Search Results

Search found 18173 results on 727 pages for 'null radix'.

Page 172/727 | < Previous Page | 168 169 170 171 172 173 174 175 176 177 178 179  | Next Page >

  • How to change particular column entries in a mysql table when uploading data from csv file?

    - by understack
    I upload data into a mysql table from csv file in a standard way like this: TRUNCATE TABLE table_name; load data local infile '/path/to/file/file_name.csv' into table table_name fields terminated by ',' enclosed by '"' lines terminated by '\r\n' (id, name, type, deleted); All 'deleted' column entries in csv file has either 'current' or 'deleted' value. Question: When csv data is being loaded into table, I want to put current date in table for all those corresponding 'deleted' entries in csv file. And null for 'current' entries. How can I do this? Example: csv file: id_1, name_1, type_1, current id_2, name_1, type_2, deleted id_3, name_3, type_3, current Table after loading this data should look like this: id_1, name_1, type_1, null id_2, name_1, type_2, 2010-05-10 id_3, name_3, type_3, null Edit Probably, I could run another separate query after loading csv file. Wondering if it could be done in same query?

    Read the article

  • Flex Builder I want to go from titleWindow to a panel.

    - by dejaninic
    Hi. I'm building an user login page and I want to go from titleWindow to Panel. I'm suing following function but it always takes me back to parentApplication. My question is how can I go to my panel and not to Application page. I know that I'm using parentApplication but what should I use instead??? Here is a part of my code: private function handleLogin(event:ResultEvent):void { Alert.show("You have succesfully logged in.", "Information", Alert.OK, null, null, null, Alert.OK); parentApplication.accountPage.mainService.getAccount(); PopUpManager.removePopUp(this); }

    Read the article

  • Best Practice for loading non-existent data

    - by Aizotu
    I'm trying to build a table in MS SQL 2008, loaded with roughly 50,000 rows of data. Right now I'm doing something like: Create Table MyCustomData ( ColumnKey Int Null, Column1 NVarChar(100) Null, Column2 NVarChar(100) Null Primary Key Clustered ( ColumnKey ASC ) WITH ( PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON ) ) CREATE INDEX IDX_COLUMN1 ON MyCustomData([COLUMN1]) CREATE INDEX IDX_COLUMN2 ON MyCustomData([COLUMN2]) DECLARE @MyCount Int SET @MyCount = 0 WHILE @MyCount < 50000 BEGIN INSERT INTO MyCustomData (ColumnKey, Column1, Column2) Select @MyCount + 1, 'Custom Data 1', 'Custom Data 2' Set @MyCount = @MyCount + 1 END My problem is that this is crazy slow. I thought at one point I could create a Select Statement to build my custom data and use that as the datasource for my Insert Into statement. i.e. something like INSERT INTO MyCustomData (ColumnKey, Column1, Column2) From (Select Top 50000 Row_Count(), 'Custom Data 1', 'Custom Data 2') I know this doesn't work, but its the only thing I can show that seems to provide an example of what I'm after. Any suggestions would be greatly appriciated.

    Read the article

  • Reversing linked list C

    - by user2976389
    node *rever(node *root) { node *prev = NULL; node *xnew = NULL; while (root != NULL) { xnew = malloc(sizeof(root)); xnew->value = root->value; xnew->next = prev; prev = xnew; root = root->next; } return xnew; } Hello I wrote this linked list reverse function. However it doesn't work(empty response): I suspect it's because of prev index getting overwritten. Could someone explain me whats going on? I know I could find working code on the internet but I wanna know what am I doing wrong. Thanks

    Read the article

  • Get data from MySQL to Android application

    - by Mona
    I want to get data from MySQL database using PHP and display it in Android activity. I code it and pass JSON Array but there is a problem i dont know how to connect to server and my all database is on local server. I code it Kindly tell me where i go wrong so I can get exact results. I'll be very thankful to you. My PHP code is: <?php $response = array(); require_once __DIR__ . '/db_connect.php'; $db = new DB_CONNECT(); if (isset($_GET["cid"])) { $cid = $_GET['cid']; // get a product from products table $result = mysql_query("SELECT *FROM my_task WHERE cid = $cid"); if (!empty($result)) { // check for empty result if (mysql_num_rows($result) > 0) { $result = mysql_fetch_array($result); $task = array(); $task["cid"] = $result["cid"]; $task["cus_name"] = $result["cus_name"]; $task["contact_number"] = $result["contact_number"]; $task["ticket_no"] = $result["ticket_no"]; $task["task_detail"] = $result["task_detail"]; // success $response["success"] = 1; // user node $response["task"] = array(); array_push($response["my_task"], $task); // echoing JSON response echo json_encode($response); } else { // no task found $response["success"] = 0; $response["message"] = "No product found"; // echo no users JSON echo json_encode($response); } } else { // no task found $response["success"] = 0; $response["message"] = "No product found"; echo json_encode($response); } } else { $response["success"] = 0; $response["message"] = "Required field(s) is missing"; // echoing JSON response echo json_encode($response);} ?> My Android code is: public class My_Task extends Activity { TextView cus_name_txt, contact_no_txt, ticket_no_txt, task_detail_txt; EditText attend_by_txtbx, cus_name_txtbx, contact_no_txtbx, ticket_no_txtbx, task_detail_txtbx; Button btnSave; Button btnDelete; String cid; // Progress Dialog private ProgressDialog tDialog; // Creating JSON Parser object JSONParser jParser = new JSONParser(); ArrayList<HashMap<String, String>> my_taskList; // single task url private static final String url_read_mytask = "http://198.168.0.29/mobile/read_My_Task.php"; // url to update product private static final String url_update_mytask = "http://198.168.0.29/mobile/update_mytask.php"; // url to delete product private static final String url_delete_mytask = "http://198.168.0.29/mobile/delete_mytask.php"; // JSON Node names private static String TAG_SUCCESS = "success"; private static String TAG_MYTASK = "my_task"; private static String TAG_CID = "cid"; private static String TAG_NAME = "cus_name"; private static String TAG_CONTACT = "contact_number"; private static String TAG_TICKET = "ticket_no"; private static String TAG_TASKDETAIL = "task_detail"; private static String attend_by_txt; // task JSONArray JSONArray my_task = null; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.my_task); cus_name_txt = (TextView) findViewById(R.id.cus_name_txt); contact_no_txt = (TextView)findViewById(R.id.contact_no_txt); ticket_no_txt = (TextView)findViewById(R.id.ticket_no_txt); task_detail_txt = (TextView)findViewById(R.id.task_detail_txt); attend_by_txtbx = (EditText)findViewById(R.id.attend_by_txt); attend_by_txtbx.setText(My_Task.attend_by_txt); Spinner severity = (Spinner) findViewById(R.id.severity_spinner); // Create an ArrayAdapter using the string array and a default spinner layout ArrayAdapter<CharSequence> adapter3 = ArrayAdapter.createFromResource(this, R.array.Severity_array, android.R.layout.simple_dropdown_item_1line); // Specify the layout to use when the list of choices appears adapter3.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); // Apply the adapter to the spinner severity.setAdapter(adapter3); // save button btnSave = (Button) findViewById(R.id.btnSave); btnDelete = (Button) findViewById(R.id.btnDelete); // getting product details from intent Intent i = getIntent(); // getting product id (pid) from intent cid = i.getStringExtra(TAG_CID); // Getting complete product details in background thread new GetProductDetails().execute(); // save button click event btnSave.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View arg0) { // starting background task to update product new SaveProductDetails().execute(); } }); // Delete button click event btnDelete.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View arg0) { // deleting product in background thread new DeleteProduct().execute(); } }); } /** * Background Async Task to Get complete product details * */ class GetProductDetails extends AsyncTask<String, String, String> { /** * Before starting background thread Show Progress Dialog * */ @Override protected void onPreExecute() { super.onPreExecute(); tDialog = new ProgressDialog(My_Task.this); tDialog.setMessage("Loading task details. Please wait..."); tDialog.setIndeterminate(false); tDialog.setCancelable(true); tDialog.show(); } /** * Getting product details in background thread * */ protected String doInBackground(String... params) { // updating UI from Background Thread runOnUiThread(new Runnable() { public void run() { // Check for success tag int success; try { // Building Parameters List<NameValuePair> params = new ArrayList<NameValuePair>(); params.add(new BasicNameValuePair("cid", cid)); // getting product details by making HTTP request // Note that product details url will use GET request JSONObject json = JSONParser.makeHttpRequest( url_read_mytask, "GET", params); // check your log for json response Log.d("Single Task Details", json.toString()); // json success tag success = json.getInt(TAG_SUCCESS); if (success == 1) { // successfully received product details JSONArray my_taskObj = json .getJSONArray(TAG_MYTASK); // JSON Array // get first product object from JSON Array JSONObject my_task = my_taskObj.getJSONObject(0); // task with this cid found // Edit Text // display task data in EditText cus_name_txtbx = (EditText) findViewById(R.id.cus_name_txt); cus_name_txtbx.setText(my_task.getString(TAG_NAME)); contact_no_txtbx = (EditText) findViewById(R.id.contact_no_txt); contact_no_txtbx.setText(my_task.getString(TAG_CONTACT)); ticket_no_txtbx = (EditText) findViewById(R.id.ticket_no_txt); ticket_no_txtbx.setText(my_task.getString(TAG_TICKET)); task_detail_txtbx = (EditText) findViewById(R.id.task_detail_txt); task_detail_txtbx.setText(my_task.getString(TAG_TASKDETAIL)); } else { // task with cid not found } } catch (JSONException e) { e.printStackTrace(); } } }); return null; } /** * After completing background task Dismiss the progress dialog * **/ protected void onPostExecute(String file_url) { // dismiss the dialog once got all details tDialog.dismiss(); } } /** * Background Async Task to Save product Details * */ class SaveProductDetails extends AsyncTask<String, String, String> { /** * Before starting background thread Show Progress Dialog * */ @Override protected void onPreExecute() { super.onPreExecute(); tDialog = new ProgressDialog(My_Task.this); tDialog.setMessage("Saving task ..."); tDialog.setIndeterminate(false); tDialog.setCancelable(true); tDialog.show(); } /** * Saving product * */ protected String doInBackground(String... args) { // getting updated data from EditTexts String cus_name = cus_name_txt.getText().toString(); String contact_no = contact_no_txt.getText().toString(); String ticket_no = ticket_no_txt.getText().toString(); String task_detail = task_detail_txt.getText().toString(); // Building Parameters List<NameValuePair> params = new ArrayList<NameValuePair>(); params.add(new BasicNameValuePair(TAG_CID, cid)); params.add(new BasicNameValuePair(TAG_NAME, cus_name)); params.add(new BasicNameValuePair(TAG_CONTACT, contact_no)); params.add(new BasicNameValuePair(TAG_TICKET, ticket_no)); params.add(new BasicNameValuePair(TAG_TASKDETAIL, task_detail)); // sending modified data through http request // Notice that update product url accepts POST method JSONObject json = JSONParser.makeHttpRequest(url_update_mytask, "POST", params); // check json success tag try { int success = json.getInt(TAG_SUCCESS); if (success == 1) { // successfully updated Intent i = getIntent(); // send result code 100 to notify about product update setResult(100, i); finish(); } else { // failed to update product } } catch (JSONException e) { e.printStackTrace(); } return null; } /** * After completing background task Dismiss the progress dialog * **/ protected void onPostExecute(String file_url) { // dismiss the dialog once product uupdated tDialog.dismiss(); } } /***************************************************************** * Background Async Task to Delete Product * */ class DeleteProduct extends AsyncTask<String, String, String> { /** * Before starting background thread Show Progress Dialog * */ @Override protected void onPreExecute() { super.onPreExecute(); tDialog = new ProgressDialog(My_Task.this); tDialog.setMessage("Deleting Product..."); tDialog.setIndeterminate(false); tDialog.setCancelable(true); tDialog.show(); } /** * Deleting product * */ protected String doInBackground(String... args) { // Check for success tag int success; try { // Building Parameters List<NameValuePair> params = new ArrayList<NameValuePair>(); params.add(new BasicNameValuePair("cid", cid)); // getting product details by making HTTP request JSONObject json = JSONParser.makeHttpRequest( url_delete_mytask, "POST", params); // check your log for json response Log.d("Delete Task", json.toString()); // json success tag success = json.getInt(TAG_SUCCESS); if (success == 1) { // product successfully deleted // notify previous activity by sending code 100 Intent i = getIntent(); // send result code 100 to notify about product deletion setResult(100, i); finish(); } } catch (JSONException e) { e.printStackTrace(); } return null; } /** * After completing background task Dismiss the progress dialog * **/ protected void onPostExecute(String file_url) { // dismiss the dialog once product deleted tDialog.dismiss(); } } public void onItemSelected(AdapterView<?> parent, View view, int pos, long id) { // An item was selected. You can retrieve the selected item using // parent.getItemAtPosition(pos) } public void onNothingSelected(AdapterView<?> parent) { // Another interface callback } } My JSONParser code is: public class JSONParser { static InputStream is = null; static JSONObject jObj = null; static String json = ""; // constructor public JSONParser() { } // function get json from url // by making HTTP POST or GET mehtod public static JSONObject makeHttpRequest(String url, String method, List<NameValuePair> params) { // Making HTTP request try { // check for request method if(method == "POST"){ // request method is POST // defaultHttpClient DefaultHttpClient httpClient = new DefaultHttpClient(); HttpPost httpPost = new HttpPost(url); httpPost.setEntity(new UrlEncodedFormEntity(params)); HttpResponse httpResponse = httpClient.execute(httpPost); HttpEntity httpEntity = httpResponse.getEntity(); is = httpEntity.getContent(); }else if(method == "GET"){ // request method is GET DefaultHttpClient httpClient = new DefaultHttpClient(); String paramString = URLEncodedUtils.format(params, "utf-8"); url += "?" + paramString; HttpGet httpGet = new HttpGet(url); HttpResponse httpResponse = httpClient.execute(httpGet); HttpEntity httpEntity = httpResponse.getEntity(); is = httpEntity.getContent(); } } catch (UnsupportedEncodingException e) { e.printStackTrace(); } catch (ClientProtocolException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } try { BufferedReader reader = new BufferedReader(new InputStreamReader( is, "iso-8859-1"), 8); StringBuilder sb = new StringBuilder(); String line = null; while ((line = reader.readLine()) != null) { sb.append(line + "\n"); } is.close(); json = sb.toString(); } catch (Exception e) { Log.e("Buffer Error", "Error converting result " + e.toString()); } // try parse the string to a JSON object try { jObj = new JSONObject(json); } catch (JSONException e) { Log.e("JSON Parser", "Error parsing data " + e.toString()); } // return JSON String return jObj; my all database is in localhost and it is not opening an activity. displays an error "Stopped unexpectedly":( How can i get exact results. Kindly guide me

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • Metro: Declarative Data Binding

    - by Stephen.Walther
    The goal of this blog post is to describe how declarative data binding works in the WinJS library. In particular, you learn how to use both the data-win-bind and data-win-bindsource attributes. You also learn how to use calculated properties and converters to format the value of a property automatically when performing data binding. By taking advantage of WinJS data binding, you can use the Model-View-ViewModel (MVVM) pattern when building Metro style applications with JavaScript. By using the MVVM pattern, you can prevent your JavaScript code from spinning into chaos. The MVVM pattern provides you with a standard pattern for organizing your JavaScript code which results in a more maintainable application. Using Declarative Bindings You can use the data-win-bind attribute with any HTML element in a page. The data-win-bind attribute enables you to bind (associate) an attribute of an HTML element to the value of a property. Imagine, for example, that you want to create a product details page. You want to show a product object in a page. In that case, you can create the following HTML page to display the product details: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Product Details</h1> <div class="field"> Product Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Product Price: <span data-win-bind="innerText:price"></span> </div> <div class="field"> Product Picture: <br /> <img data-win-bind="src:photo;alt:name" /> </div> </body> </html> The HTML page above contains three data-win-bind attributes – one attribute for each product property displayed. You use the data-win-bind attribute to set properties of the HTML element associated with the data-win-attribute. The data-win-bind attribute takes a semicolon delimited list of element property names and data source property names: data-win-bind=”elementPropertyName:datasourcePropertyName; elementPropertyName:datasourcePropertyName;…” In the HTML page above, the first two data-win-bind attributes are used to set the values of the innerText property of the SPAN elements. The last data-win-bind attribute is used to set the values of the IMG element’s src and alt attributes. By the way, using data-win-bind attributes is perfectly valid HTML5. The HTML5 standard enables you to add custom attributes to an HTML document just as long as the custom attributes start with the prefix data-. So you can add custom attributes to an HTML5 document with names like data-stephen, data-funky, or data-rover-dog-is-hungry and your document will validate. The product object displayed in the page above with the data-win-bind attributes is created in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000, photo: "/images/TeslaPhoto.png" }; WinJS.Binding.processAll(null, product); } }; app.start(); })(); In the code above, a product object is created with a name, price, and photo property. The WinJS.Binding.processAll() method is called to perform the actual binding (Don’t confuse WinJS.Binding.processAll() and WinJS.UI.processAll() – these are different methods). The first parameter passed to the processAll() method represents the root element for the binding. In other words, binding happens on this element and its child elements. If you provide the value null, then binding happens on the entire body of the document (document.body). The second parameter represents the data context. This is the object that has the properties which are displayed with the data-win-bind attributes. In the code above, the product object is passed as the data context parameter. Another word for data context is view model.  Creating Complex View Models In the previous section, we used the data-win-bind attribute to display the properties of a simple object: a single product. However, you can use binding with more complex view models including view models which represent multiple objects. For example, the view model in the following default.js file represents both a customer and a product object. Furthermore, the customer object has a nested address object: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone", address: { street: "1 Rocky Way", city: "Bedrock", country: "USA" } }, product: { name: "Bowling Ball", price: 34.55 } }; WinJS.Binding.processAll(null, viewModel); } }; app.start(); })(); The following page displays the customer (including the customer address) and the product. Notice that you can use dot notation to refer to child objects in a view model such as customer.address.street. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:customer.firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:customer.lastName"></span> </div> <div class="field"> Address: <address> <span data-win-bind="innerText:customer.address.street"></span> <br /> <span data-win-bind="innerText:customer.address.city"></span> <br /> <span data-win-bind="innerText:customer.address.country"></span> </address> </div> <h1>Product</h1> <div class="field"> Name: <span data-win-bind="innerText:product.name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:product.price"></span> </div> </body> </html> A view model can be as complicated as you need and you can bind the view model to a view (an HTML document) by using declarative bindings. Creating Calculated Properties You might want to modify a property before displaying the property. For example, you might want to format the product price property before displaying the property. You don’t want to display the raw product price “80000”. Instead, you want to display the formatted price “$80,000”. You also might need to combine multiple properties. For example, you might need to display the customer full name by combining the values of the customer first and last name properties. In these situations, it is tempting to call a function when performing binding. For example, you could create a function named fullName() which concatenates the customer first and last name. Unfortunately, the WinJS library does not support the following syntax: <span data-win-bind=”innerText:fullName()”></span> Instead, in these situations, you should create a new property in your view model that has a getter. For example, the customer object in the following default.js file includes a property named fullName which combines the values of the firstName and lastName properties: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", get fullName() { return this.firstName + " " + this.lastName; } }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); The customer object has a firstName, lastName, and fullName property. Notice that the fullName property is defined with a getter function. When you read the fullName property, the values of the firstName and lastName properties are concatenated and returned. The following HTML page displays the fullName property in an H1 element. You can use the fullName property in a data-win-bind attribute in exactly the same way as any other property. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1 data-win-bind="innerText:fullName"></h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </body> </html> Creating a Converter In the previous section, you learned how to format the value of a property by creating a property with a getter. This approach makes sense when the formatting logic is specific to a particular view model. If, on the other hand, you need to perform the same type of formatting for multiple view models then it makes more sense to create a converter function. A converter function is a function which you can apply whenever you are using the data-win-bind attribute. Imagine, for example, that you want to create a general function for displaying dates. You always want to display dates using a short format such as 12/25/1988. The following JavaScript file – named converters.js – contains a shortDate() converter: (function (WinJS) { var shortDate = WinJS.Binding.converter(function (date) { return date.getMonth() + 1 + "/" + date.getDate() + "/" + date.getFullYear(); }); // Export shortDate WinJS.Namespace.define("MyApp.Converters", { shortDate: shortDate }); })(WinJS); The file above uses the Module Pattern, a pattern which is used through the WinJS library. To learn more about the Module Pattern, see my blog entry on namespaces and modules: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-namespaces-and-modules.aspx The file contains the definition for a converter function named shortDate(). This function converts a JavaScript date object into a short date string such as 12/1/1988. The converter function is created with the help of the WinJS.Binding.converter() method. This method takes a normal function and converts it into a converter function. Finally, the shortDate() converter is added to the MyApp.Converters namespace. You can call the shortDate() function by calling MyApp.Converters.shortDate(). The default.js file contains the customer object that we want to bind. Notice that the customer object has a firstName, lastName, and birthday property. We will use our new shortDate() converter when displaying the customer birthday property: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", birthday: new Date("12/1/1988") }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); We actually use our shortDate converter in the HTML document. The following HTML document displays all of the customer properties: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/converters.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> <div class="field"> Birthday: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> </div> </body> </html> Notice the data-win-bind attribute used to display the birthday property. It looks like this: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> The shortDate converter is applied to the birthday property when the birthday property is bound to the SPAN element’s innerText property. Using data-win-bindsource Normally, you pass the view model (the data context) which you want to use with the data-win-bind attributes in a page by passing the view model to the WinJS.Binding.processAll() method like this: WinJS.Binding.processAll(null, viewModel); As an alternative, you can specify the view model declaratively in your markup by using the data-win-datasource attribute. For example, the following default.js script exposes a view model with the fully-qualified name of MyWinWebApp.viewModel: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Create view model var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone" }, product: { name: "Bowling Ball", price: 12.99 } }; // Export view model to be seen by universe WinJS.Namespace.define("MyWinWebApp", { viewModel: viewModel }); // Process data-win-bind attributes WinJS.Binding.processAll(); } }; app.start(); })(); In the code above, a view model which represents a customer and a product is exposed as MyWinWebApp.viewModel. The following HTML page illustrates how you can use the data-win-bindsource attribute to bind to this view model: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div data-win-bindsource="MyWinWebApp.viewModel.customer"> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </div> <h1>Product</h1> <div data-win-bindsource="MyWinWebApp.viewModel.product"> <div class="field"> Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> The data-win-bindsource attribute is used twice in the page above: it is used with the DIV element which contains the customer details and it is used with the DIV element which contains the product details. If an element has a data-win-bindsource attribute then all of the child elements of that element are affected. The data-win-bind attributes of all of the child elements are bound to the data source represented by the data-win-bindsource attribute. Summary The focus of this blog entry was data binding using the WinJS library. You learned how to use the data-win-bind attribute to bind the properties of an HTML element to a view model. We also discussed several advanced features of data binding. We examined how to create calculated properties by including a property with a getter in your view model. We also discussed how you can create a converter function to format the value of a view model property when binding the property. Finally, you learned how to use the data-win-bindsource attribute to specify a view model declaratively.

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • SQL SERVER – Disabled Index and Update Statistics

    - by pinaldave
    When we try to update the statistics, it throws an error as if the clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. Have you ever come across the situation where a conversation never gets over and it continues even though original point of discussion has passed. I am facing the same situation in the case of Disabled Index. Here is the link to original conversations. SQL SERVER – Disable Clustered Index and Data Insert – Reader had a issue here with Disabled Index SQL SERVER – Understanding ALTER INDEX ALL REBUILD with Disabled Clustered Index – Reader asked the effect of Rebuilding Indexes The same reader asked me today – “I understood what the disabled indexes do; what is their effect on statistics. Is it true that even though indexes are disabled, they continue updating the statistics?“ The answer is very interesting: If you have disabled clustered index, you will be not able to update the statistics at all for any index. If you have enabled clustered index and disabled non clustered index when you update the statistics of the table, it automatically updates the statistics of the ALL (disabled and enabled – both) the indexes on the table. If you are not satisfied with the answer, let us go over a simple example. I have written necessary comments in the code itself to have a clear idea. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Now let us update the statistics of the table and check the statistics update date. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO Now let us disable the indexes and check if they are disabled using sys.indexes. -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Let us try to update the statistics of the table. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ When we try to update the statistics it throws an error as it clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO We can clearly see that even though the nonclustered index is disabled it is also updated. If you do not need a nonclustered index, I suggest you to drop it as keeping them disabled is an overhead on your system. This is because every time the statistics are updated for system all the statistics for disabled indexesare also updated. -- Clean up DROP TABLE [TableName] GO The complete script is given below for easy reference. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Clean up DROP TABLE [TableName] GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • SQL SERVER – Find Most Active Database in SQL Server – DMV dm_io_virtual_file_stats

    - by pinaldave
    Few days ago, I wrote about SQL SERVER – Find Current Location of Data and Log File of All the Database. There was very interesting conversation in comments by blog readers. Blog reader and SQL Expert Sreedhar has very interesting DMV presented which lists the most active database in SQL Server. For quick reference he has included the size of the disk in KB, MB and GB as well. SELECT DB_NAME(mf.database_id) AS databaseName, name AS File_LogicalName, CASE WHEN type_desc = 'LOG' THEN 'Log File' WHEN type_desc = 'ROWS' THEN 'Data File' ELSE type_desc END AS File_type_desc ,mf.physical_name ,num_of_reads ,num_of_bytes_read ,io_stall_read_ms ,num_of_writes ,num_of_bytes_written ,io_stall_write_ms ,io_stall ,size_on_disk_bytes ,size_on_disk_bytes/ 1024 AS size_on_disk_KB ,size_on_disk_bytes/ 1024 / 1024 AS size_on_disk_MB ,size_on_disk_bytes/ 1024 / 1024 / 1024 AS size_on_disk_GB FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs JOIN sys.master_files AS mf ON mf.database_id = divfs.database_id AND mf.FILE_ID = divfs.FILE_ID ORDER BY num_of_Reads DESC If you like to read and practice with DMVs, I suggest to read the blog of my very good friend Glenn Berry. He is one DMV expert. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to add event receiver to SharePoint2010 content type programmatically

    - by ybbest
    Today , I’d like to show how to add event receiver to How to add event receiver to SharePoint2010 content type programmatically. 1. Create empty SharePoint Project and add a class called ItemContentTypeEventReceiver and make it inherit from SPItemEventReceiver and implement your logic as below public class ItemContentTypeEventReceiver : SPItemEventReceiver { private bool eventFiringEnabledStatus; public override void ItemAdded(SPItemEventProperties properties) { base.ItemAdded(properties); UpdateTitle(properties); } private void UpdateTitle(SPItemEventProperties properties) { SPListItem addedItem = properties.ListItem; string enteredTitle = addedItem["Title"] as string; addedItem["Title"] = enteredTitle + " Updated"; DisableItemEventsScope(); addedItem.Update(); EnableItemEventsScope(); } public override void ItemUpdated(SPItemEventProperties properties) { base.ItemUpdated(properties); UpdateTitle(properties); } private void DisableItemEventsScope() { eventFiringEnabledStatus = EventFiringEnabled; EventFiringEnabled = false; } private void EnableItemEventsScope() { eventFiringEnabledStatus = EventFiringEnabled; EventFiringEnabled = true; } } 2.Create a Site or Web(depending or your requirements) scoped feature and implement your feature event handler as below: public override void FeatureActivated(SPFeatureReceiverProperties properties) { SPWeb web = GetFeatureWeb(properties); //http://karinebosch.wordpress.com/walkthroughs/event-receivers-theory/ string assemblyName =  System.Reflection.Assembly.GetExecutingAssembly().FullName; const string className = "YBBEST.AddEventReceiverToContentType.ItemContentTypeEventReceiver"; SPContentType contentType= web.ContentTypes["Item"]; AddEventReceiverToContentType(className, contentType, assemblyName, SPEventReceiverType.ItemAdded, SPEventReceiverSynchronization.Asynchronous); AddEventReceiverToContentType(className, contentType, assemblyName, SPEventReceiverType.ItemUpdated, SPEventReceiverSynchronization.Asynchronous); contentType.Update(); } protected static void AddEventReceiverToContentType(string className, SPContentType contentType, string assemblyName, SPEventReceiverType eventReceiverType, SPEventReceiverSynchronization eventReceiverSynchronization) { if (className == null) throw new ArgumentNullException("className"); if (contentType == null) throw new ArgumentNullException("contentType"); if (assemblyName == null) throw new ArgumentNullException("assemblyName"); SPEventReceiverDefinition eventReceiver = contentType.EventReceivers.Add(); eventReceiver.Synchronization = eventReceiverSynchronization; eventReceiver.Type = eventReceiverType; eventReceiver.Assembly = assemblyName; eventReceiver.Class = className; eventReceiver.Update(); } 3.Deploy your solution and now you have a event receiver that attached to the Item contentType. You can download the complete source code here.You can also check how to add event receiver to a list using SharePoint event receiver item in Visual Studio2010 in my previous blog.

    Read the article

  • Handy ASP.NET MVC 2 Extension Methods &ndash; Where am I?

    - by Bobby Diaz
    Have you ever needed to detect what part of the application is currently being viewed?  This might be a bigger issue if you write a lot of shared/partial views or custom display or editor templates.  Another scenario, which is the one I encountered when I first started down this path, is when you have some type of menu and you’d like to be able to determine which item represents the current page so you can highlight it in some way.  A simple example is the menu that is created as part of the default ASP.NET MVC 2 Application template.   <div id="menucontainer">       <ul id="menu">         <li><%= Html.ActionLink("Home", "Index", "Home") %></li>         <li><%= Html.ActionLink("About", "About", "Home") %></li>     </ul>   </div>   The part that got me at first, however, was the following entry in the default style sheet (Site.css):   ul#menu li.selected a {     background-color: #fff;     color: #000; }   I assumed that the .selected class would automatically get applied to the active menu item.  After trying a few different things, including the MvcContrib MenuBuilder, I decided to write my own extension methods so I would have more control over the output.  First, I needed a way to determine what view the user has navigated to based on the requested URL and route configuration.  Now, I am sure there are many ways to do this, but this is what I came up with:   public static class RequestExtensions {     public static bool IsCurrentRoute(this RequestContext context, String areaName,         String controllerName, params String[] actionNames)     {         var routeData = context.RouteData;         var routeArea = routeData.DataTokens["area"] as String;         var current = false;           if ( ((String.IsNullOrEmpty(routeArea) && String.IsNullOrEmpty(areaName)) ||               (routeArea == areaName)) &&              ((String.IsNullOrEmpty(controllerName)) ||               (routeData.GetRequiredString("controller") == controllerName)) &&              ((actionNames == null) ||                actionNames.Contains(routeData.GetRequiredString("action"))) )         {             current = true;         }           return current;     }       // additional overloads omitted... }   With that in place, I was able to write several UrlHelper methods that check if the supplied values map to the current view.   public static class UrlExtensions {     public static bool IsCurrent(this UrlHelper urlHelper, String areaName,         String controllerName, params String[] actionNames)     {         return urlHelper.RequestContext.IsCurrentRoute(areaName, controllerName, actionNames);     }       public static string Selected(this UrlHelper urlHelper, String areaName,         String controllerName, params String[] actionNames)     {         return urlHelper.IsCurrent(areaName, controllerName, actionNames)             ? "selected" : String.Empty;     }       // additional overloads omitted... }   Now I can re-work the original menu to utilize these new methods.  Note: be sure to import the proper namespace so the extension methods become available inside your views!   <div id="menucontainer">       <ul id="menu">         <li class="<%= Url.Selected(null, "Home", "Index") %>">             <%= Html.ActionLink("Home", "Index", "Home")%></li>           <li class="<%= Url.Selected(null, "Home", "About") %>">             <%= Html.ActionLink("About", "About", "Home")%></li>     </ul>   </div>   If we take it one step further, we can clean up the markup even more.  Check out the Html.ActionMenuItem() extension method and the refined menu:   public static class HtmlExtensions {     public static MvcHtmlString ActionMenuItem(this HtmlHelper htmlHelper, String linkText,         String actionName, String controllerName)     {         var html = new StringBuilder("<li");           if ( htmlHelper.ViewContext.RequestContext                 .IsCurrentRoute(null, controllerName, actionName) )         {             html.Append(" class=\"selected\"");         }           html.Append(">")             .Append(htmlHelper.ActionLink(linkText, actionName, controllerName))             .Append("</li>");           return MvcHtmlString.Create(html.ToString());     }       // additional overloads omitted... }   <div id="menucontainer">       <ul id="menu">         <%= Html.ActionMenuItem("Home", "Index", "Home") %>         <%= Html.ActionMenuItem("About", "About", "Home") %>     </ul>   </div>   Which generates the following HTML:   <div id="menucontainer">       <ul id="menu">         <li class="selected"><a href="/">Home</a></li>         <li><a href="/Home/About">About</a></li>     </ul>   </div>     I have created a codepaste of these extension methods if you are interested in using them in your own projects.  Enjoy!

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Async CTP (C# 5): How to make WCF work with Async CTP

    - by javarg
    If you have recently downloaded the new Async CTP you will notice that WCF uses Async Pattern and Event based Async Pattern in order to expose asynchronous operations. In order to make your service compatible with the new Async/Await Pattern try using an extension method similar to the following: WCF Async/Await Method public static class ServiceExtensions {     public static Task<DateTime> GetDateTimeTaskAsync(this Service1Client client)     {         return Task.Factory.FromAsync<DateTime>(             client.BeginGetDateTime(null, null),             ar => client.EndGetDateTime(ar));     } } The previous code snippet adds an extension method to the GetDateTime method of the Service1Client WCF proxy. Then used it like this (remember to add the extension method’s namespace into scope in order to use it): Code Snippet var client = new Service1Client(); var dt = await client.GetDateTimeTaskAsync(); Replace the proxy’s type and operation name for the one you want to await.

    Read the article

  • How to read/write cookies in asp.net

    - by SAMIR BHOGAYTA
    Writing Cookies Response.Cookies["userName"].Value = "patrick"; Response.Cookies["userName"].Expires = DateTime.Now.AddDays(1); HttpCookie aCookie = new HttpCookie("lastVisit"); aCookie.Value = DateTime.Now.ToString(); aCookie.Expires = DateTime.Now.AddDays(1); Response.Cookies.Add(aCookie); Reading Cookies: if(Request.Cookies["userName"] != null) Label1.Text = Server.HtmlEncode(Request.Cookies["userName"].Value); if(Request.Cookies["userName"] != null) { HttpCookie aCookie = Request.Cookies["userName"]; Label1.Text = Server.HtmlEncode(aCookie.Value); } Below link will give you full detailed information about cookies http://msdn.microsoft.com/en-us/library/ms178194.aspx

    Read the article

  • Invariant code contracts – using class-wide contracts

    - by DigiMortal
    It is possible to define invariant code contracts for classes. Invariant contracts should always hold true whatever member of class is called. In this posting I will show you how to use invariant code contracts so you understand how they work and how they should be tested. This is my randomizer class I am using to demonstrate code contracts. I added one method for invariant code contracts. Currently there is one contract that makes sure that random number generator is not null. public class Randomizer {     private IRandomGenerator _generator;       private Randomizer() { }       public Randomizer(IRandomGenerator generator)     {         _generator = generator;     }       public int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return _generator.Next(min, max);     }       [ContractInvariantMethod]     private void ObjectInvariant()     {         Contract.Invariant(_generator != null);     } } Invariant code contracts are define in methods that have ContractInvariantMethod attribute. Some notes: It is good idea to define invariant methods as private. Don’t call invariant methods from your code because code contracts system does not allow it. Invariant methods are defined only as place where you can keep invariant contracts. Invariant methods are called only when call to some class member is made! The last note means that having invariant method and creating Randomizer object with null as argument does not automatically generate exception. We have to call at least one method from Randomizer class. Here is the test for generator. You can find more about contracted code testing from my posting Code Contracts: Unit testing contracted code. There is also explained why the exception handling in test is like it is. [TestMethod] [ExpectedException(typeof(Exception))] public void Should_fail_if_generator_is_null() {     try     {         var randomizer = new Randomizer(null);         randomizer.GetRandomFromRangeContracted(1, 4);     }     catch (Exception ex)     {         throw new Exception(ex.Message, ex);     } } Try out this code – with unit tests or with test application to see that invariant contracts are checked as soon as you call some member of Randomizer class.

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • RIDC Accelerator for Portal

    - by Stefan Krantz
    What is RIDC?Remote IntraDoc Client is a Java enabled API that leverages simple transportation protocols like Socket, HTTP and JAX/WS to execute content service operations in WebCenter Content Server. Each operation by design in the Content Server will execute stateless and return a complete result of the request. Each request object simply specifies the in a Map format (key and value pairs) what service to call and what parameters settings to apply. The result responded with will be built on the same Map format (key and value pairs). The possibilities with RIDC is endless since you can consume any available service (even custom made ones), RIDC can be executed from any Java SE application that has any WebCenter Content Services needs. WebCenter Portal and the example Accelerator RIDC adapter frameworkWebCenter Portal currently integrates and leverages WebCenter Content Services to enable available use cases in the portal today, like Content Presenter and Doc Lib. However the current use cases only covers few of the scenarios that the Content Server has to offer, in addition to the existing use cases it is not rare that the customer requirements requires additional steps and functionality that is provided by WebCenter Content but not part of the use cases from the WebCenter Portal.The good news to this is RIDC, the second good news is that WebCenter Portal already leverages the RIDC and has a connection management framework in place. The million dollar question here is how can I leverage this infrastructure for my custom use cases. Oracle A-Team has during its interactions produced a accelerator adapter framework that will reuse and leverage the existing connections provisioned in the webcenter portal application (works for WebCenter Spaces as well), as well as a very comprehensive design patter to minimize the work involved when exposing functionality. Let me introduce the RIDCCommon framework for accelerating WebCenter Content consumption from WebCenter Portal including Spaces. How do I get started?Through a few easy steps you will be on your way, Extract the zip file RIDCCommon.zip to the WebCenter Portal Application file structure (PortalApp) Open you Portal Application in JDeveloper (PS4/PS5) select to open the project in your application - this will add the project as a member of the application Update the Portal project dependencies to include the new RIDCCommon project Make sure that you WebCenter Content Server connection is marked as primary (a checkbox at the top of the connection properties form) You should by this stage have a similar structure in your JDeveloper Application Project Portal Project PortalWebAssets Project RIDCCommon Since the API is coming with some example operations that has already been exposed as DataControl actions, if you open Data Controls accordion you should see following: How do I implement my own operation? Create a new Java Class in for example com.oracle.ateam.portal.ridc.operation call it (GetDocInfoOperation) Extend the abstract class com.oracle.ateam.portal.ridc.operation.RIDCAbstractOperation and implement the interface com.oracle.ateam.portal.ridc.operation.IRIDCOperation The only method you actually are required to implement is execute(RIDCManager, IdcClient, IdcContext) The best practice to set object references for the operation is through the Constructor, example below public GetDocInfoOperation(String dDocName)By leveraging the constructor you can easily force the implementing class to pass right information, you can also overload the Constructor with more or less parameters as required Implement the execute method, the work you supposed to execute here is creating a new request binder and retrieve a response binder with the information in the request binder.In this case the dDocName for which we want the DocInfo Secondly you have to process the response binder by extracting the information you need from the request and restore this information in a simple POJO Java BeanIn the example below we do this in private void processResult(DataBinder responseData) - the new SearchDataObject is a Member of the GetDocInfoOperation so we can return this from a access method. Since the RIDCCommon API leverage template pattern for the operations you are now required to add a method that will enable access to the result after the execution of the operationIn the example below we added the method public SearchDataObject getDataObject() - this method returns the pre processed SearchDataObject from the execute method  This is it, as you can see on the code below you do not need more than 32 lines of very simple code 1: public class GetDocInfoOperation extends RIDCAbstractOperation implements IRIDCOperation { 2: private static final String DOC_INFO_BY_NAME = "DOC_INFO_BY_NAME"; 3: private String dDocName = null; 4: private SearchDataObject sdo = null; 5: 6: public GetDocInfoOperation(String dDocName) { 7: super(); 8: this.dDocName = dDocName; 9: } 10:   11: public boolean execute(RIDCManager manager, IdcClient client, 12: IdcContext userContext) throws Exception { 13: DataBinder dataBinder = createNewRequestBinder(DOC_INFO_BY_NAME); 14: dataBinder.putLocal(DocumentAttributeDef.NAME.getName(), dDocName); 15: 16: DataBinder responseData = getResponseBinder(dataBinder); 17: processResult(responseData); 18: return true; 19: } 20: 21: private void processResult(DataBinder responseData) { 22: DataResultSet rs = responseData.getResultSet("DOC_INFO"); 23: for(DataObject dobj : rs.getRows()) { 24: this.sdo = new SearchDataObject(dobj); 25: } 26: super.setMessage(responseData.getLocal(ATTR_MESSAGE)); 27: } 28: 29: public SearchDataObject getDataObject() { 30: return this.sdo; 31: } 32: } How do I execute my operation? In the previous section we described how to create a operation, so by now you should be ready to execute the operation Step one either add a method to the class  com.oracle.ateam.portal.datacontrol.ContentServicesDC or a class of your own choiceRemember the RIDCManager is a very light object and can be created where needed Create a method signature look like this public SearchDataObject getDocInfo(String dDocName) throws Exception In the method body - create a new instance of GetDocInfoOperation and meet the constructor requirements by passing the dDocNameGetDocInfoOperation docInfo = new GetDocInfoOperation(dDocName) Execute the operation via the RIDCManager instance rMgr.executeOperation(docInfo) Return the result by accessing it from the executed operationreturn docInfo.getDataObject() 1: private RIDCManager rMgr = null; 2: private String lastOperationMessage = null; 3:   4: public ContentServicesDC() { 5: super(); 6: this.rMgr = new RIDCManager(); 7: } 8: .... 9: public SearchDataObject getDocInfo(String dDocName) throws Exception { 10: GetDocInfoOperation docInfo = new GetDocInfoOperation(dDocName); 11: boolean boolVal = rMgr.executeOperation(docInfo); 12: lastOperationMessage = docInfo.getMessage(); 13: return docInfo.getDataObject(); 14: }   Get the binaries! The enclosed code in a example that can be used as a reference on how to consume and leverage similar use cases, user has to guarantee appropriate quality and support.  Download link: https://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/RIDCCommon.zip RIDC API Referencehttp://docs.oracle.com/cd/E23943_01/apirefs.1111/e17274/toc.htm

    Read the article

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • MVC Automatic Menu

    - by Nuri Halperin
    An ex-colleague of mine used to call his SQL script generator "Super-Scriptmatic 2000". It impressed our then boss little, but was fun to say and use. We called every batch job and script "something 2000" from that day on. I'm tempted to call this one Menu-Matic 2000, except it's waaaay past 2000. Oh well. The problem: I'm developing a bunch of stuff in MVC. There's no PM to generate mounds of requirements and there's no Ux Architect to create wireframe. During development, things change. Specifically, actions get renamed, moved from controller x to y etc. Well, as the site grows, it becomes a major pain to keep a static menu up to date, because the links change. The HtmlHelper doesn't live up to it's name and provides little help. How do I keep this growing list of pesky little forgotten actions reigned in? The general plan is: Decorate every action you want as a menu item with a custom attribute Reflect out all menu items into a structure at load time Render the menu using as CSS  friendly <ul><li> HTML. The MvcMenuItemAttribute decorates an action, designating it to be included as a menu item: [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)] public class MvcMenuItemAttribute : Attribute {   public string MenuText { get; set; }   public int Order { get; set; }   public string ParentLink { get; set; }   internal string Controller { get; set; }   internal string Action { get; set; }     #region ctor   public MvcMenuItemAttribute(string menuText) : this(menuText, 0) { } public MvcMenuItemAttribute(string menuText, int order) { MenuText = menuText; Order = order; }       internal string Link { get { return string.Format("/{0}/{1}", Controller, this.Action); } }   internal MvcMenuItemAttribute ParentItem { get; set; } #endregion } The MenuText allows overriding the text displayed on the menu. The Order allows the items to be ordered. The ParentLink allows you to make this item a child of another menu item. An example action could then be decorated thusly: [MvcMenuItem("Tracks", Order = 20, ParentLink = "/Session/Index")] . All pretty straightforward methinks. The challenge with menu hierarchy becomes fairly apparent when you try to render a menu and highlight the "current" item or render a breadcrumb control. Both encounter an  ambiguity if you allow a data source to have more than one menu item with the same URL link. The issue is that there is no great way to tell which link a person click. Using referring URL will fail if a user bookmarked the page. Using some extra query string to disambiguate duplicate URLs essentially changes the links, and also ads a chance of collision with other query parameters. Besides, that smells. The stock ASP.Net sitemap provider simply disallows duplicate URLS. I decided not to, and simply pick the first one encountered as the "current". Although it doesn't solve the issue completely – one might say they wanted the second of the 2 links to be "current"- it allows one to include a link twice (home->deals and products->deals etc), and the logic of deciding "current" is easy enough to explain to the customer. Now that we got that out of the way, let's build the menu data structure: public static List<MvcMenuItemAttribute> ListMenuItems(Assembly assembly) { var result = new List<MvcMenuItemAttribute>(); foreach (var type in assembly.GetTypes()) { if (!type.IsSubclassOf(typeof(Controller))) { continue; } foreach (var method in type.GetMethods()) { var items = method.GetCustomAttributes(typeof(MvcMenuItemAttribute), false) as MvcMenuItemAttribute[]; if (items == null) { continue; } foreach (var item in items) { if (String.IsNullOrEmpty(item.Controller)) { item.Controller = type.Name.Substring(0, type.Name.Length - "Controller".Length); } if (String.IsNullOrEmpty(item.Action)) { item.Action = method.Name; } result.Add(item); } } } return result.OrderBy(i => i.Order).ToList(); } Using reflection, the ListMenuItems method takes an assembly (you will hand it your MVC web assembly) and generates a list of menu items. It digs up all the types, and for each one that is an MVC Controller, digs up the methods. Methods decorated with the MvcMenuItemAttribute get plucked and added to the output list. Again, pretty simple. To make the structure hierarchical, a LINQ expression matches up all the items to their parent: public static void RegisterMenuItems(List<MvcMenuItemAttribute> items) { _MenuItems = items; _MenuItems.ForEach(i => i.ParentItem = items.FirstOrDefault(p => String.Equals(p.Link, i.ParentLink, StringComparison.InvariantCultureIgnoreCase))); } The _MenuItems is simply an internal list to keep things around for later rendering. Finally, to package the menu building for easy consumption: public static void RegisterMenuItems(Type mvcApplicationType) { RegisterMenuItems(ListMenuItems(Assembly.GetAssembly(mvcApplicationType))); } To bring this puppy home, a call in Global.asax.cs Application_Start() registers the menu. Notice the ugliness of reflection is tucked away from the innocent developer. All they have to do is call the RegisterMenuItems() and pass in the type of the application. When you use the new project template, global.asax declares a class public class MvcApplication : HttpApplication and that is why the Register call passes in that type. protected void Application_Start() { AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes);   MvcMenu.RegisterMenuItems(typeof(MvcApplication)); }   What else is left to do? Oh, right, render! public static void ShowMenu(this TextWriter output) { var writer = new HtmlTextWriter(output);   renderHierarchy(writer, _MenuItems, null); }   public static void ShowBreadCrumb(this TextWriter output, Uri currentUri) { var writer = new HtmlTextWriter(output); string currentLink = "/" + currentUri.GetComponents(UriComponents.Path, UriFormat.Unescaped);   var menuItem = _MenuItems.FirstOrDefault(m => m.Link.Equals(currentLink, StringComparison.CurrentCultureIgnoreCase)); if (menuItem != null) { renderBreadCrumb(writer, _MenuItems, menuItem); } }   private static void renderBreadCrumb(HtmlTextWriter writer, List<MvcMenuItemAttribute> menuItems, MvcMenuItemAttribute current) { if (current == null) { return; } var parent = current.ParentItem; renderBreadCrumb(writer, menuItems, parent); writer.Write(current.MenuText); writer.Write(" / ");   }     static void renderHierarchy(HtmlTextWriter writer, List<MvcMenuItemAttribute> hierarchy, MvcMenuItemAttribute root) { if (!hierarchy.Any(i => i.ParentItem == root)) return;   writer.RenderBeginTag(HtmlTextWriterTag.Ul); foreach (var current in hierarchy.Where(element => element.ParentItem == root).OrderBy(i => i.Order)) { if (ItemFilter == null || ItemFilter(current)) {   writer.RenderBeginTag(HtmlTextWriterTag.Li); writer.AddAttribute(HtmlTextWriterAttribute.Href, current.Link); writer.AddAttribute(HtmlTextWriterAttribute.Alt, current.MenuText); writer.RenderBeginTag(HtmlTextWriterTag.A); writer.WriteEncodedText(current.MenuText); writer.RenderEndTag(); // link renderHierarchy(writer, hierarchy, current); writer.RenderEndTag(); // li } } writer.RenderEndTag(); // ul } The ShowMenu method renders the menu out to the provided TextWriter. In previous posts I've discussed my partiality to using well debugged, time test HtmlTextWriter to render HTML rather than writing out angled brackets by hand. In addition, writing out using the actual writer on the actual stream rather than generating string and byte intermediaries (yes, StringBuilder being no exception) disturbs me. To carry out the rendering of an hierarchical menu, the recursive renderHierarchy() is used. You may notice that an ItemFilter is called before rendering each item. I figured that at some point one might want to exclude certain items from the menu based on security role or context or something. That delegate is the hook for such future feature. To carry out rendering of a breadcrumb recursion is used again, this time simply to unwind the parent hierarchy from the leaf node, then rendering on the return from the recursion rather than as we go along deeper. I guess I was stuck in LISP that day.. recursion is fun though.   Now all that is left is some usage! Open your Site.Master or wherever you'd like to place a menu or breadcrumb, and plant one of these calls: <% MvcMenu.ShowBreadCrumb(this.Writer, Request.Url); %> to show a breadcrumb trail (notice lack of "=" after <% and the semicolon). <% MvcMenu.ShowMenu(Writer); %> to show the menu.   As mentioned before, the HTML output is nested <UL> <LI> tags, which should make it easy to style using abundant CSS to produce anything from static horizontal or vertical to dynamic drop-downs.   This has been quite a fun little implementation and I was pleased that the code size remained low. The main crux was figuring out how to pass parent information from the attribute to the hierarchy builder because attributes have restricted parameter types. Once I settled on that implementation, the rest falls into place quite easily.

    Read the article

  • Getting WCF Bindings and Behaviors from any config source

    - by cibrax
    The need of loading WCF bindings or behaviors from different sources such as files in a disk or databases is a common requirement when dealing with configuration either on the client side or the service side. The traditional way to accomplish this in WCF is loading everything from the standard configuration section (serviceModel section) or creating all the bindings and behaviors by hand in code. However, there is a solution in the middle that becomes handy when more flexibility is needed. This solution involves getting the configuration from any place, and use that configuration to automatically configure any existing binding or behavior instance created with code.  In order to configure a binding instance (System.ServiceModel.Channels.Binding) that you later inject in any endpoint on the client channel or the service host, you first need to get a binding configuration section from any configuration file (you can generate a temp file on the fly if you are using any other source for storing the configuration).  private BindingsSection GetBindingsSection(string path) { System.Configuration.Configuration config = System.Configuration.ConfigurationManager.OpenMappedExeConfiguration( new System.Configuration.ExeConfigurationFileMap() { ExeConfigFilename = path }, System.Configuration.ConfigurationUserLevel.None); var serviceModel = ServiceModelSectionGroup.GetSectionGroup(config); return serviceModel.Bindings; }   The BindingsSection contains a list of all the configured bindings in the serviceModel configuration section, so you can iterate through all the configured binding that get the one you need (You don’t need to have a complete serviceModel section, a section with the bindings only works).  public Binding ResolveBinding(string name) { BindingsSection section = GetBindingsSection(path); foreach (var bindingCollection in section.BindingCollections) { if (bindingCollection.ConfiguredBindings.Count > 0 && bindingCollection.ConfiguredBindings[0].Name == name) { var bindingElement = bindingCollection.ConfiguredBindings[0]; var binding = (Binding)Activator.CreateInstance(bindingCollection.BindingType); binding.Name = bindingElement.Name; bindingElement.ApplyConfiguration(binding); return binding; } } return null; }   The code above does just that, and also instantiates and configures the Binding object (System.ServiceModel.Channels.Binding) you are looking for. As you can see, the binding configuration element contains a method “ApplyConfiguration” that receives the binding instance that needs to be configured. A similar thing can be done for instance with the “Endpoint” behaviors. You first get the BehaviorsSection, and then, the behavior you want to use.  private BehaviorsSection GetBehaviorsSection(string path) { System.Configuration.Configuration config = System.Configuration.ConfigurationManager.OpenMappedExeConfiguration( new System.Configuration.ExeConfigurationFileMap() { ExeConfigFilename = path }, System.Configuration.ConfigurationUserLevel.None); var serviceModel = ServiceModelSectionGroup.GetSectionGroup(config); return serviceModel.Behaviors; }public List<IEndpointBehavior> ResolveEndpointBehavior(string name) { BehaviorsSection section = GetBehaviorsSection(path); List<IEndpointBehavior> endpointBehaviors = new List<IEndpointBehavior>(); if (section.EndpointBehaviors.Count > 0 && section.EndpointBehaviors[0].Name == name) { var behaviorCollectionElement = section.EndpointBehaviors[0]; foreach (BehaviorExtensionElement behaviorExtension in behaviorCollectionElement) { object extension = behaviorExtension.GetType().InvokeMember("CreateBehavior", BindingFlags.InvokeMethod | BindingFlags.NonPublic | BindingFlags.Instance, null, behaviorExtension, null); endpointBehaviors.Add((IEndpointBehavior)extension); } return endpointBehaviors; } return null; }   In this case, the code for creating the behavior instance is more tricky. First of all, a behavior in the configuration section actually represents a set of “IEndpoint” behaviors, and the behavior element you get from the configuration does not have any public method to configure an existing behavior instance. This last one only contains a protected method “CreateBehavior” that you can use for that purpose. Once you get this code implemented, a client channel can be easily configured as follows  var binding = resolver.ResolveBinding("MyBinding"); var behaviors = resolver.ResolveEndpointBehavior("MyBehavior"); SampleServiceClient client = new SampleServiceClient(binding, new EndpointAddress(new Uri("http://localhost:13749/SampleService.svc"), new DnsEndpointIdentity("localhost"))); foreach (var behavior in behaviors) { if(client.Endpoint.Behaviors.Contains(behavior.GetType())) { client.Endpoint.Behaviors.Remove(behavior.GetType()); } client.Endpoint.Behaviors.Add(behavior); }   The code above assumes that a configuration file (in any place) with a binding “MyBinding” and a behavior “MyBehavior” exists. That file can look like this,  <system.serviceModel> <bindings> <basicHttpBinding> <binding name="MyBinding"> <security mode="Transport"></security> </binding> </basicHttpBinding> </bindings> <behaviors> <endpointBehaviors> <behavior name="MyBehavior"> <clientCredentials> <windows/> </clientCredentials> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel>   The same thing can be done of course in the service host if you want to manually configure the bindings and behaviors.  

    Read the article

  • Easy way to update models in your ASP.NET MVC business layer

    - by rajbk
    Brad Wilson just mentioned there is a static class ModelCopier that has a static method CopyModel(object from, object to) in the MVC Futures library. It uses reflection to match properties with the same name and compatible types. In short, instead of manually copying over properties as shown here: public void Save(EmployeeViewModel employeeViewModel){ var employee = (from emp in dataContext.Employees where emp.EmployeeID == employeeViewModel.EmployeeID select emp).SingleOrDefault(); if (employee != null) { employee.Address = employeeViewModel.Address; employee.Salary = employeeViewModel.Salary; employee.Title = employeeViewModel.Title; } dataContext.SubmitChanges();} you can use the method like so: public void Save(EmployeeViewModel employeeViewModel){ var employee = (from emp in dataContext.Employees where emp.EmployeeID == employeeViewModel.EmployeeID select emp).SingleOrDefault(); if (employee != null) { ModelCopier.CopyModel(employeeViewModel, employee); } dataContext.SubmitChanges();} Beautiful, isn’t it?

    Read the article

  • Skinny controller in ASP.NET MVC 4

    - by thangchung
    Rails community are always inspire a lot of best ideas. I really love this community by the time. One of these is "Fat models and skinny controllers". I have spent a lot of time on ASP.NET MVC, and really I did some miss-takes, because I made the controller so fat. That make controller is really dirty and very hard to maintain in the future. It is violate seriously SRP principle and KISS as well. But how can we achieve that in ASP.NET MVC? That question is really clear after I read "Manning ASP.NET MVC 4 in Action". It is simple that we can separate it into ActionResult, and try to implementing logic and persistence data inside this. In last 2 years, I have read this from Jimmy Bogard blog, but in that time I never had a consideration about it. That's enough for talking now. I just published a sample on ASP.NET MVC 4, implemented on Visual Studio 2012 RC at here. I used EF framework at here for implementing persistence layer, and also use 2 free templates from internet to make the UI for this sample. In this sample, I try to implementing the simple magazine website that managing all articles, categories and news. It is not finished at all in this time, but no problems, because I just show you about how can we make the controller skinny. And I wanna hear more about your ideas. The first thing, I am abstract the base ActionResult class like this:    public abstract class MyActionResult : ActionResult, IEnsureNotNull     {         public abstract void EnsureAllInjectInstanceNotNull();     }     public abstract class ActionResultBase<TController> : MyActionResult where TController : Controller     {         protected readonly Expression<Func<TController, ActionResult>> ViewNameExpression;         protected readonly IExConfigurationManager ConfigurationManager;         protected ActionResultBase (Expression<Func<TController, ActionResult>> expr)             : this(DependencyResolver.Current.GetService<IExConfigurationManager>(), expr)         {         }         protected ActionResultBase(             IExConfigurationManager configurationManager,             Expression<Func<TController, ActionResult>> expr)         {             Guard.ArgumentNotNull(expr, "ViewNameExpression");             Guard.ArgumentNotNull(configurationManager, "ConfigurationManager");             ViewNameExpression = expr;             ConfigurationManager = configurationManager;         }         protected ViewResult GetViewResult<TViewModel>(TViewModel viewModel)         {             var m = (MethodCallExpression)ViewNameExpression.Body;             if (m.Method.ReturnType != typeof(ActionResult))             {                 throw new ArgumentException("ControllerAction method '" + m.Method.Name + "' does not return type ActionResult");             }             var result = new ViewResult             {                 ViewName = m.Method.Name             };             result.ViewData.Model = viewModel;             return result;         }         public override void ExecuteResult(ControllerContext context)         {             EnsureAllInjectInstanceNotNull();         }     } I also have an interface for validation all inject objects. This interface make sure all inject objects that I inject using Autofac container are not null. The implementation of this as below public interface IEnsureNotNull     {         void EnsureAllInjectInstanceNotNull();     } Afterwards, I am just simple implementing the HomePageViewModelActionResult class like this public class HomePageViewModelActionResult<TController> : ActionResultBase<TController> where TController : Controller     {         #region variables & ctors         private readonly ICategoryRepository _categoryRepository;         private readonly IItemRepository _itemRepository;         private readonly int _numOfPage;         public HomePageViewModelActionResult(Expression<Func<TController, ActionResult>> viewNameExpression)             : this(viewNameExpression,                    DependencyResolver.Current.GetService<ICategoryRepository>(),                    DependencyResolver.Current.GetService<IItemRepository>())         {         }         public HomePageViewModelActionResult(             Expression<Func<TController, ActionResult>> viewNameExpression,             ICategoryRepository categoryRepository,             IItemRepository itemRepository)             : base(viewNameExpression)         {             _categoryRepository = categoryRepository;             _itemRepository = itemRepository;             _numOfPage = ConfigurationManager.GetAppConfigBy("NumOfPage").ToInteger();         }         #endregion         #region implementation         public override void ExecuteResult(ControllerContext context)         {             base.ExecuteResult(context);             var cats = _categoryRepository.GetCategories();             var mainViewModel = new HomePageViewModel();             var headerViewModel = new HeaderViewModel();             var footerViewModel = new FooterViewModel();             var mainPageViewModel = new MainPageViewModel();             headerViewModel.SiteTitle = "Magazine Website";             if (cats != null && cats.Any())             {                 headerViewModel.Categories = cats.ToList();                 footerViewModel.Categories = cats.ToList();             }             mainPageViewModel.LeftColumn = BindingDataForMainPageLeftColumnViewModel();             mainPageViewModel.RightColumn = BindingDataForMainPageRightColumnViewModel();             mainViewModel.Header = headerViewModel;             mainViewModel.DashBoard = new DashboardViewModel();             mainViewModel.Footer = footerViewModel;             mainViewModel.MainPage = mainPageViewModel;             GetViewResult(mainViewModel).ExecuteResult(context);         }         public override void EnsureAllInjectInstanceNotNull()         {             Guard.ArgumentNotNull(_categoryRepository, "CategoryRepository");             Guard.ArgumentNotNull(_itemRepository, "ItemRepository");             Guard.ArgumentMustMoreThanZero(_numOfPage, "NumOfPage");         }         #endregion         #region private functions         private MainPageRightColumnViewModel BindingDataForMainPageRightColumnViewModel()         {             var mainPageRightCol = new MainPageRightColumnViewModel();             mainPageRightCol.LatestNews = _itemRepository.GetNewestItem(_numOfPage).ToList();             mainPageRightCol.MostViews = _itemRepository.GetMostViews(_numOfPage).ToList();             return mainPageRightCol;         }         private MainPageLeftColumnViewModel BindingDataForMainPageLeftColumnViewModel()         {             var mainPageLeftCol = new MainPageLeftColumnViewModel();             var items = _itemRepository.GetNewestItem(_numOfPage);             if (items != null && items.Any())             {                 var firstItem = items.First();                 if (firstItem == null)                     throw new NoNullAllowedException("First Item".ToNotNullErrorMessage());                 if (firstItem.ItemContent == null)                     throw new NoNullAllowedException("First ItemContent".ToNotNullErrorMessage());                 mainPageLeftCol.FirstItem = firstItem;                 if (items.Count() > 1)                 {                     mainPageLeftCol.RemainItems = items.Where(x => x.ItemContent != null && x.Id != mainPageLeftCol.FirstItem.Id).ToList();                 }             }             return mainPageLeftCol;         }         #endregion     }  Final step, I get into HomeController and add some line of codes like this [Authorize]     public class HomeController : BaseController     {         [AllowAnonymous]         public ActionResult Index()         {             return new HomePageViewModelActionResult<HomeController>(x=>x.Index());         }         [AllowAnonymous]         public ActionResult Details(int id)         {             return new DetailsViewModelActionResult<HomeController>(x => x.Details(id), id);         }         [AllowAnonymous]         public ActionResult Category(int id)         {             return new CategoryViewModelActionResult<HomeController>(x => x.Category(id), id);         }     } As you see, the code in controller is really skinny, and all the logic I move to the custom ActionResult class. Some people said, it just move the code out of controller and put it to another class, so it is still hard to maintain. Look like it just move the complicate codes from one place to another place. But if you have a look and think it in details, you have to find out if you have code for processing all logic that related to HttpContext or something like this. You can do it on Controller, and try to delegating another logic  (such as processing business requirement, persistence data,...) to custom ActionResult class. Tell me more your thinking, I am really willing to hear all of its from you guys. All source codes can be find out at here. Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="http://weblogs.asp.net//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");

    Read the article

  • how to solve error processing /usr/lib/python2.7/dist-packages/pygst.pth:?

    - by ChitKo
    Error processing line 1 of /usr/lib/python2.7/dist-packages/pygst.pth: Traceback (most recent call last): File "/usr/lib/python2.7/site.py", line 161, in addpackage if not dircase in known_paths and os.path.exists(dir): File "/usr/lib/python2.7/genericpath.py", line 18, in exists os.stat(path) TypeError: must be encoded string without NULL bytes, not str Remainder of file ignored Error processing line 1 of /usr/lib/python2.7/dist-packages/pygtk.pth: Traceback (most recent call last): File "/usr/lib/python2.7/site.py", line 161, in addpackage if not dircase in known_paths and os.path.exists(dir): File "/usr/lib/python2.7/genericpath.py", line 18, in exists os.stat(path) TypeError: must be encoded string without NULL bytes, not str Remainder of file ignored Traceback (most recent call last): File "/usr/share/apport/apport-gtk", line 16, in <module> from gi.repository import GObject File "/usr/lib/python2.7/dist-packages/gi/importer.py", line 76, in load_module dynamic_module._load() File "/usr/lib/python2.7/dist-packages/gi/module.py", line 222, in _load version) File "/usr/lib/python2.7/dist-packages/gi/module.py", line 90, in __init__ repository.require(namespace, version) gi.RepositoryError: Failed to load typelib file '/usr/lib/girepository-1.0/GLib-2.0.typelib' for namespace 'GLib': Invalid magic header

    Read the article

  • TFS API-Process Template currently applied to the Team Project

    - by Tarun Arora
    Download Demo Solution - here In this blog post I’ll show you how to use the TFS API to get the name of the Process Template that is currently applied to the Team Project. You can also download the demo solution attached, I’ve tested this solution against TFS 2010 and TFS 2011.    1. Connecting to TFS Programmatically I have a blog post that shows you from where to download the VS 2010 SP1 SDK and how to connect to TFS programmatically. private TfsTeamProjectCollection _tfs; private string _selectedTeamProject;   TeamProjectPicker tfsPP = new TeamProjectPicker(TeamProjectPickerMode.SingleProject, false); tfsPP.ShowDialog(); this._tfs = tfsPP.SelectedTeamProjectCollection; this._selectedTeamProject = tfsPP.SelectedProjects[0].Name; 2. Programmatically get the Process Template details of the selected Team Project I’ll be making use of the VersionControlServer service to get the Team Project details and the ICommonStructureService to get the Project Properties. private ProjectProperty[] GetProcessTemplateDetailsForTheSelectedProject() { var vcs = _tfs.GetService<VersionControlServer>(); var ics = _tfs.GetService<ICommonStructureService>(); ProjectProperty[] ProjectProperties = null; var p = vcs.GetTeamProject(_selectedTeamProject); string ProjectName = string.Empty; string ProjectState = String.Empty; int templateId = 0; ProjectProperties = null; ics.GetProjectProperties(p.ArtifactUri.AbsoluteUri, out ProjectName, out ProjectState, out templateId, out ProjectProperties); return ProjectProperties; } 3. What’s the catch? The ProjectProperties will contain a property “Process Template” which as a value has the name of the process template. So, you will be able to use the below line of code to get the name of the process template. var processTemplateName = processTemplateDetails.Where(pt => pt.Name == "Process Template").Select(pt => pt.Value).FirstOrDefault();   However, if the process template does not contain the property “Process Template” then you will need to add it. So, the question becomes how do i add the Name property to the Process Template. Download the Process Template from the Process Template Manager on your local        Once you have downloaded the Process Template to your local machine, navigate to the Classification folder with in the template       From the classification folder open Classification.xml        Add a new property <property name=”Process Template” value=”MSF for CMMI Process Improvement v5.0” />           4. Putting it all together… using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using Microsoft.TeamFoundation.Client; using Microsoft.TeamFoundation.VersionControl.Client; using Microsoft.TeamFoundation.Server; using System.Diagnostics; using Microsoft.TeamFoundation.WorkItemTracking.Client; namespace TfsAPIDemoProcessTemplate { public partial class Form1 : Form { public Form1() { InitializeComponent(); } private TfsTeamProjectCollection _tfs; private string _selectedTeamProject; private void btnConnect_Click(object sender, EventArgs e) { TeamProjectPicker tfsPP = new TeamProjectPicker(TeamProjectPickerMode.SingleProject, false); tfsPP.ShowDialog(); this._tfs = tfsPP.SelectedTeamProjectCollection; this._selectedTeamProject = tfsPP.SelectedProjects[0].Name; var processTemplateDetails = GetProcessTemplateDetailsForTheSelectedProject(); listBox1.Items.Clear(); listBox1.Items.Add(String.Format("Team Project Selected => '{0}'", _selectedTeamProject)); listBox1.Items.Add(Environment.NewLine); var processTemplateName = processTemplateDetails.Where(pt => pt.Name == "Process Template") .Select(pt => pt.Value).FirstOrDefault(); if (!string.IsNullOrEmpty(processTemplateName)) { listBox1.Items.Add(Environment.NewLine); listBox1.Items.Add(String.Format("Process Template Name: {0}", processTemplateName)); } else { listBox1.Items.Add(String.Format("The Process Template does not have the 'Name' property set up")); listBox1.Items.Add(String.Format("***TIP: Download the Process Template and in Classification.xml add a new property Name, update the template then you will be able to see the Process Template Name***")); listBox1.Items.Add(String.Format(" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -")); } } private ProjectProperty[] GetProcessTemplateDetailsForTheSelectedProject() { var vcs = _tfs.GetService<VersionControlServer>(); var ics = _tfs.GetService<ICommonStructureService>(); ProjectProperty[] ProjectProperties = null; var p = vcs.GetTeamProject(_selectedTeamProject); string ProjectName = string.Empty; string ProjectState = String.Empty; int templateId = 0; ProjectProperties = null; ics.GetProjectProperties(p.ArtifactUri.AbsoluteUri, out ProjectName, out ProjectState, out templateId, out ProjectProperties); return ProjectProperties; } } } Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Have you come across a better way of doing this, please share your experience here. Questions/Feedback/Suggestions, etc please leave a comment. Thank You! Share this post : CodeProject

    Read the article

< Previous Page | 168 169 170 171 172 173 174 175 176 177 178 179  | Next Page >