Search Results

Search found 16921 results on 677 pages for 'entity group transactions'.

Page 171/677 | < Previous Page | 167 168 169 170 171 172 173 174 175 176 177 178  | Next Page >

  • Does an open source project need a news group?

    - by Daren Thomas
    I open-sourced a tool I created to scratch an itch. From the downloads for the installer on the project page I can see I'm not the only one interested. About 5 people seem to have upgraded from the previous version. But I know next to nothing about them. Do I need a news group? A mailing list? Or how would you start to build a (little) community?

    Read the article

  • JPA Is there a way to do something like SELECT <field>, count(*) FROM <table> GROUP BY <field>

    - by javydreamercsw
    I've been looking in the web for examples on the aggregates like count but it seems all of them are using the aggregate alone. SELECT field, count(*) FROM table GROUP BY field Should have something like: field.value1, x1 field.value2, x2 .... I'm looking for a pure JPA answer for this one. If not I guess I can then do further queries just for the count part but that seems unefficient. Any ideas?

    Read the article

  • how to group fields in crystal reports using vb.net code?

    - by meenakshi
    I am using vb.net 2005. i am trying to set report groupings of a crystal report at runtime based on user defined options. MSDN says this: Dim FieldDef As FieldDefinition FieldDef = Report.Database.Tables.Item(0).Fields.Item(comboBox1().Text) Report.DataDefinition.Groups.Item(0).ConditionField = FieldDef but error shows invalid group number how to solve this?

    Read the article

  • How to convert SQL Statement with TOP, COUNT and GROUP BY to return an object list with LINQ

    - by Junior Mayhé
    Hello guys does anyone know how to convert this SQL statement to a LINQ to a List? SELECT TOP(5) COUNT(CategoryId), CategoryName FROM Tickets GROUP BY CategoryName The result would be something like public static List<Categories> List() { MyEntities db = new MyEntities(); /* here it should return a list o Category type */; return db.Category.GroupBy(...).OrderBy(...); }

    Read the article

  • Introduction to LinqPad Driver for StreamInsight 2.1

    - by Roman Schindlauer
    We are announcing the availability of the LinqPad driver for StreamInsight 2.1. The purpose of this blog post is to offer a quick introduction into the new features that we added to the StreamInsight LinqPad driver. We’ll show you how to connect to a remote server, how to inspect the entities present of that server, how to compose on top of them and how to manage their lifetime. Installing the driver Info on how to install the driver can be found in an earlier blog post here. Establishing connections As you click on the “Add Connection” link in the left pane you will notice that now it’s possible to build the data context automatically. The new driver appears as an option in the upper list, and if you pick it you will open a connection dialog that lets you connect to a remote StreamInsight server. The connection dialog lets you specify the address of the remote server. You will notice that it’s possible to pick up the binding information from the configuration file of the LinqPad application (which is normally in the same folder as LinqPad.exe and is called LinqPad.exe.config). In order for the context to be generated you need to pick an application from the server. The control is editable hence you can create a new application if you don’t want to make changes to an existing application. If you choose a new application name you will be prompted for confirmation before this gets created. Once you click OK the connection is created and you can start issuing queries against the remote server. If there’s any connectivity error the connection is marked with a red X and you can see the error message informing you what went wrong (i.e., the remote server could not be reached etc.). The context for remote servers Let’s take a look at what happens after we are connected successfully. Every LinqPad query runs inside a context – think of it as a class that wraps all the code that you’re writing. If you’re connecting to a live server the context will contain the following: The application object itself. All entities present in this application (sources, sinks, subjects and processes). The picture below shows a snapshot of the left pane of LinqPad after a successful connection. Every entity on the server has a different icon which will allow users to figure out its purpose. You will also notice that some entities have a string in parentheses following the name. It should be interpreted as such: the first name is the name of the property of the context class and the second name is the name of the entity as it exists on the server. Not all valid entity names are valid identifier names so in cases where we had to make a transformation you see both. Note also that as you hover over the entities you get IntelliSense with their types – more on that later. Remoting is not supported As you play with the entities exposed by the context you will notice that you can’t read and write directly to/from them. If for instance you’re trying to dump the content of an entity you will get an error message telling you that in the current version remoting is not supported. This is because the entity lives on the remote server and dumping its content means reading the events produced by this entity into the local process. ObservableSource.Dump(); Will yield the following error: Reading from a remote 'System.Reactive.Linq.IQbservable`1[System.Int32]' is not supported. Use the 'Microsoft.ComplexEventProcessing.Linq.RemoteProvider.Bind' method to read from the source using a remote observer. This basically tells you that you can call the Bind() method to direct the output of this source to a sink that has to be defined on the remote machine as well. You can’t bring the results to the LinqPad window unless you write code specifically for that. Compose queries You may ask – what's the purpose of all that? After all the same information is present in the EventFlowDebugger, why bother with showing it in LinqPad? First of all, What gets exposed in LinqPad is not what you see in the debugger. In LinqPad we have a property on the context class for every entity that lives on the server. Because LinqPad offers IntelliSense we in fact have much more information about the entity, and more importantly we can compose with that entity very easily. For example, let’s say that this code creates an entity: using (var server = Server.Connect(...)) {     var a = server.CreateApplication("WhiteFish");     var src = a         .DefineObservable<int>(() => Observable.Range(0, 3))         .Deploy("ObservableSource"); If later we want to compose with the source we have to fetch it and then we can bind something to     a.GetObservable<int>("ObservableSource)").Bind(... This means that we had to know a bunch of things about this: that it’s a source, that it’s an observable, it produces a result with payload Int32 and it’s named “ObservableSource”. Only the second and last bits of information are present in the debugger, by the way. As you type in the query window you see that all the entities are present, you get IntelliSense support for them and it’s much easier to make sense of what’s available. Let’s look at a scenario where composition is plausible. With the new programming model it’s possible to create “cold” sources that are parameterized. There was a way to accomplish that even in the previous version by passing parameters to the adapters, but this time it’s much more elegant because the expression declares what parameters are required. Say that we hover the mouse over the ThrottledSource source – we will see that its type is Func<int, int, IQbservable<int>> - this in effect means that we need to pass two int parameters before we can get a source that produces events, and the type for those events is int – in the particular case of my example I had the source produce a range of integers and the two parameters were the start and end of the range. So we see how a developer can create a source that is not running yet. Then someone else (e.g. an administrator) can pass whatever parameters appropriate and run the process. Proxy Types Here’s an interesting scenario – what if someone created a source on a server but they forgot to tell you what type they used. Worse yet, they might have used an anonymous type and even though they can refer to it by name you can’t figure out how to use that type. Let’s walk through an example that shows how you can compose against types you don’t need to have the definition of. This is how we can create a source that returns an anonymous type: Application.DefineObservable(() => Observable.Range(1, 10).Select(i => new { I = i })).Deploy("O1"); Now if we refresh the connection we can see the new source named O1 appear in the list. But what’s more important is that we now have a type to work with. So we can compose a query that refers to the anonymous type. var threshold = new StreamInsightDynamicDriver.TypeProxies.AnonymousType1_0<int>(5); var filter = from i in O1              where i > threshold              select i; filter.Deploy("O2"); You will notice that the anonymous type defined with this statement: new { I = i } can now be manipulated by a client that does not have access to it because the LinqPad driver has generated another type in its stead, named StreamInsightDynamicDriver.TypeProxies.AnonymousType1_0. This type has all the properties and fields of the type defined on the server, except in this case we can instantiate values and use it to compose more queries. It is worth noting that the same thing works for types that are not anonymous – the test is if the LinqPad driver can resolve the type or not. If it’s not possible then a new type will be generated that approximates the type that exists on the server. Control metadata In addition to composing processes on top of the existing entities we can do other useful things. We can delete them – nothing new here as we simply access the entities through the Entities collection of the application class. Here is where having their real name in parentheses comes handy. There’s another way to find out what’s behind a property – dump its expression. The first line in the output tells us what’s the name of the entity used to build this property in the context. Runtime information So let’s create a process to see what happens. We can bind a source to a sink and run the resulting process. If you right click on the connection you can refresh it and see the process present in the list of entities. Then you can drag the process to the query window and see that you can have access to process object in the Processes collection of the application. You can then manipulate the process (delete it, read its diagnostic view etc.). Regards, The StreamInsight Team

    Read the article

  • Introduction to LinqPad Driver for StreamInsight 2.1

    - by Roman Schindlauer
    We are announcing the availability of the LinqPad driver for StreamInsight 2.1. The purpose of this blog post is to offer a quick introduction into the new features that we added to the StreamInsight LinqPad driver. We’ll show you how to connect to a remote server, how to inspect the entities present of that server, how to compose on top of them and how to manage their lifetime. Installing the driver Info on how to install the driver can be found in an earlier blog post here. Establishing connections As you click on the “Add Connection” link in the left pane you will notice that now it’s possible to build the data context automatically. The new driver appears as an option in the upper list, and if you pick it you will open a connection dialog that lets you connect to a remote StreamInsight server. The connection dialog lets you specify the address of the remote server. You will notice that it’s possible to pick up the binding information from the configuration file of the LinqPad application (which is normally in the same folder as LinqPad.exe and is called LinqPad.exe.config). In order for the context to be generated you need to pick an application from the server. The control is editable hence you can create a new application if you don’t want to make changes to an existing application. If you choose a new application name you will be prompted for confirmation before this gets created. Once you click OK the connection is created and you can start issuing queries against the remote server. If there’s any connectivity error the connection is marked with a red X and you can see the error message informing you what went wrong (i.e., the remote server could not be reached etc.). The context for remote servers Let’s take a look at what happens after we are connected successfully. Every LinqPad query runs inside a context – think of it as a class that wraps all the code that you’re writing. If you’re connecting to a live server the context will contain the following: The application object itself. All entities present in this application (sources, sinks, subjects and processes). The picture below shows a snapshot of the left pane of LinqPad after a successful connection. Every entity on the server has a different icon which will allow users to figure out its purpose. You will also notice that some entities have a string in parentheses following the name. It should be interpreted as such: the first name is the name of the property of the context class and the second name is the name of the entity as it exists on the server. Not all valid entity names are valid identifier names so in cases where we had to make a transformation you see both. Note also that as you hover over the entities you get IntelliSense with their types – more on that later. Remoting is not supported As you play with the entities exposed by the context you will notice that you can’t read and write directly to/from them. If for instance you’re trying to dump the content of an entity you will get an error message telling you that in the current version remoting is not supported. This is because the entity lives on the remote server and dumping its content means reading the events produced by this entity into the local process. ObservableSource.Dump(); Will yield the following error: Reading from a remote 'System.Reactive.Linq.IQbservable`1[System.Int32]' is not supported. Use the 'Microsoft.ComplexEventProcessing.Linq.RemoteProvider.Bind' method to read from the source using a remote observer. This basically tells you that you can call the Bind() method to direct the output of this source to a sink that has to be defined on the remote machine as well. You can’t bring the results to the LinqPad window unless you write code specifically for that. Compose queries You may ask – what's the purpose of all that? After all the same information is present in the EventFlowDebugger, why bother with showing it in LinqPad? First of all, What gets exposed in LinqPad is not what you see in the debugger. In LinqPad we have a property on the context class for every entity that lives on the server. Because LinqPad offers IntelliSense we in fact have much more information about the entity, and more importantly we can compose with that entity very easily. For example, let’s say that this code creates an entity: using (var server = Server.Connect(...)) {     var a = server.CreateApplication("WhiteFish");     var src = a         .DefineObservable<int>(() => Observable.Range(0, 3))         .Deploy("ObservableSource"); If later we want to compose with the source we have to fetch it and then we can bind something to     a.GetObservable<int>("ObservableSource)").Bind(... This means that we had to know a bunch of things about this: that it’s a source, that it’s an observable, it produces a result with payload Int32 and it’s named “ObservableSource”. Only the second and last bits of information are present in the debugger, by the way. As you type in the query window you see that all the entities are present, you get IntelliSense support for them and it’s much easier to make sense of what’s available. Let’s look at a scenario where composition is plausible. With the new programming model it’s possible to create “cold” sources that are parameterized. There was a way to accomplish that even in the previous version by passing parameters to the adapters, but this time it’s much more elegant because the expression declares what parameters are required. Say that we hover the mouse over the ThrottledSource source – we will see that its type is Func<int, int, IQbservable<int>> - this in effect means that we need to pass two int parameters before we can get a source that produces events, and the type for those events is int – in the particular case of my example I had the source produce a range of integers and the two parameters were the start and end of the range. So we see how a developer can create a source that is not running yet. Then someone else (e.g. an administrator) can pass whatever parameters appropriate and run the process. Proxy Types Here’s an interesting scenario – what if someone created a source on a server but they forgot to tell you what type they used. Worse yet, they might have used an anonymous type and even though they can refer to it by name you can’t figure out how to use that type. Let’s walk through an example that shows how you can compose against types you don’t need to have the definition of. This is how we can create a source that returns an anonymous type: Application.DefineObservable(() => Observable.Range(1, 10).Select(i => new { I = i })).Deploy("O1"); Now if we refresh the connection we can see the new source named O1 appear in the list. But what’s more important is that we now have a type to work with. So we can compose a query that refers to the anonymous type. var threshold = new StreamInsightDynamicDriver.TypeProxies.AnonymousType1_0<int>(5); var filter = from i in O1              where i > threshold              select i; filter.Deploy("O2"); You will notice that the anonymous type defined with this statement: new { I = i } can now be manipulated by a client that does not have access to it because the LinqPad driver has generated another type in its stead, named StreamInsightDynamicDriver.TypeProxies.AnonymousType1_0. This type has all the properties and fields of the type defined on the server, except in this case we can instantiate values and use it to compose more queries. It is worth noting that the same thing works for types that are not anonymous – the test is if the LinqPad driver can resolve the type or not. If it’s not possible then a new type will be generated that approximates the type that exists on the server. Control metadata In addition to composing processes on top of the existing entities we can do other useful things. We can delete them – nothing new here as we simply access the entities through the Entities collection of the application class. Here is where having their real name in parentheses comes handy. There’s another way to find out what’s behind a property – dump its expression. The first line in the output tells us what’s the name of the entity used to build this property in the context. Runtime information So let’s create a process to see what happens. We can bind a source to a sink and run the resulting process. If you right click on the connection you can refresh it and see the process present in the list of entities. Then you can drag the process to the query window and see that you can have access to process object in the Processes collection of the application. You can then manipulate the process (delete it, read its diagnostic view etc.). Regards, The StreamInsight Team

    Read the article

  • Customisation / overriding of the Envelop ecs files

    - by Dheeraj Kumar M
    There are few usecases where the requirement is to customise the envelop information (Interchange/Group ecs file). Such scenarios might be required to be used for only few of the customers. Hence, in addition to the default seeded envelop definitions, it also required to upload the customised definitions. Here is the steps for achieving the same. 1. Create only the Interchange ecs and save 2. Create only the group ecs and save 3. Use the same in B2B 1. Create only the Interchange ecs and save :       Open the document editor and select the required version and doctype. During creating new ecs, ensure to select the checkbox for insert envelop.       Once created, delete the group and transactionset nodes and retain only the Interchange ecs nodes, including both header and trailer. Save this file. 2. Create only the group ecs and save       After creating the ecs file as mentioned in steps of Interchange creation, delete the Interchange and transactionset nodes and retain only the group ecs nodes, including both header and trailer. Save this file. 3. Use the same in B2B       These newly created ecs can be used in B2B by 2 ways.              a. By overriding at the trading partner Level:              This will be very useful when the configuration is complete and then need to incorporate the customisation. In this case, just select the Trading partner - document - select the document which need to be customised.              Upload the newly created Interchange and group ECS files under the Interchange and group tabs respectively and re-deply the associated agreement.              The advantage of this approach is              - Flexibility to add customised envelop definitions to the partners              - Save the re-work of design time effort.              b. By adding another document definition in Administration - document screen:              This scenario can be used if there is no configuration done at the trading partner level. Create the required document revision and overtide the Interchange and group ECS files under the Interchange and group tabs respectively. Add the document in Trading partner - document. Create and deploy the agreements

    Read the article

  • World Record Siebel PSPP Benchmark on SPARC T4 Servers

    - by Brian
    Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers. The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users. This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour. The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers. Performance Landscape Systems Txn/hr Users Call Center Order Management Response Times (sec) 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web 3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB 239,748 29,000 0.165 0.925 Oracle: Call Center + Order Management Transactions: 197,128 + 42,620 Users: 20300 + 8700 Configuration Summary Web Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 10 8/11 iPlanet Web Server 7 Application Server Configuration: 3 x SPARC T4-2 servers, each with 2 x SPARC T4 processor, 2.85 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 10 8/11 Siebel CRM 8.1.1.5 SIA Database Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.2) Storage Configuration: 1 x Sun Storage F5100 Flash Array 80 x 24 GB flash modules Benchmark Description Siebel 8.1 PSPP benchmark includes Call Center and Order Management: Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling. High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively. Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process. High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively. Key Points and Best Practices No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects. See Also Siebel White Papers SPARC T4-1 Server oracle.com OTN SPARC T4-2 Server oracle.com OTN Siebel CRM oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • Openldap, groups, admin groups, etc

    - by Juan Diego
    We have a samba server as PDC with OpenLDAP. So far everything is working, even windows 7 can log on to the Domain. Here is the tricky part. We have many departments, each department has it's own IT guys, and these IT guy should be able to create users in their department and change any info of the users in their department. My Idea was to create 2 groups for each department, For example: Department1 and Admins Department1. Admins Deparment1 has "write" priviledges for members of group Department dn: ou=People,dc=mydomain,dc=com,dc=ec objectClass: top objectClass: organizationalUnit ou: People dn: cn=Admins,ou=Group,dc=mydomain,dc=com,dc=ec objectClass: groupOfNames objectClass: top cn: Admins dn: cn=Admins Department1,cn=Admins,ou=Group,dc=mydomain,dc=com,dc=ec objectClass: groupOfNames objectClass: top cn: Admins Department1 member: uid=jdc,ou=People,dc=mydomain,dc=com,dc=ec structuralObjectClass: groupOfNames I dont know if you should make Department1 as part of Domain Users dn: cn=Deparment1,cn=Domain Users,ou=Group,dc=mydomain,dc=com,dc=ec objectClass: groupOfNames objectClass: top cn: Deparment1 member: uid=user1,ou=People,dc=mydomain,dc=com,dc=ec Or just create the deparments like this. dn: cn=Deparment1,ou=Group,dc=mydomain,dc=com,dc=ec objectClass: groupOfNames objectClass: top cn: Deparment1 member: uid=user1,ou=People,dc=mydomain,dc=com,dc=ec I seems that when you use smbldap tools bydefault the users are part of Domain Users even if you dont have them as part of Domain Users in the memberUid attribute, when I use finger they showup as part of the Domain Users group. I dont want the Departments Admins to be Domain Admins because they have power over all the users, unless I am mistaken. I also have trouble with the ACLs. I was trying to create an acl for members of this Admins group, I was trying with this search, but didnt work ldapsearch -x "(&(objectClass=organizationalPerson)(member=cn=Admins Department1,ou=Group,dc=mydomain,dc=com,dc=ec))" I am open to suggestions.

    Read the article

  • Linux - Only first virtual interface can ping external gateway

    - by husvar
    I created 3 virtual interfaces with different mac addresses all linked to the same physical interface. I see that they successfully arp for the gw and they can ping (the request is coming in the packet capture in wireshark). However the ping utility does not count the responses. Does anyone knows the issue? I am running Ubuntu 14.04 in a VmWare. root@ubuntu:~# ip link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:febc:fc8b/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip route sh root@ubuntu:~# ip link add link eth0 eth0.1 addr 00:00:00:00:00:11 type macvlan root@ubuntu:~# ip link add link eth0 eth0.2 addr 00:00:00:00:00:22 type macvlan root@ubuntu:~# ip link add link eth0 eth0.3 addr 00:00:00:00:00:33 type macvlan root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh root@ubuntu:~# dhclient -v eth0.1 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.1/00:00:00:00:00:11 Sending on LPF/eth0.1/00:00:00:00:00:11 Sending on Socket/fallback DHCPDISCOVER on eth0.1 to 255.255.255.255 port 67 interval 3 (xid=0x568eac05) DHCPREQUEST of 192.168.1.145 on eth0.1 to 255.255.255.255 port 67 (xid=0x568eac05) DHCPOFFER of 192.168.1.145 from 192.168.1.254 DHCPACK of 192.168.1.145 from 192.168.1.254 bound to 192.168.1.145 -- renewal in 1473 seconds. root@ubuntu:~# dhclient -v eth0.2 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.2/00:00:00:00:00:22 Sending on LPF/eth0.2/00:00:00:00:00:22 Sending on Socket/fallback DHCPDISCOVER on eth0.2 to 255.255.255.255 port 67 interval 3 (xid=0x21e3114e) DHCPREQUEST of 192.168.1.146 on eth0.2 to 255.255.255.255 port 67 (xid=0x21e3114e) DHCPOFFER of 192.168.1.146 from 192.168.1.254 DHCPACK of 192.168.1.146 from 192.168.1.254 bound to 192.168.1.146 -- renewal in 1366 seconds. root@ubuntu:~# dhclient -v eth0.3 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.3/00:00:00:00:00:33 Sending on LPF/eth0.3/00:00:00:00:00:33 Sending on Socket/fallback DHCPDISCOVER on eth0.3 to 255.255.255.255 port 67 interval 3 (xid=0x11dc5f03) DHCPREQUEST of 192.168.1.147 on eth0.3 to 255.255.255.255 port 67 (xid=0x11dc5f03) DHCPOFFER of 192.168.1.147 from 192.168.1.254 DHCPACK of 192.168.1.147 from 192.168.1.254 bound to 192.168.1.147 -- renewal in 1657 seconds. root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.145/24 brd 192.168.1.255 scope global eth0.1 valid_lft forever preferred_lft forever 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.146/24 brd 192.168.1.255 scope global eth0.2 valid_lft forever preferred_lft forever 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.147/24 brd 192.168.1.255 scope global eth0.3 valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh default via 192.168.1.254 dev eth0.1 192.168.1.0/24 dev eth0.1 proto kernel scope link src 192.168.1.145 192.168.1.0/24 dev eth0.2 proto kernel scope link src 192.168.1.146 192.168.1.0/24 dev eth0.3 proto kernel scope link src 192.168.1.147 root@ubuntu:~# arping -c 5 -I eth0.1 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.145 eth0.1 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 6.936ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.986ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 0.654ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.137ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.426ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.2 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.146 eth0.2 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.665ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.753ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 16.500ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.287ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 32.438ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.3 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.147 eth0.3 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 4.422ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.429ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.321ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 40.423ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.268ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# tcpdump -n -i eth0.1 -v & [1] 5317 root@ubuntu:~# ping -c5 -q -I eth0.1 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.145 eth0.1: 56(84) bytes of data. tcpdump: listening on eth0.1, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:37.612558 IP (tos 0x0, ttl 64, id 2595, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 2, length 64 13:18:37.618864 IP (tos 0x68, ttl 64, id 14493, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 2, length 64 13:18:37.743650 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:38.134997 IP (tos 0x0, ttl 128, id 23547, offset 0, flags [none], proto UDP (17), length 229) 192.168.1.86.138 > 192.168.1.255.138: NBT UDP PACKET(138) 13:18:38.614580 IP (tos 0x0, ttl 64, id 2596, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 3, length 64 13:18:38.793479 IP (tos 0x68, ttl 64, id 14495, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 3, length 64 13:18:39.151282 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:39.615612 IP (tos 0x0, ttl 64, id 2597, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 4, length 64 13:18:39.746981 IP (tos 0x68, ttl 64, id 14496, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 4, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4008ms rtt min/avg/max/mdev = 2.793/67.810/178.934/73.108 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 12 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.1 -v root@ubuntu:~# tcpdump -n -i eth0.2 -v & [1] 5320 root@ubuntu:~# ping -c5 -q -I eth0.2 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.146 eth0.2: 56(84) bytes of data. tcpdump: listening on eth0.2, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:41.536874 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.254 is-at 58:98:35:57:a0:70, length 46 13:18:41.536933 IP (tos 0x0, ttl 64, id 2599, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 1, length 64 13:18:41.539255 IP (tos 0x68, ttl 64, id 14507, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 1, length 64 13:18:42.127715 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:42.511725 IP (tos 0x0, ttl 64, id 2600, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 2, length 64 13:18:42.514385 IP (tos 0x68, ttl 64, id 14527, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 2, length 64 13:18:42.743856 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:43.511727 IP (tos 0x0, ttl 64, id 2601, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 3, length 64 13:18:43.513768 IP (tos 0x68, ttl 64, id 14528, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 3, length 64 13:18:43.637598 IP (tos 0x0, ttl 128, id 23551, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.641185 IP (tos 0x0, ttl 128, id 23552, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 192.168.1.255.17500: UDP, length 197 13:18:43.641201 IP (tos 0x0, ttl 128, id 23553, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.743890 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:44.510758 IP (tos 0x0, ttl 64, id 2602, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 4, length 64 13:18:44.512892 IP (tos 0x68, ttl 64, id 14538, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 4, length 64 13:18:45.510794 IP (tos 0x0, ttl 64, id 2603, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 5, length 64 13:18:45.519701 IP (tos 0x68, ttl 64, id 14539, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 5, length 64 13:18:49.287554 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:50.013463 IP (tos 0x0, ttl 255, id 50737, offset 0, flags [DF], proto UDP (17), length 73) 192.168.1.146.5353 > 224.0.0.251.5353: 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:50.218874 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:51.129961 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:52.197074 IP6 (hlim 255, next-header UDP (17) payload length: 53) 2001:818:d812:da00:200:ff:fe00:22.5353 > ff02::fb.5353: [udp sum ok] 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:54.128240 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4000ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 13:18:54.657731 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:54.743174 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 25 packets captured 26 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.2 -v root@ubuntu:~# tcpdump -n -i eth0.3 icmp & [1] 5324 root@ubuntu:~# ping -c5 -q -I eth0.3 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.147 eth0.3: 56(84) bytes of data. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0.3, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:56.373434 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 1, length 64 13:18:57.372116 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 2, length 64 13:18:57.381263 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 2, length 64 13:18:58.371141 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 3, length 64 13:18:58.373275 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 3, length 64 13:18:59.371165 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 4, length 64 13:18:59.373259 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 4, length 64 13:19:00.371211 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 5, length 64 13:19:00.373278 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 5, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 1 received, 80% packet loss, time 4001ms rtt min/avg/max/mdev = 13.666/13.666/13.666/0.000 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 10 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.3 icmp root@ubuntu:~# arp -n Address HWtype HWaddress Flags Mask Iface 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.1 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.2 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.3

    Read the article

  • Unable to create installdriver instance

    - by Entity
    When trying to install a program called "AV Grabber", I get the following error message. unable to create installdriver instance Product name is: EZ Grabber Right click on the executable 7.1.79.0 I have tried installing Install Sheild 7, but have no luck trying to remove this error message. Any Ideas? Machine: Windows XP (Home Edition) User Account: Administrator Account Folder version of installshield is visible from: C:\Program Files\Common Files\InstallShield\Driver\7\Intel 32 Have tried the following command, but have not helped. "C:\Program Files\Common Files\InstallShield\Driver\7\Intel 32\IDriver.exe" -Embedding

    Read the article

  • Explicit construction of entity type [MyClass] in query is not allowed.

    - by Code Sherpa
    Hi. Like the title says, I have the following exception: Description: Event code: 3005 Event message: An unhandled exception has occurred. Exception information: Exception type: NotSupportedException Exception message: Explicit construction of entity type 'Company.Project.Core.Domain.Friend' in query is not allowed. I am using LINQ and have the following code in my datacontext: var friends2 = (dc.Friends .Where(f => f.MyFriendsAccountId == accountId && f.AccountId != accountId) .Select(f => new { f.FriendId, AccountId = f.MyFriendsAccountId, MyFriendsAccountId = f.AccountId, f.CreateDate, f.Timestamp })).Distinct(); result.AddRange(friends2 .Select(o => new Friend { FriendId = o.FriendId, AccountId = o.AccountId, CreateDate = o.CreateDate, MyFriendsAccountId = o.MyFriendsAccountId, Timestamp = o.Timestamp })); the final code block is throwing the error and I am pretty sure it is this statement that is the culprit: .Select( o => **new Friend** How should I be reworking my code to avoid this error? Code illustration appreciated. Thanks.

    Read the article

  • How to retrieve row count of one-to-many relation while also including original entity?

    - by kaa
    Say I have two entities Foo and Bar where Foo has-many Bar's, class Foo { int ImportantNumber { get; set; } IEnumerable<Bar> Bars { get; set; } } class FooDTO { Foo Foo { get; set; } int BarCount { get; set; } } How can I efficiently sum up the number of Bars per Foo in a DTO using a single query, preferrably only with the Criteria interface. I have tried any number of ways to get the original entity out of a query with ´SetProjection´ but no luck. The current theory is to do something like SELECT Foo.*, BarCounts.counts FROM Foo LEFT JOIN ( SELECT fooId, COUNT(*) as counts FROM Bar GROUP BY fooId ) AS BarCounts ON Foo.id=BarCounts.fooId but with Criterias, and I just can't seem to figure out how.

    Read the article

  • C# - adding new groups with items and subitems to a listview

    - by Nike
    Hello there. The following code adds a new item, and a new group with the text "Default". If i keep clicking the button, it will just keep adding new items to that particular group. ListViewItem item = new ListViewItem(""); item.SubItems.Add(""); csslistview.Items.Add(item); What i'm trying to do, is to add a new group and fill it with one empty item, aswell as one empty subitem. And when i click the button again, i want it to create a new group, and do the same thing. I have a textbox were the user has to fill in the name of the group, so there wont be any groups with the same name (hopefully). The following code, i think, creates a new group: ListViewGroup group = new ListViewGroup(newGroupName); group.Items.Add(newGroupName); csslistview.Groups.Add(group); but as empty groups aren't showed, i can't really verify that it actually creates new groups. Well, thanks in advance. -Nike

    Read the article

  • How to generate entity classes from nhibernate mapping files during runtime.

    - by Denis Rosca
    Hello, i need some help with c# and nhibernate. I'm working on a project that requires the entity classes to be generated from hbm files at runtime. I get the mapping files from a service, and then need to generate the classes dynamicaly and configure nhibernate to use them. The problem is that i'm new to nhibernate and not much of a pro in c#, so me writing the piece of code that achieves this is very error-prone. I was wondering if you know of any open source software that i could use. Worst case scenario (if can't find anything that even remotely resembles what i need), do you guys have some advice on where should i start? Maybe some links ? Thanks, Denis.

    Read the article

  • Why String.replaceAll() don't work on this String ?

    - by Aloong
    //This source is a line read from a file String src = "23570006,music,**,wu(),1,exam,\"Monday9,10(H2-301)\",1-10,score,"; //This sohuld be from a matcher.group() when Pattern.compile("\".*?\"") String group = "\"Monday9,10(H2-301)\""; src = src.replaceAll("\"", ""); group = group.replaceAll("\"", ""); String replacement = group.replaceAll(",", "#@"); System.out.println(src.contains(group)); src = src.replaceAll(group, replacement); System.out.println(group); System.out.println(replacement); System.out.println(src); I'm trying to replace the "," between \"s so I can ues String.split() latter. But the above just not working , the result is: true Monday9,10(H2-301) Monday9#@10(H2-301) 23570006,music,**,wu(),1,exam,Monday9,10(H2-301),1-10,score, but when I change the src string to String src = "123\"9,10\"123"; String group = "\"9,10\""; It works well true 9,10 9#@10 1239#@10123 What's the matter with the string???

    Read the article

  • How long (max characters) can a datastore entity key_name be? Is it bad to haver very long key_names

    - by indiehacker
    What is the maximum number of characters that can be used to define the key_name of a datastore entity? Is it bad to have very long key_names? For example: Lets say we use key_names of a 170 characters, which is the length of a Twitter message 140 plus 10 numeric characters for latitude and 10 for longtitude and 10 for a timestamp. (Reasoning of such a key_name: So by using such a key_name we can easily and quickly be sure of no duplicate postings, since the same message should not come from the same place and time more than once.)

    Read the article

  • REST: Should I redirect to the version URL of an entity?

    - by sfussenegger
    I am currently working on a REST service. This service has an entity which has different versions, similar to Wikipedia articles. Now I'm wondering what I should return if for GET /article/4711 Should I use a (temporary) redirect to the current version, e.g. GET /article/4711/version/7 Or should I return the current version directly? Using redirects would considerably simplify HTTP caching (using Last-Modified) but has the disadvantages a redirect has (extra request, 'harder' to implement). Therefore I'm not sure whether this is good practice though. Any suggestions, advise, or experiences to share? (btw: ever tried search for "REST Version"? Everything you get is about the version of the API rather than entities. So please bear with me if this is a duplicate.)

    Read the article

  • Design Help! How can design Extended properties for Entity with simple and complex data in extended

    - by mmtemporary
    I have design question. I have entity such as "Person". Person has properties such as: FirstName, LastName, Gender, BirthDate, .... End user when create a person in application may be need to define another property that is not defined in database table schema (or class person). for example: end user nead to define "property1" that its a string property. or nead define "proerty2" that its a image, or need define "property3" that its complex type. please separate your design solution in tow level: 1-database table design 2-class design thank u.

    Read the article

  • Get the last checked checkboxes...

    - by Sara
    Hi everyone, I'm not sure how to accomplish this issue which has been confusing me for a few days. I have a form that updates a user record in MySQL when a checkbox is checked. Now, this is how my form does this: if (isset($_POST['Update'])) { $paymentr = $_POST['paymentr']; //put checkboxes array into variable $paymentr2 = implode(', ', $paymentr); //implode array for mysql $query = "UPDATE transactions SET paymentreceived=NULL"; $result = mysql_query($query); $query = "UPDATE transactions SET paymentdate='0000-00-00'"; $result = mysql_query($query); $query = "UPDATE transactions SET paymentreceived='Yes' WHERE id IN ($paymentr2)"; $result = mysql_query($query); $query = "UPDATE transactions SET paymentdate=NOW() WHERE id IN ($paymentr2)"; $result = mysql_query($query); foreach ($paymentr as $v) { //should collect last updated records and put them into variable for emailing. $query = "SELECT id, refid, affid FROM transactions WHERE id = '$v'"; $result = mysql_query($query) or die("Query Failed: ".mysql_errno()." - ".mysql_error()."<BR>\n$query<BR>\n"); $trans = mysql_fetch_array($result, MYSQL_ASSOC); $transactions .= '<br>User ID:'.$trans['id'].' -- '.$trans['refid'].' -- '.$trans['affid'].'<br>'; } } Unfortunately, it then updates ALL the user records with the latest date which is not what I want it to do. The alternative I thought of was, via Javascript, giving the checkbox a value that would be dynamically updated when the user selected it. Then, only THOSE checkboxes would be put into the array. Is this possible? Is there a better solution? I'm not even sure I could wrap my brain around how to do that WITH Javascript. Does the answer perhaps lie in how my mysql code is written? Thanks - I sincerely appreciate it!!!

    Read the article

  • SQLAlchemy & Complex Queries

    - by user356594
    I have to implement ACL for an existing application. So I added the a user, group and groupmembers table to the database. I defined a ManyToMany relationship between user and group via the association table groupmembers. In order to protect some ressources of the app (i..e item) I added a additional association table auth_items which should be used as an association table for the ManyToMany relationship between groups/users and the specific item. item has following columns: user_id -- user table group_id -- group table item_id -- item table at least on of user_id and group_id columns are set. So it's possible to define access for a group or for a user to a specific item. I have used the AssociationProxy to define the relationship between users/groups and items. I now want to display all items which the user has access to and I have a really hard time doing that. Following criteria are used: All items which are owned by the user should be shown (item.owner_id = user.id) All public items should be shown (item.access = public) All items which the user has access to should be shown (auth_item.user_id = user.id) All items which the group of the user has access to should be shown. The first two criteria are quite straightforward, but I have a hard time doing the 3rd one. Here is my approach: clause = and_(item.access == 'public') if user is not None: clause = or_(clause,item.owner == user,item.users.contains(user),item.groups.contains(group for group in user.groups)) The third criteria produces an error. item.groups.contains(group for group in user.groups) I am actually not sure if this is a good approach at all. What is the best approach when filtering manytomany relationships? How I can filter a manytomany relationship based on another list/relationship? Btw I am using the latest sqlalchemy (6.0) and elixir version Thanks for any insights.

    Read the article

  • Java: which configuration framework to use?

    - by Laimoncijus
    Hi, I need to decide which configuration framework to use. At the moment I am thinking between using properties files and XML files. My configuration needs to have some primitive grouping, e.g. in XML format would be something like: <configuration> <group name="abc"> <param1>value1</param1> <param2>value2</param2> </group> <group name="def"> <param3>value3</param3> <param4>value4</param4> </group> </configuration> or a properties file (something similar to log4j.properties): group.abc.param1 = value1 group.abc.param2 = value2 group.def.param3 = value3 group.def.param4 = value4 I need bi-directional (read and write) configuration library/framework. Nice feature would be - that I could read out somehow different configuration groups as different objects, so I could later pass them to different places, e.g. - reading everything what belongs to group "abc" as one object and "def" as another. If that is not possible I can always split single configuration object into smaller ones myself in the application initialization part of course. Which framework would best fit for me?

    Read the article

< Previous Page | 167 168 169 170 171 172 173 174 175 176 177 178  | Next Page >