Search Results

Search found 19923 results on 797 pages for 'instance variables'.

Page 172/797 | < Previous Page | 168 169 170 171 172 173 174 175 176 177 178 179  | Next Page >

  • How should I start refactoring my mostly-procedural C++ application?

    - by oob
    We have a program written in C++ that is mostly procedural, but we do use some C++ containers from the standard library (vector, map, list, etc). We are constantly making changes to this code, so I wouldn't call it a stagnant piece of legacy code that we can just wrap up. There are a lot of issues with this code making it harder and harder for us to make changes, but I see the three biggest issues being: Many of the functions do more (way more) than one thing We violate the DRY principle left and right We have global variables and global state up the wazoo. I was thinking we should attack areas 1 and 2 first. Along the way, we can "de-globalize" our smaller functions from the bottom up by passing in information that is currently global as parameters to the lower level functions from the higher level functions and then concentrate on figuring out how to removing the need for global variables as much as possible. I just finished reading Code Complete 2 and The Pragmatic Programmer, and I learned a lot, but I am feeling overwhelmed. I would like to implement unit testing, change from a procedural to OO approach, automate testing, use a better logging system, fully validate all input, implement better error handling and many other things, but I know if we start all this at once, we would screw ourselves. I am thinking the three I listed are the most important to start with. Any suggestions are welcome. We are a team of two programmers mostly with experience with in-house scripting. It is going to be hard to justify taking the time to refactor, especially if we can't bill the time to a client. Believe it or not, this project has been successful enough to keep us busy full time and also keep several consultants busy using it for client work.

    Read the article

  • Are specific types still necessary?

    - by MKO
    One thing that occurred to me the other day, are specific types still necessary or a legacy that is holding us back. What I mean is: do we really need short, int, long, bigint etc etc. I understand the reasoning, variables/objects are kept in memory, memory needs to be allocated and therefore we need to know how big a variable can be. But really, shouldn't a modern programming language be able to handle "adaptive types", ie, if something is only ever allocated in the shortint range it uses fewer bytes, and if something is suddenly allocated a very big number the memory is allocated accordinly for that particular instance. Float, real and double's are a bit trickier since the type depends on what precision you need. Strings should however be able to take upp less memory in many instances (in .Net) where mostly ascii is used buth strings always take up double the memory because of unicode encoding. One argument for specific types might be that it's part of the specification, ie for example a variable should not be able to be bigger than a certain value so we set it to shortint. But why not have type constraints instead? It would be much more flexible and powerful to be able to set permissible ranges and values on variables (and properties). I realize the immense problem in revamping the type architecture since it's so tightly integrated with underlying hardware and things like serialization might become tricky indeed. But from a programming perspective it should be great no?

    Read the article

  • Nullable types and ?? operator C# [en-US]

    - by ruimachado
    Nullable types vs Non-nullable types   While developing our C# projects its frequent the null comparison operation to avoid null exceptions. This simple operation is mainly coded using the "var x = null" code example inside an if clause. However not all types of variables are nullable, which means that setting a variable to null is not allowed in every cases, it depends on what kind of type are you defining. But what if there was an extension to your non-nullable type that would convert your variable types to nullable? This extension really exists. As I said before in C# you have nullable types which represent all the values of an underlying type, and an additional null value and can be declared easily using "T?", where T is the type of the variable and for example the normal int type cannot be null, so its a non-nullable type, however if you define a "int?" your variable can be null, what you do is convert a non-nullable type to a nullable type. Example: int x=null;     Not allowed     int? x=null;   Allowed     While using nullable types you can check if a variable is null the same way you do it with nullable types:     But what about setting a default value when a certain variable is null?   In this cases the c# .net framework let you set a default value when you try to assign a nullable type to a non-nullable type, using the ?? operator. If you don't use this operator you can still catch the InvalidOperationException which is throw in this cases. For example  without the ?? operator :     Using the ?? operator your code becomes cleaner and more easy to read and you get a bonus, you can set a default value for multiple variables using the ?? in a chain set.     That’s it,   Thanks, Rui Machado rpmachado.wordpress.com

    Read the article

  • Installing Django on Windows

    - by Pranav
    Ever needed to install Django in a Microsoft Windows environment, here is a quick start guide to make that happen: Read through the official Django installation documentation, it might just save you a world of hut down the road. Download Python for your version of Windows. Install Python, my preference here is to put it into the Program Files folder under a folder named Python<Version> Add your chosen Python installation path into your Windows path environment variable. This is an optional step, however it allows you to just type python in the command line and have it fire up the Python interpreter. An easy way of adding it is going into Control Panel, System and into the Environment Variables section. Download Django, you can either download a compressed file or if you’re comfortable with using version control – check it out from the Django Subversion repository. Create a folder named django under your <Python installation directory>\Lib\site-packages\ folder. Using my example above that would have been C:\Program Files\Python25\Lib\site-packages\. If you chose to download the compressed file, open it and extract the contents of the django folder into your newly created folder. If you’d prefer to check it out from Subversion, the normal check out points are http://code.djangoproject.com/svn/django/trunk/ for the latest development copy or a named release which you’ll find under http://code.djangoproject.com/svn/django/tags/releases/. Done, you now have a working Django installation on Windows. At this point, it’d be pertinent to confirm that everything is working properly, which you can do by following the first Django tutorial. The tutorial will make mention of django-admin.py, which is a utility which offers some basic functionality to get you off the ground. The file is located in the bin folder under your Django installation directory. When you need to use it, you can either type in the full path to it or simply add that file path into your environment variables as well. Hope this helps!

    Read the article

  • Matlab: Why is '1' + 1 == 50? [migrated]

    - by phi
    Matlab has weak dynamic typing, which is what causes this weird behaviour. What I do not understand is what exactly happens, as this result really surprises me. Edit: To clarify, what I'm describing is clearly a result of Matlab storing chars in ASCII-format, which was also mentioned in the comments. I'm more interested in the way Matlab handles its variables, and specifically, how and when it assigns a type/tag to the values. Thanks. '1' is a 1-by-1 matrix of chars in matlab and '123' is a 1-by-3 matrix of chars. As expected, 1 returns a 1-by-1 double. Now if I enter '1' + 1 I get 50 as a 1-by-1 double, and if I enter '123' + 1 I get a 1-by-3 double [ 50 51 52 ] Furthermore, if I type 'a' + 1 the result is 98 in a 1-by-1 double. I assume this has to do with how Matlab stores char-variables in ascii form, but how exactly is it handling these? Are the data actually unityped and tagged, or how does it work? Thanks.

    Read the article

  • How to enable a Web portal-based rich enterprise platform on different domains and hosts using JS without customization/ server configuration

    - by S.Jalali
    Our company Coscend has built a Web portal-based communications and cloud collaboration platform by using JavaScript (JS), which is embedded in HTML5 and formatted with CSS3. Other technologies used in the core code include Flash, Flex, PostgreSQL and MySQL. Our team would like to host this platform on five different Windows and Linux environments that run different types of Web servers such as IIS and Apache. Technical challenge: Each of these Windows and Linux servers have a different host name and domain name (and IP address), but we would like to keep our enterprise platform independent of host server configuration. Possible approach to solution: We think an API (interface module with a GUI) is needed to accomplish this level of modularity and flexibility while deploying at our enterprise customers. Seeking your insights: In this context, our team would appreciate your guidance on: Is there an algorithmic method to implement this Web portal-based platform in these Windows and Linux environments while separating it from server configuration, i.e., customizing the host name, domain name and IP address for each individual instance? For example, would it be suitable to create some JS variables / objects for host name and domain name and call them in the different implementations? If a reference to the host/domain names occurs on hundreds of portal modules, these variables or JS objects would replace that. If so, what is the best way to make these object modules written in JS portable and re-usable across different environments and instances for enterprise customers? Here is an example of the implemented code for the said platform. The following Web site (www.CoscendCommunications.com) was built using this enterprise collaboration platform and has the base code examples of the platform. This Web site is domain-specific. We like to make the underlying platform such that it is domain and host-independent. This will allow the underlying platform to be deployed in multiple instances of our enterprise customers.

    Read the article

  • Developing an Interface to a Dynamic System

    - by radix07
    I work for a small company and have been designing a GUI to interface our embedded system. The problem with this embedded system is that it is not a finished product (may never be) and is constantly under development and being tweaked and updated for different customers and applications in small volumes. So to deal with this I made a program that can export all the data from a spreadsheet where most of the embedded system variables are sourced from and throw them into a small database for the GUI application to use. This database program I made also spits out a cross reference file for the embedded system which allows the GUI to look up all the variables. This system works pretty well so far, and is even integrated with version control among the GUI, database, and embedded system. The big problem is that there is constant development on several projects that use this system and it gets terribly tedious to keep the system up to date and bring in new changes. This has gotten to the point to where I have had to code the GUI to dynamically (generically) generate all interfaces since I am never guaranteed to find the same data the same way. I have not been able to come up with a good way to uniquely identify the data I import from excel since all fields are able to be changed (due to engineering stubbornness, code re-factoring and/or excel issues) and I cannot assign a fixed reference within the sheet itself. So, are there any good methods or ideas on how to handle the chaos?

    Read the article

  • Value my C++ knowledge

    - by PirateOwh
    I have only followed antiRTFM tutorials and read 2 books So, I'll list the things I know better : basic input output and all the variables : integers ( signed unsigned ), float, double, char arrays if, for, while, switch functions, and passing variables to functions and return type thing classes and the concept of oop with separating declaration and definition in the header and in the source pointers so this and some more i think is all i know of C++.. But, i need some exercises to test my knowledge because i want to move on to the library SDL, so I don't know if i should feel ready or not to move on to something totally different.. I feel I should know the basics for good at least. So the question is : How can i value my c++ knowledge? Is there any online tests? Is there any GDD ( Game Design Document ) for free to use and see if i can manage to do it so "i'd pass" ? ( I'm saying GDD since ill move on to SDL and try to make my own game ) When should I move to SDL? What are ALL the things I should "master" ( master is a big word to say.. but so you understand what i mean ) before moving on ? Please I'm really in need of expert advice. I think my question is detailed so i hope you understand what i mean and can give me a good reply. Thanks for the help!

    Read the article

  • Building MySQL with boost on windows

    - by user13177919
    As you've probably heard already MySQL needs boost to build. However, in the good ol' MySQL tradition, the above link does give you only the instructions on how to build it on linux. And completely ignores the fact that there're other OSes too that people develop on. To fill in that gap, I've compiled a small step by step guide on how to do it on windows. Note that I always, as a principle, build out-of-source. The typical setup I have is : bzr clone lp:~mysql/mysql-server/5.7 mysql-trunkcd mysql-trunkmkdir bldcd bldcmake -DWITH_DEBUG=1 -DMYSQL_PROJECT_NAME=mysql-trunk ..devenv /build debug mysql-trunk.sln This has been tested to work on a 32 bit compile using VS2013 on a Windows7 64 bit build. Note that you'll need other things too (bison, eventually openssl etc) that I will assume you already have set up. Steps: Download Boost 1.55.0. It's the *only* version that is known to work currently. Extract boost_1_55_0/ from the zip to c:\boost\boost_1_55_0 Go to Control Panel/System/Environment variables and set WITH_BOOST=C:\boost\boost_1_55_0 in User variables. Make sure you restart your open command line terminal windows after this !  If you're upgrading from non-boost build, remove your bld/ directory and create a new one. run cmake as you'd typically do. You should get: -- Local boost dir C:/boost/boost_1_55_0 -- Local boost zip LOCAL_BOOST_ZIP-NOTFOUND -- BOOST_VERSION_NUMBER is #define BOOST_VERSION 105500 -- BOOST_INCLUDE_DIR C:/boost/boost_1_55_0 Build as normal (devenv /build debug ...). It should work.

    Read the article

  • MATLAB: What is an appropriate Data Structure for a Matrix with Random Variable Entries?

    - by user12707
    I'm working in an area that is related to simulation and trying to design a data structure that can include random variables within matrices. I am currently coding in MATLAB. To motivate this let me say I have the following matrix: [a b; c d] I want to find a data structure that will allow for a, b, c, d to be either real numbers or random variables. As an example, let's say that a = 1, b = -1, c = 2 but let d be a normally distributed random variable with mean 20 and SD 40. The data structure that I have in mind will give no value to d. However, I also want to be able to design a function that can take in the structure, simulate an uniform(0,1), obtain a value for d using an inverse CDF and then spit out an actual matrix. I have several ideas to do this (all related to the MATLAB icdf function) but would like to know how more experienced programmers would do it. In this application, it's important that the structure is as "lean" as possible since I will be working with very very large matrices and memory will be an issue.

    Read the article

  • What design pattern (in python) to use for properly seperate runtime infos with core code?

    - by user1824372
    I am not sure if this is a clear question. I work on a python project that is based on terminal(console), for which I am planning to implement a GUI. I am not major in CS so I really have no idea about how to effectively design a message system such that: in console, it provide nice look info when runtime. in GUI, it is directed to a certain widget, let's say, a text label, or a bottom bar, or a hide-able frame. Do you have any suggestions? Currently, I am using print function to provide essential informations on stdout during runtime. So a lot of print .... are distributed here and there among the code. I am thinking to use macro-like variables such as 'FILE_NOT_EXTIS_MESSAGE' for printing, and define the variables in one file. Is this a standard way that people always do? How about I introduce a logging system? In sum, I am ask for a pattern that people are commonly using for handling of screen output information with high effectiveness and adaptivity.

    Read the article

  • How to use Ninject with XNA?

    - by Rosarch
    I'm having difficulty integrating Ninject with XNA. static class Program { /** * The main entry point for the application. */ static void Main(string[] args) { IKernel kernel = new StandardKernel(NinjectModuleManager.GetModules()); CachedContentLoader content = kernel.Get<CachedContentLoader>(); // stack overflow here MasterEngine game = kernel.Get<MasterEngine>(); game.Run(); } } // constructor for the game public MasterEngine(IKernel kernel) : base(kernel) { this.inputReader = kernel.Get<IInputReader>(); graphicsDeviceManager = kernel.Get<GraphicsDeviceManager>(); Components.Add(kernel.Get<GamerServicesComponent>()); // Tell the loader to look for all files relative to the "Content" directory. Assets = kernel.Get<CachedContentLoader>(); //Sets dimensions of the game window graphicsDeviceManager.PreferredBackBufferWidth = 800; graphicsDeviceManager.PreferredBackBufferHeight = 600; graphicsDeviceManager.ApplyChanges(); IsMouseVisible = false; } Ninject.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Ninject.Modules; using HWAlphaRelease.Controller; using Microsoft.Xna.Framework; using Nuclex.DependencyInjection.Demo.Scaffolding; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace HWAlphaRelease { public static class NinjectModuleManager { public static NinjectModule[] GetModules() { return new NinjectModule[1] { new GameModule() }; } /// <summary>Dependency injection rules for the main game instance</summary> public class GameModule : NinjectModule { #region class ServiceProviderAdapter /// <summary>Delegates to the game's built-in service provider</summary> /// <remarks> /// <para> /// When a class' constructor requires an IServiceProvider, the dependency /// injector cannot just construct a new one and wouldn't know that it has /// to create an instance of the Game class (or take it from the existing /// Game instance). /// </para> /// <para> /// The solution, then, is this small adapter that takes a Game instance /// and acts as if it was a freely constructable IServiceProvider implementation /// while in reality, it delegates all lookups to the Game's service container. /// </para> /// </remarks> private class ServiceProviderAdapter : IServiceProvider { /// <summary>Initializes a new service provider adapter for the game</summary> /// <param name="game">Game the service provider will be taken from</param> public ServiceProviderAdapter(Game game) { this.gameServices = game.Services; } /// <summary>Retrieves a service from the game service container</summary> /// <param name="serviceType">Type of the service that will be retrieved</param> /// <returns>The service that has been requested</returns> public object GetService(Type serviceType) { return this.gameServices; } /// <summary>Game services container of the Game instance</summary> private GameServiceContainer gameServices; } #endregion // class ServiceProviderAdapter #region class ContentManagerAdapter /// <summary>Delegates to the game's built-in ContentManager</summary> /// <remarks> /// This provides shared access to the game's ContentManager. A dependency /// injected class only needs to require the ISharedContentService in its /// constructor and the dependency injector will automatically resolve it /// to this adapter, which delegates to the Game's built-in content manager. /// </remarks> private class ContentManagerAdapter : ISharedContentService { /// <summary>Initializes a new shared content manager adapter</summary> /// <param name="game">Game the content manager will be taken from</param> public ContentManagerAdapter(Game game) { this.contentManager = game.Content; } /// <summary>Loads or accesses shared game content</summary> /// <typeparam name="AssetType">Type of the asset to be loaded or accessed</typeparam> /// <param name="assetName">Path and name of the requested asset</param> /// <returns>The requested asset from the the shared game content store</returns> public AssetType Load<AssetType>(string assetName) { return this.contentManager.Load<AssetType>(assetName); } /// <summary>The content manager this instance delegates to</summary> private ContentManager contentManager; } #endregion // class ContentManagerAdapter /// <summary>Initializes the dependency configuration</summary> public override void Load() { // Allows access to the game class for any components with a dependency // on the 'Game' or 'DependencyInjectionGame' classes. Bind<MasterEngine>().ToSelf().InSingletonScope(); Bind<NinjectGame>().To<MasterEngine>().InSingletonScope(); Bind<Game>().To<MasterEngine>().InSingletonScope(); // Let the dependency injector construct a graphics device manager for // all components depending on the IGraphicsDeviceService and // IGraphicsDeviceManager interfaces Bind<GraphicsDeviceManager>().ToSelf().InSingletonScope(); Bind<IGraphicsDeviceService>().To<GraphicsDeviceManager>().InSingletonScope(); Bind<IGraphicsDeviceManager>().To<GraphicsDeviceManager>().InSingletonScope(); // Some clever adapters that hand out the Game's IServiceProvider and allow // access to its built-in ContentManager Bind<IServiceProvider>().To<ServiceProviderAdapter>().InSingletonScope(); Bind<ISharedContentService>().To<ContentManagerAdapter>().InSingletonScope(); Bind<IInputReader>().To<UserInputReader>().InSingletonScope().WithConstructorArgument("keyMapping", Constants.DEFAULT_KEY_MAPPING); Bind<CachedContentLoader>().ToSelf().InSingletonScope().WithConstructorArgument("rootDir", "Content"); } } } } NinjectGame.cs /// <summary>Base class for Games making use of Ninject</summary> public class NinjectGame : Game { /// <summary>Initializes a new Ninject game instance</summary> /// <param name="kernel">Kernel the game has been created by</param> public NinjectGame(IKernel kernel) { Type ownType = this.GetType(); if(ownType != typeof(Game)) { kernel.Bind<NinjectGame>().To<MasterEngine>().InSingletonScope(); } kernel.Bind<Game>().To<NinjectGame>().InSingletonScope(); } } } // namespace Nuclex.DependencyInjection.Demo.Scaffolding When I try to get the CachedContentLoader, I get a stack overflow exception. I'm basing this off of this tutorial, but I really have no idea what I'm doing. Help?

    Read the article

  • Announcing the release of the Windows Azure SDK 2.1 for .NET

    - by ScottGu
    Today we released the v2.1 update of the Windows Azure SDK for .NET.  This is a major refresh of the Windows Azure SDK and it includes some great new features and enhancements. These new capabilities include: Visual Studio 2013 Preview Support: The Windows Azure SDK now supports using the new VS 2013 Preview Visual Studio 2013 VM Image: Windows Azure now has a built-in VM image that you can use to host and develop with VS 2013 in the cloud Visual Studio Server Explorer Enhancements: Redesigned with improved filtering and auto-loading of subscription resources Virtual Machines: Start and Stop VM’s w/suspend billing directly from within Visual Studio Cloud Services: New Emulator Express option with reduced footprint and Run as Normal User support Service Bus: New high availability options, Notification Hub support, Improved VS tooling PowerShell Automation: Lots of new PowerShell commands for automating Web Sites, Cloud Services, VMs and more All of these SDK enhancements are now available to start using immediately and you can download the SDK from the Windows Azure .NET Developer Center.  Visual Studio’s Team Foundation Service (http://tfs.visualstudio.com/) has also been updated to support today’s SDK 2.1 release, and the SDK 2.1 features can now be used with it (including with automated builds + tests). Below are more details on the new features and capabilities released today: Visual Studio 2013 Preview Support Today’s Window Azure SDK 2.1 release adds support for the recent Visual Studio 2013 Preview. The 2.1 SDK also works with Visual Studio 2010 and Visual Studio 2012, and works side by side with the previous Windows Azure SDK 1.8 and 2.0 releases. To install the Windows Azure SDK 2.1 on your local computer, choose the “install the sdk” link from the Windows Azure .NET Developer Center. Then, chose which version of Visual Studio you want to use it with.  Clicking the third link will install the SDK with the latest VS 2013 Preview: If you don’t already have the Visual Studio 2013 Preview installed on your machine, this will also install Visual Studio Express 2013 Preview for Web. Visual Studio 2013 VM Image Hosted in the Cloud One of the requests we’ve heard from several customers has been to have the ability to host Visual Studio within the cloud (avoiding the need to install anything locally on your computer). With today’s SDK update we’ve added a new VM image to the Windows Azure VM Gallery that has Visual Studio Ultimate 2013 Preview, SharePoint 2013, SQL Server 2012 Express and the Windows Azure 2.1 SDK already installed on it.  This provides a really easy way to create a development environment in the cloud with the latest tools. With the recent shutdown and suspend billing feature we shipped on Windows Azure last month, you can spin up the image only when you want to do active development, and then shut down the virtual machine and not have to worry about usage charges while the virtual machine is not in use. You can create your own VS image in the cloud by using the New->Compute->Virtual Machine->From Gallery menu within the Windows Azure Management Portal, and then by selecting the “Visual Studio Ultimate 2013 Preview” template: Visual Studio Server Explorer: Improved Filtering/Management of Subscription Resources With the Windows Azure SDK 2.1 release you’ll notice significant improvements in the Visual Studio Server Explorer. The explorer has been redesigned so that all Windows Azure services are now contained under a single Windows Azure node.  From the top level node you can now manage your Windows Azure credentials, import a subscription file or filter Server Explorer to only show services from particular subscriptions or regions. Note: The Web Sites and Mobile Services nodes will appear outside the Windows Azure Node until the final release of VS 2013. If you have installed the ASP.NET and Web Tools Preview Refresh, though, the Web Sites node will appear inside the Windows Azure node even with the VS 2013 Preview. Once your subscription information is added, Windows Azure services from all your subscriptions are automatically enumerated in the Server Explorer. You no longer need to manually add services to Server Explorer individually. This provides a convenient way of viewing all of your cloud services, storage accounts, service bus namespaces, virtual machines, and web sites from one location: Subscription and Region Filtering Support Using the Windows Azure node in Server Explorer, you can also now filter your Windows Azure services in the Server Explorer by the subscription or region they are in.  If you have multiple subscriptions but need to focus your attention to just a few subscription for some period of time, this a handy way to hide the services from other subscriptions view until they become relevant. You can do the same sort of filtering by region. To enable this, just select “Filter Services” from the context menu on the Windows Azure node: Then choose the subscriptions and/or regions you want to filter by. In the below example, I’ve decided to show services from my pay-as-you-go subscription within the East US region: Visual Studio will then automatically filter the items that show up in the Server Explorer appropriately: With storage accounts and service bus namespaces, you sometimes need to work with services outside your subscription. To accommodate that scenario, those services allow you to attach an external account (from the context menu). You’ll notice that external accounts have a slightly different icon in server explorer to indicate they are from outside your subscription. Other Improvements We’ve also improved the Server Explorer by adding additional properties and actions to the service exposed. You now have access to most of the properties on a cloud service, deployment slot, role or role instance as well as the properties on storage accounts, virtual machines and web sites. Just select the object of interest in Server Explorer and view the properties in the property pane. We also now have full support for creating/deleting/update storage tables, blobs and queues from directly within Server Explorer.  Simply right-click on the appropriate storage account node and you can create them directly within Visual Studio: Virtual Machines: Start/Stop within Visual Studio Virtual Machines now have context menu actions that allow you start, shutdown, restart and delete a Virtual Machine directly within the Visual Studio Server Explorer. The shutdown action enables you to shut down the virtual machine and suspend billing when the VM is not is use, and easily restart it when you need it: This is especially useful in Dev/Test scenarios where you can start a VM – such as a SQL Server – during your development session and then shut it down / suspend billing when you are not developing (and no longer be billed for it). You can also now directly remote desktop into VMs using the “Connect using Remote Desktop” context menu command in VS Server Explorer.  Cloud Services: Emulator Express with Run as Normal User Support You can now launch Visual Studio and run your cloud services locally as a Normal User (without having to elevate to an administrator account) using a new Emulator Express option included as a preview feature with this SDK release.  Emulator Express is a version of the Windows Azure Compute Emulator that runs a restricted mode – one instance per role – and it doesn’t require administrative permissions and uses 40% less resources than the full Windows Azure Emulator. Emulator Express supports both web and worker roles. To run your application locally using the Emulator Express option, simply change the following settings in the Windows Azure project. On the shortcut menu for the Windows Azure project, choose Properties, and then choose the Web tab. Check the setting for IIS (Internet Information Services). Make sure that the option is set to IIS Express, not the full version of IIS. Emulator Express is not compatible with full IIS. On the Web tab, choose the option for Emulator Express. Service Bus: Notification Hubs With the Windows Azure SDK 2.1 release we are adding support for Windows Azure Notification Hubs as part of our official Windows Azure SDK, inside of Microsoft.ServiceBus.dll (previously the Notification Hub functionality was in a preview assembly). You are now able to create, update and delete Notification Hubs programmatically, manage your device registrations, and send push notifications to all your mobile clients across all platforms (Windows Store, Windows Phone 8, iOS, and Android). Learn more about Notification Hubs on MSDN here, or watch the Notification Hubs //BUILD/ presentation here. Service Bus: Paired Namespaces One of the new features included with today’s Windows Azure SDK 2.1 release is support for Service Bus “Paired Namespaces”.  Paired Namespaces enable you to better handle situations where a Service Bus service namespace becomes unavailable (for example: due to connectivity issues or an outage) and you are unable to send or receive messages to the namespace hosting the queue, topic, or subscription. Previously,to handle this scenario you had to manually setup separate namespaces that can act as a backup, then implement manual failover and retry logic which was sometimes tricky to get right. Service Bus now supports Paired Namespaces, which enables you to connect two namespaces together. When you activate the secondary namespace, messages are stored in the secondary queue for delivery to the primary queue at a later time. If the primary container (namespace) becomes unavailable for some reason, automatic failover enables the messages in the secondary queue. For detailed information about paired namespaces and high availability, see the new topic Asynchronous Messaging Patterns and High Availability. Service Bus: Tooling Improvements In this release, the Windows Azure Tools for Visual Studio contain several enhancements and changes to the management of Service Bus messaging entities using Visual Studio’s Server Explorer. The most noticeable change is that the Service Bus node is now integrated into the Windows Azure node, and supports integrated subscription management. Additionally, there has been a change to the code generated by the Windows Azure Worker Role with Service Bus Queue project template. This code now uses an event-driven “message pump” programming model using the QueueClient.OnMessage method. PowerShell: Tons of New Automation Commands Since my last blog post on the previous Windows Azure SDK 2.0 release, we’ve updated Windows Azure PowerShell (which is a separate download) five times. You can find the full change log here. We’ve added new cmdlets in the following areas: China instance and Windows Azure Pack support Environment Configuration VMs Cloud Services Web Sites Storage SQL Azure Service Bus China Instance and Windows Azure Pack We now support the following cmdlets for the China instance and Windows Azure Pack, respectively: China Instance: Web Sites, Service Bus, Storage, Cloud Service, VMs, Network Windows Azure Pack: Web Sites, Service Bus We will have full cmdlet support for these two Windows Azure environments in PowerShell in the near future. Virtual Machines: Stop/Start Virtual Machines Similar to the Start/Stop VM capability in VS Server Explorer, you can now stop your VM and suspend billing: If you want to keep the original behavior of keeping your stopped VM provisioned, you can pass in the -StayProvisioned switch parameter. Virtual Machines: VM endpoint ACLs We’ve added and updated a bunch of cmdlets for you to configure fine-grained network ACL on your VM endpoints. You can use the following cmdlets to create ACL config and apply them to a VM endpoint: New-AzureAclConfig Get-AzureAclConfig Set-AzureAclConfig Remove-AzureAclConfig Add-AzureEndpoint -ACL Set-AzureEndpoint –ACL The following example shows how to add an ACL rule to an existing endpoint of a VM. Other improvements for Virtual Machine management includes Added -NoWinRMEndpoint parameter to New-AzureQuickVM and Add-AzureProvisioningConfig to disable Windows Remote Management Added -DirectServerReturn parameter to Add-AzureEndpoint and Set-AzureEndpoint to enable/disable direct server return Added Set-AzureLoadBalancedEndpoint cmdlet to modify load balanced endpoints Cloud Services: Remote Desktop and Diagnostics Remote Desktop and Diagnostics are popular debugging options for Cloud Services. We’ve introduced cmdlets to help you configure these two Cloud Service extensions from Windows Azure PowerShell. Windows Azure Cloud Services Remote Desktop extension: New-AzureServiceRemoteDesktopExtensionConfig Get-AzureServiceRemoteDesktopExtension Set-AzureServiceRemoteDesktopExtension Remove-AzureServiceRemoteDesktopExtension Windows Azure Cloud Services Diagnostics extension New-AzureServiceDiagnosticsExtensionConfig Get-AzureServiceDiagnosticsExtension Set-AzureServiceDiagnosticsExtension Remove-AzureServiceDiagnosticsExtension The following example shows how to enable Remote Desktop for a Cloud Service. Web Sites: Diagnostics With our last SDK update, we introduced the Get-AzureWebsiteLog –Tail cmdlet to get the log streaming of your Web Sites. Recently, we’ve also added cmdlets to configure Web Site application diagnostics: Enable-AzureWebsiteApplicationDiagnostic Disable-AzureWebsiteApplicationDiagnostic The following 2 examples show how to enable application diagnostics to the file system and a Windows Azure Storage Table: SQL Database Previously, you had to know the SQL Database server admin username and password if you want to manage the database in that SQL Database server. Recently, we’ve made the experience much easier by not requiring the admin credential if the database server is in your subscription. So you can simply specify the -ServerName parameter to tell Windows Azure PowerShell which server you want to use for the following cmdlets. Get-AzureSqlDatabase New-AzureSqlDatabase Remove-AzureSqlDatabase Set-AzureSqlDatabase We’ve also added a -AllowAllAzureServices parameter to New-AzureSqlDatabaseServerFirewallRule so that you can easily add a firewall rule to whitelist all Windows Azure IP addresses. Besides the above experience improvements, we’ve also added cmdlets get the database server quota and set the database service objective. Check out the following cmdlets for details. Get-AzureSqlDatabaseServerQuota Get-AzureSqlDatabaseServiceObjective Set-AzureSqlDatabase –ServiceObjective Storage and Service Bus Other new cmdlets include Storage: CRUD cmdlets for Azure Tables and Queues Service Bus: Cmdlets for managing authorization rules on your Service Bus Namespace, Queue, Topic, Relay and NotificationHub Summary Today’s release includes a bunch of great features that enable you to build even better cloud solutions.  All the above features/enhancements are shipped and available to use immediately as part of the 2.1 release of the Windows Azure SDK for .NET. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Windows Azure Service Bus Scatter-Gather Implementation

    - by Alan Smith
    One of the more challenging enterprise integration patterns that developers may wish to implement is the Scatter-Gather pattern. In this article I will show the basic implementation of a scatter-gather pattern using the topic-subscription model of the windows azure service bus. I’ll be using the implementation in demos, and also as a lab in my training courses, and the pattern will also be included in the next release of my free e-book the “Windows Azure Service Bus Developer Guide”. The Scatter-Gather pattern answers the following scenario. How do you maintain the overall message flow when a message needs to be sent to multiple recipients, each of which may send a reply? Use a Scatter-Gather that broadcasts a message to multiple recipients and re-aggregates the responses back into a single message. The Enterprise Integration Patterns website provides a description of the Scatter-Gather pattern here.   The scatter-gather pattern uses a composite of the publish-subscribe channel pattern and the aggregator pattern. The publish-subscribe channel is used to broadcast messages to a number of receivers, and the aggregator is used to gather the response messages and aggregate them together to form a single message. Scatter-Gather Scenario The scenario for this scatter-gather implementation is an application that allows users to answer questions in a poll based voting scenario. A poll manager application will be used to broadcast questions to users, the users will use a voting application that will receive and display the questions and send the votes back to the poll manager. The poll manager application will receive the users’ votes and aggregate them together to display the results. The scenario should be able to scale to support a large number of users.   Scatter-Gather Implementation The diagram below shows the overall architecture for the scatter-gather implementation.       Messaging Entities Looking at the scatter-gather pattern diagram it can be seen that the topic-subscription architecture is well suited for broadcasting a message to a number of subscribers. The poll manager application can send the question messages to a topic, and each voting application can receive the question message on its own subscription. The static limit of 2,000 subscriptions per topic in the current release means that 2,000 voting applications can receive question messages and take part in voting. The vote messages can then be sent to the poll manager application using a queue. The voting applications will send their vote messages to the queue, and the poll manager will receive and process the vote messages. The questions topic and answer queue are created using the Windows Azure Developer Portal. Each instance of the voting application will create its own subscription in the questions topic when it starts, allowing the question messages to be broadcast to all subscribing voting applications. Data Contracts Two simple data contracts will be used to serialize the questions and votes as brokered messages. The code for these is shown below.   [DataContract] public class Question {     [DataMember]     public string QuestionText { get; set; } }     To keep the implementation of the voting functionality simple and focus on the pattern implementation, the users can only vote yes or no to the questions.   [DataContract] public class Vote {     [DataMember]     public string QuestionText { get; set; }       [DataMember]     public bool IsYes { get; set; } }     Poll Manager Application The poll manager application has been implemented as a simple WPF application; the user interface is shown below. A question can be entered in the text box, and sent to the topic by clicking the Add button. The topic and subscriptions used for broadcasting the messages are shown in a TreeView control. The questions that have been broadcast and the resulting votes are shown in a ListView control. When the application is started any existing subscriptions are cleared form the topic, clients are then created for the questions topic and votes queue, along with background workers for receiving and processing the vote messages, and updating the display of subscriptions.   public MainWindow() {     InitializeComponent();       // Create a new results list and data bind it.     Results = new ObservableCollection<Result>();     lsvResults.ItemsSource = Results;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Clear out any old subscriptions.     NamespaceManager = new NamespaceManager(serviceBusUri, credentials);     IEnumerable<SubscriptionDescription> subs =         NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);     foreach (SubscriptionDescription sub in subs)     {         NamespaceManager.DeleteSubscription(sub.TopicPath, sub.Name);     }       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create the topic and queue clients.     ScatterGatherTopicClient =         factory.CreateTopicClient(AccountDetails.ScatterGatherTopic);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker threads.     VotesBackgroundWorker = new BackgroundWorker();     VotesBackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     VotesBackgroundWorker.RunWorkerAsync();       SubscriptionsBackgroundWorker = new BackgroundWorker();     SubscriptionsBackgroundWorker.DoWork += new DoWorkEventHandler(UpdateSubscriptions);     SubscriptionsBackgroundWorker.RunWorkerAsync(); }     When the poll manager user nters a question in the text box and clicks the Add button a question message is created and sent to the topic. This message will be broadcast to all the subscribing voting applications. An instance of the Result class is also created to keep track of the votes cast, this is then added to an observable collection named Results, which is data-bound to the ListView control.   private void btnAddQuestion_Click(object sender, RoutedEventArgs e) {     // Create a new result for recording votes.     Result result = new Result()     {         Question = txtQuestion.Text     };     Results.Add(result);       // Send the question to the topic     Question question = new Question()     {         QuestionText = result.Question     };     BrokeredMessage msg = new BrokeredMessage(question);     ScatterGatherTopicClient.Send(msg);       txtQuestion.Text = ""; }     The Results class is implemented as follows.   public class Result : INotifyPropertyChanged {     public string Question { get; set; }       private int m_YesVotes;     private int m_NoVotes;       public event PropertyChangedEventHandler PropertyChanged;       public int YesVotes     {         get { return m_YesVotes; }         set         {             m_YesVotes = value;             NotifyPropertyChanged("YesVotes");         }     }       public int NoVotes     {         get { return m_NoVotes; }         set         {             m_NoVotes = value;             NotifyPropertyChanged("NoVotes");         }     }       private void NotifyPropertyChanged(string prop)     {         if(PropertyChanged != null)         {             PropertyChanged(this, new PropertyChangedEventArgs(prop));         }     } }     The INotifyPropertyChanged interface is implemented so that changes to the number of yes and no votes will be updated in the ListView control. Receiving the vote messages from the voting applications is done asynchronously, using a background worker thread.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         // Receive a vote message from the queue         BrokeredMessage msg = ScatterGatherQueueClient.Receive();         if (msg != null)         {             // Deserialize the message.             Vote vote = msg.GetBody<Vote>();               // Update the results.             foreach (Result result in Results)             {                 if (result.Question.Equals(vote.QuestionText))                 {                     if (vote.IsYes)                     {                         result.YesVotes++;                     }                     else                     {                         result.NoVotes++;                     }                     break;                 }             }               // Mark the message as complete.             msg.Complete();         }       } }     When a vote message is received, the result that matches the vote question is updated with the vote from the user. The message is then marked as complete. A second background thread is used to update the display of subscriptions in the TreeView, with a dispatcher used to update the user interface. // This runs on a background worker. private void UpdateSubscriptions(object sender, DoWorkEventArgs e) {     while (true)     {         // Get a list of subscriptions.         IEnumerable<SubscriptionDescription> subscriptions =             NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);           // Update the user interface.         SimpleDelegate setQuestion = delegate()         {             trvSubscriptions.Items.Clear();             TreeViewItem topicItem = new TreeViewItem()             {                 Header = AccountDetails.ScatterGatherTopic             };               foreach (SubscriptionDescription subscription in subscriptions)             {                 TreeViewItem subscriptionItem = new TreeViewItem()                 {                     Header = subscription.Name                 };                 topicItem.Items.Add(subscriptionItem);             }             trvSubscriptions.Items.Add(topicItem);               topicItem.ExpandSubtree();         };         this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);           Thread.Sleep(3000);     } }       Voting Application The voting application is implemented as another WPF application. This one is more basic, and allows the user to vote “Yes” or “No” for the questions sent by the poll manager application. The user interface for that application is shown below. When an instance of the voting application is created it will create a subscription in the questions topic using a GUID as the subscription name. The application can then receive copies of every question message that is sent to the topic. Clients for the new subscription and the votes queue are created, along with a background worker to receive the question messages. The voting application is set to receiving mode, meaning it is ready to receive a question message from the subscription.   public MainWindow() {     InitializeComponent();       // Set the mode to receiving.     IsReceiving = true;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create a subcription for this instance     NamespaceManager mgr = new NamespaceManager(serviceBusUri, credentials);     string subscriptionName = Guid.NewGuid().ToString();     mgr.CreateSubscription(AccountDetails.ScatterGatherTopic, subscriptionName);       // Create the subscription and queue clients.     ScatterGatherSubscriptionClient = factory.CreateSubscriptionClient         (AccountDetails.ScatterGatherTopic, subscriptionName);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker thread.     BackgroundWorker = new BackgroundWorker();     BackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     BackgroundWorker.RunWorkerAsync(); }     I took the inspiration for creating the subscriptions in the voting application from the chat application that uses topics and subscriptions blogged by Ovais Akhter here. The method that receives the question messages runs on a background thread. If the application is in receive mode, a question message will be received from the subscription, the question will be displayed in the user interface, the voting buttons enabled, and IsReceiving set to false to prevent more questing from being received before the current one is answered.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         if (IsReceiving)         {             // Receive a question message from the topic.             BrokeredMessage msg = ScatterGatherSubscriptionClient.Receive();             if (msg != null)             {                 // Deserialize the message.                 Question question = msg.GetBody<Question>();                   // Update the user interface.                 SimpleDelegate setQuestion = delegate()                 {                     lblQuestion.Content = question.QuestionText;                     btnYes.IsEnabled = true;                     btnNo.IsEnabled = true;                 };                 this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);                 IsReceiving = false;                   // Mark the message as complete.                 msg.Complete();             }         }         else         {             Thread.Sleep(1000);         }     } }     When the user clicks on the Yes or No button, the btnVote_Click method is called. This will create a new Vote data contract with the appropriate question and answer and send the message to the poll manager application using the votes queue. The user voting buttons are then disabled, the question text cleared, and the IsReceiving flag set to true to allow a new message to be received.   private void btnVote_Click(object sender, RoutedEventArgs e) {     // Create a new vote.     Vote vote = new Vote()     {         QuestionText = (string)lblQuestion.Content,         IsYes = ((sender as Button).Content as string).Equals("Yes")     };       // Send the vote message.     BrokeredMessage msg = new BrokeredMessage(vote);     ScatterGatherQueueClient.Send(msg);       // Update the user interface.     lblQuestion.Content = "";     btnYes.IsEnabled = false;     btnNo.IsEnabled = false;     IsReceiving = true; }     Testing the Application In order to test the application, an instance of the poll manager application is started; the user interface is shown below. As no instances of the voting application have been created there are no subscriptions present in the topic. When an instance of the voting application is created the subscription will be displayed in the poll manager. Now that a voting application is subscribing, a questing can be sent from the poll manager application. When the message is sent to the topic, the voting application will receive the message and display the question. The voter can then answer the question by clicking on the appropriate button. The results of the vote are updated in the poll manager application. When two more instances of the voting application are created, the poll manager will display the new subscriptions. More questions can then be broadcast to the voting applications. As the question messages are queued up in the subscription for each voting application, the users can answer the questions in their own time. The vote messages will be received by the poll manager application and aggregated to display the results. The screenshots of the applications part way through voting are shown below. The messages for each voting application are queued up in sequence on the voting application subscriptions, allowing the questions to be answered at different speeds by the voters.

    Read the article

  • Working with Tile Notifications in Windows 8 Store Apps – Part I

    - by dwahlin
    One of the features that really makes Windows 8 apps stand out from others is the tile functionality on the start screen. While icons allow a user to start an application, tiles provide a more engaging way to engage the user and draw them into an application. Examples of “live” tiles on part of my current start screen are shown next: I’ll admit that if you get enough of these tiles going the start screen can actually be a bit distracting. Fortunately, a user can easily disable a live tile by right-clicking on it or pressing and holding a tile on a touch device and then selecting Turn live tile off from the AppBar: The can also make a wide tile smaller (into a square tile) or make a square tile bigger assuming the application supports both squares and rectangles. In this post I’ll walk through how to add tile notification functionality into an application. Both XAML/C# and HTML/JavaScript apps support live tiles and I’ll show the code for both options.   Understanding Tile Templates The first thing you need to know if you want to add custom tile functionality (live tiles) into your application is that there is a collection of tile templates available out-of-the-box. Each tile template has XML associated with it that you need to load, update with your custom data, and then feed into a tile update manager. By doing that you can control what shows in your app’s tile on the Windows 8 start screen. So how do you learn more about the different tile templates and their respective XML? Fortunately, Microsoft has a nice documentation page in the Windows 8 Store SDK. Visit http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx to see a complete list of square and wide/rectangular tile templates that you can use. Looking through the templates you’ll It has the following XML template associated with it:  <tile> <visual> <binding template="TileSquareBlock"> <text id="1">Text Field 1</text> <text id="2">Text Field 2</text> </binding> </visual> </tile> An example of a wide/rectangular tile template is shown next:    <tile> <visual> <binding template="TileWideImageAndText01"> <image id="1" src="image1.png" alt="alt text"/> <text id="1">Text Field 1</text> </binding> </visual> </tile>   To use these tile templates (or others you find interesting), update their content, and get them to show for your app’s tile on the Windows 8 start screen you’ll need to perform the following steps: Define the tile template to use in your app Load the tile template’s XML into memory Modify the children of the <binding> tag Feed the modified tile XML into a new TileNotification instance Feed the TileNotification instance into the Update() method of the TileUpdateManager In the remainder of the post I’ll walk through each of the steps listed above to provide wide and square tile notifications for an application. The wide tile that’s shown will show an image and text while the square tile will only show text. If you’re going to provide custom tile notifications it’s recommended that you provide wide and square tiles since users can switch between the two of them directly on the start screen. Note: When working with tile notifications it’s possible to manipulate and update a tile’s XML template without having to know XML parsing techniques. This can be accomplished using some C# notification extension classes that are available. In this post I’m going to focus on working with tile notifications using an XML parser so that the focus is on the steps required to add notifications to the Windows 8 start screen rather than on external extension classes. You can access the extension classes in the Windows 8 samples gallery if you’re interested.   Steps to Create Custom App Tile Notifications   Step 1: Define the tile template to use in your app Although you can cut-and-paste a tile template’s XML directly into your C# or HTML/JavaScript Windows store app and then parse it using an XML parser, it’s easier to use the built-in TileTemplateType enumeration from the Windows.UI.Notifications namespace. It provides direct access to the XML for the various templates so once you locate a template you like in the documentation (mentioned above), simplify reference it:HTML/JavaScript var notifications = Windows.UI.Notifications; var template = notifications.TileTemplateType.tileWideImageAndText01; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C# var template = TileTemplateType.TileWideImageAndText01;   Step 2: Load the tile template’s XML into memory Once the target template’s XML is identified, load it into memory using the TileUpdateManager’s GetTemplateContent() method. This method parses the template XML and returns an XmlDocument object:   HTML/JavaScript   var tileXml = notifications.TileUpdateManager.getTemplateContent(template); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#  var tileXml = TileUpdateManager.GetTemplateContent(template);   Step 3: Modify the children of the <binding> tag Once the XML for a given template is loaded into memory you need to locate the appropriate <image> and/or <text> elements in the XML and update them with your app data. This can be done using standard XML DOM manipulation techniques. The example code below locates the image folder and loads the path to an image file located in the project into it’s inner text. The code also creates a square tile that consists of text, updates it’s <text> element, and then imports and appends it into the wide tile’s XML.   HTML/JavaScript var image = tileXml.selectSingleNode('//image[@id="1"]'); image.setAttribute('src', 'ms-appx:///images/' + imageFile); image.setAttribute('alt', 'Live Tile'); var squareTemplate = notifications.TileTemplateType.tileSquareText04; var squareTileXml = notifications.TileUpdateManager.getTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.selectSingleNode('//text[@id="1"]'); squareTileTextAttributes.appendChild(squareTileXml.createTextNode(content)); var node = tileXml.importNode(squareTileXml.selectSingleNode('//binding'), true); tileXml.selectSingleNode('//visual').appendChild(node); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileXml = TileUpdateManager.GetTemplateContent(template); var text = tileXml.SelectSingleNode("//text[@id='1']"); text.AppendChild(tileXml.CreateTextNode(content)); var image = (XmlElement)tileXml.SelectSingleNode("//image[@id='1']"); image.SetAttribute("src", "ms-appx:///Assets/" + imageFile); image.SetAttribute("alt", "Live Tile"); Debug.WriteLine(image.GetXml()); var squareTemplate = TileTemplateType.TileSquareText04; var squareTileXml = TileUpdateManager.GetTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.SelectSingleNode("//text[@id='1']"); squareTileTextAttributes.AppendChild(squareTileXml.CreateTextNode(content)); var node = tileXml.ImportNode(squareTileXml.SelectSingleNode("//binding"), true); tileXml.SelectSingleNode("//visual").AppendChild(node);  Step 4: Feed the modified tile XML into a new TileNotification instance Now that the XML data has been updated with the desired text and images, it’s time to load the XmlDocument object into a new TileNotification instance:   HTML/JavaScript var tileNotification = new notifications.TileNotification(tileXml); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileNotification = new TileNotification(tileXml);  Step 5: Feed the TileNotification instance into the Update() method of the TileUpdateManager Once the TileNotification instance has been created and the XmlDocument has been passed to its constructor, it needs to be passed to the Update() method of a TileUpdator in order to be shown on the Windows 8 start screen:   HTML/JavaScript notifications.TileUpdateManager.createTileUpdaterForApplication().update(tileNotification); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#TileUpdateManager.CreateTileUpdaterForApplication().Update(tileNotification);    Once the tile notification is updated it’ll show up on the start screen. An example of the wide and square tiles created with the included demo code are shown next:     Download the HTML/JavaScript and XAML/C# sample application here. In the next post in this series I’ll walk through how to queue multiple tiles and clear a queue.

    Read the article

  • Connecting SceneBuilder edited FXML to Java code

    - by daniel
    Recently I had to answer several questions regarding how to connect an UI built with the JavaFX SceneBuilder 1.0 Developer Preview to Java Code. So I figured out that a short overview might be helpful. But first, let me state the obvious. What is FXML? To make it short, FXML is an XML based declaration format for JavaFX. JavaFX provides an FXML loader which will parse FXML files and from that construct a graph of Java object. It may sound complex when stated like that but it is actually quite simple. Here is an example of FXML file, which instantiate a StackPane and puts a Button inside it: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml"> <children> <Button mnemonicParsing="false" text="Button" /> </children> </StackPane> ... and here is the code I would have had to write if I had chosen to do the same thing programatically: import javafx.scene.control.*; import javafx.scene.layout.*; ... final Button button = new Button("Button"); button.setMnemonicParsing(false); final StackPane stackPane = new StackPane(); stackPane.setPrefWidth(200.0); stackPane.setPrefHeight(150.0); stacPane.getChildren().add(button); As you can see - FXML is rather simple to understand - as it is quite close to the JavaFX API. So OK FXML is simple, but why would I use it?Well, there are several answers to that - but my own favorite is: because you can make it with SceneBuilder. What is SceneBuilder? In short SceneBuilder is a layout tool that will let you graphically build JavaFX user interfaces by dragging and dropping JavaFX components from a library, and save it as an FXML file. SceneBuilder can also be used to load and modify JavaFX scenegraphs declared in FXML. Here is how I made the small FXML file above: Start the JavaFX SceneBuilder 1.0 Developer Preview In the Library on the left hand side, click on 'StackPane' and drag it on the content view (the white rectangle) In the Library, select a Button and drag it onto the StackPane on the content view. In the Hierarchy Panel on the left hand side - select the StackPane component, then invoke 'Edit > Trim To Selected' from the menubar That's it - you can now save, and you will obtain the small FXML file shown above. Of course this is only a trivial sample, made for the sake of the example - and SceneBuilder will let you create much more complex UIs. So, I have now an FXML file. But what do I do with it? How do I include it in my program? How do I write my main class? Loading an FXML file with JavaFX Well, that's the easy part - because the piece of code you need to write never changes. You can download and look at the SceneBuilder samples if you need to get convinced, but here is the short version: Create a Java class (let's call it 'Main.java') which extends javafx.application.Application In the same directory copy/save the FXML file you just created using SceneBuilder. Let's name it "simple.fxml" Now here is the Java code for the Main class, which simply loads the FXML file and puts it as root in a stage's scene. /* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. */ package simple; import java.util.logging.Level; import java.util.logging.Logger; import javafx.application.Application; import javafx.fxml.FXMLLoader; import javafx.scene.Scene; import javafx.scene.layout.StackPane; import javafx.stage.Stage; public class Main extends Application { /** * @param args the command line arguments */ public static void main(String[] args) { Application.launch(Main.class, (java.lang.String[])null); } @Override public void start(Stage primaryStage) { try { StackPane page = (StackPane) FXMLLoader.load(Main.class.getResource("simple.fxml")); Scene scene = new Scene(page); primaryStage.setScene(scene); primaryStage.setTitle("FXML is Simple"); primaryStage.show(); } catch (Exception ex) { Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex); } } } Great! Now I only have to use my favorite IDE to compile the class and run it. But... wait... what does it do? Well nothing. It just displays a button in the middle of a window. There's no logic attached to it. So how do we do that? How can I connect this button to my application logic? Here is how: Connection to code First let's define our application logic. Since this post is only intended to give a very brief overview - let's keep things simple. Let's say that the only thing I want to do is print a message on System.out when the user clicks on my button. To do that, I'll need to register an action handler with my button. And to do that, I'll need to somehow get a handle on my button. I'll need some kind of controller logic that will get my button and add my action handler to it. So how do I get a handle to my button and pass it to my controller? Once again - this is easy: I just need to write a controller class for my FXML. With each FXML file, it is possible to associate a controller class defined for that FXML. That controller class will make the link between the UI (the objects defined in the FXML) and the application logic. To each object defined in FXML we can associate an fx:id. The value of the id must be unique within the scope of the FXML, and is the name of an instance variable inside the controller class, in which the object will be injected. Since I want to have access to my button, I will need to add an fx:id to my button in FXML, and declare an @FXML variable in my controller class with the same name. In other words - I will need to add fx:id="myButton" to my button in FXML: -- <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> and declare @FXML private Button myButton in my controller class @FXML private Button myButton; // value will be injected by the FXMLLoader Let's see how to do this. Add an fx:id to the Button object Load "simple.fxml" in SceneBuilder - if not already done In the hierarchy panel (bottom left), or directly on the content view, select the Button object. Open the Properties sections of the inspector (right panel) for the button object At the top of the section, you will see a text field labelled fx:id. Enter myButton in that field and validate. Associate a controller class with the FXML file Still in SceneBuilder, select the top root object (in our case, that's the StackPane), and open the Code section of the inspector (right hand side) At the top of the section you should see a text field labelled Controller Class. In the field, type simple.SimpleController. This is the name of the class we're going to create manually. If you save at this point, the FXML will look like this: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml" fx:controller="simple.SimpleController"> <children> <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> </children> </StackPane> As you can see, the name of the controller class has been added to the root object: fx:controller="simple.SimpleController" Coding the controller class In your favorite IDE, create an empty SimpleController.java class. Now what does a controller class looks like? What should we put inside? Well - SceneBuilder will help you there: it will show you an example of controller skeleton tailored for your FXML. In the menu bar, invoke View > Show Sample Controller Skeleton. A popup appears, displaying a suggestion for the controller skeleton: copy the code displayed there, and paste it into your SimpleController.java: /** * Sample Skeleton for "simple.fxml" Controller Class * Use copy/paste to copy paste this code into your favorite IDE **/ package simple; import java.net.URL; import java.util.ResourceBundle; import javafx.fxml.FXML; import javafx.fxml.Initializable; import javafx.scene.control.Button; public class SimpleController implements Initializable { @FXML // fx:id="myButton" private Button myButton; // Value injected by FXMLLoader @Override // This method is called by the FXMLLoader when initialization is complete public void initialize(URL fxmlFileLocation, ResourceBundle resources) { assert myButton != null : "fx:id=\"myButton\" was not injected: check your FXML file 'simple.fxml'."; // initialize your logic here: all @FXML variables will have been injected } } Note that the code displayed by SceneBuilder is there only for educational purpose: SceneBuilder does not create and does not modify Java files. This is simply a hint of what you can use, given the fx:id present in your FXML file. You are free to copy all or part of the displayed code and paste it into your own Java class. Now at this point, there only remains to add our logic to the controller class. Quite easy: in the initialize method, I will register an action handler with my button: () { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... -- ... // initialize your logic here: all @FXML variables will have been injected myButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... That's it - if you now compile everything in your IDE, and run your application, clicking on the button should print a message on the console! Summary What happens is that in Main.java, the FXMLLoader will load simple.fxml from the jar/classpath, as specified by 'FXMLLoader.load(Main.class.getResource("simple.fxml"))'. When loading simple.fxml, the loader will find the name of the controller class, as specified by 'fx:controller="simple.SimpleController"' in the FXML. Upon finding the name of the controller class, the loader will create an instance of that class, in which it will try to inject all the objects that have an fx:id in the FXML. Thus, after having created '<Button fx:id="myButton" ... />', the FXMLLoader will inject the button instance into the '@FXML private Button myButton;' instance variable found on the controller instance. This is because The instance variable has an @FXML annotation, The name of the variable exactly matches the value of the fx:id Finally, when the whole FXML has been loaded, the FXMLLoader will call the controller's initialize method, and our code that registers an action handler with the button will be executed. For a complete example, take a look at the HelloWorld SceneBuilder sample. Also make sure to follow the SceneBuilder Get Started guide, which will guide you through a much more complete example. Of course, there are more elegant ways to set up an Event Handler using FXML and SceneBuilder. There are also many different ways to work with the FXMLLoader. But since it's starting to be very late here, I think it will have to wait for another post. I hope you have enjoyed the tour! --daniel

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

  • Need some help on how to replay the last game of a java maze game

    - by Marty
    Hello, I am working on creating a Java maze game for a project. The maze is displayed on the console as standard output not in an applet. I have created most of hte code I need, however I am stuck at one problem and that is I need a user to be able to replay the last game i.e redraw the maze with the users moves but without any input from the user. I am not sure on what course of action to take, i was thinking about copying each users move or the position of each move into another array, as you can see i have 2 variables which hold the position of the player, plyrX and plyrY do you think copying these values into a new array after each move would solve my problem and how would i go about this? I have updated my code, apologies about the textIO.java class not being present, not sure how to resolve that exept post a link to TextIO.java [TextIO.java][1] My code below is updated with a new array of type char to hold values from the original maze (read in from text file and displayed using unicode characters) and also to new variables c_plyrX and c_plyrY which I am thinking should hold the values of plyrX and plyrY and copy them into the new array. When I try to call the replayGame(); method from the menu the maze loads for a second then the console exits so im not sure what I am doing wrong Thanks public class MazeGame { //unicode characters that will define the maze walls, //pathways, and in game characters. final static char WALL = '\u2588'; //wall final static char PATH = '\u2591'; //pathway final static char PLAYER = '\u25EF'; //player final static char ENTRANCE = 'E'; //entrance final static char EXIT = '\u2716'; //exit //declaring member variables which will hold the maze co-ordinates //X = rows, Y = columns static int entX = 0; //entrance X co-ordinate static int entY = 1; //entrance y co-ordinate static int plyrX = 0; static int plyrY = 1; static int exitX = 24; //exit X co-ordinate static int exitY = 37; //exit Y co-ordinate //static member variables which hold maze values //used so values can be accessed from different methods static int rows; //rows variable static int cols; //columns variable static char[][] maze; //defines 2 dimensional array to hold the maze //variables that hold player movement values static char dir; //direction static int spaces; //amount of spaces user can travel //variable to hold amount of moves the user has taken; static int movesTaken = 0; //new array to hold player moves for replaying game static char[][] mazeCopy; static int c_plyrX; static int c_plyrY; /** userMenu method for displaying the user menu which will provide various options for * the user to choose such as play a maze game, get instructions, etc. */ public static void userMenu(){ TextIO.putln("Maze Game"); TextIO.putln("*********"); TextIO.putln("Choose an option."); TextIO.putln(""); TextIO.putln("1. Play the Maze Game."); TextIO.putln("2. View Instructions."); TextIO.putln("3. Replay the last game."); TextIO.putln("4. Exit the Maze Game."); TextIO.putln(""); int option; //variable for holding users option TextIO.put("Type your choice: "); option = TextIO.getlnInt(); //gets users option //switch statement for processing menu options switch(option){ case 1: playMazeGame(); case 2: instructions(); case 3: if (c_plyrX == plyrX && c_plyrY == plyrY)replayGame(); else { TextIO.putln("Option not available yet, you need to play a game first."); TextIO.putln(); userMenu(); } case 4: System.exit(0); //exits the user out of the console default: TextIO.put("Option must be 1, 2, 3 or 4"); } } //end of userMenu /**main method, will call the userMenu and get the users choice and call * the relevant method to execute the users choice. */ public static void main(String[]args){ userMenu(); //calls the userMenu method } //end of main method /**instructions method, displays instructions on how to play * the game to the user/ */ public static void instructions(){ TextIO.putln("To beat the Maze Game you have to move your character"); TextIO.putln("through the maze and reach the exit in as few moves as possible."); TextIO.putln(""); TextIO.putln("Your characer is displayed as a " + PLAYER); TextIO.putln("The maze exit is displayed as a " + EXIT); TextIO.putln("Reach the exit and you have won escaped the maze."); TextIO.putln("To control your character type the direction you want to go"); TextIO.putln("and how many spaces you want to move"); TextIO.putln("for example 'D3' will move your character"); TextIO.putln("down 3 spaces."); TextIO.putln("Remember you can't walk through walls!"); boolean insOption; //boolean variable TextIO.putln(""); TextIO.put("Do you want to play the Maze Game now? (Y or N) "); insOption = TextIO.getlnBoolean(); if (insOption == true)playMazeGame(); else userMenu(); } //end of instructions method /**playMazeGame method, calls the loadMaze method and the charMove method * to start playing the Maze Game. */ public static void playMazeGame(){ loadMaze(); plyrMoves(); } //end of playMazeGame method /**loadMaze method, loads the 39x25 maze from the MazeGame.txt text file * and inserts values from the text file into the maze array and * displays the maze on screen using the unicode block characters. * plyrX and plyrY variables are set at their staring co ordinates so that when * a game is completed and the user selects to play a new game * the player character will always be at position 01. */ public static void loadMaze(){ plyrX = 0; plyrY = 1; TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions maze = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ maze[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == plyrX && j == plyrY){ plyrX = i; plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (maze[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (maze[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (maze[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (maze[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end of loadMaze method /**redrawMaze method, method for redrawing the maze after each move. * */ public static void redrawMaze(){ TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions maze = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ maze[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == plyrX && j == plyrY){ plyrX = i; plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (maze[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (maze[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (maze[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (maze[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end redrawMaze method /**replay game method * */ public static void replayGame(){ c_plyrX = plyrX; c_plyrY = plyrY; TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions mazeCopy = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ mazeCopy[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == c_plyrX && j == c_plyrY){ c_plyrX = i; c_plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (mazeCopy[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (mazeCopy[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (mazeCopy[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (mazeCopy[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end replayGame method /**plyrMoves method, method for moving the players character * around the maze. */ public static void plyrMoves(){ int nplyrX = plyrX; int nplyrY = plyrY; int pMoves; direction(); //UP if (dir == 'U' || dir == 'u'){ nplyrX = plyrX; nplyrY = plyrY; for(pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again."); } else if (pMoves != spaces){ nplyrX =plyrX + 1; } else { plyrX = plyrX-spaces; c_plyrX = plyrX; movesTaken++; } } }//end UP if //DOWN if (dir == 'D' || dir == 'd'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves ++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again"); } else if (pMoves != spaces){ nplyrX = plyrX+1; } else{ plyrX = plyrX+spaces; c_plyrX = plyrX; movesTaken++; } } } //end DOWN if //LEFT if (dir == 'L' || dir =='l'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again"); } else if (pMoves != spaces){ nplyrY = plyrY + 1; } else{ plyrY = plyrY-spaces; c_plyrY = plyrY; movesTaken++; } } } //end LEFT if //RIGHT if (dir == 'R' || dir == 'r'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again."); } else if (pMoves != spaces){ nplyrY += 1; } else{ plyrY = plyrY+spaces; c_plyrY = plyrY; movesTaken++; } } } //end RIGHT if //prints message if player escapes from the maze. if (maze[plyrX][plyrY] == '3'){ TextIO.putln("****Congratulations****"); TextIO.putln(); TextIO.putln("You have escaped from the maze."); TextIO.putln(); userMenu(); } else{ movesTaken++; redrawMaze(); plyrMoves(); } } //end of plyrMoves method /**direction, method * */ public static char direction(){ TextIO.putln("Enter the direction you wish to move in and the distance"); TextIO.putln("i.e D3 = move down 3 spaces"); TextIO.putln("U - Up, D - Down, L - Left, R - Right: "); dir = TextIO.getChar(); if (dir =='U' || dir == 'D' || dir == 'L' || dir == 'R' || dir == 'u' || dir == 'd' || dir == 'l' || dir == 'r'){ spacesMoved(); } else{ loadMaze(); TextIO.putln("Invalid direction!"); TextIO.put("Direction must be one of U, D, L or R"); direction(); } return dir; //returns the value of dir (direction) } //end direction method /**spaces method, gets the amount of spaces the user wants to move * */ public static int spacesMoved(){ TextIO.putln(" "); spaces = TextIO.getlnInt(); if (spaces <= 0){ loadMaze(); TextIO.put("Invalid amount of spaces, try again"); spacesMoved(); } return spaces; } //end spacesMoved method } //end of MazeGame class

    Read the article

  • Linux VirtualBox inside Windows VirtualBox doesn't boot

    - by Tobbe
    I'm trying to run a Linux VirtualBox instance inside a Windows 7 VirtualBox instance, but Linux (tried both Puppy and Mint) doesn't boot. My research says that this should be possible, see here for example: Can you run one virtual machine inside another? but I can't get it to work. Here are a couple of screenshots showing where the boot process stops for Linux Mint and Puppy Linux. What am I doing wrong?

    Read the article

  • Bind an ip address to Postfix as outgoing ip

    - by jack
    Is that possible to bind all available public ip addresses on a server to one Postfix instance as its outgoing ip pool and let it choose a random ip or specified ip from the pool each time it sends out an email? If above is not possible, can it be configured to listen on one public ip address per instance and each time it delivers a message, it use the binded one as outgoing ip address.

    Read the article

  • Can IBM IHS server support more than one Websphere Application Server plug-in location?

    - by Spike Williams
    We want http://webserver.com/foo to point to an instance of WAS 6.0, and http://webserver.com/foo2 to point to an instance of WAS 7.0, running on the same server, but with different port numbers. This is a temporary thing, as we need to have both servers running as we transition our applications from running on 6.0 to 7.0. The webserver is IBMIHS (an Apache variant), and it needs to use the WebSphere plugin to connect to the WAS servers. Will this work? Any drawbacks?

    Read the article

  • How do you transfer AWS RDS snap shot to a different AWS account

    - by Webmonger
    Hi I have an RDS database that I need to transfer a snapshot of to another AWS account. I understand there are issues being able to do this between availability zones so I'm really unsure if this is possible. The RDS instance is mySql. If it's not possible to transfer the snapshot please could you explain how to transfer the data from one RDS instance to another without downloading any if the contents(The DB is over 200GB). Thanks in advance

    Read the article

  • How do I stop VMware Workstation 6.5 from giving up input focus for no reason on Ubuntu 10.4?

    - by Matt
    After patching some kernel modules, I got VMware Workstation 6.5.4 running on my Ubuntu 10.4 x86_64 machine. However, now my Windows XP SP3 guest instance cannot keep mouse input captured for any length of time. I can sometimes activate a control in the guest if a double click very quickly, but it's not reliable (and extremely annoying). Everything appears to be fine in Unity; the problem just appears when I'm running the instance in the VMware window.

    Read the article

  • Merge tabs from 2 session of IE8?

    - by MattSlay
    Sometimes I wind up with two or more instances of IE8 running, and each instance has a few tabs open. Is there a way to merge all the tabs from all the IE8 instances into just one instance of IE8, and close all the other IE8 instances?

    Read the article

< Previous Page | 168 169 170 171 172 173 174 175 176 177 178 179  | Next Page >