Search Results

Search found 22986 results on 920 pages for 'allocation unit size'.

Page 175/920 | < Previous Page | 171 172 173 174 175 176 177 178 179 180 181 182  | Next Page >

  • JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes

    - by John-Brown.Evans
    JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c17_6{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c5_6{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_6{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_6{background-color:#ffffff} .c10_6{color:#1155cc;text-decoration:underline} .c1_6{text-align:center;direction:ltr} .c0_6{line-height:1.0;direction:ltr} .c16_6{color:#666666;font-size:12pt} .c18_6{color:inherit;text-decoration:inherit} .c8_6{background-color:#f3f3f3} .c2_6{direction:ltr} .c14_6{font-size:8pt} .c11_6{font-size:10pt} .c7_6{font-weight:bold} .c12_6{height:0pt} .c3_6{height:11pt} .c13_6{border-collapse:collapse} .c4_6{font-family:"Courier New"} .c9_6{font-style:italic} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue This example leads you through the creation of an Oracle database Advanced Queue and the related WebLogic server objects in order to use AQ JMS in connection with a SOA composite. If you have not already done so, I recommend you look at the previous posts in this series, as they include steps which this example builds upon. The following examples will demonstrate how to write and read from the queue from a SOA process. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we wrote and deployed BPEL composites, which enqueued and dequeued a simple XML payload. AQ JMS allows you to interoperate with database Advanced Queueing via JMS in WebLogic server and therefore take advantage of database features, while maintaining compliance with the JMS architecture. AQ JMS uses the WebLogic JMS Foreign Server framework. A full description of this functionality can be found in the following Oracle documentation Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server 11g Release 1 (10.3.6) Part Number E13738-06 7. Interoperating with Oracle AQ JMS http://docs.oracle.com/cd/E23943_01/web.1111/e13738/aq_jms.htm#CJACBCEJ For easier reference, this sample will use the same names for the objects as in the above document, except for the name of the database user, as it is possible that this user already exists in your database. We will create the following objects Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2. Create a Database User and Advanced Queue The following steps can be executed in the database client of your choice, e.g. JDeveloper or SQL Developer. The examples below use SQL*Plus. Log in to the database as a DBA user, for example SYSTEM or SYS. Create the AQJMSUSER user and grant privileges to enable the user to create AQ objects. Create Database User and Grant AQ Privileges sqlplus system/password as SYSDBA GRANT connect, resource TO aqjmsuser IDENTIFIED BY aqjmsuser; GRANT aq_user_role TO aqjmsuser; GRANT execute ON sys.dbms_aqadm TO aqjmsuser; GRANT execute ON sys.dbms_aq TO aqjmsuser; GRANT execute ON sys.dbms_aqin TO aqjmsuser; GRANT execute ON sys.dbms_aqjms TO aqjmsuser; Create the Queue Table and Advanced Queue and Start the AQ The following commands are executed as the aqjmsuser database user. Create the Queue Table connect aqjmsuser/aqjmsuser; BEGIN dbms_aqadm.create_queue_table ( queue_table = 'myQueueTable', queue_payload_type = 'sys.aq$_jms_text_message', multiple_consumers = false ); END; / Create the AQ BEGIN dbms_aqadm.create_queue ( queue_name = 'userQueue', queue_table = 'myQueueTable' ); END; / Start the AQ BEGIN dbms_aqadm.start_queue ( queue_name = 'userQueue'); END; / The above commands can be executed in a single PL/SQL block, but are shown as separate blocks in this example for ease of reference. You can verify the queue by executing the SQL command SELECT object_name, object_type FROM user_objects; which should display the following objects: OBJECT_NAME OBJECT_TYPE ------------------------------ ------------------- SYS_C0056513 INDEX SYS_LOB0000170822C00041$$ LOB SYS_LOB0000170822C00040$$ LOB SYS_LOB0000170822C00037$$ LOB AQ$_MYQUEUETABLE_T INDEX AQ$_MYQUEUETABLE_I INDEX AQ$_MYQUEUETABLE_E QUEUE AQ$_MYQUEUETABLE_F VIEW AQ$MYQUEUETABLE VIEW MYQUEUETABLE TABLE USERQUEUE QUEUE Similarly, you can view the objects in JDeveloper via a Database Connection to the AQJMSUSER. 3. Configure WebLogic Server and Add JMS Objects All these steps are executed from the WebLogic Server Administration Console. Log in as the webLogic user. Configure a WebLogic Data Source The data source is required for the database connection to the AQ created above. Navigate to domain > Services > Data Sources and press New then Generic Data Source. Use the values:Name: aqjmsuserDataSource JNDI Name: jdbc/aqjmsuserDataSource Database type: Oracle Database Driver: *Oracle’ Driver (Thin XA) for Instance connections; Versions:9.0.1 and later Connection Properties: Enter the connection information to the database containing the AQ created above and enter aqjmsuser for the User Name and Password. Press Test Configuration to verify the connection details and press Next. Target the data source to the soa server. The data source will be displayed in the list. It is a good idea to test the data source at this stage. Click on aqjmsuserDataSource, select Monitoring > Testing > soa_server1 and press Test Data Source. The result is displayed at the top of the page. Configure a JMS System Module The JMS system module is required to host the JMS foreign server for AQ resources. Navigate to Services > Messaging > JMS Modules and select New. Use the values: Name: AqJmsModule (Leave Descriptor File Name and Location in Domain empty.) Target: soa_server1 Click Finish. The other resources will be created in separate steps. The module will be displayed in the list.   Configure a JMS Foreign Server A foreign server is required in order to reference a 3rd-party JMS provider, in this case the database AQ, within a local WebLogic server JNDI tree. Navigate to Services > Messaging > JMS Modules and select (click on) AqJmsModule to configure it. Under Summary of Resources, select New then Foreign Server. Name: AqJmsForeignServer Targets: The foreign server is targeted automatically to soa_server1, based on the JMS module’s target. Press Finish to create the foreign server. The foreign server resource will be listed in the Summary of Resources for the AqJmsModule, but needs additional configuration steps. Click on AqJmsForeignServer and select Configuration > General to complete the configuration: JNDI Initial Context Factory: oracle.jms.AQjmsInitialContextFactory JNDI Connection URL: <empty> JNDI Properties Credential:<empty> Confirm JNDI Properties Credential: <empty> JNDI Properties: datasource=jdbc/aqjmsuserDataSource This is an important property. It is the JNDI name of the data source created above, which points to the AQ schema in the database and must be entered as a name=value pair, as in this example, e.g. datasource=jdbc/aqjmsuserDataSource, including the “datasource=” property name. Default Targeting Enabled: Leave this value checked. Press Save to save the configuration. At this point it is a good idea to verify that the data source was written correctly to the config file. In a terminal window, navigate to $MIDDLEWARE_HOME/user_projects/domains/soa_domain/config/jms  and open the file aqjmsmodule-jms.xml . The foreign server configuration should contain the datasource name-value pair, as follows:   <foreign-server name="AqJmsForeignServer">         <default-targeting-enabled>true</default-targeting-enabled>         <initial-context-factory>oracle.jms.AQjmsInitialContextFactory</initial-context-factory>         <jndi-property>           <key> datasource </key>           <value> jdbc/aqjmsuserDataSource </value>         </jndi-property>   </foreign-server> </weblogic-jms> Configure a JMS Foreign Server Connection Factory When creating the foreign server connection factory, you enter local and remote JNDI names. The name of the connection factory itself and the local JNDI name are arbitrary, but the remote JNDI name must match a specific format, depending on the type of queue or topic to be accessed in the database. This is very important and if the incorrect value is used, the connection to the queue will not be established and the error messages you get will not immediately reflect the cause of the error. The formats required (Remote JNDI names for AQ JMS Connection Factories) are described in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In this example, the remote JNDI name used is   XAQueueConnectionFactory  because it matches the AQ and data source created earlier, i.e. thin with AQ. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories then New.Name: AqJmsForeignServerConnectionFactory Local JNDI Name: AqJmsForeignServerConnectionFactory Note: this local JNDI name is the JNDI name which your client application, e.g. a later BPEL process, will use to access this connection factory. Remote JNDI Name: XAQueueConnectionFactory Press OK to save the configuration. Configure an AQ JMS Foreign Server Destination A foreign server destination maps the JNDI name on the foreign JNDI provider to the respective local JNDI name, allowing the foreign JNDI name to be accessed via the local server. As with the foreign server connection factory, the local JNDI name is arbitrary (but must be unique), but the remote JNDI name must conform to a specific format defined in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In our example, the remote JNDI name is Queues/USERQUEUE , because it references a queue (as opposed to a topic) with the name USERQUEUE. We will name the local JNDI name queue/USERQUEUE, which is a little confusing (note the missing “s” in “queue), but conforms better to the JNDI nomenclature in our SOA server and also allows us to differentiate between the local and remote names for demonstration purposes. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Destinations and select New.Name: AqJmsForeignDestination Local JNDI Name: queue/USERQUEUE Remote JNDI Name:Queues/USERQUEUE After saving the foreign destination configuration, this completes the JMS part of the configuration. We still need to configure the JMS adapter in order to be able to access the queue from a BPEL processt. 4. Create a JMS Adapter Connection Pool in Weblogic Server Create the Connection Pool Access to the AQ JMS queue from a BPEL or other SOA process in our example is done via a JMS adapter. To enable this, the JmsAdapter in WebLogic server needs to be configured to have a connection pool which points to the local connection factory JNDI name which was created earlier. Navigate to Deployments > Next and select (click on) the JmsAdapter. Select Configuration > Outbound Connection Pools and New. Check the radio button for oracle.tip.adapter.jms.IJmsConnectionFactory and press Next. JNDI Name: eis/aqjms/UserQueue Press Finish Expand oracle.tip.adapter.jms.IJmsConnectionFactory and click on eis/aqjms/UserQueue to configure it. The ConnectionFactoryLocation must point to the foreign server’s local connection factory name created earlier. In our example, this is AqJmsForeignServerConnectionFactory . As a reminder, this connection factory is located under JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories and the value needed here is under Local JNDI Name. Enter AqJmsForeignServerConnectionFactory  into the Property Value field for ConnectionFactoryLocation. You must then press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console.Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes. Redeploy the JmsAdapter Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button. On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the AQ JMS queue. You can verify that the JNDI name was created correctly, by navigating to Environment > Servers > soa_server1 and View JNDI Tree. Then scroll down in the JNDI Tree Structure to eis and select aqjms. This concludes the sample. In the following post, I will show you how to create a BPEL process which sends a message to this advanced queue via JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue

    - by John-Brown.Evans
    JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue .c21_2{vertical-align:top;width:487.3pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_2{vertical-align:top;width:487.3pt;border-style:solid;border-color:#ffffff;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c0_2{padding-left:0pt;direction:ltr;margin-left:36pt} .c20_2{list-style-type:circle;margin:0;padding:0} .c10_2{list-style-type:disc;margin:0;padding:0} .c6_2{background-color:#ffffff} .c17_2{padding-left:0pt;margin-left:72pt} .c3_2{line-height:1.0;direction:ltr} .c1_2{font-size:10pt;font-family:"Courier New"} .c16_2{color:#1155cc;text-decoration:underline} .c13_2{color:inherit;text-decoration:inherit} .c7_2{background-color:#ffff00} .c9_2{border-collapse:collapse} .c2_2{font-family:"Courier New"} .c18_2{font-size:18pt} .c5_2{font-weight:bold} .c19_2{color:#ff0000} .c12_2{background-color:#f3f3f3;border-style:solid;border-color:#000000;border-width:1pt;} .c14_2{font-size:24pt} .c8_2{direction:ltr;background-color:#ffffff} .c11_2{font-style:italic} .c4_2{height:11pt} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} This post is the second in a series of JMS articles which demonstrate how to use JMS queues in a SOA context. In the previous post JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g I showed you how to create a JMS queue and its dependent objects in WebLogic Server. In this article, we will use a sample program to write a message to that queue. Please review the previous post if you have not created those objects yet, as they will be required later in this example. The previous post also includes useful background information and links to the Oracle documentation for addional research. The following post in this series will show how to read the message from the queue again. 1. Source code The following java code will be used to write a message to the JMS queue. It is based on a sample program provided with the WebLogic Server installation. The sample is not installed by default, but needs to be installed manually using the WebLogic Server Custom Installation option, together with many, other useful samples. You can either copy-paste the following code into your editor, or install all the samples. The knowledge base article in My Oracle Support: How To Install WebLogic Server and JMS Samples in WLS 10.3.x (Doc ID 1499719.1) describes how to install the samples. QueueSend.java package examples.jms.queue; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Hashtable; import javax.jms.*; import javax.naming.Context; import javax.naming.InitialContext; import javax.naming.NamingException; /** This example shows how to establish a connection * and send messages to the JMS queue. The classes in this * package operate on the same JMS queue. Run the classes together to * witness messages being sent and received, and to browse the queue * for messages. The class is used to send messages to the queue. * * @author Copyright (c) 1999-2005 by BEA Systems, Inc. All Rights Reserved. */ public class QueueSend { // Defines the JNDI context factory. public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory"; // Defines the JMS context factory. public final static String JMS_FACTORY="jms/TestConnectionFactory"; // Defines the queue. public final static String QUEUE="jms/TestJMSQueue"; private QueueConnectionFactory qconFactory; private QueueConnection qcon; private QueueSession qsession; private QueueSender qsender; private Queue queue; private TextMessage msg; /** * Creates all the necessary objects for sending * messages to a JMS queue. * * @param ctx JNDI initial context * @param queueName name of queue * @exception NamingException if operation cannot be performed * @exception JMSException if JMS fails to initialize due to internal error */ public void init(Context ctx, String queueName) throws NamingException, JMSException { qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY); qcon = qconFactory.createQueueConnection(); qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); queue = (Queue) ctx.lookup(queueName); qsender = qsession.createSender(queue); msg = qsession.createTextMessage(); qcon.start(); } /** * Sends a message to a JMS queue. * * @param message message to be sent * @exception JMSException if JMS fails to send message due to internal error */ public void send(String message) throws JMSException { msg.setText(message); qsender.send(msg); } /** * Closes JMS objects. * @exception JMSException if JMS fails to close objects due to internal error */ public void close() throws JMSException { qsender.close(); qsession.close(); qcon.close(); } /** main() method. * * @param args WebLogic Server URL * @exception Exception if operation fails */ public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: java examples.jms.queue.QueueSend WebLogicURL"); return; } InitialContext ic = getInitialContext(args[0]); QueueSend qs = new QueueSend(); qs.init(ic, QUEUE); readAndSend(qs); qs.close(); } private static void readAndSend(QueueSend qs) throws IOException, JMSException { BufferedReader msgStream = new BufferedReader(new InputStreamReader(System.in)); String line=null; boolean quitNow = false; do { System.out.print("Enter message (\"quit\" to quit): \n"); line = msgStream.readLine(); if (line != null && line.trim().length() != 0) { qs.send(line); System.out.println("JMS Message Sent: "+line+"\n"); quitNow = line.equalsIgnoreCase("quit"); } } while (! quitNow); } private static InitialContext getInitialContext(String url) throws NamingException { Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY); env.put(Context.PROVIDER_URL, url); return new InitialContext(env); } } 2. How to Use This Class 2.1 From the file system on UNIX/Linux Log in to a machine with a WebLogic installation and create a directory to contain the source and code matching the package name, e.g. $HOME/examples/jms/queue. Copy the above QueueSend.java file to this directory. Set the CLASSPATH and environment to match the WebLogic server environment. Go to $MIDDLEWARE_HOME/user_projects/domains/base_domain/bin  and execute . ./setDomainEnv.sh Collect the following information required to run the script: The JNDI name of a JMS queue to use In the Weblogic server console > Services > Messaging > JMS Modules > (Module name, e.g. TestJMSModule) > (JMS queue name, e.g. TestJMSQueue)Select the queue and note its JNDI name, e.g. jms/TestJMSQueue The JNDI name of a connection factory to connect to the queue Follow the same path as above to get the connection factory for the above queue, e.g. TestConnectionFactory and its JNDI namee.g. jms/TestConnectionFactory The URL and port of the WebLogic server running the above queue Check the JMS server for the above queue and the managed server it is targeted to, for example soa_server1. Now find the port this managed server is listening on, by looking at its entry under Environment > Servers in the WLS console, e.g. 8001 The URL for the server to be given to the QueueSend program in this example will therefore be t3://host.domain:8001 e.g. t3://jbevans-lx.de.oracle.com:8001 Edit QueueSend.java and enter the above queue name and connection factory respectively under ...public final static String  JMS_FACTORY=" jms/TestConnectionFactory "; ... public final static String QUEUE=" jms/TestJMSQueue "; ... Compile QueueSend.java using javac QueueSend.java Go to the source’s top-level directory and execute it using java examples.jms.queue.QueueSend t3://jbevans-lx.de.oracle.com:8001 This will prompt for a text input or “quit” to end. In the WLS console, go to the queue and select Monitoring to confirm that a new message was written to the queue. 2.2 From JDeveloper Create a new application in JDeveloper, called, for example JMSTests. When prompted for a project name, enter QueueSend and select Java as the technology Default Package = examples.jms.queue (but you can enter anything here as you will overwrite it in the code later). Leave the other values at their defaults. Press Finish Create a new Java class called QueueSend and use the default values This will create a file called QueueSend.java. Open QueueSend.java, if it is not already open and replace all its contents with the QueueSend java code listed above Some lines might have warnings due to unfound objects. These are due to missing libraries in the JDeveloper project. Add the following libraries to the JDeveloper project: right-click the QueueSend  project in the navigation menu and select Libraries and Classpath , then Add JAR/Directory  Go to the folder containing the JDeveloper installation and find/choose the file javax.jms_1.1.1.jar , e.g. at D:\oracle\jdev11116\modules\javax.jms_1.1.1.jar Do the same for the weblogic.jar file located, for example in D:\oracle\jdev11116\wlserver_10.3\server\lib\weblogic.jar Now you should be able to compile the project, for example by selecting the Make or Rebuild icons   If you try to execute the project, you will get a usage message, as it requires a parameter pointing to the WLS installation containing the JMS queue, for example t3://jbevans-lx.de.oracle.com:8001 . You can automatically pass this parameter to the program from JDeveloper by editing the project’s Run/Debug/Profile. Select the project properties, select Run/Debug/Profile and edit the Default run configuration and add the connection parameter to the Program Arguments field If you execute it again, you will see that it has passed the parameter to the start command If you get a ClassNotFoundException for the class weblogic.jndi.WLInitialContextFactory , then check that the weblogic.jar file was correctly added to the project in one of the earlier steps above. Set the values of JMS_FACTORY and QUEUE the same way as described above in the description of how to use this from a Linux file system, i.e. ...public final static String  JMS_FACTORY=" jms/TestConnectionFactory "; ... public final static String QUEUE=" jms/TestJMSQueue "; ... You need to make one more change to the project. If you execute it now, it will prompt for the payload for the JMS message, but you won’t be able to enter it by default in JDeveloper. You need to enable program input for the project first. Select the project’s properties, then Tool Settings, then check the Allow Program Input checkbox at the bottom and Save. Now when you execute the project, you will get a text entry field at the bottom into which you can enter the payload. You can enter multiple messages until you enter “quit”, which will cause the program to stop. The following screen shot shows the TestJMSQueue’s Monitoring page, after a message was sent to the queue: This concludes the sample. In the following post I will show you how to read the message from the queue again.

    Read the article

  • AIX Checklist for stable obiee deployment

    - by user554629
    Common AIX configuration issues     ( last updated 27 Aug 2012 ) OBIEE is a complicated system with many moving parts and connection points.The purpose of this article is to provide a checklist to discuss OBIEE deployment with your systems administrators. The information in this article is time sensitive, and updated as I discover new  issues or details. What makes OBIEE different? When Tech Support suggests AIX component upgrades to a stable, locked-down production AIX environment, it is common to get "push back".  "Why is this necessary?  We aren't we seeing issues with other software?"It's a fair question that I have often struggled to answer; here are the talking points: OBIEE is memory intensive.  It is the entire purpose of the software to trade memory for repetitive, more expensive database requests across a network. OBIEE is implemented in C++ and is very dependent on the C++ runtime to behave correctly. OBIEE is aggressively thread efficient;  if atomic operations on a particular architecture do not work correctly, the software crashes. OBIEE dynamically loads third-party database client libraries directly into the nqsserver process.  If the library is not thread-safe, or corrupts process memory the OBIEE crash happens in an unrelated part of the code.  These are extremely difficult bugs to find. OBIEE software uses 99% common source across multiple platforms:  Windows, Linux, AIX, Solaris and HPUX.  If a crash happens on only one platform, we begin to suspect other factors.  load intensity, system differences, configuration choices, hardware failures.  It is rare to have a single product require so many diverse technical skills.   My role in support is to understand system configurations, performance issues, and crashes.   An analyst trained in Business Analytics can't be expected to know AIX internals in the depth required to make configuration choices.  Here are some guidelines. AIX C++ Runtime must be at  version 11.1.0.4$ lslpp -L | grep xlC.aixobiee software will crash if xlC.aix.rte is downlevel;  this is not a "try it" suggestion.Nov 2011 11.1.0.4 version  is appropriate for all AIX versions ( 5, 6, 7 )Download from here:https://www-304.ibm.com/support/docview.wss?uid=swg24031426 No reboot is necessary to install, it can even be installed while applications are using the current version.Restart the apps, and they will pick up the latest version. AIX 5.3 Technology Level 12 is required when running on Power5,6,7 processorsAIX 6.1 was introduced with the newer Power chips, and we have seen no issues with 6.1 or 7.1 versions.Customers with an unstable deployment, dozens of unexplained crashes, became stable after the upgrade.If your AIX system is 5.3, the minimum TL level should be at or higher than this:$ oslevel -s  5300-12-03-1107IBM typically supports only the two latest versions of AIX ( 6.1 and 7.1, for example).  AIX 5.3 is still supported and popular running in an LPAR. obiee userid limits$ ulimit -Ha  ( hard limits )$ ulimit -a   ( default limits )core file size (blocks)     unlimiteddata seg size (kbytes)      unlimitedfile size (blocks)          unlimitedmax memory size (kbytes)    unlimitedopen files                  10240 cpu time (seconds)          unlimitedvirtual memory (kbytes)     unlimitedIt is best to establish the values in /etc/security/limitsroot user is needed to observe and modify this file.If you modify a limit, you will need to relog in to change it again.  For example,$ ulimit -c 0$ ulimit -c 2097151cannot modify limit: Operation not permitted$ ulimit -c unlimited$ ulimit -c0There are only two meaningful values for ulimit -c ; zero or unlimited.Anything else is likely to produce a truncated core file that cannot be analyzed. Deploy 32-bit or 64-bit ?Early versions of OBIEE offered 32-bit or 64-bit choice to AIX customers.The 32-bit choice was needed if a database vendor did not supply a 64-bit client library.That's no longer an issue and beginning with OBIEE 11, 32-bit code is no longer shipped.A common error that leads to "out of memory" conditions to to accept the 32-bit memory configuration choices on 64-bit deployments.  The significant configuration choices are: Maximum process data (heap) size is in an AIX environment variableLDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x... Two thread stack sizes are made in obiee NQSConfig.INI[ SERVER ]SERVER_THREAD_STACK_SIZE = 0;DB_GATEWAY_THREAD_STACK_SIZE = 0; Sort memory in NQSConfig.INI[ GENERAL ]SORT_MEMORY_SIZE = 4 MB ;SORT_BUFFER_INCREMENT_SIZE = 256 KB ; Choosing a value for MAXDATA:0x080000000  2GB Default maximum 32-bit heap size ( 8 with 7 zeros )0x100000000  4GB 64-bit breaking even with 32-bit ( 1 with 8 zeros )0x200000000  8GB 64-bit double 32-bit max0x400000000 16GB 64-bit safetyUsing 2GB heap size for a 64-bit process will almost certainly lead to an out-of-memory situation.Registers are twice as big ... consume twice as much memory in the heap.Upgrading to a 4GB heap for a 64-bit process is just "breaking even" with 32-bit.A 32-bit process is constrained by the 32-bit virtual addressing limits.  Heap memory is used for dynamic requirements of obiee software, thread stacks for each of the configured threads, and sometimes for shared libraries. 64-bit processes are not constrained in this way;  extra heap space can be configured for safety against a query that might create a sudden requirement for excessive storage.  If the storage is not available, this query might crash the whole server and disrupt existing users.There is no performance penalty on AIX for configuring more memory than required;  extra memory can be configured for safety.  If there are no other considerations, start with 8GB.Choosing a value for Thread Stack size:zero is the value documented to select an appropriate default for thread stack size.  My preference is to change this to an absolute value, even if you intend to use the documented default;  it provides better documentation and removes the "surprise" factor.There are two thread types that can be configured. GATEWAY is used by a thread pool to call a database client library to establish a DB connection.The default size is 256KB;  many customers raise this to 512KB ( no performance penalty for over-configuring ). This value must be set to 1 MB if Teradata connections are used. SERVER threads are used to run queries.  OBIEE uses recursive algorithms during the analysis of query structures which can consume significant thread stack storage.  It's difficult to provide guidance on a value that depends on data and complexity.  The general notion is to provide more space than you think you need,  "double down" and increase the value if you run out, otherwise inspect the query to understand why it is too complex for the thread stack.  There are protections built into the software to abort a single user query that is too complex, but the algorithms don't cover all situations.256 KB  The default 32-bit stack size.  Many customers increased this to 512KB on 32-bit.  A 64-bit server is very likely to crash with this value;  the stack contains mostly register values, which are twice as big.512 KB  The documented 64-bit default.  Some early releases of obiee didn't set this correctly, resulting in 256KB stacks.1 MB  The recommended 64-bit setting.  If your system only ever uses 512KB of stack space, there is no performance penalty for using 1MB stack size.2 MB  Many large customers use this value for safety.  No performance penalty.nqscheduler does not use the NQSConfig.INI file to set thread stack size.If this process crashes because the thread stack is too small, use this to set 2MB:export OBI_BACKGROUND_STACK_SIZE=2048 Shared libraries are not (shared) When application libraries are loaded at run-time, AIX makes a decision on whether to load the libraries in a "public" memory segment.  If the filesystem library permissions do not have the "Read-Other" permission bit, AIX loads the library into private process memory with two significant side-effects:* The libraries reduce the heap storage available.      Might be significant in 32-bit processes;  irrelevant in 64-bit processes.* Library code is loaded into multiple real pages for execution;  one copy for each process.Multiple execution images is a significant issue for both 32- and 64-bit processes.The "real memory pages" saved by using public memory segments is a minor concern.  Today's machines typically have plenty of real memory.The real problem with private copies of libraries is that they consume processor cache blocks, which are limited.   The same library instructions executing in different real pages will cause memory delays as the i-cache ( instruction cache 128KB blocks) are refreshed from real memory.   Performance loss because instructions are delayed is something that is difficult to measure without access to low-level cache fault data.   The machine just appears to be running slowly for no observable reason.This is an easy problem to detect, and an easy problem to correct.Detection:  "genld -l" AIX command produces a list of the libraries used by each process and the AIX memory address where they are loaded.32-bit public segment is 13 ( "dxxxxxxx" ).   private segments are 2-a.64-bit public segment is 9 ( "9xxxxxxxxxxxxxxx") ; private segment is 8.genld -l | grep -v ' d| 9' | sort +2provides a list of privately loaded libraries. Repair: chmod o+r <libname>AIX shared libraries will have a suffix of ".so" or ".a".Another technique is to change all libraries in a selected directory to repair those that might not be currently loaded.   The usual directories that need repair are obiee code, httpd code and plugins, database client libraries and java.chmod o+r /shr/dir/*.a /shr/dir/*.so Configure your system for diagnosticsProduction systems shouldn't crash, and yet bad things happen to good software.If obiee software crashes and produces a core, you should configure your system for reliable transfer of the failing conditions to Oracle Tech Support.  Here's what we need to be able to diagnose a core file from your system.* fullcore enabled. chdev -lsys0 -a fullcore=true* core naming enabled. chcore -n on -d* ulimit must not truncate core. see item 3.* pstack.sh is used to capture core documentation.* obidoc is used to capture current AIX configuration.* snapcore  AIX utility captures core and libraries. Use the proper syntax. $ snapcore -r corename executable-fullpath   /tmp/snapcore will contain the .pax.Z output file.  It is compressed.* If cores are directed to a common directory, ensure obiee userid can write to the directory.  ( chcore -p /cores -d ; chmod 777 /cores )The filesystem must have sufficient space to hold a crashing obiee application.Use:  df -k  Check the "Free" column ( not "% Used" )  8388608 is 8GB. Disable Oracle Client Library signal handlingThe Oracle DB Client Library is frequently distributed with the sqlplus development kit.By default, the library enables a signal handler, which will document a call stack if the application crashes.   The signal handler is not needed, and definitely disruptive to obiee diagnostics.   It needs to be disabled.   sqlnet.ora is typically located at:   $ORACLE_HOME/network/admin/sqlnet.oraAdd this line at the top of the file:   DIAG_SIGHANDLER_ENABLED=FALSE Disable async query in the RPD connection pool.This might be an obiee 10.1.3.4 issue only ( still checking  )."async query" must be disabled in the connection pools.It was designed to enable query cancellation to a database, and turned out to have too many edge conditions in normal communication that produced random corruption of data and crashes.  Please ensure it is turned off in the RPD. Check AIX error report (errpt).Errors external to obiee applications can trigger crashes.  $ /bin/errpt -aHardware errors ( firmware, adapters, disks ) should be reported to IBM support.All application core files are recorded by AIX;  the most recent ones are listed first. Reserved for something important to say.

    Read the article

  • How to Load Oracle Tables From Hadoop Tutorial (Part 5 - Leveraging Parallelism in OSCH)

    - by Bob Hanckel
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Using OSCH: Beyond Hello World In the previous post we discussed a “Hello World” example for OSCH focusing on the mechanics of getting a toy end-to-end example working. In this post we are going to talk about how to make it work for big data loads. We will explain how to optimize an OSCH external table for load, paying particular attention to Oracle’s DOP (degree of parallelism), the number of external table location files we use, and the number of HDFS files that make up the payload. We will provide some rules that serve as best practices when using OSCH. The assumption is that you have read the previous post and have some end to end OSCH external tables working and now you want to ramp up the size of the loads. Using OSCH External Tables for Access and Loading OSCH external tables are no different from any other Oracle external tables.  They can be used to access HDFS content using Oracle SQL: SELECT * FROM my_hdfs_external_table; or use the same SQL access to load a table in Oracle. INSERT INTO my_oracle_table SELECT * FROM my_hdfs_external_table; To speed up the load time, you will want to control the degree of parallelism (i.e. DOP) and add two SQL hints. ALTER SESSION FORCE PARALLEL DML PARALLEL  8; ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8; INSERT /*+ append pq_distribute(my_oracle_table, none) */ INTO my_oracle_table SELECT * FROM my_hdfs_external_table; There are various ways of either hinting at what level of DOP you want to use.  The ALTER SESSION statements above force the issue assuming you (the user of the session) are allowed to assert the DOP (more on that in the next section).  Alternatively you could embed additional parallel hints directly into the INSERT and SELECT clause respectively. /*+ parallel(my_oracle_table,8) *//*+ parallel(my_hdfs_external_table,8) */ Note that the "append" hint lets you load a target table by reserving space above a given "high watermark" in storage and uses Direct Path load.  In other doesn't try to fill blocks that are already allocated and partially filled. It uses unallocated blocks.  It is an optimized way of loading a table without incurring the typical resource overhead associated with run-of-the-mill inserts.  The "pq_distribute" hint in this context unifies the INSERT and SELECT operators to make data flow during a load more efficient. Finally your target Oracle table should be defined with "NOLOGGING" and "PARALLEL" attributes.   The combination of the "NOLOGGING" and use of the "append" hint disables REDO logging, and its overhead.  The "PARALLEL" clause tells Oracle to try to use parallel execution when operating on the target table. Determine Your DOP It might feel natural to build your datasets in Hadoop, then afterwards figure out how to tune the OSCH external table definition, but you should start backwards. You should focus on Oracle database, specifically the DOP you want to use when loading (or accessing) HDFS content using external tables. The DOP in Oracle controls how many PQ slaves are launched in parallel when executing an external table. Typically the DOP is something you want to Oracle to control transparently, but for loading content from Hadoop with OSCH, it's something that you will want to control. Oracle computes the maximum DOP that can be used by an Oracle user. The maximum value that can be assigned is an integer value typically equal to the number of CPUs on your Oracle instances, times the number of cores per CPU, times the number of Oracle instances. For example, suppose you have a RAC environment with 2 Oracle instances. And suppose that each system has 2 CPUs with 32 cores. The maximum DOP would be 128 (i.e. 2*2*32). In point of fact if you are running on a production system, the maximum DOP you are allowed to use will be restricted by the Oracle DBA. This is because using a system maximum DOP can subsume all system resources on Oracle and starve anything else that is executing. Obviously on a production system where resources need to be shared 24x7, this can’t be allowed to happen. The use cases for being able to run OSCH with a maximum DOP are when you have exclusive access to all the resources on an Oracle system. This can be in situations when your are first seeding tables in a new Oracle database, or there is a time where normal activity in the production database can be safely taken off-line for a few hours to free up resources for a big incremental load. Using OSCH on high end machines (specifically Oracle Exadata and Oracle BDA cabled with Infiniband), this mode of operation can load up to 15TB per hour. The bottom line is that you should first figure out what DOP you will be allowed to run with by talking to the DBAs who manage the production system. You then use that number to derive the number of location files, and (optionally) the number of HDFS data files that you want to generate, assuming that is flexible. Rule 1: Find out the maximum DOP you will be allowed to use with OSCH on the target Oracle system Determining the Number of Location Files Let’s assume that the DBA told you that your maximum DOP was 8. You want the number of location files in your external table to be big enough to utilize all 8 PQ slaves, and you want them to represent equally balanced workloads. Remember location files in OSCH are metadata lists of HDFS files and are created using OSCH’s External Table tool. They also represent the workload size given to an individual Oracle PQ slave (i.e. a PQ slave is given one location file to process at a time, and only it will process the contents of the location file.) Rule 2: The size of the workload of a single location file (and the PQ slave that processes it) is the sum of the content size of the HDFS files it lists For example, if a location file lists 5 HDFS files which are each 100GB in size, the workload size for that location file is 500GB. The number of location files that you generate is something you control by providing a number as input to OSCH’s External Table tool. Rule 3: The number of location files chosen should be a small multiple of the DOP Each location file represents one workload for one PQ slave. So the goal is to keep all slaves busy and try to give them equivalent workloads. Obviously if you run with a DOP of 8 but have 5 location files, only five PQ slaves will have something to do and the other three will have nothing to do and will quietly exit. If you run with 9 location files, then the PQ slaves will pick up the first 8 location files, and assuming they have equal work loads, will finish up about the same time. But the first PQ slave to finish its job will then be rescheduled to process the ninth location file, potentially doubling the end to end processing time. So for this DOP using 8, 16, or 32 location files would be a good idea. Determining the Number of HDFS Files Let’s start with the next rule and then explain it: Rule 4: The number of HDFS files should try to be a multiple of the number of location files and try to be relatively the same size In our running example, the DOP is 8. This means that the number of location files should be a small multiple of 8. Remember that each location file represents a list of unique HDFS files to load, and that the sum of the files listed in each location file is a workload for one Oracle PQ slave. The OSCH External Table tool will look in an HDFS directory for a set of HDFS files to load.  It will generate N number of location files (where N is the value you gave to the tool). It will then try to divvy up the HDFS files and do its best to make sure the workload across location files is as balanced as possible. (The tool uses a greedy algorithm that grabs the biggest HDFS file and delegates it to a particular location file. It then looks for the next biggest file and puts in some other location file, and so on). The tools ability to balance is reduced if HDFS file sizes are grossly out of balance or are too few. For example suppose my DOP is 8 and the number of location files is 8. Suppose I have only 8 HDFS files, where one file is 900GB and the others are 100GB. When the tool tries to balance the load it will be forced to put the singleton 900GB into one location file, and put each of the 100GB files in the 7 remaining location files. The load balance skew is 9 to 1. One PQ slave will be working overtime, while the slacker PQ slaves are off enjoying happy hour. If however the total payload (1600 GB) were broken up into smaller HDFS files, the OSCH External Table tool would have an easier time generating a list where each workload for each location file is relatively the same.  Applying Rule 4 above to our DOP of 8, we could divide the workload into160 files that were approximately 10 GB in size.  For this scenario the OSCH External Table tool would populate each location file with 20 HDFS file references, and all location files would have similar workloads (approximately 200GB per location file.) As a rule, when the OSCH External Table tool has to deal with more and smaller files it will be able to create more balanced loads. How small should HDFS files get? Not so small that the HDFS open and close file overhead starts having a substantial impact. For our performance test system (Exadata/BDA with Infiniband), I compared three OSCH loads of 1 TiB. One load had 128 HDFS files living in 64 location files where each HDFS file was about 8GB. I then did the same load with 12800 files where each HDFS file was about 80MB size. The end to end load time was virtually the same. However when I got ridiculously small (i.e. 128000 files at about 8MB per file), it started to make an impact and slow down the load time. What happens if you break rules 3 or 4 above? Nothing draconian, everything will still function. You just won’t be taking full advantage of the generous DOP that was allocated to you by your friendly DBA. The key point of the rules articulated above is this: if you know that HDFS content is ultimately going to be loaded into Oracle using OSCH, it makes sense to chop them up into the right number of files roughly the same size, derived from the DOP that you expect to use for loading. Next Steps So far we have talked about OLH and OSCH as alternative models for loading. That’s not quite the whole story. They can be used together in a way that provides for more efficient OSCH loads and allows one to be more flexible about scheduling on a Hadoop cluster and an Oracle Database to perform load operations. The next lesson will talk about Oracle Data Pump files generated by OLH, and loaded using OSCH. It will also outline the pros and cons of using various load methods.  This will be followed up with a final tutorial lesson focusing on how to optimize OLH and OSCH for use on Oracle's engineered systems: specifically Exadata and the BDA. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • Display part of an XML file while parsing it

    - by Andy M
    Hey, Consider the following XML file : <cookbook> <recipe xml:id="MushroomSoup"> <title>Quick and Easy Mushroom Soup</title> <ingredient name="Fresh mushrooms" quantity="7" unit="pieces"/> <ingredient name="Garlic" quantity="1" unit="cloves"/> </recipe> <recipe xml:id="AnotherRecipe"> <title>XXXXXXX</title> <ingredient name="Tomatoes" quantity="8" unit="pieces"/> <ingredient name="PineApples" quantity="2" unit="cloves"/> </recipe> </cookbook> Let's say I want to parse this file and gather each recipe as XML, each one as a separated QString. For example, I would like to have a QString that contains : <recipe xml:id="MushroomSoup"> <title>Quick and Easy Mushroom Soup</title> <ingredient name="Fresh mushrooms" quantity="7" unit="pieces"/> <ingredient name="Garlic" quantity="1" unit="cloves"/> </recipe> How could I do this ? Do you guys know a quick and clean method to perform this ? Thanks in advance for your help !

    Read the article

  • intelligent path truncation/ellipsis for display

    - by peterchen
    I am looking for an existign path truncation algorithm (similar to what the Win32 static control does with SS_PATHELLIPSIS) for a set of paths that should focus on the distinct elements. For example, if my paths are like this: Unit with X/Test 3V/ Unit with X/Test 4V/ Unit with X/Test 5V/ Unit without X/Test 3V/ Unit without X/Test 6V/ Unit without X/2nd Test 6V/ When not enough display space is available, they should be truncated to something like this: ...with X/...3V/ ...with X/...4V/ ...with X/...5V/ ...without X/...3V/ ...without X/...6V/ ...without X/2nd ...6V/ (Assuming that an ellipsis generally is shorter than three letters). This is just an example of a rather simple, ideal case (e.g. they'd all end up at different lengths now, and I wouldn't know how to create a good suggestion when a path "Thingie/Long Test/" is added to the pool). There is no given structure of the path elements, they are assigned by the user, but often items will have similar segments. It should work for proportional fonts, so the algorithm should take a measure function (and not call it to heavily) or generate a suggestion list. Data-wise, a typical use case would contain 2..4 path segments anf 20 elements per segment. I am looking for previous attempts into that direction, and if that's solvable wiht sensible amount of code or dependencies.

    Read the article

  • nhibernate - mapping with contraints

    - by Tobias Müller
    Hello everybody, I am having a Problem with my nhibernate-mapping and I can't find a solution by searching on stackoverflow/google/documentation. The database I am using has (amongst others) two tables. One is unit with the following fields: id enduring_id starts ends damage_enduring_id [...] The other one is damage, which has the following fields: id enduring_id starts ends [...] The units are assigned to a damage and one damage can have zero, one or more units working on it. Every time a unit moves to annother damage, the dataset is copied. The field "ends" of the old record and "starts" of the new record are set to the current time stamp, enduring_id stays the same. So if I want to know which units were working on a damage at a certain time, I do the following select: select * from unit join damage on damage.enduring_id = unit.damage_enduring_id where unit.starts <= 'time' and unit.ends = 'time' (This is not an actualy query from the database, I made it up to make clear what I mean. The the real database is a little more complex) Now I want to map it that way, so I can load all the damages which are valid at one time (starts <= wanted time <= ends) and that each of them has a Bag with all the attached units at that time (again starts <= wanted time <= ends). Is this possible within the mapping? Sorry if this is a stupid question, but I am pretty new to nhibernate and I have no clue how to do it. Thanks a lot for reading my post! Bye, Tobias

    Read the article

  • Deleting a resource in a Cucumber (Capybara) step doesn't work

    - by Josiah Kiehl
    Here is my Scenario: Scenario: Delete a match Given pojo is logged in And there is a match with the following: | game_id | 1 | | name | Game del Pojo | | date_and_time | 2010-02-23 17:52:00 | | players | 2 | | teams | 2 | | comment | This is an awesome comment | | user_id | 1 | And I am on the show match 1 page And show me the page When I follow "Delete" And I follow "Yes, delete it" Then there should not be a match with the following: | game_id | 1 | | name | Game del Pojo | | date_and_time | 2010-02-23 17:52:00 | | players | 2 | | teams | 2 | | comment | This is an awesome comment | | user_id | 1 | If I walk through these steps manually, they work. When I click the confirmation: Yes, delete it, then the match is deleted. Cucumber, however, fails to delete the record and the last step fails. And I follow "Yes, delete it" # features/step_definitions/web_steps.rb:32 Then there should not be a match with the following: # features/step_definitions/match_steps.rb:8 | game_id | 1 | | name | Game del Pojo | | date_and_time | 2010-02-23 17:52:00 | | players | 2 | | teams | 2 | | comment | This is an awesome comment | | user_id | 1 | <nil> expected but was <#<Match id: 1, name: "Game del Pojo", date_and_time: "2010-02-23 17:52:00", teams: 2, created_at: "2010-03-02 23:06:33", updated_at: "2010-03-02 23:06:33", comment: "This is an awesome comment", players: 2, game_id: 1, user_id: 1>>. (Test::Unit::AssertionFailedError) /usr/lib/ruby/1.8/test/unit/assertions.rb:48:in `assert_block' /usr/lib/ruby/1.8/test/unit/assertions.rb:495:in `_wrap_assertion' /usr/lib/ruby/1.8/test/unit/assertions.rb:46:in `assert_block' /usr/lib/ruby/1.8/test/unit/assertions.rb:83:in `assert_equal' /usr/lib/ruby/1.8/test/unit/assertions.rb:172:in `assert_nil' ./features/step_definitions/match_steps.rb:22:in `/^there should (not)? be a match with the following:$/' features/matches.feature:124:in `Then there should not be a match with the following:' Any clue how to debug this? Thanks!

    Read the article

  • Returning a lua table on SWIG call

    - by Tom J Nowell
    I have a class with a methodcalled GetEnemiesLua. I have bound this class to lua using SWIG, and I can call this method using my lua code. I am trying to get the method to return a lua table of objects. Here is my current code: void CSpringGame::GetEnemiesLua(){ std::vector<springai::Unit*> enemies = callback->GetEnemyUnits(); if( enemies.empty()){ lua_pushnil(ai->L); return; } else{ lua_newtable(ai->L); int top = lua_gettop(ai->L); int index = 1; for (std::vector<springai::Unit*>::iterator it = enemies.begin(); it != enemies.end(); ++it) { //key lua_pushinteger(ai->L,index);//lua_pushstring(L, key); //value CSpringUnit* unit = new CSpringUnit(callback,*it,this); ai->PushIUnit(unit); lua_settable(ai->L, -3); ++index; } ::lua_pushvalue(ai->L,-1); } } PushIUnit is as follows: void CTestAI::PushIUnit(IUnit* unit){ SWIG_NewPointerObj(L,unit,SWIGTYPE_p_IUnit,1); } To test this I have the following code: t = game:GetEnemiesLua() if t == nil then game:SendToConsole("t is nil! ") end The result is always 't is nil', despite this being incorrect. I have put breakpoints in the code and it is indeed going over the loop, rather than doing lua_pushnil. So how do I make my method return a table when called via lua?

    Read the article

  • iPhone SDK: TextView, Keyboard in Landscape mode

    - by Arnold
    Hello. How do I make sure that the textview is shown and the keyboard is not obscuring the textview, while in landscape. Using UICatalog I created a TextViewController which works. In it there are two methods for calling the keyboard and making sure that textView is positioned above the keyboard. his just works great in Portrait mode. I got the Landscape mode working, but on the textView is still being put to the top of the iPhone to compensate for the keyboard in portrait mode. I changed the methods for showing the keyboards. Below is the code for this methods: (I will just let see the code for show, since the hide code will be the reverse.. - (void)keyboardWillShow:(NSNotification *)aNotification { UIInterfaceOrientation orientation = [[UIApplication sharedApplication] statusBarOrientation]; if (orientation == UIInterfaceOrientationPortrait) { // the keyboard is showing so resize the table's height CGRect keyboardRect = [[[aNotification userInfo] objectForKey:UIKeyboardBoundsUserInfoKey] CGRectValue]; NSTimeInterval animationDuration = [[[aNotification userInfo] objectForKey:UIKeyboardAnimationDurationUserInfoKey] doubleValue]; CGRect frame = self.view.frame; frame.size.height -= keyboardRect.size.height; [UIView beginAnimations:@"ResizeForKeyboard" context:nil]; [UIView setAnimationDuration:animationDuration]; self.view.frame = frame; [UIView commitAnimations]; } else if (orientation == UIInterfaceOrientationLandscapeLeft) { NSLog(@"Left"); // Verijderen later CGRect keyboardRect = [[[aNotification userInfo] objectForKey:UIKeyboardBoundsUserInfoKey] CGRectValue]; NSTimeInterval animationDuration = [[[aNotification userInfo] objectForKey:UIKeyboardAnimationDurationUserInfoKey] doubleValue]; CGRect frame = self.view.frame; frame.size.width -= keyboardRect.size.height; [UIView beginAnimations:@"ResizeForKeyboard" context:nil]; [UIView setAnimationDuration:animationDuration]; self.view.frame = frame; [UIView commitAnimations]; } else if (orientation == UIInterfaceOrientationLandscapeRight){ NSLog(@"Right"); // verwijderen later. CGRect keyboardRect = [[[aNotification userInfo] objectForKey:UIKeyboardBoundsUserInfoKey] CGRectValue]; NSTimeInterval animationDuration = [[[aNotification userInfo] objectForKey:UIKeyboardAnimationDurationUserInfoKey] doubleValue]; CGRect frame = self.view.frame; frame.size.width -= keyboardRect.size.width; [UIView beginAnimations:@"ResizeForKeyboard" context:nil]; [UIView setAnimationDuration:animationDuration]; self.view.frame = frame; [UIView commitAnimations]; } } I know that I have to change the line frame.size.height -= keyboardRect.size.height but I do not seem to get it working. I tried frame.size.width -= keyboardRect.size.height that did not work. Losing the keyboardRect and frame all together work, however off course the keyboard obscures the textview........

    Read the article

  • subprocess.Popen doesn't work when args is sequence

    - by pero
    I'm having a problem with subprocess.Popen when args parameter is given as sequence. For example: import subprocess maildir = "/home/support/Maildir" This works (it prints the correct size of /home/support/Maildir dir): size = subprocess.Popen(["du -s -b " + maildir], shell=True, stdout=subprocess.PIPE).communicate()[0].split()[0] print size But, this doesn't work (try it): size = subprocess.Popen(["du", "-s -b", maildir], shell=True, stdout=subprocess.PIPE).communicate()[0].split()[0] print size What's wrong?

    Read the article

  • for my project I have problem in report

    - by pink rose
    public stack(int size) { this.size=size; Array = new int[size]; } public void push(int j) { if (top < size) { Array[++top] = j; } } public int pop() { return Array[top--]; } public int top() { return Array[top]; } public boolean isEmpty() { return (top == -1); } } import javax.swing.JOptionPane; public class menu { private static stack s; private static int numbers[]; public static void main(String args[]) { start(); } public static void start() { int i = Integer.parseInt(JOptionPane.showInputDialog("1. size of array\n2. data entry\n3. display content\n4. exit")); switch (i) { case 1: setSize(); break; case 2: addElement(); break; case 3: showElements(); break; case 4: exit(); } } public static void setSize() { int size = Integer.parseInt(JOptionPane.showInputDialog("Please Enter The Size")); s = new stack(size); numbers = new int[10]; start(); } public static void addElement() { for(int x=0;x<s.size;x++) { int e = Integer.parseInt(JOptionPane.showInputDialog("Please Enter The Element")); numbers[e]++; s.push(e); } start(); } public static void showElements() { String result = ""; int temp; while (!s.isEmpty()) { temp = s.pop(); if (numbers[temp] == 1) { result = temp+result; } } JOptionPane.showMessageDialog(null, result); start(); } public static void exit() { System.exit(0); } } This my project I was finished but I have problem in question in my report Conclusion. It should summarize the state of your project and indicate which part of your project is working and which part is not working or with limitations. You may also provide your suggestions and comments to this project what I can answer I didn't have any idea

    Read the article

  • How to quickly acquire and process real time screen output

    - by Akusete
    I am trying to write a program to play a full screen PC game for fun (as an experiment in Computer Vision and Artificial Intelligence). For this experiment I am assuming the game has no underlying API for AI players (nor is the source available) so I intend to process the visual information rendered by the game on the screen. The game runs in full screen mode on a win32 system (direct-X I assume). Currently I am using the win32 functions #include <windows.h> #include <cvaux.h> class Screen { public: HWND windowHandle; HDC windowContext; HBITMAP buffer; HDC bufferContext; CvSize size; uchar* bytes; int channels; Screen () { windowHandle = GetDesktopWindow(); windowContext = GetWindowDC (windowHandle); size = cvSize (GetDeviceCaps (windowContext, HORZRES), GetDeviceCaps (windowContext, VERTRES)); buffer = CreateCompatibleBitmap (windowContext, size.width, size.height); bufferContext = CreateCompatibleDC (windowContext); SelectObject (bufferContext, buffer); channels = 4; bytes = new uchar[size.width * size.height * channels]; } ~Screen () { ReleaseDC(windowHandle, windowContext); DeleteDC(bufferContext); DeleteObject(buffer); delete[] bytes; } void CaptureScreen (IplImage* img) { BitBlt(bufferContext, 0, 0, size.width, size.height, windowContext, 0, 0, SRCCOPY); int n = size.width * size.height; int imgChannels = img->nChannels; GetBitmapBits (buffer, n * channels, bytes); uchar* src = bytes; uchar* dest = (uchar*) img->imageData; uchar* end = dest + n * imgChannels; while (dest < end) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest += imgChannels; src += channels; } } The rate at which I can process frames using this approach is much to slow. Is there a better way to acquire screen frames?

    Read the article

  • Storing simulation results in a persistent manner for Python?

    - by Az
    Background: I'm running multiple simuations on a set of data. For each session, I'm allocating projects to students. The difference between each session is that I'm randomising the order of the students such that all the students get a shot at being assigned a project they want. I was writing out some of the allocations in a spreadsheet (i.e. Excel) and it basically looked like this (tiny snapshot, actual table extends to a few thousand sessions, roughly 100 students). | | Session 1 | Session 2 | Session 3 | |----------|-----------|-----------|-----------| |Stu1 |Proj_AA |Proj_AB |Proj_AB | |----------|-----------|-----------|-----------| |Stu2 |Proj_AB |Proj_AA |Proj_AC | |----------|-----------|-----------|-----------| |Stu3 |Proj_AC |Proj_AC |Proj_AA | |----------|-----------|-----------|-----------| Now, the code that deals with the allocation currently stores a session in an object. The next time the allocation is run, the object is over-written. Thus what I'd really like to do is to store all the allocation results. This is important since I later need to derive from the data, information such as: which project Stu1 got assigned to the most or perhaps how popular Proj_AC was (how many times it was assigned / number of sessions). Question(s): What methods can I possibly use to basically store such session information persistently? Basically, each session output needs to add itself to the repository after ending and before beginning the next allocation cycle. One solution that was suggested by a friend was mapping these results to a relational database using SQLAlchemy. I kind of like the idea since this does give me an opportunity to delve into databases. Now the database structure I was recommended was: |----------|-----------|-----------| |Session |Student |Project | |----------|-----------|-----------| |1 |Stu1 |Proj_AA | |----------|-----------|-----------| |1 |Stu2 |Proj_AB | |----------|-----------|-----------| |1 |Stu3 |Proj_AC | |----------|-----------|-----------| |2 |Stu1 |Proj_AB | |----------|-----------|-----------| |2 |Stu2 |Proj_AA | |----------|-----------|-----------| |2 |Stu3 |Proj_AC | |----------|-----------|-----------| |3 |Stu1 |Proj_AB | |----------|-----------|-----------| |3 |Stu2 |Proj_AC | |----------|-----------|-----------| |3 |Stu3 |Proj_AA | |----------|-----------|-----------| Here, it was suggested that I make the Session and Student columns a composite key. That way I can access a specific record for a particular student for a particular session. Or I can merely get the entire allocation run for a particular session. Questions: Is the idea a good one? How does one implement and query a composite key using SQLAlchemy? What happens to the database if a particular student is not assigned a project (happens if all projects that he wants are taken)? In the code, if a student is not assigned a project, instead of a proj_id he simply gets None for that field/object. I apologise for asking multiple questions but since these are closely-related, I thought I'd ask them in the same space.

    Read the article

  • iphone cocos2d sprites disappearing

    - by jer
    I've been working on a game and implementing the physics stuff with chipmunk. All was going fine on the cocos2d part until the integration with chipmunk. A bit of background: The game is a game with blocks. Levels are defined in a property list, where positions, size of the blocks, gravitational forces, etc., are all defined for each block to be shown in the level. The problem is with the blocks showing up. I have a method on my BlockLayer class which is part of my game's main scene. Upon creation of the layer, the property list is read, and all the blocks are created. The following method is called to create the blocks: - (void)createBlock:(Block*)block withAssets:(NSBundle*)assets { Sprite* sprite; switch(block.blockColour) { case kBlockColourGreen: sprite = [Sprite spriteWithFile:[assets pathForResource:@"green" ofType:@"png" inDirectory:@"Blocks"]]; break; case kBlockColourOrange: sprite = [Sprite spriteWithFile:[assets pathForResource:@"orange" ofType:@"png" inDirectory:@"Blocks"]]; break; case kBlockColourRed: sprite = [Sprite spriteWithFile:[assets pathForResource:@"red" ofType:@"png" inDirectory:@"Blocks"]]; break; case kBlockColourBlue: sprite = [Sprite spriteWithFile:[assets pathForResource:@"blue" ofType:@"png" inDirectory:@"Blocks"]]; break; } sprite.position = block.bounds.origin; [self addChild:sprite]; if(block.blockColour == kBlockColourGreen || block.blockColour == kBlockColourRed) space-gravity = cpvmult(cpv(0, 10), 1000); cpVect verts[] = { cpv(-block.bounds.size.width, -block.bounds.size.height), cpv(-block.bounds.size.width, block.bounds.size.height), cpv(block.bounds.size.width, block.bounds.size.height), cpv(block.bounds.size.width, -block.bounds.size.height) }; cpBody* blockBody = cpBodyNew([block.mass floatValue], INFINITY); blockBody-p = cpv(block.bounds.origin.x, block.bounds.origin.y); blockBody-v = cpvzero; cpSpaceAddBody(space, blockBody); cpShape* blockShape = cpPolyShapeNew(blockBody, 4, verts, cpvzero); blockShape-e = 0.9f; blockShape-u = 0.9f; blockShape-data = sprite; cpSpaceAddShape(space, blockShape); } With the above code, the sprites never show up. However, if I comment out the "cpSpaceAddBody(space, blockBody);" line, the sprites show up. The position and size of the blocks are stored in the "bounds" property of instances of the Block class, which is a CGRect. Not sure if it's important, but the orientation of the app is in landscape left, and all the coordinates are based on that orientation. Any help would be greatly appreciated.

    Read the article

  • How do i resize image file to optional sizes

    - by shuxer
    Hi I have image upload form, user attaches aimage file, and selects image size to resize the uploaded image file(200kb, 500kb, 1mb, 5mb, Original). Then my script needs to resize image file size based on user's optional size, but im not sure how to implement this feature, For example, user uploads image with one 1mb size, and if user selects 200KB to resize, then my script should save it with 200kb size. Does anyone know or have an experience on similar task ? Thanks for you reply in advance.

    Read the article

  • File sizing issue in DOS/FAT

    - by Heather
    I've been tasked with writing a data collection program for a Unitech HT630, which runs a proprietary DOS operating system that can run executables compiled for 16-bit MS DOS with some restrictions. I'm using the Digital Mars C/C++ compiler, which is working well thus far. One of the application requirements is that the data file must be human-readable plain text, meaning the file can be imported into Excel or opened by Notepad. I'm using a variable length record format much like CSV that I've successfully implemented using the C standard library file I/O functions. When saving a record, I have to calculate whether the updated record is larger or smaller than the version of the record currently in the data file. If larger, I first shift all records immediately after the current record forward by the size difference calculated before saving the updated record. EOF is extended automatically by the OS to accommodate the extra data. If smaller, I shift all records backwards by my calculated offset. This is working well, however I have found no way to modify the EOF marker or file size to ignore the data after the end of the last record. Most of the time records will grow in size because the data collection program will be filling some of the empty fields with data when saving a record. Records will only shrink in size when a correction is made on an existing entry, or on a normal record save if the descriptive data in the record is longer than what the program reads in memory. In the situation of a shrinking record, after the last record in the file I'm left with whatever data was sitting there before the shift. I have been writing an EOF delimiter into the file after a "shrinking record save" to signal where the end of my records are and space-filling the remaining data, but then I no longer have a clean file until a "growing record save" extends the size of the file over the space-filled area. The truncate() function in unistd.h does not work (I'm now thinking this is for *nix flavors only?). One proposed solution I've seen involves creating a second file and writing all the data you wish to save into that file, and then deleting the original. Since I only have 4MB worth of disk space to use, this works if the file size is less than 2MB minus the size of my program executable and configuration files, but would fail otherwise. It is very likely that when this goes into production, users would end up with a file exceeding 2MB in size. I've looked at Ralph Brown's Interrupt List and the interrupt reference in IBM PC Assembly Language and Programming and I can't seem to find anything to update the file size or similar. Is reducing a file's size without creating a second file even possible in DOS?

    Read the article

  • Inline-SVG not rendering when generated by JS

    - by Lucas Gasenzer
    I want to implement some visual statistics into a jQuery mobile page. If I embed the folowing snippet it will show me the same results as if I would embed it from a separate *.svg-file. <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" height="115" width="100%"> <rect x="0%" y="0" fill="#8cc63f" width="19.2%" height="100" /> <text x="10%" y="115" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">A</text> <text x="10%" y="15" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">100</text> <rect x="20.2%" y="50" fill="#8cc63f" width="19.2%" height="50" /> <text x="30.2%" y="115" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">B</text> <text x="30.2%" y="65" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">50</text> <rect x="40.4%" y="90" fill="#8cc63f" width="19.2%" height="10" /> <text x="50.4%" y="115" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">C</text> <text x="50.4%" y="85" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">10</text> <rect x="60.6%" y="78" fill="#8cc63f" width="19.2%" height="22" /> <text x="70.6%" y="115" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">D</text> <text x="70.6%" y="73" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">22</text> <rect x="80.8%" y="40" fill="#8cc63f" width="19.2%" height="60" /> <text x="90.8%" y="115" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">E</text> <text x="90.8%" y="55" font-family="helvetica, sans-serif" font-size="10" style="text-anchor:middle;">60</text> Now because these statistics obviously change for each site I generate code like the one above using JavaScript. The HTML-Source-Code looks the same but the SVG will not be showing. Instead it looks like this: A 100 B 50 C 10 D 22 E60 so really just a line of text Am I missing something? Thank you for your help!

    Read the article

  • keyboard hiding my textview

    - by Risma
    hi guys i have a simple app, it consist of 2 textview, 1 uiview as a coretext subclass, and then 1 scrollview. the others part is subviews from scrollview. I use this scrollview because i need to scroll the textviews and uiview at the same time. I already scroll all of them together, but the problem is, the keyboard hiding some lines in the textview. I have to change the frame of scrollview when keyboard appear, but it still not help. This is my code : UIScrollView *scrollView; UIView *viewTextView; UITextView *lineNumberTextView; UITextView *codeTextView; -(void) viewWillAppear:(BOOL)animated{ [super viewWillAppear:animated]; [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(keyboardWillAppear:) name:UIKeyboardWillShowNotification object:nil]; [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(keyboardWillDisappear:) name:UIKeyboardWillHideNotification object:nil]; self.scrollView.frame = CGRectMake(0, 88, self.codeTextView.frame.size.width, self.codeTextView.frame.size.height); scrollView.contentSize = CGSizeMake(self.view.frame.size.width, viewTextView.frame.size.height); [scrollView addSubview:viewTextView]; CGAffineTransform translationCoreText = CGAffineTransformMakeTranslation(60, 7); [viewTextView setTransform:translationCoreText]; [scrollView addSubview:lineNumberTextView]; [self.scrollView setScrollEnabled:YES]; [self.codeTextView setScrollEnabled:NO]; } -(void)keyboardWillAppear:(NSNotification *)notification { [UIView beginAnimations:nil context:NULL]; [UIView setAnimationDuration:[[[notification userInfo] objectForKey:UIKeyboardAnimationDurationUserInfoKey] doubleValue]]; CGRect keyboardEndingUncorrectedFrame = [[[notification userInfo] objectForKey:UIKeyboardFrameEndUserInfoKey ] CGRectValue]; CGRect keyboardEndingFrame = [self.view convertRect:keyboardEndingUncorrectedFrame fromView:nil]; self.scrollView.frame = CGRectMake(0, 88, self.codeTextView.frame.size.width, self.codeTextView.frame.size.height - keyboardEndingFrame.size.height); [UIView commitAnimations]; } -(void)keyboardWillDisappear:(NSNotification *) notification { [UIView beginAnimations:nil context:NULL]; [UIView setAnimationDuration:[[[notification userInfo] objectForKey:UIKeyboardAnimationDurationUserInfoKey] doubleValue]]; CGRect keyboardEndingUncorrectedFrame = [[[notification userInfo] objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue]; CGRect keyboardEndingFrame = [self.view convertRect:keyboardEndingUncorrectedFrame fromView:nil]; self.scrollView.frame = CGRectMake(0, 88, self.codeTextView.frame.size.width, self.codeTextView.frame.size.height + keyboardEndingFrame.size.height); [UIView commitAnimations]; } can somebody help me please?

    Read the article

  • OpenGL Shader Compile Error

    - by Tomas Cokis
    I'm having a bit of a problem with my code for compiling shaders, namely they both register as failed compiles and no log is received. This is the shader compiling code: /* Make the shader */ Uint size; GLchar* file; loadFileRaw(filePath, file, &size); const char * pFile = file; const GLint pSize = size; newCashe.shader = glCreateShader(shaderType); glShaderSource(newCashe.shader, 1, &pFile, &pSize); glCompileShader(newCashe.shader); GLint shaderCompiled; glGetShaderiv(newCashe.shader, GL_COMPILE_STATUS, &shaderCompiled); if(shaderCompiled == GL_FALSE) { ReportFiler->makeReport("ShaderCasher.cpp", "loadShader()", "Shader did not compile", "The shader " + filePath + " failed to compile, reporting the error - " + OpenGLServices::getShaderLog(newCashe.shader)); } And these are the support functions: bool loadFileRaw(string fileName, char* data, Uint* size) { if (fileName != "") { FILE *file = fopen(fileName.c_str(), "rt"); if (file != NULL) { fseek(file, 0, SEEK_END); *size = ftell(file); rewind(file); if (*size > 0) { data = (char*)malloc(sizeof(char) * (*size + 1)); *size = fread(data, sizeof(char), *size, file); data[*size] = '\0'; } fclose(file); } } return data; } string OpenGLServices::getShaderLog(GLuint obj) { int infologLength = 0; int charsWritten = 0; char *infoLog; glGetShaderiv(obj, GL_INFO_LOG_LENGTH,&infologLength); if (infologLength > 0) { infoLog = (char *)malloc(infologLength); glGetShaderInfoLog(obj, infologLength, &charsWritten, infoLog); string log = infoLog; free(infoLog); return log; } return "<Blank Log>"; } and the shaders I'm loading: void main(void) { gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); } void main(void) { gl_Position = ftransform(); } In short I get From: ShaderCasher.cpp, In: loadShader(), Subject: Shader did not compile Message: The shader Data/Shaders/Standard/standard.vs failed to compile, reporting the error - <Blank Log> for every shader I compile I've tried replacing the file reading with just a hard coded string but I get the same error so there must be something wrong with how I'm compiling them. I have run and compiled example programs with shaders, so I doubt my drivers are the issue, but in any case I'm on a Nvidia 8600m GT. Can anyone help?

    Read the article

  • C++ Vector vs Array (Time)

    - by vsha041
    I have got here two programs with me, both are doing exactly the same task. They are just setting an boolean array / vector to the value true. The program using vector takes 27 seconds to run whereas the program involving array with 5 times greater size takes less than 1 s. I would like to know the exact reason as to why there is such a major difference ? Are vectors really that inefficient ? Program using vectors #include <iostream> #include <vector> #include <ctime> using namespace std; int main(){ const int size = 2000; time_t start, end; time(&start); vector<bool> v(size); for(int i = 0; i < size; i++){ for(int j = 0; j < size; j++){ v[i] = true; } } time(&end); cout<<difftime(end, start)<<" seconds."<<endl; } Runtime - 27 seconds Program using Array #include <iostream> #include <ctime> using namespace std; int main(){ const int size = 10000; // 5 times more size time_t start, end; time(&start); bool v[size]; for(int i = 0; i < size; i++){ for(int j = 0; j < size; j++){ v[i] = true; } } time(&end); cout<<difftime(end, start)<<" seconds."<<endl; } Runtime - < 1 seconds Platform - Visual Studio 2008 OS - Windows Vista 32 bit SP 1 Processor Intel(R) Pentium(R) Dual CPU T2370 @ 1.73GHz Memory (RAM) 1.00 GB Thanks Amare

    Read the article

  • Voxel terrain rendering with marching cubes

    - by JavaJosh94
    I was working on making procedurally generated terrain using normal cubish voxels (like minecraft) But then I read about marching cubes and decided to convert to using those. I managed to create a working marching cubes class and cycle through the densities and everything in it seemed to be working so I went on to work on actual terrain generation. I'm using XNA (C#) and a ported libnoise library to generate noise for the terrain generator. But instead of rendering smooth terrain I get a 64x64 chunk (I specified 64 but can change it) of seemingly random marching cubes using different triangles. This is the code I'm using to generate a "chunk": public MarchingCube[, ,] getTerrainChunk(int size, float dMultiplyer, int stepsize) { MarchingCube[, ,] temp = new MarchingCube[size / stepsize, size / stepsize, size / stepsize]; for (int x = 0; x < size; x += stepsize) { for (int y = 0; y <size; y += stepsize) { for (int z = 0; z < size; z += stepsize) { float[] densities = {(float)terrain.GetValue(x, y, z)*dMultiplyer, (float)terrain.GetValue(x, y+stepsize, z)*dMultiplyer, (float)terrain.GetValue(x+stepsize, y+stepsize, z)*dMultiplyer, (float)terrain.GetValue(x+stepsize, y, z)*dMultiplyer, (float)terrain.GetValue(x,y,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x,y+stepsize,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x+stepsize,y+stepsize,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x+stepsize,y,z+stepsize)*dMultiplyer }; Vector3[] corners = { new Vector3(x,y,z), new Vector3(x,y+stepsize,z),new Vector3(x+stepsize,y+stepsize,z),new Vector3(x+stepsize,y,z), new Vector3(x,y,z+stepsize), new Vector3(x,y+stepsize,z+stepsize), new Vector3(x+stepsize,y+stepsize,z+stepsize), new Vector3(x+stepsize,y,z+stepsize)}; if (x == 0 && y == 0 && z == 0) { temp[x / stepsize, y / stepsize, z / stepsize] = new MarchingCube(densities, corners, device); } temp[x / stepsize, y / stepsize, z / stepsize] = new MarchingCube(densities, corners); } } } (terrain is a Perlin Noise generated using libnoise) I'm sure there's probably an easy solution to this but I've been drawing a blank for the past hour. I'm just wondering if the problem is how I'm reading in the data from the noise or if I may be generating the noise wrong? Or maybe the noise is just not good for this kind of generation? If I'm reading it wrong does anyone know the right way? the answers on google were somewhat ambiguous but I'm going to keep searching. Thanks in advance!

    Read the article

  • New TPerlRegEx Compatible with Delphi XE

    - by Jan Goyvaerts
    The new RegularExpressionsCore unit in Delphi XE is based on the PerlRegEx unit that I wrote many years ago. Since I donated full rights to a copy rather than full rights to the original, I can continue to make my version of TPerlRegEx available to people using older versions of Delphi. I did make a few changes to the code to modernize it a bit prior to donating a copy to Embarcadero. The latest TPerlRegEx includes those changes. This allows you to use the same regex-based code using the RegularExpressionsCore unit in Delphi XE, and the PerlRegEx unit in Delphi 2010 and earlier. If you’re writing new code using regular expressions in Delphi 2010 or earlier, I strongly recomment you use the new version of my PerlRegEx unit. If you later migrate your code to Delphi XE, all you have to do is replace PerlRegEx with RegularExrpessionsCore in the uses clause of your units. If you have code written using an older version of TPerlRegEx that you want to migrate to the latest TPerlRegEx, you’ll need to take a few changes into account. The original TPerlRegEx was developed when Borland’s goal was to have a component for everything on the component palette. So the old TPerlRegEx derives from TComponent, allowing you to put it on the component palette and drop it on a form. The new TPerlRegEx derives from TObject. It can only be instantiated at runtime. If you want to migrate from an older version of TPerlRegEx to the latest TPerlRegEx, start with removing any TPerlRegEx components you may have placed on forms or data modules and instantiate the objects at runtime instead. When instantiating at runtime, you no longer need to pass an owner component to the Create() constructor. Simply remove the parameter. Some of the property and method names in the original TPerlRegEx were a bit unwieldy. These have been renamed in the latest TPerlRegEx. Essentially, in all identifiers SubExpression was replaced with Group and MatchedExpression was replaced with Matched. Here is a complete list of the changed identifiers: Old Identifier New Identifier StoreSubExpression StoreGroups NamedSubExpression NamedGroup MatchedExpression MatchedText MatchedExpressionLength MatchedLength MatchedExpressionOffset MatchedOffset SubExpressionCount GroupCount SubExpressions Groups SubExpressionLengths GroupLengths SubExpressionOffsets GroupOffsets Download TPerlRegEx. Source is included under the MPL 1.1 license.

    Read the article

  • Help with Strategy-game AI

    - by f20k
    Hi, I am developing a strategy-game AI (think: Final Fantasy Tactics), and I am having trouble coming up for the design of the AI. My main problem is determining which is the optimal thing for it to do. First let me describe the priority of what action I would like the AI to take: Kill nearest player unit Fulfill primary directive (kill all player units, kill target unit, survive for x turns) Heal ally unit / cast buffer Now the AI can do the following in its turn: Move - {Attack / Ability / Item} (either attack or ability or item) {Attack / Ability / Item} - Move Move closer (if targets not in range) {Attack / Ability / Item} (if move not available) Notes Abilities have various ranges / effects / costs / effects. Each ai unit has maybe 5-10 abilities to choose from. The AI will prioritize killing over safety unless its directive is to survive for x turns. It also doesn't care about ability cost much. While a player may want to save a big spell for later, the AI will most likely use it asap. Movement is on a (hex) grid num of player units: 3-6 num of ai units: 3-7 or more. Probably max 10. AI and player take turns controlling ONE unit, instead of all at the same time. Platform is Android (if program doesnt respond after some time, there will be a popup saying to Force Quit or Wait - which looks really bad!). Now comes the questions: The best ability to use would obviously be the one that hits the most targets for the most damage. But since each ability has different ranges, I won't know if they are in range without exploring each possible place I can move to. One solution would be to go through each possible places to move to, determine the optimal attack at that location - which gives me a list of optimal moves for each location. Then choose the optimal out of the list and execute it. But this will take a lot of CPU time. Is there a better solution? My current idea is to move as close as possible towards the closest, largest group of people, and determine the optimal attack/ability from there. I think this would be a lot less work for the CPU and still allow for wide-range attacks. Its sub-optimal but the AI will still seem 'smart'. Other notes/questions: Am I over-thinking/over-complicating it? Better solution? I am open to all sorts of suggestions I have taken a look at the spell-casting question, but it doesn't take into account the movement - so perhaps use that algo for each possible move location? The top answer mentioned it wasn't great for area-of-effect and group fights - so maybe requires more tweaking? Please, if you mention a graph/tree, let me know basically how to use it. E.g. Node means ability, level corresponds to damage, then search for the deepest node.

    Read the article

  • Write and fprintf for file I/O

    - by Darryl Gove
    fprintf() does buffered I/O, where as write() does unbuffered I/O. So once the write() completes, the data is in the file, whereas, for fprintf() it may take a while for the file to get updated to reflect the output. This results in a significant performance difference - the write works at disk speed. The following is a program to test this: #include <fcntl.h #include <unistd.h #include <stdio.h #include <stdlib.h #include <errno.h #include <stdio.h #include <sys/time.h #include <sys/types.h #include <sys/stat.h static double s_time; void starttime() { s_time=1.0*gethrtime(); } void endtime(long its) { double e_time=1.0*gethrtime(); printf("Time per iteration %5.2f MB/s\n", (1.0*its)/(e_time-s_time*1.0)*1000); s_time=1.0*gethrtime(); } #define SIZE 10*1024*1024 void test_write() { starttime(); int file = open("./test.dat",O_WRONLY|O_CREAT,S_IWGRP|S_IWOTH|S_IWUSR); for (int i=0; i<SIZE; i++) { write(file,"a",1); } close(file); endtime(SIZE); } void test_fprintf() { starttime(); FILE* file = fopen("./test.dat","w"); for (int i=0; i<SIZE; i++) { fprintf(file,"a"); } fclose(file); endtime(SIZE); } void test_flush() { starttime(); FILE* file = fopen("./test.dat","w"); for (int i=0; i<SIZE; i++) { fprintf(file,"a"); fflush(file); } fclose(file); endtime(SIZE); } int main() { test_write(); test_fprintf(); test_flush(); } Compiling and running I get 0.2MB/s for write() and 6MB/s for fprintf(). A large difference. There's three tests in this example, the third test uses fprintf() and fflush(). This is equivalent to write() both in performance and in functionality. Which leads to the suggestion that fprintf() (and other buffering I/O functions) are the fastest way of writing to files, and that fflush() should be used to enforce synchronisation of the file contents.

    Read the article

< Previous Page | 171 172 173 174 175 176 177 178 179 180 181 182  | Next Page >