Search Results

Search found 4448 results on 178 pages for 'kernel'.

Page 172/178 | < Previous Page | 168 169 170 171 172 173 174 175 176 177 178  | Next Page >

  • Glassfish V3 won't start

    - by Zakaria
    Hi everybody, I installed NetBeans 6.8 and tried to run the GlasshFish V3 server. I'm working under Windows Vista 32 Bits. First, it won't run. Then I modified the c:\Windows\System32\drivers\etc\hosts file and put the following line into it: 127.0.0.1 localhost And when I run the GlasshFish V3 Server, no error is showing but only "INFOs" are displayed: 3 avr. 2010 19:23:19 com.sun.enterprise.glassfish.bootstrap.ASMain main INFO: Launching GlassFish on Felix platform Welcome to Felix ================ INFO: Perform lazy SSL initialization for the listener 'http-listener-2' INFO: Starting Grizzly Framework 1.9.18-k - Sat Apr 03 19:23:24 CEST 2010 INFO: Starting Grizzly Framework 1.9.18-k - Sat Apr 03 19:23:25 CEST 2010 INFO: Grizzly Framework 1.9.18-k started in: 423ms listening on port 35127 INFO: GlassFish v3 (74.2) startup time : Felix(4456ms) startup services(1709ms) total(6165ms) INFO: Grizzly Framework 1.9.18-k started in: 459ms listening on port 35116 INFO: Grizzly Framework 1.9.18-k started in: 428ms listening on port 35155 INFO: Grizzly Framework 1.9.18-k started in: 470ms listening on port 35160 INFO: Grizzly Framework 1.9.18-k started in: 513ms listening on port 35159 INFO: javassist.util.proxy.ProxyFactory.classLoaderProvider = org.glassfish.weld.WeldActivator$GlassFishClassLoaderProvider@5be8f4 INFO: Hibernate Validator bean-validator-3.0-JBoss-4.0.2 INFO: Binding RMI port to *:35165 INFO: Instantiated an instance of org.hibernate.validator.engine.resolver.JPATraversableResolver. INFO: JMXStartupService: Started JMXConnector, JMXService URL = service:jmx:rmi://PC-de-Charlotte:35165/jndi/rmi://PC-de-Charlotte:35165/jmxrmi INFO: Using com.sun.enterprise.transaction.jts.JavaEETransactionManagerJTSDelegate as the delegate INFO: [Thread[GlassFish Kernel Main Thread,5,main]] started INFO: Grizzly Framework 1.9.18-k started in: 150ms listening on port 35159 INFO: Perform lazy SSL initialization for the listener 'http-listener-2' INFO: {felix.fileinstall.poll (ms) = 5000, felix.fileinstall.dir = C:\Program Files\sges-v3\glassfish\modules\autostart, felix.fileinstall.debug = 1, felix.fileinstall.bundles.new.start = true, felix.fileinstall.tmpdir = C:\Users\CHARLO~1\AppData\Local\Temp\fileinstall-330907148519261411, felix.fileinstall.filter = null} INFO: {felix.fileinstall.poll (ms) = 5000, felix.fileinstall.dir = C:\Users\Charlotte\.netbeans\6.8\GlassFish_v3\autodeploy\bundles, felix.fileinstall.debug = 1, felix.fileinstall.bundles.new.start = true, felix.fileinstall.tmpdir = C:\Users\CHARLO~1\AppData\Local\Temp\fileinstall-2938963288421854459, felix.fileinstall.filter = null} INFO: Grizzly Framework 1.9.18-k started in: 95ms listening on port 35160 INFO: Updating configuration from org.apache.felix.fileinstall-autodeploy-bundles.cfg INFO: Installed C:\Program Files\sges-v3\glassfish\modules\autostart\org.apache.felix.fileinstall-autodeploy-bundles.cfg INFO: {felix.fileinstall.poll (ms) = 5000, felix.fileinstall.dir = C:\Users\Charlotte\.netbeans\6.8\GlassFish_v3\autodeploy\bundles, felix.fileinstall.debug = 1, felix.fileinstall.bundles.new.start = true, felix.fileinstall.tmpdir = C:\Users\CHARLO~1\AppData\Local\Temp\fileinstall-6474085409014899009, felix.fileinstall.filter = null} And there is no message such as "Glassfish started"! So, when I try to access to the admin web interface: localhost:4848 or localhost:8080 or localhost:8181 , It doesn't work. What should I do? Thank you very much, Regards.

    Read the article

  • UNIX: Replace Newline w/ Colon, Preserving Newline Before EOF

    - by Maarx
    I have a text file ("INPUT.txt") of the format: A<LF> B<LF> C<LF> D<LF> X<LF> Y<LF> Z<LF> <EOF> which I need to reformat to: A:B:C:D:X:Y:Z<LF> <EOF> I know you can do this with 'sed'. There's a billion google hits for doing this with 'sed'. But I'm trying to emphasis readability, simplicity, and using the correct tool for the correct job. 'sed' is a line editor that consumes and hides newlines. Probably not the right tool for this job! I think the correct tool for this job would be 'tr'. I can replace all the newlines with colons with the command: cat INPUT.txt | tr '\n' ':' There's 99% of my work done. I have a problem, now, though. By replacing all the newlines with colons, I not only get an extraneous colon at the end of the sequence, but I also lose the carriage return at the end of the input. It looks like this: A:B:C:D:X:Y:Z:<EOF> Now, I need to remove the colon from the end of the input. However, if I attempt to pass this processed input through 'sed' to remove the final colon (which would now, I think, be a proper use of 'sed'), I find myself with a second problem. The input is no longer terminated by a newline at all! 'sed' fails outright, for all commands, because it never finds the end of the first line of input! It seems like appending a newline to the end of some input is a very, very common task, and considering I myself was just sorely tempted to write a program to do it in C (which would take about eight lines of code), I can't imagine there's not already a very simple way to do this with the tools already available to you in the Linux kernel.

    Read the article

  • Zero code coverage with cobertura 1.9.2 but tests are working

    - by eraonel
    I run the code coverage target: <junit fork="yes" dir="${basedir}" failureProperty="test.failed"> <!-- Note the classpath order: instrumented classes are before the original (uninstrumented) classes. This is important. --> <classpath path="${instrumented.dir}" /> <classpath path="${classes.dir}" /> <classpath refid="classpath" /> <!-- The instrumented classes reference classes used by the Cobertura runtime, so Cobertura and its dependencies must be on your classpath. --> <classpath refid="cobertura.classpath" /> <formatter type="xml" /> <!--<test name="${testcase}" todir="${reports.xml.dir}" if="testcase" />--> <batchtest fork="yes" todir="${reports.xml.dir}"> <fileset dir="${classes.dir}"> <include name="**/generated/AllTests.class" /> </fileset> </batchtest> </junit> <junitreport todir="${reports.xml.dir}"> <fileset dir="${reports.xml.dir}"> <include name="TEST-*.xml" /> </fileset> <report format="frames" todir="${reports.html.dir}" /> </junitreport> Then I get the following output ( when using fork="true"): java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at net.sourceforge.cobertura.util.FileLocker.lock(FileLocker.java:124) at net.sourceforge.cobertura.coveragedata.ProjectData.saveGlobalProjectData(ProjectData.java:331) at net.sourceforge.cobertura.coveragedata.SaveTimer.run(SaveTimer.java:31) at java.lang.Thread.run(Thread.java:595) Caused by: java.io.IOException: No locks available at sun.nio.ch.FileChannelImpl.lock0(Native Method) at sun.nio.ch.FileChannelImpl.lock(FileChannelImpl.java:784) at java.nio.channels.FileChannel.lock(FileChannel.java:865) ... 8 more --------------------------------------- Unable to get lock on /vobs/rnc/rrt/roam2/roamSs/RoamMao_swb/RoamMao_bldu/ant_build/cobertura.ser.lock: null This is known to happen on Linux kernel 2.6.20. Make sure cobertura.jar is in the root classpath of the jvm process running the instrumented code. If the instrumented code is running in a web server, this means cobertura.jar should be in the web server's lib directory. Don't put multiple copies of cobertura.jar in different WEB-INF/lib directories. Only one classloader should load cobertura. It should be the root classloader. I am using Ant 1.7.0 and cobertura 1.9.2. Any ideas why there is no coverage? Test run ok as I see in my target. I have tried to switch java versions ( 1.5.0_06 and 1.6.0_10) but no difference.

    Read the article

  • How do I classify using SVM Classifier?

    - by Gomathi
    I'm doing a project in liver tumor classification. Actually I initially used Region Growing method for liver segmentation and from that I segmented tumor using FCM. I,then, obtained the texture features using Gray Level Co-occurence Matrix. My output for that was stats = autoc: [1.857855266614132e+000 1.857955341199538e+000] contr: [5.103143332457753e-002 5.030548650257343e-002] corrm: [9.512661919561399e-001 9.519459060378332e-001] corrp: [9.512661919561385e-001 9.519459060378338e-001] cprom: [7.885631654779597e+001 7.905268525471267e+001] Now how should I give this as an input to the SVM program. function [itr] = multisvm( T,C,tst ) %MULTISVM(2.0) classifies the class of given training vector according to the % given group and gives us result that which class it belongs. % We have also to input the testing matrix %Inputs: T=Training Matrix, C=Group, tst=Testing matrix %Outputs: itr=Resultant class(Group,USE ROW VECTOR MATRIX) to which tst set belongs %----------------------------------------------------------------------% % IMPORTANT: DON'T USE THIS PROGRAM FOR CLASS LESS THAN 3, % % OTHERWISE USE svmtrain,svmclassify DIRECTLY or % % add an else condition also for that case in this program. % % Modify required data to use Kernel Functions and Plot also% %----------------------------------------------------------------------% % Date:11-08-2011(DD-MM-YYYY) % % This function for multiclass Support Vector Machine is written by % ANAND MISHRA (Machine Vision Lab. CEERI, Pilani, India) % and this is free to use. email: [email protected] % Updated version 2.0 Date:14-10-2011(DD-MM-YYYY) u=unique(C); N=length(u); c4=[]; c3=[]; j=1; k=1; if(N>2) itr=1; classes=0; cond=max(C)-min(C); while((classes~=1)&&(itr<=length(u))&& size(C,2)>1 && cond>0) %This while loop is the multiclass SVM Trick c1=(C==u(itr)); newClass=c1; svmStruct = svmtrain(T,newClass); classes = svmclassify(svmStruct,tst); % This is the loop for Reduction of Training Set for i=1:size(newClass,2) if newClass(1,i)==0; c3(k,:)=T(i,:); k=k+1; end end T=c3; c3=[]; k=1; % This is the loop for reduction of group for i=1:size(newClass,2) if newClass(1,i)==0; c4(1,j)=C(1,i); j=j+1; end end C=c4; c4=[]; j=1; cond=max(C)-min(C); % Condition for avoiding group %to contain similar type of values %and the reduce them to process % This condition can select the particular value of iteration % base on classes if classes~=1 itr=itr+1; end end end end Kindly guide me. Images:

    Read the article

  • How can I have a Makefile automatically rebuild source files that include a modified header file? (I

    - by Nicholas Flynt
    I have the following makefile that I use to build a program (a kernel, actually) that I'm working on. Its from scratch and I'm learning about the process, so its not perfect, but I think its powerful enough at this point for my level of experience writing makefiles. AS = nasm CC = gcc LD = ld TARGET = core BUILD = build SOURCES = source INCLUDE = include ASM = assembly VPATH = $(SOURCES) CFLAGS = -Wall -O -fstrength-reduce -fomit-frame-pointer -finline-functions \ -nostdinc -fno-builtin -I $(INCLUDE) ASFLAGS = -f elf #CFILES = core.c consoleio.c system.c CFILES = $(foreach dir,$(SOURCES),$(notdir $(wildcard $(dir)/*.c))) SFILES = assembly/start.asm SOBJS = $(SFILES:.asm=.o) COBJS = $(CFILES:.c=.o) OBJS = $(SOBJS) $(COBJS) build : $(TARGET).img $(TARGET).img : $(TARGET).elf c:/python26/python.exe concat.py stage1 stage2 pad.bin core.elf floppy.img $(TARGET).elf : $(OBJS) $(LD) -T link.ld -o $@ $^ $(SOBJS) : $(SFILES) $(AS) $(ASFLAGS) $< -o $@ %.o: %.c @echo Compiling $<... $(CC) $(CFLAGS) -c -o $@ $< #Clean Script - Should clear out all .o files everywhere and all that. clean: -del *.img -del *.o -del assembly\*.o -del core.elf My main issue with this makefile is that when I modify a header file that one or more C files include, the C files aren't rebuilt. I can fix this quite easily by having all of my header files be dependencies for all of my C files, but that would effectively cause a complete rebuild of the project any time I changed/added a header file, which would not be very graceful. What I want is for only the C files that include the header file I change to be rebuilt, and for the entire project to be linked again. I can do the linking by causing all header files to be dependencies of the target, but I cannot figure out how to make the C files be invalidated when their included header files are newer. I've heard that GCC has some commands to make this possible (so the makefile can somehow figure out which files need to be rebuilt) but I can't for the life of me find an actual implementation example to look at. Can someone post a solution that will enable this behavior in a makefile? EDIT: I should clarify, I'm familiar with the concept of putting the individual targets in and having each target.o require the header files. That requires me to be editing the makefile every time I include a header file somewhere, which is a bit of a pain. I'm looking for a solution that can derive the header file dependencies on its own, which I'm fairly certain I've seen in other projects.

    Read the article

  • Runtime.exec causes duplicate JVM to hang indefinitely until killed (Solaris 10)

    - by John
    All, We are running a J2EE application on WebLogic server 9.2 MP2 with a jrockit 64-bit JVM (27.3.1) on Solaris 10. We call use runtime.exec to call an executable called jfmerge to create PDF documents. We have found that in Solaris, when runtime.exec is called, a duplicate JVM is temporarily spawned to kick off the jfmerge process. While this is inefficient (our JVM is 5 GB, thus the duplicated shell JVM is also 5 GB), the major problem lies in the fact that when there is heavy load on this functionality (PDF generation) in our application, sometimes the duplicated JVM never exits. When the JVM hangs, the servers create large issues (extreme application slowness and terminated user sessions) as the entire duplicate JVM get's all of its 5 GB of process size written to disk swap. We have noted the following hung thread correlated with a hung JVM process until the process is manually killed: "[STUCK] ExecuteThread: '17' for queue: 'weblogic.kernel.Default (self-tuning)'" id=3463 idx=0x158 tid=3460 prio=1 alive, in native, daemon at jrockit/io/FileNativeIO.readBytesPinned(Ljava/io/FileDescriptor;[BII)I(Native Method) at jrockit/io/FileNativeIO.readBytes(FileNativeIO.java:30) at java/io/FileInputStream.readBytes([BII)I(FileInputStream.java) at java/io/FileInputStream.read(FileInputStream.java:194) at java/lang/UNIXProcess$DeferredCloseInputStream.read(UNIXProcess.java:227) at java/io/BufferedInputStream.fill(BufferedInputStream.java:218) at java/io/BufferedInputStream.read(BufferedInputStream.java:235) ^-- Holding lock: java/io/BufferedInputStream@0xfffffffec6510470[thin lock] at gov/v3/common/formgeneration/sessionbean/FormsBean.getProcessStatus(FormsBean.java:809) at gov/v3/common/formgeneration/sessionbean/FormsBean.createPDF(FormsBean.java:750) at gov/v3/common/formgeneration/sessionbean/FormsBean.getTemplateDetails(FormsBean.java:450) at gov/v3/common/formgeneration/sessionbean/FormsBean.generateSinglePDF(FormsBean.java:1371) at gov/v3/common/formgeneration/sessionbean/FormsBean.generatePDF(FormsBean.java:263) at gov/v3/common/formgeneration/sessionbean/FormsBean.endorseDocument(FormsBean.java:2377) at gov/v3/common/formgeneration/sessionbean/Forms_qaco28_EOImpl.endorseDocument(Forms_qaco28_EOImpl.java:214) at gov/v3/delegates/common/FormsAndNoticesDelegate.endorseDocument(FormsAndNoticesDelegate.java:128) at gov/v3/actions/common/EndorseDocumentAction.executeRequest(EndorseDocumentAction.java:68) at gov/v3/fwk/controller/struts/action/V3CommonDispatchAction.dispatchToExecuteMethod(V3CommonDispatchAction.java:532) at gov/v3/fwk/controller/struts/action/V3CommonDispatchAction.executeBaseAction(V3CommonDispatchAction.java:336) at gov/v3/fwk/controller/struts/action/V3BaseDispatchAction.execute(V3BaseDispatchAction.java:69) at org/apache/struts/action/RequestProcessor.processActionPerform(RequestProcessor.java:484) at gov/v3/fwk/controller/struts/requestprocessor/V3TilesRequestProcessor.processActionPerform(V3TilesRequestProcessor.java:384) at org/apache/struts/action/RequestProcessor.process(RequestProcessor.java:274) at org/apache/struts/action/ActionServlet.process(ActionServlet.java:1482) at org/apache/struts/action/ActionServlet.doGet(ActionServlet.java:507) at gov/v3/fwk/controller/struts/servlet/V3ControllerServlet.doGet(V3ControllerServlet.java:110) at javax/servlet/http/HttpServlet.service(HttpServlet.java:743) at javax/servlet/http/HttpServlet.service(HttpServlet.java:856) at weblogic/servlet/internal/StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227) at weblogic/servlet/internal/StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125) at weblogic/servlet/internal/ServletStubImpl.execute(ServletStubImpl.java:283) at weblogic/servlet/internal/ServletStubImpl.execute(ServletStubImpl.java:175) at weblogic/servlet/internal/WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3231) at weblogic/security/acl/internal/AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic/security/service/SecurityManager.runAs(SecurityManager.java:121) at weblogic/servlet/internal/WebAppServletContext.securedExecute(WebAppServletContext.java:2002) at weblogic/servlet/internal/WebAppServletContext.execute(WebAppServletContext.java:1908) at weblogic/servlet/internal/ServletRequestImpl.run(ServletRequestImpl.java:1362) at weblogic/work/ExecuteThread.execute(ExecuteThread.java:209) at weblogic/work/ExecuteThread.run(ExecuteThread.java:181) at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method) -- end of trace We would like to do a couple of things: 1.) Prevent the spawning of a duplicate JVM, as we do not need any of it's functions when executing the simple jfmerge executable, and it creates massive overhead. 2.) In the short term at least prevent this duplicate JVM from handing indefinitely.

    Read the article

  • Need help converting Ruby code to php code

    - by newprog
    Yesterday I posted this queston. Today I found the code which I need but written in Ruby. Some parts of code I have understood (I don't know Ruby) but there is one part that I can't. I think people who know ruby and php can help me understand this code. def do_create(image) # Clear any old info in case of a re-submit FIELDS_TO_CLEAR.each { |field| image.send(field+'=', nil) } image.save # Compose request vm_params = Hash.new # Submitting a file in ruby requires opening it and then reading the contents into the post body file = File.open(image.filename_in, "rb") # Populate the parameters and compute the signature # Normally you would do this in a subroutine - for maximum clarity all # parameters are explicitly spelled out here. vm_params["image"] = file # Contents will be read by the multipart object created below vm_params["image_checksum"] = image.image_checksum vm_params["start_job"] = 'vectorize' vm_params["image_type"] = image.image_type if image.image_type != 'none' vm_params["image_complexity"] = image.image_complexity if image.image_complexity != 'none' vm_params["image_num_colors"] = image.image_num_colors if image.image_num_colors != '' vm_params["image_colors"] = image.image_colors if image.image_colors != '' vm_params["expire_at"] = image.expire_at if image.expire_at != '' vm_params["licensee_id"] = DEVELOPER_ID #in php it's like this $vm_params["sequence_number"] = -rand(100000000);????? vm_params["sequence_number"] = Kernel.rand(1000000000) # Use a negative value to force an error when calling the test server vm_params["timestamp"] = Time.new.utc.httpdate string_to_sign = CREATE_URL + # Start out with the URL being called... #vm_params["image"].to_s + # ... don't include the file per se - use the checksum instead vm_params["image_checksum"].to_s + # ... then include all regular parameters vm_params["start_job"].to_s + vm_params["image_type"].to_s + vm_params["image_complexity"].to_s + # (nil.to_s => '', so this is fine for vm_params we don't use) vm_params["image_num_colors"].to_s + vm_params["image_colors"].to_s + vm_params["expire_at"].to_s + vm_params["licensee_id"].to_s + # ... then do all the security parameters vm_params["sequence_number"].to_s + vm_params["timestamp"].to_s vm_params["signature"] = sign(string_to_sign) #no problem # Workaround class for handling multipart posts mp = Multipart::MultipartPost.new query, headers = mp.prepare_query(vm_params) # Handles the file parameter in a special way (see /lib/multipart.rb) file.close # mp has read the contents, we can close the file now response = post_form(URI.parse(CREATE_URL), query, headers) logger.info(response.body) response_hash = ActiveSupport::JSON.decode(response.body) # Decode the JSON response string ##I have understood below def sign(string_to_sign) #logger.info("String to sign: '#{string_to_sign}'") Base64.encode64(HMAC::SHA1.digest(DEVELOPER_KEY, string_to_sign)) end # Within Multipart modul I have this: class MultipartPost BOUNDARY = 'tarsiers-rule0000' HEADER = {"Content-type" => "multipart/form-data, boundary=" + BOUNDARY + " "} def prepare_query (params) fp = [] params.each {|k,v| if v.respond_to?(:read) fp.push(FileParam.new(k, v.path, v.read)) else fp.push(Param.new(k,v)) end } query = fp.collect {|p| "--" + BOUNDARY + "\r\n" + p.to_multipart }.join("") + "--" + BOUNDARY + "--" return query, HEADER end end end Thanks for your help.

    Read the article

  • Implementing coroutines in Java

    - by JUST MY correct OPINION
    This question is related to my question on existing coroutine implementations in Java. If, as I suspect, it turns out that there is no full implementation of coroutines currently available in Java, what would be required to implement them? As I said in that question, I know about the following: You can implement "coroutines" as threads/thread pools behind the scenes. You can do tricksy things with JVM bytecode behind the scenes to make coroutines possible. The so-called "Da Vinci Machine" JVM implementation has primitives that make coroutines doable without bytecode manipulation. There are various JNI-based approaches to coroutines also possible. I'll address each one's deficiencies in turn. Thread-based coroutines This "solution" is pathological. The whole point of coroutines is to avoid the overhead of threading, locking, kernel scheduling, etc. Coroutines are supposed to be light and fast and to execute only in user space. Implementing them in terms of full-tilt threads with tight restrictions gets rid of all the advantages. JVM bytecode manipulation This solution is more practical, albeit a bit difficult to pull off. This is roughly the same as jumping down into assembly language for coroutine libraries in C (which is how many of them work) with the advantage that you have only one architecture to worry about and get right. It also ties you down to only running your code on fully-compliant JVM stacks (which means, for example, no Android) unless you can find a way to do the same thing on the non-compliant stack. If you do find a way to do this, however, you have now doubled your system complexity and testing needs. The Da Vinci Machine The Da Vinci Machine is cool for experimentation, but since it is not a standard JVM its features aren't going to be available everywhere. Indeed I suspect most production environments would specifically forbid the use of the Da Vinci Machine. Thus I could use this to make cool experiments but not for any code I expect to release to the real world. This also has the added problem similar to the JVM bytecode manipulation solution above: won't work on alternative stacks (like Android's). JNI implementation This solution renders the point of doing this in Java at all moot. Each combination of CPU and operating system requires independent testing and each is a point of potentially frustrating subtle failure. Alternatively, of course, I could tie myself down to one platform entirely but this, too, makes the point of doing things in Java entirely moot. So... Is there any way to implement coroutines in Java without using one of these four techniques? Or will I be forced to use the one of those four that smells the least (JVM manipulation) instead?

    Read the article

  • Linux configurations that would affect Java memory usage?

    - by wmacura
    Hi, Background: I have a set of java background workers I start as part of my webapp. I develop locally on Ubuntu 10.10 and deploy to an Ubuntu 10.04LTS server (a media temple (ve) instance). They're both running the same JVM: Sun JVM 1.6.0_22-b04. As part of the initialization script each worker is started with explicit Xmx, Xms, and XX:MaxPermGen settings. Yet somehow locally all 10 workers use 250MB, while on the server they use more than 2.7GB. I don't know how to begin to track this down. I thought the Ubuntu (and thus, kernel) version might make a difference, but I tried an old 10.04 VM and it behaves as expected. I've noticed that the machine does not seem to ever use memory for buffer or cache (according to htop), which seems a bit strange, but perhaps normal for a server? (edited) Some info: (server) root@devel:/app/axir/target# uname -a Linux devel 2.6.18-028stab069.5 #1 SMP Tue May 18 17:26:16 MSD 2010 x86_64 GNU/Linux (local) wiktor@beastie:~$ uname -a Linux beastie 2.6.35-25-generic #44-Ubuntu SMP Fri Jan 21 17:40:44 UTC 2011 x86_64 GNU/Linux (edited) Comparing PS output: (ps -eo "ppid,pid,cmd,rss,sz,vsz") PPID PID CMD RSS SZ VSZ (local) 1588 1615 java -cp axir-distribution. 25484 234382 937528 1615 1631 java -cp /home/wiktor/Code/ 83472 163059 652236 1615 1657 java -cp /home/wiktor/Code/ 70624 89135 356540 1615 1658 java -cp /home/wiktor/Code/ 37652 77625 310500 1615 1669 java -cp /home/wiktor/Code/ 38096 77733 310932 1615 1675 java -cp /home/wiktor/Code/ 37420 61395 245580 1615 1684 java -cp /home/wiktor/Code/ 38000 77736 310944 1615 1703 java -cp /home/wiktor/Code/ 39180 78060 312240 1615 1712 java -cp /home/wiktor/Code/ 38488 93882 375528 1615 1719 java -cp /home/wiktor/Code/ 38312 77874 311496 1615 1726 java -cp /home/wiktor/Code/ 38656 77958 311832 1615 1727 java -cp /home/wiktor/Code/ 78016 89429 357716 (server) 22522 23560 java -cp axir-distribution. 24860 285196 1140784 23560 23585 java -cp /app/axir/target/a 100764 161629 646516 23560 23667 java -cp /app/axir/target/a 72408 92682 370728 23560 23670 java -cp /app/axir/target/a 39948 97671 390684 23560 23674 java -cp /app/axir/target/a 40140 81586 326344 23560 23739 java -cp /app/axir/target/a 39688 81542 326168 They look very similar. In fact, the question now is why, if I add up the virtual memory usage on the server (3.2GB) does it more closely reflect 2.4GB of memory used (according to free), yet locally the virtual memory used adds up to a much more substantial 4.7GB but only actually uses ~250MB. It seems that perhaps memory isn't being shared as aggressively. (if that's even possible) Thank you for your help, Wiktor

    Read the article

  • Determining if Memory Pointer is Valid - C++

    - by Jim Fell
    It has been my observation that if free( ptr ) is called where ptr is not a valid pointer to system-allocated memory, an access violation occurs. Let's say that I call free like this: LPVOID ptr = (LPVOID)0x12345678; free( ptr ); This will most definitely cause an access violation. Is there a way to test that the memory location pointed to by ptr is valid system-allocated memory? It seems to me that the the memory management part of the Windows OS kernel must know what memory has been allocated and what memory remains for allocation. Otherwise, how could it know if enough memory remains to satisfy a given request? (rhetorical) That said, it seems reasonable to conclude that there must be a function (or set of functions) that would allow a user to determine if a pointer is valid system-allocated memory. Perhaps Microsoft has not made these functions public. If Microsoft has not provided such an API, I can only presume that it was for an intentional and specific reason. Would providing such a hook into the system prose a significant threat to system security? Situation Report Although knowing whether a memory pointer is valid could be useful in many scenarios, this is my particular situation: I am writing a driver for a new piece of hardware that is to replace an existing piece of hardware that connects to the PC via USB. My mandate is to write the new driver such that calls to the existing API for the current driver will continue to work in the PC applications in which it is used. Thus the only required changes to existing applications is to load the appropriate driver DLL(s) at startup. The problem here is that the existing driver uses a callback to send received serial messages to the application; a pointer to allocated memory containing the message is passed from the driver to the application via the callback. It is then the responsibility of the application to call another driver API to free the memory by passing back the same pointer from the application to the driver. In this scenario the second API has no way to determine if the application has actually passed back a pointer to valid memory.

    Read the article

  • CUDA threads for inner loop

    - by Manolete
    I've got this kernel __global__ void kernel1(int keep, int include, int width, int* d_Xco, int* d_Xnum, bool* d_Xvalid, float* d_Xblas) { int i, k; i = threadIdx.x + blockIdx.x * blockDim.x; if(i < keep){ for(k = 0; k < include ; k++){ int val = (d_Xblas[i*include + k] >= 1e5); int aux = d_Xnum[i]; d_Xblas[i*include + k] *= (!val); d_Xco[i*width + aux] = k; d_Xnum[i] +=val; d_Xvalid[i*include + k] = (!val); } } } launched with int keep = 9000; int include = 23000; int width = 0.2*include; int threads = 192; int blocks = keep+threads-1/threads; kernel1 <<< blocks,threads >>>( keep, include, width, d_Xco, d_Xnum, d_Xvalid, d_Xblas ); This kernel1 works fine but it is obviously not totally optimized. I thought it would be straight forward to eliminate the inner loop k but for some reason it doesn't work fine. My first idea was: __global__ void kernel2(int keep, int include, int width, int* d_Xco, int* d_Xnum, bool* d_Xvalid, float* d_Xblas) { int i, k; i = threadIdx.x + blockIdx.x * blockDim.x; k = threadIdx.y + blockIdx.y * blockDim.y; if((i < keep) && (k < include) ) { int val = (d_Xblas[i*include + k] >= 1e5); int aux = d_Xnum[i]; d_Xblas[i*include + k] *= (float)(!val); d_Xco[i*width + aux] = k; atomicAdd(&d_Xnum[i], val); d_Xvalid[i*include + k] = (!val); } } launched with a 2D grid: int keep = 9000; int include = 23000; int width = 0.2*include; int th = 32; dim3 threads(th,th); dim3 blocks (keep+threads.x-1/threads.x, include+threads.y-1/threads.y); kernel2 <<< blocks,threads >>>( keep, include, width, d_Xco, d_Xnum, d_Xvalid, d_Xblas ); Although I believe the idea is fine, it does not work and I am running out of ideas here. Could you please help me out here? I also think the problem could be in d_Xco which stores the position k in a smaller array , so the order matters, but I can't think of any other way of doing it...

    Read the article

  • CUDA memory transfer issue

    - by Vaibhav Sundriyal
    I am trying to execute a code which first transfers data from CPU to GPU memory and vice-versa. In spite of increasing the volume of data, the data transfer time remains the same as if no data transfer is actually taking place. I am posting the code. #include <stdio.h> /* Core input/output operations */ #include <stdlib.h> /* Conversions, random numbers, memory allocation, etc. */ #include <math.h> /* Common mathematical functions */ #include <time.h> /* Converting between various date/time formats */ #include <cuda.h> /* CUDA related stuff */ #include <sys/time.h> __global__ void device_volume(float *x_d,float *y_d) { int index = blockIdx.x * blockDim.x + threadIdx.x; } int main(void) { float *x_h,*y_h,*x_d,*y_d,*z_h,*z_d; long long size=9999999; long long nbytes=size*sizeof(float); timeval t1,t2; double et; x_h=(float*)malloc(nbytes); y_h=(float*)malloc(nbytes); z_h=(float*)malloc(nbytes); cudaMalloc((void **)&x_d,size*sizeof(float)); cudaMalloc((void **)&y_d,size*sizeof(float)); cudaMalloc((void **)&z_d,size*sizeof(float)); gettimeofday(&t1,NULL); cudaMemcpy(x_d, x_h, nbytes, cudaMemcpyHostToDevice); cudaMemcpy(y_d, y_h, nbytes, cudaMemcpyHostToDevice); cudaMemcpy(z_d, z_h, nbytes, cudaMemcpyHostToDevice); gettimeofday(&t2,NULL); et = (t2.tv_sec - t1.tv_sec) * 1000.0; // sec to ms et += (t2.tv_usec - t1.tv_usec) / 1000.0; // us to ms printf("\n %ld\t\t%f\t\t",nbytes,et); et=0.0; //printf("%f %d\n",seconds,CLOCKS_PER_SEC); // launch a kernel with a single thread to greet from the device //device_volume<<<1,1>>>(x_d,y_d); gettimeofday(&t1,NULL); cudaMemcpy(x_h, x_d, nbytes, cudaMemcpyDeviceToHost); cudaMemcpy(y_h, y_d, nbytes, cudaMemcpyDeviceToHost); cudaMemcpy(z_h, z_d, nbytes, cudaMemcpyDeviceToHost); gettimeofday(&t2,NULL); et = (t2.tv_sec - t1.tv_sec) * 1000.0; // sec to ms et += (t2.tv_usec - t1.tv_usec) / 1000.0; // us to ms printf("%f\n",et); cudaFree(x_d); cudaFree(y_d); cudaFree(z_d); return 0; } Can anybody help me with this issue? Thanks

    Read the article

  • How to copy the memeory allocated in device function back to main memory

    - by xhe8
    I have a CUDA program containing a host function and a device function Execute(). In the host function, I allocate a global memory output which will then be passed to the device function and used to store the address of the global memory allocated within the device function. I want to access the in-kernel allocated memory in the host function. The following is the code: #include <stdio.h> typedef struct { int * p; int num; } Structure_A; \__global__ void Execute(Structure_A *output); int main(){ Structure_A *output; cudaMalloc((void***)&output,sizeof(Structure_A)*1); dim3 dimBlockExecute(1,1); dim3 dimGridExecute(1,1); Execute<<<dimGridExecute,dimBlockExecute>>>(output); Structure_A * output_cpu; int * p_cpu; cudaError_t err; output_cpu= (Structure_A*)malloc(1); err=cudaMemcpy(output_cpu,output,sizeof(Structure_A),cudaMemcpyDeviceToHost); if( err != cudaSuccess) { printf("CUDA error a: %s\n", cudaGetErrorString(err)); exit(-1); } p_cpu=(int *)malloc(1); err=cudaMemcpy(p_cpu,output_cpu[0].p,sizeof(int),cudaMemcpyDeviceToHost); if( err != cudaSuccess) { printf("CUDA error b: %s\n", cudaGetErrorString(err)); exit(-1); } printf("output=(%d,%d)\n",output_cpu[0].num,p_cpu[0]); return 0; } \__global__ void Execute(Structure_A *output){ int thid=threadIdx.x; output[thid].p= (int*)malloc(thid+1); output[thid].num=(thid+1); output[thid].p[0]=5; } I can compile the program. But when I run it, I got a error showing that there is a invalid argument in the following memory copy function. "err=cudaMemcpy(p_cpu,output_cpu[0].p,sizeof(int),cudaMemcpyDeviceToHost);" CUDA version is 4.2. CUDA card: Tesla C2075 OS: x86_64 GNU/Linux

    Read the article

  • Scan a Windows PC for Viruses from a Ubuntu Live CD

    - by Trevor Bekolay
    Getting a virus is bad. Getting a virus that causes your computer to crash when you reboot is even worse. We’ll show you how to clean viruses from your computer even if you can’t boot into Windows by using a virus scanner in a Ubuntu Live CD. There are a number of virus scanners available for Ubuntu, but we’ve found that avast! is the best choice, with great detection rates and usability. Unfortunately, avast! does not have a proper 64-bit version, and forcing the install does not work properly. If you want to use avast! to scan for viruses, then ensure that you have a 32-bit Ubuntu Live CD. If you currently have a 64-bit Ubuntu Live CD on a bootable flash drive, it does not take long to wipe your flash drive and go through our guide again and select normal (32-bit) Ubuntu 9.10 instead of the x64 edition. For the purposes of fixing your Windows installation, the 64-bit Live CD will not provide any benefits. Once Ubuntu 9.10 boots up, open up Firefox by clicking on its icon in the top panel. Navigate to http://www.avast.com/linux-home-edition. Click on the Download tab, and then click on the link to download the DEB package. Save it to the default location. While avast! is downloading, click on the link to the registration form on the download page. Fill in the registration form if you do not already have a trial license for avast!. By the time you’ve filled out the registration form, avast! will hopefully be finished downloading. Open a terminal window by clicking on Applications in the top-left corner of the screen, then expanding the Accessories menu and clicking on Terminal. In the terminal window, type in the following commands, pressing enter after each line. cd Downloadssudo dpkg –i avast* This will install avast! on the live Ubuntu environment. To ensure that you can use the latest virus database, while still in the terminal window, type in the following command: sudo sysctl –w kernel.shmmax=128000000 Now we’re ready to open avast!. Click on Applications on the top-left corner of the screen, expand the Accessories folder, and click on the new avast! Antivirus item. You will first be greeted with a window that asks for your license key. Hopefully you’ve received it in your email by now; open the email that avast! sends you, copy the license key, and paste it in the Registration window. avast! Antivirus will open. You’ll notice that the virus database is outdated. Click on the Update database button and avast! will start downloading the latest virus database. To scan your Windows hard drive, you will need to “mount” it. While the virus database is downloading, click on Places on the top-left of your screen, and click on your Windows hard drive, if you can tell which one it is by its size. If you can’t tell which is the correct hard drive, then click on Computer and check out each hard drive until you find the right one. When you find it, make a note of the drive’s label, which appears in the menu bar of the file browser. Also note that your hard drive will now appear on your desktop. By now, your virus database should be updated. At the time this article was written, the most recent version was 100404-0. In the main avast! window, click on the radio button next to Selected folders and then click on the “+” button to the right of the list box. It will open up a dialog box to browse to a location. To find your Windows hard drive, click on the “>” next to the computer icon. In the expanded list, find the folder labelled “media” and click on the “>” next to it to expand it. In this list, you should be able to find the label that corresponds to your Windows hard drive. If you want to scan a certain folder, then you can go further into this hierarchy and select that folder. However, we will scan the entire hard drive, so we’ll just press OK. Click on Start scan and avast! will start scanning your hard drive. If a virus is found, you’ll be prompted to select an action. If you know that the file is a virus, then you can Delete it, but there is the possibility of false positives, so you can also choose Move to chest to quarantine it. When avast! is done scanning, it will summarize what it found on your hard drive. You can take different actions on those files at this time by right-clicking on them and selecting the appropriate action. When you’re done, click Close. Your Windows PC is now free of viruses, in the eyes of avast!. Reboot your computer and with any luck it will now boot up! Alternatives to avast! If avast! and a liberal amount of Googling doesn’t fix your problem, it’s possible that a different virus scanner will fix your obscure issue. Here are a list of other virus scanners available for Ubuntu that are either free or offer free trials. See their support forums for help on installing these virus scanners. Avira AntiVir Personal for Linux / Solaris Panda Antivirus for Linux Installation and usage guide from Ubuntu F-PROT Antivirus for Linux ClamAV installation and usage guide from Ubuntu NOD32 Antivirus for Linux Kaspersky Anti-Virus 2010 Bitdefender Antivirus for Unices Conclusion Running avast! from a Ubuntu Live CD can clean the vast majority of viruses from your Windows PC. This is another reason to always have a Ubuntu Live CD ready just in case something happens to your Windows installation! Similar Articles Productive Geek Tips Secure Computing: Windows Live OneCareHow To Remove Antivirus Live and Other Rogue/Fake Antivirus MalwareUse the Windows Key for the "Start" Menu in Ubuntu LinuxScan Files for Viruses Before You Download With Dr.WebAsk the Readers: Share Your Tips for Defeating Viruses and Malware TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 The Ultimate Guide For YouTube Lovers Will it Blend? iPad Edition Penolo Lets You Share Sketches On Twitter Visit Woolyss.com for Old School Games, Music and Videos Add a Custom Title in IE using Spybot or Spyware Blaster When You Need to Hail a Taxi in NYC

    Read the article

  • MvcExtensions – Bootstrapping

    - by kazimanzurrashid
    When you create a new ASP.NET MVC application you will find that the global.asax contains the following lines: namespace MvcApplication1 { // Note: For instructions on enabling IIS6 or IIS7 classic mode, // visit http://go.microsoft.com/?LinkId=9394801 public class MvcApplication : System.Web.HttpApplication { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); } protected void Application_Start() { AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes); } } } As the application grows, there are quite a lot of plumbing code gets into the global.asax which quickly becomes a design smell. Lets take a quick look at the code of one of the open source project that I recently visited: public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute("Default","{controller}/{action}/{id}", new { controller = "Home", action = "Index", id = "" }); } protected override void OnApplicationStarted() { Error += OnError; EndRequest += OnEndRequest; var settings = new SparkSettings() .AddNamespace("System") .AddNamespace("System.Collections.Generic") .AddNamespace("System.Web.Mvc") .AddNamespace("System.Web.Mvc.Html") .AddNamespace("MvcContrib.FluentHtml") .AddNamespace("********") .AddNamespace("********.Web") .SetPageBaseType("ApplicationViewPage") .SetAutomaticEncoding(true); #if DEBUG settings.SetDebug(true); #endif var viewFactory = new SparkViewFactory(settings); ViewEngines.Engines.Add(viewFactory); #if !DEBUG PrecompileViews(viewFactory); #endif RegisterAllControllersIn("********.Web"); log4net.Config.XmlConfigurator.Configure(); RegisterRoutes(RouteTable.Routes); Factory.Load(new Components.WebDependencies()); ModelBinders.Binders.DefaultBinder = new Binders.GenericBinderResolver(Factory.TryGet<IModelBinder>); ValidatorConfiguration.Initialize("********"); HtmlValidationExtensions.Initialize(ValidatorConfiguration.Rules); } private void OnEndRequest(object sender, System.EventArgs e) { if (((HttpApplication)sender).Context.Handler is MvcHandler) { CreateKernel().Get<ISessionSource>().Close(); } } private void OnError(object sender, System.EventArgs e) { CreateKernel().Get<ISessionSource>().Close(); } protected override IKernel CreateKernel() { return Factory.Kernel; } private static void PrecompileViews(SparkViewFactory viewFactory) { var batch = new SparkBatchDescriptor(); batch.For<HomeController>().For<ManageController>(); viewFactory.Precompile(batch); } As you can see there are quite a few of things going on in the above code, Registering the ViewEngine, Compiling the Views, Registering the Routes/Controllers/Model Binders, Settings up Logger, Validations and as you can imagine the more it becomes complex the more things will get added in the application start. One of the goal of the MVCExtensions is to reduce the above design smell. Instead of writing all the plumbing code in the application start, it contains BootstrapperTask to register individual services. Out of the box, it contains BootstrapperTask to register Controllers, Controller Factory, Action Invoker, Action Filters, Model Binders, Model Metadata/Validation Providers, ValueProvideraFactory, ViewEngines etc and it is intelligent enough to automatically detect the above types and register into the ASP.NET MVC Framework. Other than the built-in tasks you can create your own custom task which will be automatically executed when the application starts. When the BootstrapperTasks are in action you will find the global.asax pretty much clean like the following: public class MvcApplication : UnityMvcApplication { public void ErrorLog_Filtering(object sender, ExceptionFilterEventArgs e) { Check.Argument.IsNotNull(e, "e"); HttpException exception = e.Exception.GetBaseException() as HttpException; if ((exception != null) && (exception.GetHttpCode() == (int)HttpStatusCode.NotFound)) { e.Dismiss(); } } } The above code is taken from my another open source project Shrinkr, as you can see the global.asax is longer cluttered with any plumbing code. One special thing you have noticed that it is inherited from the UnityMvcApplication rather than regular HttpApplication. There are separate version of this class for each IoC Container like NinjectMvcApplication, StructureMapMvcApplication etc. Other than executing the built-in tasks, the Shrinkr also has few custom tasks which gets executed when the application starts. For example, when the application starts, we want to ensure that the default users (which is specified in the web.config) are created. The following is the custom task that is used to create those default users: public class CreateDefaultUsers : BootstrapperTask { protected override TaskContinuation ExecuteCore(IServiceLocator serviceLocator) { IUserRepository userRepository = serviceLocator.GetInstance<IUserRepository>(); IUnitOfWork unitOfWork = serviceLocator.GetInstance<IUnitOfWork>(); IEnumerable<User> users = serviceLocator.GetInstance<Settings>().DefaultUsers; bool shouldCommit = false; foreach (User user in users) { if (userRepository.GetByName(user.Name) == null) { user.AllowApiAccess(ApiSetting.InfiniteLimit); userRepository.Add(user); shouldCommit = true; } } if (shouldCommit) { unitOfWork.Commit(); } return TaskContinuation.Continue; } } There are several other Tasks in the Shrinkr that we are also using which you will find in that project. To create a custom bootstrapping task you have create a new class which either implements the IBootstrapperTask interface or inherits from the abstract BootstrapperTask class, I would recommend to start with the BootstrapperTask as it already has the required code that you have to write in case if you choose the IBootstrapperTask interface. As you can see in the above code we are overriding the ExecuteCore to create the default users, the MVCExtensions is responsible for populating the  ServiceLocator prior calling this method and in this method we are using the service locator to get the dependencies that are required to create the users (I will cover the custom dependencies registration in the next post). Once the users are created, we are returning a special enum, TaskContinuation as the return value, the TaskContinuation can have three values Continue (default), Skip and Break. The reason behind of having this enum is, in some  special cases you might want to skip the next task in the chain or break the complete chain depending upon the currently running task, in those cases you will use the other two values instead of the Continue. The last thing I want to cover in the bootstrapping task is the Order. By default all the built-in tasks as well as newly created task order is set to the DefaultOrder(a static property), in some special cases you might want to execute it before/after all the other tasks, in those cases you will assign the Order in the Task constructor. For Example, in Shrinkr, we want to run few background services when the all the tasks are executed, so we assigned the order as DefaultOrder + 1. Here is the code of that Task: public class ConfigureBackgroundServices : BootstrapperTask { private IEnumerable<IBackgroundService> backgroundServices; public ConfigureBackgroundServices() { Order = DefaultOrder + 1; } protected override TaskContinuation ExecuteCore(IServiceLocator serviceLocator) { backgroundServices = serviceLocator.GetAllInstances<IBackgroundService>().ToList(); backgroundServices.Each(service => service.Start()); return TaskContinuation.Continue; } protected override void DisposeCore() { backgroundServices.Each(service => service.Stop()); } } That’s it for today, in the next post I will cover the custom service registration, so stay tuned.

    Read the article

  • Solaris 10 branded zone VM Templates for Solaris 11 on OTN

    - by jsavit
    Early this year I wrote the article Ours Goes To 11 which describes the ability to import Solaris 10 systems into a "Solaris 10 branded zone" under Oracle Solaris 11. I did this using Solaris 11 Express, and the capability remains in Solaris 11 with only slight changes. This important tool lets you painlessly inhaling a Solaris Container from Solaris 10 or entire Solaris 10 systems ("the global zone") into virtualized environments on a Solaris 11 OS. Just recently, Oracle provided Oracle VM Templates for Oracle Solaris 10 Zones to let you create Solaris 10 branded zones for Solaris 11 even if you don't currently have access to install media or a running Solaris 10 system. To use this, just download the Oracle VM Template for Oracle Solaris Zone 10 from OTN at http://www.oracle.com/technetwork/server-storage/solaris11/downloads/virtual-machines-1355605.html. This page contains images of Oracle Solaris 10 8/11 (the recent update to Solaris 10) in SPARC and x86 formats suitable for creating branded zones. The same page also has a VirtualBox image you can download for a complete Solaris 10 install in a guest virtual machine you can run on any host OS that supports VirtualBox. Both sets of downloads provide a quick - and extremely easy - way to set up a virtual Solaris 10 environment. In the case of the Oracle VM Templates, they illustrate several advanced features of Solaris 11. To start, just go to the above link, download the template for the hardware platform (SPARC or x86) you want, and download the README file also linked from that page. Install prerequisites The README file tells you to install the prerequisite Solaris 11 package that implements the Solaris 10 brand. Then you can install instances of zones with that brand. # pkg install pkg:/system/zones/brand/brand-solaris10 Packages to install: 1 Create boot environment: No Create backup boot environment: Yes DOWNLOAD PKGS FILES XFER (MB) Completed 1/1 44/44 0.4/0.4 PHASE ACTIONS Install Phase 74/74 PHASE ITEMS Package State Update Phase 1/1 Image State Update Phase 2/2 That took only a few minutes, and didn't require a reboot. Install the Solaris 10 zone Now it's time to run the downloaded template file. First make it executable via the chmod command, of course. I found that (unlike stated in the README) there was no need to rename the downloaded file to remove the .bin. When you run it you provide several parameters to describe the zone configuration: -a IP address - the IP address and optional netmask for the zone. This is the only mandatory parameter. -z zonename - the name of the zone you would like to create. -i interface - the package will create an exclusive-IP zone using a virtual NIC (vnic) based on this physical interface. In my case, I have a NIC called rge0. -p PATH - specifies the path in which you want the zoneroot to be placed. In my case, I have a ZFS dataset mounted at /zones, and this will create a zoneroot at /zones/s10u10. Kicking it off, you will see a copyright message, and then messages showing progress building the zone, which only takes a few minutes. # ./solaris-10u10-x86.bin -p /zones -a 192.168.1.100 -i rge0 -z s10u10 ... ... Checking disk-space for extraction Ok Extracting in /export/home/CDimages/s10zone/bootimage.ihaqvh ... 100% [===============================] Checking data integrity Ok Checking platform compatibility The host and the image do not have the same Solaris release: host Solaris release: 5.11 image Solaris release: 5.10 Will create a Solaris 10 branded zone. Warning: could not find a defaultrouter Zone won't have any defaultrouter configured IMAGE: ./solaris-10u10-x86.bin ZONE: s10u10 ZONEPATH: /zones/s10u10 INTERFACE: rge0 VNIC: vnicZBI13379 MAC ADDR: 2:8:20:5c:1a:cc IP ADDR: 192.168.1.100 NETMASK: 255.255.255.0 DEFROUTER: NONE TIMEZONE: US/Arizona Checking disk-space for installation Ok Installing in /zones/s10u10 ... 100% [===============================] Using a static exclusive-IP Attaching s10u10 Booting s10u10 Waiting for boot to complete booting... booting... booting... Zone s10u10 booted The zone's root password has been set using the root password of the local host. You can change the zone's root password to further harden the security of the zone: being root, log into the zone from the local host with the command 'zlogin s10u10'. Once logged in, change the root password with the command 'passwd'. The nifty part in my opinion (besides being so easy), is that the zone was created as an exclusive-IP zone on a virtual NIC. This network configuration lets you enforce traffic isolation from other zones, enforce network Quality of Service, and even let the zone set its own characteristics like IP address and packet size. Independence of the zone's network characteristics from the global zone is one of the enhancements in Solaris 10 that make it easier to consolidate zones while preserving their autonomy, yet provide control in a consolidated environment. Let's see what the virtual network environment looks like by issuing commands from the Solaris 11 global zone. First I'll use Old School ifconfig, and then I'll use the new ipadm and dladm commands. # ifconfig -a4 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 rge0: flags=1004943<UP,BROADCAST,RUNNING,PROMISC,MULTICAST,DHCP,IPv4> mtu 1500 index 2 inet 192.168.1.3 netmask ffffff00 broadcast 192.168.1.255 ether 0:14:d1:18:ac:bc vboxnet0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3 inet 192.168.56.1 netmask ffffff00 broadcast 192.168.56.255 ether 8:0:27:f8:62:1c # dladm show-phys LINK MEDIA STATE SPEED DUPLEX DEVICE yge0 Ethernet unknown 0 unknown yge0 yge1 Ethernet unknown 0 unknown yge1 rge0 Ethernet up 1000 full rge0 vboxnet0 Ethernet up 1000 full vboxnet0 # dladm show-link LINK CLASS MTU STATE OVER yge0 phys 1500 unknown -- yge1 phys 1500 unknown -- rge0 phys 1500 up -- vboxnet0 phys 1500 up -- vnicZBI13379 vnic 1500 up rge0 s10u10/vnicZBI13379 vnic 1500 up rge0 s10u10/net0 vnic 1500 up rge0 # dladm show-vnic LINK OVER SPEED MACADDRESS MACADDRTYPE VID vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/net0 rge0 1000 2:8:20:9d:d0:79 random 0 # ipadm show-addr ADDROBJ TYPE STATE ADDR lo0/v4 static ok 127.0.0.1/8 rge0/_a dhcp ok 192.168.1.3/24 vboxnet0/_a static ok 192.168.56.1/24 lo0/v6 static ok ::1/128 Log into the zone The install step already booted the zone, so lets log into it. Notice how you have to be appropriately privileged to log into a zone. This is my home system so I'm being a bit cavalier, but in a production environment you can give granular control of who can login to which zones. Voila! a Solaris 10 environment under a Solaris 11 kernel. Notice the output from the uname -a and ifconfig commands, and output from a ping to a nearby host. $ zlogin s10u10 zlogin: You lack sufficient privilege to run this command (all privs required) savit@home:~$ sudo zlogin s10u10 Password: [Connected to zone 's10u10' pts/5] Oracle Corporation SunOS 5.10 Generic Patch January 2005 # uname -a SunOS s10u10 5.10 Generic_Virtual i86pc i386 i86pc # ifconfig -a4 lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc # bash bash-3.2# ifconfig -a lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc bash-3.2# ping 192.168.1.2 192.168.1.2 is alive For fun, I configured Apache (setting its configuration file in /etc/apache2) and brought it up. Easy - took just a few minutes. bash-3.2# svcs apache2 STATE STIME FMRI disabled 12:38:46 svc:/network/http:apache2 bash-3.2# svcadm enable apache2 Summary In just a few minutes, I built a functioning virtual Solaris 10 environment under by Solaris 11 system. It was... easy! While I can still do it the manual way (creating and using a system archive), this is a low-effort way to create a Solaris 10 zone on Solaris 11.

    Read the article

  • I have Oracle SQL Developer Installed, Now What?

    - by thatjeffsmith
    If you’re here because you downloaded a copy of Oracle SQL Developer and now you need help connecting to a database, then you’re in the right place. I’ll show you what you need to get up and going so you can finish your homework, teach yourself Oracle database, or get ready for that job interview. You’ll need about 30 minutes to set everything up…and about 5 years to become proficient with Oracle Oracle Database come with SQL Developer but SQL Developer doesn’t include a database If you install Oracle database, it includes a copy of SQL Developer. If you’re running that copy of SQL Developer, please take a second to upgrade now, as it is WAY out of date. But I’m here to talk to the folks that have downloaded SQL Developer and want to know what to do next. You’ve got it running. You see this ‘Connection’ dialog, and… Where am I connecting to, and who as? You NEED a database Installing SQL Developer does not give you a database. So you’re going to need to install Oracle and create a database, or connect to a database that is already up and running somewhere. Basically you need to know the following: where is this database, what’s it called, and what port is the listener running on? The Default Connection properties in SQL Developer These default settings CAN work, but ONLY if you have installed Oracle Database Express Edition (XE). Localhost is a network alias for 127.0.0.1 which is an IP address that maps to the ‘local’ machine, or the machine you are reading this blog post on. The listener is a service that runs on the server and handles connections for the databases on that machine. You can run a database without a listener and you can run a listener without a database, but you can’t connect to a database on a different server unless both that database and listener are up and running. Each listener ‘listens’ on one or more ports, you need to know the port number for each connection. The default port is 1521, but 1522 is often pretty common. I know all of this sounds very complicated Oracle is a very sophisticated piece of software. It’s not analogous to downloading a mobile phone app and and using it 10 seconds later. It’s not like installing Office/Access either – it requires services, environment setup, kernel tweaks, etc. However. Normally an administrator will setup and install Oracle, create the database, and configure the listener for everyone else to use. They’ll often also setup the connection details for everyone via a ‘TNSNAMES.ORA’ file. This file contains a list of database connection details for folks to browse – kind of like an Oracle database phoneboook. If someone has given you a TNSNAMES.ORA file, or setup your machine to have access to a TNSNAMES file, then you can just switch to the ‘TNS’ connection type, and use the dropdown to select the database you want to connect to. Then you don’t have to worry about the server names, database names, and the port numbers. ORCL – that sounds promising! ORCL is the default SID when creating a new database with the Database Creation Assistant (DBCA). It’s just me, and I need help! No administrator, no database, no nothing. What do you do? You have a few options: Buy a copy of Oracle and download, install, and create a database Download and install XE (FREE!) Download, import, and run our Developer Days Hands-on-Lab (FREE!) If you’re a student (or anyone else) with little to no experience with Oracle, then I recommend the third option. Oracle Technology Network Developer Day: Hands-on Database Application Development Lab The OTN lab runs on a A Virtual Box image which contains: 11gR2 Enterprise Edition copy of Oracle a database and listener running for you to connect to lots of demo data for you to play with SQL Developer installed and ready to connect Some browser based labs you can step through to learn Oracle You download the image, you download and install Virtual Box (also FREE!), then you IMPORT the image you previously downloaded. You then ‘Start’ the image. It will boot a copy of Oracle Enterprise Linux (OEL), start your database, and all that jazz. You can then start up and run SQL Developer inside the image OR you can connect to the database running on the image using the copy of SQL Developer you installed on your host machine. Setup Port Forwarding to Make It Easy to Connect From Your Host When you start the image, it will be assigned an IP address. Depending on what network adapter you select in the image preferences, you may get something that can get out to the internet from your image, something your host machine can see and connect to, or something that kind of just lives out there in a vacuum. You want to avoid the ‘vacuum’ option – unless you’re OK with running SQL Developer inside the Linux image. Open the Virtual Box image properties and go to the Networking options. We’re going to setup port forwarding. This will tell your machine that anything that happens on port 1521 (the default Oracle Listener port), should just go to the image’s port 1521. So I can connect to ‘localhost’ and it will magically get transferred to the image that is running. Oracle Virtual Box Port Forwarding 1521 listener database Now You Just Need a Username and Password The default passwords on this image are all ‘oracle’ – so you can connect as SYS, HR, or whatever – just use ‘oracle’ as the password. The Linux passowrds are all ‘oracle’ too, so you can login as ‘root’ or as ‘oracle’ in the Linux desktop. Connect! Connect as HR to your Oracle database running on the OTN Developer Days Virtual Box image If you’re connecting to someone else’s database, you need to ask the person that manages that environment to create for you an account. Don’t try to ‘guess’ or ‘figure out’ what the username and password is. Introduce yourself, explain your situation, and ask kindly for access. This is your first test – can you connect? I know it’s hard to get started with Oracle. There are however many things we offer to make this easier. You’ll need to do a bit of RTM first though. Once you know what’s required, you will be much more likely to succeed. Of course, if you need help, you know where to find me

    Read the article

  • cdc-acm driver: This device cannot do calls on its own. It is not a modem

    - by Sorcrer
    I am using Beagleboard-xm with 3.12 Kernel and ubuntu rootfs from Robert Nelson's site. I use a Telit HE910 GPS+GSM modem along with my project .So as per the HW user guide i have to apply a logic high for 5s on the input of this modem for enabling it So when I does this by toggling the gpio pin for 5s using a script I'm getting some messages on the terminal I am sure this message comes from the driver in usb/class/cdc-acm.c but couldn't find the reason behind this? How can I solve this issue?? root@arm:~# ./modem_on.sh Turning on Telit modem ...... going to sleep and toggle [ 70.791381] cdc_acm 1-2:1.0: This device cannot do calls on its own. It is not a modem. [ 74.390258] cdc_acm 1-2:1.0: This device cannot do calls on its own. It is not a modem. [ 74.406890] cdc_acm 1-2:1.2: This device cannot do calls on its own. It is not a modem. [ 74.462188] cdc_acm 1-2:1.4: This device cannot do calls on its own. It is not a modem. [ 74.478363] cdc_acm 1-2:1.6: This device cannot do calls on its own. It is not a modem. [ 74.495269] cdc_acm 1-2:1.8: This device cannot do calls on its own. It is not a modem. [ 74.510040] cdc_acm 1-2:1.10: This device cannot do calls on its own. It is not a modem. [ 74.530090] cdc_acm 1-2:1.12: This device cannot do calls on its own. It is not a modem. [ 74.619720] cdc_acm 1-2:1.0: This device cannot do calls on its own. It is not a modem. [ 74.634429] cdc_acm 1-2:1.2: This device cannot do calls on its own. It is not a modem. [ 74.649475] cdc_acm 1-2:1.4: This device cannot do calls on its own. It is not a modem. [ 74.664459] cdc_acm 1-2:1.6: This device cannot do calls on its own. It is not a modem. [ 74.678741] cdc_acm 1-2:1.8: This device cannot do calls on its own. It is not a modem. [ 74.693389] cdc_acm 1-2:1.10: This device cannot do calls on its own. It is not a modem. [ 74.708099] cdc_acm 1-2:1.12: This device cannot do calls on its own. It is not a modem. Script complete .......... The realted necessary portion of dmesg is below [ 30.623107] init: plymouth-upstart-bridge main process ended, respawning [ 70.629943] usb 1-2: new high-speed USB device number 2 using ehci-omap [ 70.782501] usb 1-2: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 255, changing to 11 [ 70.782592] usb 1-2: New USB device found, idVendor=058b, idProduct=0041 [ 70.782623] usb 1-2: New USB device strings: Mfr=0, Product=0, SerialNumber=0 [ 70.791381] cdc_acm 1-2:1.0: This device cannot do calls on its own. It is not a modem. [ 70.801483] cdc_acm 1-2:1.0: ttyACM0: USB ACM device [ 73.041625] usb 1-2: USB disconnect, device number 2 [ 74.209930] usb 1-2: new high-speed USB device number 3 using ehci-omap [ 74.369049] usb 1-2: New USB device found, idVendor=1bc7, idProduct=0021 [ 74.369110] usb 1-2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 [ 74.369140] usb 1-2: Product: Telit Wireless Module [ 74.369171] usb 1-2: Manufacturer: Telit wireless solutions [ 74.369201] usb 1-2: SerialNumber: 357164042197668 [ 74.390258] cdc_acm 1-2:1.0: This device cannot do calls on its own. It is not a modem. [ 74.400207] cdc_acm 1-2:1.0: ttyACM0: USB ACM device [ 74.406890] cdc_acm 1-2:1.2: This device cannot do calls on its own. It is not a modem. [ 74.416900] cdc_acm 1-2:1.2: ttyACM1: USB ACM device [ 74.462188] cdc_acm 1-2:1.4: This device cannot do calls on its own. It is not a modem. [ 74.472259] cdc_acm 1-2:1.4: ttyACM2: USB ACM device [ 74.478363] cdc_acm 1-2:1.6: This device cannot do calls on its own. It is not a modem. [ 74.488372] cdc_acm 1-2:1.6: ttyACM3: USB ACM device [ 74.495269] cdc_acm 1-2:1.8: This device cannot do calls on its own. It is not a modem. [ 74.505279] cdc_acm 1-2:1.8: ttyACM4: USB ACM device [ 74.510040] cdc_acm 1-2:1.10: This device cannot do calls on its own. It is not a modem. [ 74.520141] cdc_acm 1-2:1.10: ttyACM5: USB ACM device [ 74.530090] cdc_acm 1-2:1.12: This device cannot do calls on its own. It is not a modem. [ 74.540283] cdc_acm 1-2:1.12: ttyACM6: USB ACM device [ 74.619720] cdc_acm 1-2:1.0: This device cannot do calls on its own. It is not a modem. [ 74.629455] cdc_acm 1-2:1.0: ttyACM0: USB ACM device [ 74.634429] cdc_acm 1-2:1.2: This device cannot do calls on its own. It is not a modem. [ 74.644042] cdc_acm 1-2:1.2: ttyACM1: USB ACM device [ 74.649475] cdc_acm 1-2:1.4: This device cannot do calls on its own. It is not a modem. [ 74.659027] cdc_acm 1-2:1.4: ttyACM2: USB ACM device [ 74.664459] cdc_acm 1-2:1.6: This device cannot do calls on its own. It is not a modem. [ 74.674133] cdc_acm 1-2:1.6: ttyACM3: USB ACM device [ 74.678741] cdc_acm 1-2:1.8: This device cannot do calls on its own. It is not a modem. [ 74.688415] cdc_acm 1-2:1.8: ttyACM4: USB ACM device [ 74.693389] cdc_acm 1-2:1.10: This device cannot do calls on its own. It is not a modem. [ 74.703186] cdc_acm 1-2:1.10: ttyACM5: USB ACM device [ 74.708099] cdc_acm 1-2:1.12: This device cannot do calls on its own. It is not a modem. [ 74.717895] cdc_acm 1-2:1.12: ttyACM6: USB ACM device `

    Read the article

  • PPTP connection disconnect

    - by Vladimir Franciz S. Blando
    My pptp connection wont stay connected, it will disconnect in less than a minute here are some relevant log entries May 31 13:32:31 localhost NetworkManager[931]: <info> Starting VPN service 'pptp'... May 31 13:32:31 localhost NetworkManager[931]: <info> VPN service 'pptp' started (org.freedesktop.NetworkManager.pptp), PID 15216 May 31 13:32:31 localhost NetworkManager[931]: <info> VPN service 'pptp' appeared; activating connections May 31 13:32:31 localhost NetworkManager[931]: <info> VPN plugin state changed: init (1) May 31 13:32:31 localhost NetworkManager[931]: <info> VPN plugin state changed: starting (3) May 31 13:32:31 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (Connect) reply received. May 31 13:32:31 localhost pppd[15221]: Plugin /usr/lib/pppd/2.4.5/nm-pptp-pppd-plugin.so loaded. May 31 13:32:31 localhost pppd[15221]: pppd 2.4.5 started by root, uid 0 May 31 13:32:31 localhost pptp[15224]: nm-pptp-service-15216 log[main:pptp.c:314]: The synchronous pptp option is NOT activated May 31 13:32:31 localhost pppd[15221]: Using interface ppp0 May 31 13:32:31 localhost pppd[15221]: Connect: ppp0 <--> /dev/pts/5 May 31 13:32:31 localhost NetworkManager[931]: SCPlugin-Ifupdown: devices added (path: /sys/devices/virtual/net/ppp0, iface: ppp0) May 31 13:32:31 localhost NetworkManager[931]: SCPlugin-Ifupdown: device added (path: /sys/devices/virtual/net/ppp0, iface: ppp0): no ifupdown configuration found. May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 1 'Start-Control-Connection-Request' May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:739]: Received Start Control Connection Reply May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:773]: Client connection established. May 31 13:32:33 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 7 'Outgoing-Call-Request' May 31 13:32:34 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:858]: Received Outgoing Call Reply. May 31 13:32:34 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:897]: Outgoing call established (call ID 0, peer's call ID 1536). May 31 13:32:37 localhost pppd[15221]: CHAP authentication succeeded May 31 13:32:37 localhost kernel: [54007.078553] PPP MPPE Compression module registered May 31 13:32:40 localhost pppd[15221]: MPPE 128-bit stateless compression enabled May 31 13:32:42 localhost pppd[15221]: local IP address 10.100.0.52 May 31 13:32:42 localhost pppd[15221]: remote IP address 10.100.0.1 May 31 13:32:42 localhost pppd[15221]: primary DNS address 4.2.2.1 May 31 13:32:42 localhost pppd[15221]: secondary DNS address 255.255.255.255 May 31 13:32:42 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (IP Config Get) reply received. May 31 13:32:42 localhost NetworkManager[931]: <info> VPN Gateway: 103.28.219.2 May 31 13:32:42 localhost NetworkManager[931]: <info> Tunnel Device: ppp0 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Address: 10.100.0.52 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Prefix: 32 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Point-to-Point Address: 10.100.0.1 May 31 13:32:42 localhost NetworkManager[931]: <info> Maximum Segment Size (MSS): 0 May 31 13:32:42 localhost NetworkManager[931]: <info> Forbid Default Route: no May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 DNS: 4.2.2.1 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 DNS: 255.255.255.255 May 31 13:32:42 localhost NetworkManager[931]: <info> DNS Domain: '(none)' May 31 13:32:43 localhost dnsmasq[2127]: exiting on receipt of SIGTERM May 31 13:32:43 localhost NetworkManager[931]: <info> DNS: starting dnsmasq... May 31 13:32:43 localhost NetworkManager[931]: <info> (ppp0): writing resolv.conf to /sbin/resolvconf May 31 13:32:43 localhost dnsmasq[15290]: error at line 2 of /var/run/nm-dns-dnsmasq.conf May 31 13:32:43 localhost dnsmasq[15290]: FAILED to start up May 31 13:32:43 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (IP Config Get) complete. May 31 13:32:43 localhost NetworkManager[931]: <info> Policy set 'Dynalabs' (ppp0) as default for IPv4 routing and DNS. May 31 13:32:43 localhost NetworkManager[931]: <info> VPN plugin state changed: started (4) May 31 13:32:43 localhost NetworkManager[931]: <warn> dnsmasq exited with error: Configuration problem (1) May 31 13:32:43 localhost NetworkManager[931]: <info> (ppp0): writing resolv.conf to /sbin/resolvconf May 31 13:32:43 localhost dbus[872]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) May 31 13:32:43 localhost dbus[872]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' May 31 13:33:00 localhost ntpdate[15370]: step time server 91.189.94.4 offset -1.110301 sec May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd6d6 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x93aa May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xcc83 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2031 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x13d4 May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x5b11 May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x414b May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2f5f May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe9ff May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8e20 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8f0 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf166 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x36e6 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xdd19 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xda26 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xac5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x53a5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x507e May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x1dc5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf87b May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2f27 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd10c May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x66ef May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xa294 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xb15 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x52a2 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd863 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8a96 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xde19 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x9763 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xb23 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x83ca May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x964e May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe8ae May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf614 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x9b1 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf086 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xbff4 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x66c5 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe42 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf295 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x86fe May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x3bc1 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xbaad May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x88b5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd7a May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x30d5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2d8f May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x3933 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8d42 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x4b4 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xa205 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x7cc5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x1b6a May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf004 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x21b6 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x51eb

    Read the article

  • Java EE 6 and NoSQL/MongoDB on GlassFish using JPA and EclipseLink 2.4 (TOTD #175)

    - by arungupta
    TOTD #166 explained how to use MongoDB in your Java EE 6 applications. The code in that tip used the APIs exposed by the MongoDB Java driver and so requires you to learn a new API. However if you are building Java EE 6 applications then you are already familiar with Java Persistence API (JPA). Eclipse Link 2.4, scheduled to release as part of Eclipse Juno, provides support for NoSQL databases by mapping a JPA entity to a document. Their wiki provides complete explanation of how the mapping is done. This Tip Of The Day (TOTD) will show how you can leverage that support in your Java EE 6 applications deployed on GlassFish 3.1.2. Before we dig into the code, here are the key concepts ... A POJO is mapped to a NoSQL data source using @NoSQL or <no-sql> element in "persistence.xml". A subset of JPQL and Criteria query are supported, based upon the underlying data store Connection properties are defined in "persistence.xml" Now, lets lets take a look at the code ... Download the latest EclipseLink 2.4 Nightly Bundle. There is a Installer, Source, and Bundle - make sure to download the Bundle link (20120410) and unzip. Download GlassFish 3.1.2 zip and unzip. Install the Eclipse Link 2.4 JARs in GlassFish Remove the following JARs from "glassfish/modules": org.eclipse.persistence.antlr.jar org.eclipse.persistence.asm.jar org.eclipse.persistence.core.jar org.eclipse.persistence.jpa.jar org.eclipse.persistence.jpa.modelgen.jar org.eclipse.persistence.moxy.jar org.eclipse.persistence.oracle.jar Add the following JARs from Eclipse Link 2.4 nightly build to "glassfish/modules": org.eclipse.persistence.antlr_3.2.0.v201107111232.jar org.eclipse.persistence.asm_3.3.1.v201107111215.jar org.eclipse.persistence.core.jpql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.core_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa.jpql_2.0.0.v20120407-r11132.jar org.eclipse.persistence.jpa.modelgen_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa_2.4.0.v20120407-r11132.jar org.eclipse.persistence.moxy_2.4.0.v20120407-r11132.jar org.eclipse.persistence.nosql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.oracle_2.4.0.v20120407-r11132.jar Start MongoDB Download latest MongoDB from here (2.0.4 as of this writing). Create the default data directory for MongoDB as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db Refer to Quickstart for more details. Start MongoDB as: arungup-mac:mongodb-osx-x86_64-2.0.4 <arungup> ->./bin/mongod./bin/mongod --help for help and startup optionsMon Apr  9 12:56:02 [initandlisten] MongoDB starting : pid=3124 port=27017 dbpath=/data/db/ 64-bit host=arungup-mac.localMon Apr  9 12:56:02 [initandlisten] db version v2.0.4, pdfile version 4.5Mon Apr  9 12:56:02 [initandlisten] git version: 329f3c47fe8136c03392c8f0e548506cb21f8ebfMon Apr  9 12:56:02 [initandlisten] build info: Darwin erh2.10gen.cc 9.8.0 Darwin Kernel Version 9.8.0: Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE_I386 i386 BOOST_LIB_VERSION=1_40Mon Apr  9 12:56:02 [initandlisten] options: {}Mon Apr  9 12:56:02 [initandlisten] journal dir=/data/db/journalMon Apr  9 12:56:02 [initandlisten] recover : no journal files present, no recovery neededMon Apr  9 12:56:02 [websvr] admin web console waiting for connections on port 28017Mon Apr  9 12:56:02 [initandlisten] waiting for connections on port 27017 Check out the JPA/NoSQL sample from SVN repository. The complete source code built in this TOTD can be downloaded here. Create Java EE 6 web app Create a Java EE 6 Maven web app as: mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=webapp-javaee6 -DgroupId=model -DartifactId=javaee-nosql -DarchetypeVersion=1.5 -DinteractiveMode=false Copy the model files from the checked out workspace to the generated project as: cd javaee-nosqlcp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/model src/main/java Copy "persistence.xml" mkdir src/main/resources cp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/META-INF ./src/main/resources Add the following dependencies: <dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.jpa</artifactId> <version>2.4.0-SNAPSHOT</version> <scope>provided</scope></dependency><dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.nosql</artifactId> <version>2.4.0-SNAPSHOT</version></dependency><dependency> <groupId>org.mongodb</groupId> <artifactId>mongo-java-driver</artifactId> <version>2.7.3</version></dependency> The first one is for the EclipseLink latest APIs, the second one is for EclipseLink/NoSQL support, and the last one is the MongoDB Java driver. And the following repository: <repositories> <repository> <id>EclipseLink Repo</id> <url>http://www.eclipse.org/downloads/download.php?r=1&amp;nf=1&amp;file=/rt/eclipselink/maven.repo</url> <snapshots> <enabled>true</enabled> </snapshots> </repository>  </repositories> Copy the "Test.java" to the generated project: mkdir src/main/java/examplecp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/example/Test.java ./src/main/java/example/ This file contains the source code to CRUD the JPA entity to MongoDB. This sample is explained in detail on EclipseLink wiki. Create a new Servlet in "example" directory as: package example;import java.io.IOException;import java.io.PrintWriter;import javax.servlet.ServletException;import javax.servlet.annotation.WebServlet;import javax.servlet.http.HttpServlet;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;/** * @author Arun Gupta */@WebServlet(name = "TestServlet", urlPatterns = {"/TestServlet"})public class TestServlet extends HttpServlet { protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); PrintWriter out = response.getWriter(); try { out.println("<html>"); out.println("<head>"); out.println("<title>Servlet TestServlet</title>"); out.println("</head>"); out.println("<body>"); out.println("<h1>Servlet TestServlet at " + request.getContextPath() + "</h1>"); try { Test.main(null); } catch (Exception ex) { ex.printStackTrace(); } out.println("</body>"); out.println("</html>"); } finally { out.close(); } } @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); } @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); }} Build the project and deploy it as: mvn clean packageglassfish3/bin/asadmin deploy --force=true target/javaee-nosql-1.0-SNAPSHOT.war Accessing http://localhost:8080/javaee-nosql/TestServlet shows the following messages in the server.log: connecting(EISLogin( platform=> MongoPlatform user name=> "" MongoConnectionSpec())) . . .Connected: User: Database: 2.7  Version: 2.7 . . .Executing MappedInteraction() spec => null properties => {mongo.collection=CUSTOMER, mongo.operation=INSERT} input => [DatabaseRecord( CUSTOMER._id => 4F848E2BDA0670307E2A8FA4 CUSTOMER.NAME => AMCE)]. . .Data access result: [{TOTALCOST=757.0, ORDERLINES=[{DESCRIPTION=table, LINENUMBER=1, COST=300.0}, {DESCRIPTION=balls, LINENUMBER=2, COST=5.0}, {DESCRIPTION=rackets, LINENUMBER=3, COST=15.0}, {DESCRIPTION=net, LINENUMBER=4, COST=2.0}, {DESCRIPTION=shipping, LINENUMBER=5, COST=80.0}, {DESCRIPTION=handling, LINENUMBER=6, COST=55.0},{DESCRIPTION=tax, LINENUMBER=7, COST=300.0}], SHIPPINGADDRESS=[{POSTALCODE=L5J1H7, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa,STREET=17 Jane St.}], VERSION=2, _id=4F848E2BDA0670307E2A8FA8,DESCRIPTION=Pingpong table, CUSTOMER__id=4F848E2BDA0670307E2A8FA7, BILLINGADDRESS=[{POSTALCODE=L5J1H8, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa, STREET=7 Bank St.}]}] You'll not see any output in the browser, just the output in the console. But the code can be easily modified to do so. Once again, the complete Maven project can be downloaded here. Do you want to try accessing relational and non-relational (aka NoSQL) databases in the same PU ?

    Read the article

  • Static background noise while using new headset Ubuntu 13.04

    - by ThundLayr
    Today I bought a new gaming headset (Gx-Gaming Lychas), and when I tried to record some gameplay-comentary I noticed that there always is a static background noise, I just recorded an example so you guys can listen it (no downloaded needed): http://www47.zippyshare.com/v/65167832/file.html I'm using Kubuntu 13.04 and Kernel version is 3.8.0-19, my laptop is an Acer Travelmate 5760Z, I tried tons of configurations on Alsamixer and none of them made result, I really need to get this working so any kind of help will be very aprecciated. cat /proc/asound/cards: 0 [PCH ]: HDA-Intel - HDA Intel PCH HDA Intel PCH at 0xc6400000 irq 44 cat /proc/asound/card0/codec#0 Codec: Conexant CX20588 Address: 0 AFG Function Id: 0x1 (unsol 1) Vendor Id: 0x14f1506c Subsystem Id: 0x10250574 Revision Id: 0x100003 No Modem Function Group found Default PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Default Amp-In caps: N/A Default Amp-Out caps: N/A State of AFG node 0x01: Power states: D0 D1 D2 D3 D3cold CLKSTOP EPSS Power: setting=D0, actual=D0 GPIO: io=4, o=0, i=0, unsolicited=1, wake=0 IO[0]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 IO[1]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 IO[2]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 IO[3]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 Node 0x10 [Audio Output] wcaps 0xc1d: Stereo Amp-Out R/L Control: name="Headphone Playback Volume", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Control: name="Headphone Playback Switch", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Device: name="CX20588 Analog", type="Audio", device=0 Amp-Out caps: ofs=0x4a, nsteps=0x4a, stepsize=0x03, mute=1 Amp-Out vals: [0x4a 0x4a] Converter: stream=8, channel=0 PCM: rates [0x560]: 44100 48000 96000 192000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x11 [Audio Output] wcaps 0xc1d: Stereo Amp-Out R/L Control: name="Speaker Playback Volume", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Control: name="Speaker Playback Switch", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Amp-Out caps: ofs=0x4a, nsteps=0x4a, stepsize=0x03, mute=1 Amp-Out vals: [0x80 0x80] Converter: stream=8, channel=0 PCM: rates [0x560]: 44100 48000 96000 192000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x12 [Audio Output] wcaps 0x611: Stereo Digital Converter: stream=0, channel=0 Digital: Digital category: 0x0 IEC Coding Type: 0x0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x5]: PCM AC3 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x13 [Beep Generator Widget] wcaps 0x70000c: Mono Amp-Out Control: name="Beep Playback Volume", index=0, device=0 ControlAmp: chs=1, dir=Out, idx=0, ofs=0 Control: name="Beep Playback Switch", index=0, device=0 ControlAmp: chs=1, dir=Out, idx=0, ofs=0 Amp-Out caps: ofs=0x07, nsteps=0x07, stepsize=0x0f, mute=0 Amp-Out vals: [0x00] Node 0x14 [Audio Input] wcaps 0x100d1b: Stereo Amp-In R/L Control: name="Capture Volume", index=0, device=0 ControlAmp: chs=3, dir=In, idx=0, ofs=0 Control: name="Capture Switch", index=0, device=0 ControlAmp: chs=3, dir=In, idx=0, ofs=0 Device: name="CX20588 Analog", type="Audio", device=0 Amp-In caps: ofs=0x4a, nsteps=0x50, stepsize=0x03, mute=1 Amp-In vals: [0x50 0x50] [0x80 0x80] [0x80 0x80] [0x80 0x80] Converter: stream=4, channel=0 SDI-Select: 0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x17* 0x18 0x23 0x24 Node 0x15 [Audio Input] wcaps 0x100d1b: Stereo Amp-In R/L Amp-In caps: ofs=0x4a, nsteps=0x50, stepsize=0x03, mute=1 Amp-In vals: [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] Converter: stream=0, channel=0 SDI-Select: 0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x17* 0x18 0x23 0x24 Node 0x16 [Audio Input] wcaps 0x100d1b: Stereo Amp-In R/L Amp-In caps: ofs=0x4a, nsteps=0x50, stepsize=0x03, mute=1 Amp-In vals: [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] Converter: stream=0, channel=0 SDI-Select: 0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x17* 0x18 0x23 0x24 Node 0x17 [Audio Selector] wcaps 0x30050d: Stereo Amp-Out Control: name="Mic Boost Volume", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Amp-Out caps: ofs=0x00, nsteps=0x04, stepsize=0x27, mute=0 Amp-Out vals: [0x04 0x04] Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x1a 0x1b* 0x1d 0x1e Node 0x18 [Audio Selector] wcaps 0x30050d: Stereo Amp-Out Amp-Out caps: ofs=0x00, nsteps=0x04, stepsize=0x27, mute=0 Amp-Out vals: [0x00 0x00] Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x1a* 0x1b 0x1d 0x1e Node 0x19 [Pin Complex] wcaps 0x400581: Stereo Control: name="Headphone Jack", index=0, device=0 Pincap 0x0000001c: OUT HP Detect Pin Default 0x04214040: [Jack] HP Out at Ext Right Conn = 1/8, Color = Green DefAssociation = 0x4, Sequence = 0x0 Pin-ctls: 0xc0: OUT HP Unsolicited: tag=01, enabled=1 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1a [Pin Complex] wcaps 0x400481: Stereo Control: name="Internal Mic Phantom Jack", index=0, device=0 Pincap 0x00001324: IN Detect Vref caps: HIZ 50 80 Pin Default 0x90a70130: [Fixed] Mic at Int N/A Conn = Analog, Color = Unknown DefAssociation = 0x3, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x24: IN VREF_80 Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x1b [Pin Complex] wcaps 0x400581: Stereo Control: name="Mic Jack", index=0, device=0 Pincap 0x00011334: IN OUT EAPD Detect Vref caps: HIZ 50 80 EAPD 0x0: Pin Default 0x04a19020: [Jack] Mic at Ext Right Conn = 1/8, Color = Pink DefAssociation = 0x2, Sequence = 0x0 Pin-ctls: 0x24: IN VREF_80 Unsolicited: tag=02, enabled=1 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1c [Pin Complex] wcaps 0x400581: Stereo Pincap 0x00000014: OUT Detect Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x40: OUT Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1d [Pin Complex] wcaps 0x400581: Stereo Pincap 0x00010034: IN OUT EAPD Detect EAPD 0x0: Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x40: OUT Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1e [Pin Complex] wcaps 0x400481: Stereo Pincap 0x00000024: IN Detect Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x1f [Pin Complex] wcaps 0x400501: Stereo Control: name="Speaker Phantom Jack", index=0, device=0 Pincap 0x00000010: OUT Pin Default 0x92170110: [Fixed] Speaker at Int Front Conn = Analog, Color = Unknown DefAssociation = 0x1, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x40: OUT Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10 0x11* Node 0x20 [Pin Complex] wcaps 0x400781: Stereo Digital Pincap 0x00000010: OUT Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 1 0x12 Node 0x21 [Audio Output] wcaps 0x611: Stereo Digital Converter: stream=0, channel=0 Digital: Digital category: 0x0 IEC Coding Type: 0x0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x5]: PCM AC3 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x22 [Pin Complex] wcaps 0x400781: Stereo Digital Pincap 0x00000010: OUT Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 1 0x21 Node 0x23 [Pin Complex] wcaps 0x40040b: Stereo Amp-In Amp-In caps: ofs=0x00, nsteps=0x04, stepsize=0x2f, mute=0 Amp-In vals: [0x00 0x00] Pincap 0x00000020: IN Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x24 [Audio Mixer] wcaps 0x20050b: Stereo Amp-In Amp-In caps: ofs=0x4a, nsteps=0x4a, stepsize=0x03, mute=1 Amp-In vals: [0x00 0x00] [0x00 0x00] Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10 0x11 Node 0x25 [Vendor Defined Widget] wcaps 0xf00000: Mono

    Read the article

  • DTracing a PHPUnit Test: Looking at Functional Programming

    - by cj
    Here's a quick example of using DTrace Dynamic Tracing to work out what a PHP code base does. I was reading the article Functional Programming in PHP by Patkos Csaba and wondering how efficient this stype of programming is. I thought this would be a good time to fire up DTrace and see what is going on. Since DTrace is "always available" even in production machines (once PHP is compiled with --enable-dtrace), this was easy to do. I have Oracle Linux with the UEK3 kernel and PHP 5.5 with DTrace static probes enabled, as described in DTrace PHP Using Oracle Linux 'playground' Pre-Built Packages I installed the Functional Programming sample code and Sebastian Bergmann's PHPUnit. Although PHPUnit is included in the Functional Programming example, I found it easier to separately download and use its phar file: cd ~/Desktop wget -O master.zip https://github.com/tutsplus/functional-programming-in-php/archive/master.zip wget https://phar.phpunit.de/phpunit.phar unzip master.zip I created a DTrace D script functree.d: #pragma D option quiet self int indent; BEGIN { topfunc = $1; } php$target:::function-entry /copyinstr(arg0) == topfunc/ { self->follow = 1; } php$target:::function-entry /self->follow/ { self->indent += 2; printf("%*s %s%s%s\n", self->indent, "->", arg3?copyinstr(arg3):"", arg4?copyinstr(arg4):"", copyinstr(arg0)); } php$target:::function-return /self->follow/ { printf("%*s %s%s%s\n", self->indent, "<-", arg3?copyinstr(arg3):"", arg4?copyinstr(arg4):"", copyinstr(arg0)); self->indent -= 2; } php$target:::function-return /copyinstr(arg0) == topfunc/ { self->follow = 0; } This prints a PHP script function call tree starting from a given PHP function name. This name is passed as a parameter to DTrace, and assigned to the variable topfunc when the DTrace script starts. With this D script, choose a PHP function that isn't recursive, or modify the script to set self->follow = 0 only when all calls to that function have unwound. From looking at the sample FunSets.php code and its PHPUnit test driver FunSetsTest.php, I settled on one test function to trace: function testUnionContainsAllElements() { ... } I invoked DTrace to trace function calls invoked by this test with # dtrace -s ./functree.d -c 'php phpunit.phar \ /home/cjones/Desktop/functional-programming-in-php-master/FunSets/Tests/FunSetsTest.php' \ '"testUnionContainsAllElements"' The core of this command is a call to PHP to run PHPUnit on the FunSetsTest.php script. Outside that, DTrace is called and the PID of PHP is passed to the D script $target variable so the probes fire just for this invocation of PHP. Note the quoting around the PHP function name passed to DTrace. The parameter must have double quotes included so DTrace knows it is a string. The output is: PHPUnit 3.7.28 by Sebastian Bergmann. ......-> FunSetsTest::testUnionContainsAllElements -> FunSets::singletonSet <- FunSets::singletonSet -> FunSets::singletonSet <- FunSets::singletonSet -> FunSets::union <- FunSets::union -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertTrue -> PHPUnit_Framework_Assert::isTrue <- PHPUnit_Framework_Assert::isTrue -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertTrue -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertTrue -> PHPUnit_Framework_Assert::isTrue <- PHPUnit_Framework_Assert::isTrue -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertTrue -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertFalse -> PHPUnit_Framework_Assert::isFalse -> {closure} -> main <- main <- {closure} <- PHPUnit_Framework_Assert::isFalse -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsFalse::matches <- PHPUnit_Framework_Constraint_IsFalse::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertFalse <- FunSetsTest::testUnionContainsAllElements ... Time: 1.85 seconds, Memory: 3.75Mb OK (9 tests, 23 assertions) The periods correspond to the successful tests before and after (and from) the test I was tracing. You can see the function entry ("->") and return ("<-") points. Cross checking with the testUnionContainsAllElements() source code confirms the two singletonSet() calls, one union() call, two assertTrue() calls and finally an assertFalse() call. These assertions have a contains() call as a parameter, so contains() is called before the PHPUnit assertion functions are run. You can see contains() being called recursively, and how the closures are invoked. If you want to focus on the application logic and suppress the PHPUnit function trace, you could turn off tracing when assertions are being checked by adding D clauses checking the entry and exit of assertFalse() and assertTrue(). But if you want to see all of PHPUnit's code flow, you can modify the functree.d code that sets and unsets self-follow, and instead change it to toggle the variable in request-startup and request-shutdown probes: php$target:::request-startup { self->follow = 1 } php$target:::request-shutdown { self->follow = 0 } Be prepared for a large amount of output!

    Read the article

  • Running TeamCity from Amazon EC2 - Cloud based scalable build and continuous Integration

    - by RoyOsherove
    I’ve been having fun playing with the amazon EC2 cloud service. I set up a server running TeamCity, and an image of a server that just runs a TeamCity agent. I also setup TeamCity  to automatically instantiate agents on EC2 and shut them down based upon availability of free agents. Here’s how I did it: The first step was setting up the teamcity server. Create an account on amazon EC2 (BTW, amazon’s sites works better in IE than it does in chrome.. who knew!?) Open the EC2 dashboard, and click “Launch Instance” . From the “Quick Start” tab I selected from the list: “Getting Started on Microsoft Windows Server 2008 (AMI Id: ami-c5e40dac)” .  it’s good enough to just run teamcity. In the instance details, I used the default (Small instance, 1.7 GB mem). You might want to choose a close availability zone based on where you are. We want to “Launch instances” so click continue. Select the default kernel, RAM disk and all. No need to enable monitoring for now (you can do that later). click continue. If you don’t have a key pair, you will be prompted to create one. Once you do, select it in the list. Now you’ll be prompted to create a security group. I named mine “TC” as in “TeamCity”. each group is a bunch of settings on which ports can be let through into and out of a hosted machine.  keep it as the default settings. We will change them later. Click continue,  review and then click “Launch”. Now you’ll be able to see the new instance in the running instances list on your site. Now, you need to install stuff on that instance (TeamCity!) . To do that, you’ll need to Remote desktop into that instance. To do that, we’ll get the admin password for that instance: Check it on the list, and click “Instance Actions” - “Get Windows Admin Password”. You might have to wait about 10 minutes or so for the password to be generated for you. Once you have the password, you will remote desktop (start-run-‘mstsc’) into the instance. It’s address is a dns address shown below the list under “Public DNS”. it looks something like: ec2-256-226-194-91.compute-1.amazonaws.com Once you’re inside the instance – you’ll need to open IE (it is in hardened mode so you’ll have to relax its security settings to download stuff). I first downloaded chrome and using chrome I downloaded TeamCity. Note that the download speed is FAST. several MBs per second. To be able to see TeamCity from the outside, you will need to open the advanced firewall settings inside the remote machine, and add incoming and outgoing rules for port 80 (HTTP). Once you do that, you should be able to see the machine from the outside. If you still can’t, see the next step. I also enabled ports 9090 since I will use this machine to create an agent image later as well. Now configure the security group (TC) to enable talking to agents: IN the EC2 dashboard click on “Security Groups” and select your group. To add a rule, click on the empty list under the ‘protocol’ header. select TCP. from and ‘to’ ports are 9090. source ip is 0.0.0.0/0 (every ip is allowed). click “Save.  Also make sure you can see “HTTP” tcp 80 in that list. if you can’t see it, add it or you won’t be able to browse to the machine’s teamcity server home page. I also set an elastic IP for the machine: so I always have the same IP for the machine instance. Allocate and set one through the”Elastic IP” link on the EC2 dashboard.   you should now have a working instance of teamcity.   Now let’s create an agent image. Repeat steps 1-9, but this time, make sure you select a machine that fits what an agent might do. I selected Instance type – Hihg-CPU medium machine,  that is much faster. On that machine, I installed what I needed (VS 2010, PostSharp etc..). downloading VS 2010 from MSDN (2 GB took less than 10 min!) Now, instead of installing teamcity, browse using the browser to the teamcity homepage (from within the remote machine). go to the Administration page, and click the upper right link “Install agents”. Install the agent on he local machine – set it to the IP or DNS of the running TeamCity server. That way you’ll be able to check their connectivity live before making this machine your official agent image to reuse. Once the agent is installed, see that the TC server can see it and use it. see steps 13-14 above if they can’t. Once it works, you can take steps to make this image your agent image to be reused. next, here is a copy-paste of several steps to take from http://confluence.jetbrains.net/display/TCD5/Setting+Up+TeamCity+for+Amazon+EC2 Configure system so that agent it is started on machine boot (and make sure TeamCity server is accessible on machine boot). Test the setup by rebooting machine and checking that the agent connects normally to the server. Prepare the Image for bundling: Remove any temporary/history information in the system. Stop the agent (under Windows stop the service but leave it in Automatic startup type) Delete content agent logs and temp directories (not necessary) Delete "<Agent Home>/conf/amazon-*" file (not necessary) Change config/buildAgent.properties to remove properties: name, serverAddress, authToken (not necessary)   Now, we need to: Make AMI from the running instance. Configure TeamCity EC2 support on TeamCity server. Making an AMI: Check the instance of the agent in the EC2 dashboard instance list, and select instance actions->Create Image (EBS AMI) you’ll see the image pending in the APIs list in the EC2 dashboard. this could take 30 minutes or more. meanwhile we can configure the could support in the teamcity server. COPY THE AMI ID to the clipboard (looks like ami-a88aa4ce) Configuring TeamCity for Cloud: In TeamCity, click on “Agents” and then on “Cloud” tab. this is where you will control your cloud agents. to configure new cloud agents based on APIs, click on the right link to the “configuration page” Create a new profile and select AMazon EC2 as cloud type. Use your AMI ID that you copied to the clipboard into the “Images” field. Select an availability zone that is the same as the one your instance is running on for best communication perf between them make sure you select the ‘TC’ security group hopefully, that should be it, and teamcity will try to instantiate new instances on demand. Note that it may take around 10 minutes for an agent to become available to teamcity from the time it’s started.

    Read the article

  • Oracle Expands Sun Blade Portfolio for Cloud and Highly Virtualized Environments

    - by Ferhat Hatay
    Oracle announced the expansion of Sun Blade Portfolio for cloud and highly virtualized environments that deliver powerful performance and simplified management as tightly integrated systems.  Along with the SPARC T3-1B blade server, Oracle VM blade cluster reference configuration and Oracle's optimized solution for Oracle WebLogic Suite, Oracle introduced the dual-node Sun Blade X6275 M2 server module with some impressive benchmark results.   Benchmarks on the Sun Blade X6275 M2 server module demonstrate the outstanding performance characteristics critical for running varied commercial applications used in cloud and highly virtualized environments.  These include best-in-class SPEC CPU2006 results with the Intel Xeon processor 5600 series, six Fluent world records and 1.8 times the price-performance of the IBM Power 755 running NAMD, a prominent bio-informatics workload.   Benchmarks for Sun Blade X6275 M2 server module  SPEC CPU2006  The Sun Blade X6275 M2 server module demonstrated best in class SPECint_rate2006 results for all published results using the Intel Xeon processor 5600 series, with a result of 679.  This result is 97% better than the HP BL460c G7 blade, 80% better than the IBM HS22V blade, and 79% better than the Dell M710 blade.  This result demonstrates the density advantage of the new Oracle's server module for space-constrained data centers.     Sun Blade X6275M2 (2 Nodes, Intel Xeon X5670 2.93GHz) - 679 SPECint_rate2006; HP ProLiant BL460c G7 (2.93 GHz, Intel Xeon X5670) - 347 SPECint_rate2006; IBM BladeCenter HS22V (Intel Xeon X5680)  - 377 SPECint_rate2006; Dell PowerEdge M710 (Intel Xeon X5680, 3.33 GHz) - 380 SPECint_rate2006.  SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 11/24/2010 and this report.    For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Fluent The Sun Fire X6275 M2 server module produced world-record results on each of the six standard cases in the current "FLUENT 12" benchmark test suite at 8-, 12-, 24-, 32-, 64- and 96-core configurations. These results beat the most recent QLogic score with IBM DX 360 M series platforms and QLogic "Truescale" interconnects.  Results on sedan_4m test case on the Sun Blade X6275 M2 server module are 23% better than the HP C7000 system, and 20% better than the IBM DX 360 M2; Dell has not posted a result for this test case.  Results can be found at the FLUENT website.   ANSYS's FLUENT software solves fluid flow problems, and is based on a numerical technique called computational fluid dynamics (CFD), which is used in the automotive, aerospace, and consumer products industries. The FLUENT 12 benchmark test suite consists of seven models that are well suited for multi-node clustered environments and representative of modern engineering CFD clusters. Vendors benchmark their systems with the principal objective of providing comparative performance information for FLUENT software that, among other things, depends on compilers, optimization, interconnect, and the performance characteristics of the hardware.   FLUENT application performance is representative of other commercial applications that require memory and CPU resources to be available in a scalable cluster-ready format.  FLUENT benchmark has six conventional test cases (eddy_417k, turbo_500k, aircraft_2m, sedan_4m, truck_14m, truck_poly_14m) at various core counts.   All information on the FLUENT website (http://www.fluent.com) is Copyrighted1995-2010 by ANSYS Inc. Results as of November 24, 2010. For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   NAMD Results on the Sun Blade X6275 M2 server module running NAMD (a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems) show up to a 1.8X better price/performance than IBM's Power 7-based system.  For space-constrained environments, the ultra-dense Sun Blade X6275 M2 server module provides a 1.7X better price/performance per rack unit than IBM's system.     IBM Power 755 4-way Cluster (16U). Total price for cluster: $324,212. See IBM United States Hardware Announcement 110-008, dated February 9, 2010, pp. 4, 21 and 39-46.  Sun Blade X6275 M2 8-Blade Cluster (10U). Total price for cluster:  $193,939. Price/performance and performance/RU comparisons based on f1ATPase molecule test results. Sun Blade X6275 M2 cluster: $3,568/step/sec, 5.435 step/sec/RU. IBM Power 755 cluster: $6,355/step/sec, 3.189 step/sec/U. See http://www-03.ibm.com/systems/power/hardware/reports/system_perf.html. See http://www.ks.uiuc.edu/Research/namd/performance.html for more information, results as of 11/24/10.   For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Reverse Time Migration The Reverse Time Migration is heavily used in geophysical imaging and modeling for Oil & Gas Exploration.  The Sun Blade X6275 M2 server module showed up to a 40% performance improvement over the previous generation server module with super-linear scalability to 16 nodes for the 9-Point Stencil used in this Reverse Time Migration computational kernel.  The balanced combination of Oracle's Sun Storage 7410 system with the Sun Blade X6275 M2 server module cluster showed linear scalability for the total application throughput, including the I/O and MPI communication, to produce a final 3-D seismic depth imaged cube for interpretation. The final image write time from the Sun Blade X6275 M2 server module nodes to Oracle's Sun Storage 7410 system achieved 10GbE line speed of 1.25 GBytes/second or better performance. Between subsequent runs, the effects of I/O buffer caching on the Sun Blade X6275 M2 server module nodes and write optimized caching on the Sun Storage 7410 system gave up to 1.8 GBytes/second effective write performance. The performance results and characterization of this Reverse Time Migration benchmark could serve as a useful measure for many other I/O intensive commercial applications. 3D VTI Reverse Time Migration Seismic Depth Imaging, see http://blogs.sun.com/BestPerf/entry/3d_vti_reverse_time_migration for more information, results as of 11/14/2010.                            

    Read the article

  • Improving Manageability of Virtual Environments

    - by Jeff Victor
    Boot Environments for Solaris 10 Branded Zones Until recently, Solaris 10 Branded Zones on Solaris 11 suffered one notable regression: Live Upgrade did not work. The individual packaging and patching tools work correctly, but the ability to upgrade Solaris while the production workload continued running did not exist. A recent Solaris 11 SRU (Solaris 11.1 SRU 6.4) restored most of that functionality, although with a slightly different concept, different commands, and without all of the feature details. This new method gives you the ability to create and manage multiple boot environments (BEs) for a Solaris 10 Branded Zone, and modify the active or any inactive BE, and to do so while the production workload continues to run. Background In case you are new to Solaris: Solaris includes a set of features that enables you to create a bootable Solaris image, called a Boot Environment (BE). This newly created image can be modified while the original BE is still running your workload(s). There are many benefits, including improved uptime and the ability to reboot into (or downgrade to) an older BE if a newer one has a problem. In Solaris 10 this set of features was named Live Upgrade. Solaris 11 applies the same basic concepts to the new packaging system (IPS) but there isn't a specific name for the feature set. The features are simply part of IPS. Solaris 11 Boot Environments are not discussed in this blog entry. Although a Solaris 10 system can have multiple BEs, until recently a Solaris 10 Branded Zone (BZ) in a Solaris 11 system did not have this ability. This limitation was addressed recently, and that enhancement is the subject of this blog entry. This new implementation uses two concepts. The first is the use of a ZFS clone for each BE. This makes it very easy to create a BE, or many BEs. This is a distinct advantage over the Live Upgrade feature set in Solaris 10, which had a practical limitation of two BEs on a system, when using UFS. The second new concept is a very simple mechanism to indicate the BE that should be booted: a ZFS property. The new ZFS property is named com.oracle.zones.solaris10:activebe (isn't that creative? ). It's important to note that the property is inherited from the original BE's file system to any BEs you create. In other words, all BEs in one zone have the same value for that property. When the (Solaris 11) global zone boots the Solaris 10 BZ, it boots the BE that has the name that is stored in the activebe property. Here is a quick summary of the actions you can use to manage these BEs: To create a BE: Create a ZFS clone of the zone's root dataset To activate a BE: Set the ZFS property of the root dataset to indicate the BE To add a package or patch to an inactive BE: Mount the inactive BE Add packages or patches to it Unmount the inactive BE To list the available BEs: Use the "zfs list" command. To destroy a BE: Use the "zfs destroy" command. Preparation Before you can use the new features, you will need a Solaris 10 BZ on a Solaris 11 system. You can use these three steps - on a real Solaris 11.1 server or in a VirtualBox guest running Solaris 11.1 - to create a Solaris 10 BZ. The Solaris 11.1 environment must be at SRU 6.4 or newer. Create a flash archive on the Solaris 10 system s10# flarcreate -n s10-system /net/zones/archives/s10-system.flar Configure the Solaris 10 BZ on the Solaris 11 system s11# zonecfg -z s10z Use 'create' to begin configuring a new zone. zonecfg:s10z create -t SYSsolaris10 zonecfg:s10z set zonepath=/zones/s10z zonecfg:s10z exit s11# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - s10z configured /zones/s10z solaris10 excl Install the zone from the flash archive s11# zoneadm -z s10z install -a /net/zones/archives/s10-system.flar -p You can find more information about the migration of Solaris 10 environments to Solaris 10 Branded Zones in the documentation. The rest of this blog entry demonstrates the commands you can use to accomplish the aforementioned actions related to BEs. New features in action Note that the demonstration of the commands occurs in the Solaris 10 BZ, as indicated by the shell prompt "s10z# ". Many of these commands can be performed in the global zone instead, if you prefer. If you perform them in the global zone, you must change the ZFS file system names. Create The only complicated action is the creation of a BE. In the Solaris 10 BZ, create a new "boot environment" - a ZFS clone. You can assign any name to the final portion of the clone's name, as long as it meets the requirements for a ZFS file system name. s10z# zfs snapshot rpool/ROOT/zbe-0@snap s10z# zfs clone -o mountpoint=/ -o canmount=noauto rpool/ROOT/zbe-0@snap rpool/ROOT/newBE cannot mount 'rpool/ROOT/newBE' on '/': directory is not empty filesystem successfully created, but not mounted You can safely ignore that message: we already know that / is not empty! We have merely told ZFS that the default mountpoint for the clone is the root directory. List the available BEs and active BE Because each BE is represented by a clone of the rpool/ROOT dataset, listing the BEs is as simple as listing the clones. s10z# zfs list -r rpool/ROOT NAME USED AVAIL REFER MOUNTPOINT rpool/ROOT 3.55G 42.9G 31K legacy rpool/ROOT/zbe-0 1K 42.9G 3.55G / rpool/ROOT/newBE 3.55G 42.9G 3.55G / The output shows that two BEs exist. Their names are "zbe-0" and "newBE". You can tell Solaris that one particular BE should be used when the zone next boots by using a ZFS property. Its name is com.oracle.zones.solaris10:activebe. The value of that property is the name of the clone that contains the BE that should be booted. s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT NAME PROPERTY VALUE SOURCE rpool/ROOT com.oracle.zones.solaris10:activebe zbe-0 local Change the active BE When you want to change the BE that will be booted next time, you can just change the activebe property on the rpool/ROOT dataset. s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT NAME PROPERTY VALUE SOURCE rpool/ROOT com.oracle.zones.solaris10:activebe zbe-0 local s10z# zfs set com.oracle.zones.solaris10:activebe=newBE rpool/ROOT s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT NAME PROPERTY VALUE SOURCE rpool/ROOT com.oracle.zones.solaris10:activebe newBE local s10z# shutdown -y -g0 -i6 After the zone has rebooted: s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT rpool/ROOT com.oracle.zones.solaris10:activebe newBE local s10z# zfs mount rpool/ROOT/newBE / rpool/export /export rpool/export/home /export/home rpool /rpool Mount the original BE to see that it's still there. s10z# zfs mount -o mountpoint=/mnt rpool/ROOT/zbe-0 s10z# ls /mnt Desktop export platform Documents export.backup.20130607T214951Z proc S10Flar home rpool TT_DB kernel sbin bin lib system boot lost+found tmp cdrom mnt usr dev net var etc opt Patch an inactive BE At this point, you can modify the original BE. If you would prefer to modify the new BE, you can restore the original value to the activebe property and reboot, and then mount the new BE to /mnt (or another empty directory) and modify it. Let's mount the original BE so we can modify it. (The first command is only needed if you haven't already mounted that BE.) s10z# zfs mount -o mountpoint=/mnt rpool/ROOT/zbe-0 s10z# patchadd -R /mnt -M /var/sadm/spool 104945-02 Note that the typical usage will be: Create a BE Mount the new (inactive) BE Use the package and patch tools to update the new BE Unmount the new BE Reboot Delete an inactive BE ZFS clones are children of their parent file systems. In order to destroy the parent, you must first "promote" the child. This reverses the parent-child relationship. (For more information on this, see the documentation.) The original rpool/ROOT file system is the parent of the clones that you create as BEs. In order to destroy an earlier BE that is that parent of other BEs, you must first promote one of the child BEs to be the ZFS parent. Only then can you destroy the original BE. Fortunately, this is easier to do than to explain: s10z# zfs promote rpool/ROOT/newBE s10z# zfs destroy rpool/ROOT/zbe-0 s10z# zfs list -r rpool/ROOT NAME USED AVAIL REFER MOUNTPOINT rpool/ROOT 3.56G 269G 31K legacy rpool/ROOT/newBE 3.56G 269G 3.55G / Documentation This feature is so new, it is not yet described in the Solaris 11 documentation. However, MOS note 1558773.1 offers some details. Conclusion With this new feature, you can add and patch packages to boot environments of a Solaris 10 Branded Zone. This ability improves the manageability of these zones, and makes their use more practical. It also means that you can use the existing P2V tools with earlier Solaris 10 updates, and modify the environments after they become Solaris 10 Branded Zones.

    Read the article

< Previous Page | 168 169 170 171 172 173 174 175 176 177 178  | Next Page >