class name, this is ambigious, should be : Class<?> cl = Class.forName("java.net.SdpSocketImpl", true, null); should be : Class<?> clazz = Class.forName("java.net.SdpSocketImpl", true, null); cl is ambiguous private static void setAccessible(final AccessibleObject o) { should be : private static void setAccessible(final AccessibleObject accessibleObject) { There are various other examples in this class, do you have similar and/or differing examples of variables that were named badly ? package com.oracle.net; public final class Sdp { private Sdp() { } /** * The package-privage ServerSocket(SocketImpl) constructor */ private static final Constructor<ServerSocket> serverSocketCtor; static { try { serverSocketCtor = (Constructor<ServerSocket>) ServerSocket.class.getDeclaredConstructor(SocketImpl.class); setAccessible(serverSocketCtor); } catch (NoSuchMethodException e) { throw new AssertionError(e); } } /** * The package-private SdpSocketImpl() constructor */ private static final Constructor<SocketImpl> socketImplCtor; static { try { Class<?> cl = Class.forName("java.net.SdpSocketImpl", true, null); socketImplCtor = (Constructor<SocketImpl>)cl.getDeclaredConstructor(); setAccessible(socketImplCtor); } catch (ClassNotFoundException e) { throw new AssertionError(e); } catch (NoSuchMethodException e) { throw new AssertionError(e); } } private static void setAccessible(final AccessibleObject o) { AccessController.doPrivileged(new PrivilegedAction<Void>() { public Void run() { o.setAccessible(true); return null; } }); } /** * SDP enabled Socket. */ private static class SdpSocket extends Socket { SdpSocket(SocketImpl impl) throws SocketException { super(impl); } } /** * Creates a SDP enabled SocketImpl */ private static SocketImpl createSocketImpl() { try { return socketImplCtor.newInstance(); } catch (InstantiationException x) { throw new AssertionError(x); } catch (IllegalAccessException x) { throw new AssertionError(x); } catch (InvocationTargetException x) { throw new AssertionError(x); } } /** * Creates an unconnected and unbound SDP socket. The {@code Socket} is * associated with a {@link java.net.SocketImpl} of the system-default type. * * @return a new Socket * * @throws UnsupportedOperationException * If SDP is not supported * @throws IOException * If an I/O error occurs */ public static Socket openSocket() throws IOException { SocketImpl impl = createSocketImpl(); return new SdpSocket(impl); } /** * Creates an unbound SDP server socket. The {@code ServerSocket} is * associated with a {@link java.net.SocketImpl} of the system-default type. * * @return a new ServerSocket * * @throws UnsupportedOperationException * If SDP is not supported * @throws IOException * If an I/O error occurs */ public static ServerSocket openServerSocket() throws IOException { // create ServerSocket via package-private constructor SocketImpl impl = createSocketImpl(); try { return serverSocketCtor.newInstance(impl); } catch (IllegalAccessException x) { throw new AssertionError(x); } catch (InstantiationException x) { throw new AssertionError(x); } catch (InvocationTargetException x) { Throwable cause = x.getCause(); if (cause instanceof IOException) throw (IOException)cause; if (cause instanceof RuntimeException) throw (RuntimeException)cause; throw new RuntimeException(x); } } /** * Opens a socket channel to a SDP socket. * * <p> The channel will be associated with the system-wide default * {@link java.nio.channels.spi.SelectorProvider SelectorProvider}. * * @return a new SocketChannel * * @throws UnsupportedOperationException * If SDP is not supported or not supported by the default selector * provider * @throws IOException * If an I/O error occurs. */ public static SocketChannel openSocketChannel() throws IOException { FileDescriptor fd = SdpSupport.createSocket(); return sun.nio.ch.Secrets.newSocketChannel(fd); } /** * Opens a socket channel to a SDP socket. * * <p> The channel will be associated with the system-wide default * {@link java.nio.channels.spi.SelectorProvider SelectorProvider}. * * @return a new ServerSocketChannel * * @throws UnsupportedOperationException * If SDP is not supported or not supported by the default selector * provider * @throws IOException * If an I/O error occurs */ public static ServerSocketChannel openServerSocketChannel() throws IOException { FileDescriptor fd = SdpSupport.createSocket(); return sun.nio.ch.Secrets.newServerSocketChannel(fd); } }

    Read the article

  • Problem with boundary collision

    - by James Century
    The problem: When the player hits the left boundary he stops (this is exactly what I want), when he hits the right boundary. He continues until his rectangle's left boundary meets with the right boundary. Outcome: https://www.youtube.com/watch?v=yuJfIWZ_LL0&feature=youtu.be My Code public class Player extends GameObject{ BufferedImageLoader loader; Texture tex = Game.getInstance(); BufferedImage image; Animation playerWalkLeft; private HealthBarManager healthBar; private String username; private int width; private ManaBarManager manaBar; public Player(float x, float y, ObjectID ID) { super(x, y, ID, null); loader = new BufferedImageLoader(); playerWalkLeft = new Animation(5,tex.player[10],tex.player[11],tex.player[12],tex.player[13],tex.player[14],tex.player[15],tex.player[17],tex.player[18]); } public void tick(LinkedList<GameObject> object) { setX(getX()+velX); setY(getY()+velY); playerWalkLeft.runAnimation(); } public void render(Graphics g) { g.setColor(Color.BLACK); FontMetrics fm = g.getFontMetrics(g.getFont()); if(username != null) width = fm.stringWidth(username); if(username != null){ g.drawString(username,(int) x-width/2+15,(int) y); } if(velX != 0){ playerWalkLeft.drawAnimation(g, (int)x, (int)y); }else{ g.drawImage(tex.player[16], (int)x, (int)y, null); } g.setColor(Color.PINK); g.drawRect((int)x,(int)y,33,48); g.drawRect(0,0,(int)Game.getWalkableBounds().getWidth(), (int)Game.getWalkableBounds().getHeight()); } @SuppressWarnings("unused") private Image getCurrentImage() { return image; } public float getX() { return x; } public float getY() { return y; } public void setX(float x) { Rectangle gameBoundry = Game.getWalkableBounds(); if(x >= gameBoundry.getMinX() && x <= gameBoundry.getMaxX()){ this.x = x; } } public void setY(float y) { //IGNORE THE SetY please. this.y = y; } public float getVelX() { return velX; } public void setHealthBar(HealthBarManager healthBar){ this.healthBar = healthBar; } public HealthBarManager getHealthBar(){ return healthBar; } public float getVelY() { return velY; } public void setVelX(float velX) { this.velX = velX; } public void setVelY(float velY) { this.velY = velY; } public ObjectID getID() { return ID; } public void setUsername(String playerName) { this.username = playerName; } public String getUsername(){ return this.username; } public void setManaBar(ManaBarManager manaBar) { this.manaBar = manaBar; } public ManaBarManager getManaBar(){ return manaBar; } public int getLevel(){ return 1; } public boolean isPlayerInsideBoundry(float x, float y){ Rectangle boundry = Game.getWalkableBounds(); if(boundry.contains(x,y)){ return true; } return false; } } What I've tried: - Using a method that checks if the game boundary contains player boundary rectangle. This gave me the same result as what the check statement in my setX did.

    Read the article

  • Why is the framerate (fps) capped at 60?

    - by dennmat
    ISSUE I recently moved a project from my laptop to my desktop(machine info below). On my laptop the exact same code displays the fps(and ms/f) correctly. On my desktop it does not. What I mean by this is on the laptop it will display 300 fps(for example) where on my desktop it will show only up to 60. If I add 100 objects to the game on the laptop I'll see my frame rate drop accordingly; the same test on the desktop results in no change and the frames stay at 60. It takes a lot(~300) entities before I'll see a frame drop on the desktop, then it will descend. It seems as though its "theoretical" frames would be 400 or 500 but will never actually get to that and only do 60 until there's too much to handle at 60. This 60 frame cap is coming from no where. I'm not doing any frame limiting myself. It seems like something external is limiting my loop iterations on the desktop, but for the last couple days I've been scratching my head trying to figure out how to debug this. SETUPS Desktop: Visual Studio Express 2012 Windows 7 Ultimate 64-bit Laptop: Visual Studio Express 2010 Windows 7 Ultimate 64-bit The libraries(allegro, box2d) are the same versions on both setups. CODE Main Loop: while(!abort) { frameTime = al_get_time(); if (frameTime - lastTime >= 1.0) { lastFps = fps/(frameTime - lastTime); lastTime = frameTime; avgMspf = cumMspf/fps; cumMspf = 0.0; fps = 0; } /** DRAWING/UPDATE CODE **/ fps++; cumMspf += al_get_time() - frameTime; } Note: There is no blocking code in the loop at any point. Where I'm at My understanding of al_get_time() is that it can return different resolutions depending on the system. However the resolution is never worse than seconds, and the double is represented as [seconds].[finer-resolution] and seeing as I'm only checking for a whole second al_get_time() shouldn't be responsible. My project settings and compiler options are the same. And I promise its the same code on both machines. My googling really didn't help me much, and although technically it's not that big of a deal. I'd really like to figure this out or perhaps have it explained, whichever comes first. Even just an idea of how to go about figuring out possible causes, because I'm out of ideas. Any help at all is greatly appreciated. EDIT: Thanks All. For any others that find this to disable vSync(windows only) in opengl: First get "wglext.h". It's all over the web. Then you can use a tool like GLee or just write your own quick extensions manager like: bool WGLExtensionSupported(const char *extension_name) { PFNWGLGETEXTENSIONSSTRINGEXTPROC _wglGetExtensionsStringEXT = NULL; _wglGetExtensionsStringEXT = (PFNWGLGETEXTENSIONSSTRINGEXTPROC) wglGetProcAddress("wglGetExtensionsStringEXT"); if (strstr(_wglGetExtensionsStringEXT(), extension_name) == NULL) { return false; } return true; } and then create and setup your function pointers: PFNWGLSWAPINTERVALEXTPROC wglSwapIntervalEXT = NULL; PFNWGLGETSWAPINTERVALEXTPROC wglGetSwapIntervalEXT = NULL; if (WGLExtensionSupported("WGL_EXT_swap_control")) { // Extension is supported, init pointers. wglSwapIntervalEXT = (PFNWGLSWAPINTERVALEXTPROC) wglGetProcAddress("wglSwapIntervalEXT"); // this is another function from WGL_EXT_swap_control extension wglGetSwapIntervalEXT = (PFNWGLGETSWAPINTERVALEXTPROC) wglGetProcAddress("wglGetSwapIntervalEXT"); } Then just call wglSwapIntervalEXT(0) to disable vSync and 1 to enable vSync. I found the reason this is windows only is that openGl actually doesn't deal with anything other than rendering it leaves the rest up to the OS and Hardware. Thanks everyone saved me a lot of time!

    Read the article

  • Modern OpenGL context failure [migrated]

    - by user209347
    OK, I managed to create an OpenGL context with wglcreatecontextattribARB with version 3.2 in my attrib struct (So I have initialized a 3.2 opengl context). It works, but the strange thing is, when I use glBindBuffer e,g. I still get unreferenced linker error, shouldn't a newer context prevent this? I'm on windows BTW, Linux doesn't have to deal with older and newer contexts (it directly supports the core of its version). The code: PIXELFORMATDESCRIPTOR pfd; HGLRC tmpRC; int iFormat; if (!(hDC = GetDC(hWnd))) { CMsgBox("Unable to create a device context. Program will now close.", "Error"); return false; } ZeroMemory(&pfd, sizeof(pfd)); pfd.nSize = sizeof(pfd); pfd.nVersion = 1; pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER; pfd.iPixelType = PFD_TYPE_RGBA; pfd.cColorBits = attribs->colorbits; pfd.cDepthBits = attribs->depthbits; pfd.iLayerType = PFD_MAIN_PLANE; if (!(iFormat = ChoosePixelFormat(hDC, &pfd))) { CMsgBox("Unable to find a suitable pixel format. Program will now close.", "Error"); return false; } if (!SetPixelFormat(hDC, iFormat, &pfd)) { CMsgBox("Unable to initialize the pixel formats. Program will now close.", "Error"); return false; } if (!(tmpRC=wglCreateContext(hDC))) { CMsgBox("Unable to create a rendering context. Program will now close.", "Error"); return false; } if (!wglMakeCurrent(hDC, tmpRC)) { CMsgBox("Unable to activate the rendering context. Program will now close.", "Error"); return false; } strncpy(vers, (char*)glGetString(GL_VERSION), 3); vers[3] = '\0'; if (sscanf(vers, "%i.%i", &glv, &glsubv) != 2) { CMsgBox("Unable to retrieve the OpenGL version. Program will now close.", "Error"); return false; } hRC = NULL; if (glv > 2) // Have OpenGL 3.+ support { if ((wglCreateContextAttribsARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC)wglGetProcAddress("wglCreateContextAttribsARB"))) { int attribs[] = {WGL_CONTEXT_MAJOR_VERSION_ARB, glv, WGL_CONTEXT_MINOR_VERSION_ARB, glsubv,WGL_CONTEXT_FLAGS_ARB, 0,0}; hRC = wglCreateContextAttribsARB(hDC, 0, attribs); wglMakeCurrent(NULL, NULL); wglDeleteContext(tmpRC); if (!wglMakeCurrent(hDC, hRC)) { CMsgBox("Unable to activate the rendering context. Program will now close.", "Error"); return false; } moderncontext = true; } } if (hRC == NULL) { hRC = tmpRC; moderncontext = false; }

    Read the article

  • How to add a blank page to a pdf using iTextSharp?

    - by Russell
    I am trying to do something I thought would be quite simple, however it is not so straight forward and google has not helped. I am using iTextSharp to merge PDF documents (letters) together so they can all be printed at once. If a letter has an odd number of pages I need to append a blank page, so we can print the letters double-sided. Here is the basic code I have at the moment for merging all of the letters: // initiaise MemoryStream pdfStreamOut = new MemoryStream(); Document document = null; MemoryStream pdfStreamIn = null; PdfReader reader = null; int numPages = 0; PdfWriter writer = null; for int(i = 0;i < letterList.Count; i++) { byte[] myLetterData = ...; pdfStreamIn = new MemoryStream(myLetterData); reader = new PdfReader(pdfStreamIn); numPages = reader.NumberOfPages; // open the streams to use for the iteration if (i == 0) { document = new Document(reader.GetPageSizeWithRotation(1)); writer = PdfWriter.GetInstance(document, pdfStreamOut); document.Open(); } PdfContentByte cb = writer.DirectContent; PdfImportedPage page; int importedPageNumber = 0; while (importedPageNumber < numPages) { importedPageNumber++; document.SetPageSize(reader.GetPageSizeWithRotation(importedPageNumber)); document.NewPage(); page = writer.GetImportedPage(reader, importedPageNumber); cb.AddTemplate(page, 1f, 0, 0, 1f, 0, 0); } } I have tried using: document.SetPageSize(reader.GetPageSizeWithRotation(1)); document.NewPage(); at the end of the for loop for an odd number of pages without success. Any help would be much appreciated!

    Read the article

  • JQuery Json error: Object doesn't support this property or method

    - by Abu Hamzah
    ERROR: Microsoft JScript runtime error: Object doesn't support this property or method i am using WCF service to pull the data and its very simple for the purpose of test and it does returning me the data from wcf service but it fails on json2.js on line number 314-316 // We split the first stage into 4 regexp operations in order to work around // crippling inefficiencies in IE's and Safari's regexp engines. First we // replace all backslash pairs with '@' (a non-JSON character). Second, we // replace all simple value tokens with ']' characters. Third, we delete all // open brackets that follow a colon or comma or that begin the text. Finally, // we look to see that the remaining characters are only whitespace or ']' or // ',' or ':' or '{' or '}'. If that is so, then the text is safe for eval. if (/^[\],:{}\s]*$/.test(text.replace(/\\["\\\/bfnrtu]/g, '@'). replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, ']'). replace(/(?:^|:|,)(?:\s*\[)+/g, ''))) { here is what i am doing function serviceProxy(wjOrderServiceURL) { var _I = this; this.ServiceURL = wjOrderServiceURL; // *** Call a wrapped object this.invoke = function (options) { // Default settings var settings = { serviceMethod: '', data: null, callback: null, error: null, type: "POST", processData: false, contentType: "application/json", dataType: "text", bare: false }; if (options) { $.extend(settings, options); } function GetFederalHolidays() { $("#dContacts1").empty().html('Searching for Active Contacts...'); ContactServiceProxy.invoke({ serviceMethod: "Holidays", callback: function (response) { // ProcessActiveContacts1(response); debugger }, error: function (xhr, errorMsg, thrown) { postErrorAndUnBlockUI(xhr, errorMsg, thrown); } }); } any help what iam doing wrong? i try to change from dataType: text to json but i get the same error above.

    Read the article

< Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >